1
|
Sun J, Ge Y, Chao T, Bai R, Wang C. The Role of miRNA in the Regulation of Angiogenesis in Ischemic Heart Disease. Curr Probl Cardiol 2023; 48:101637. [PMID: 36773949 DOI: 10.1016/j.cpcardiol.2023.101637] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023]
Abstract
Despite continued improvements in primary prevention and treatment, ischemic heart disease (IHD) is the most common cause of mortality in both developing and developed countries. Promoting angiogenesis and reconstructing vascular network in ischemic myocardium are critical process of postischemic tissue repair. Effective strategies to promote survival and avoid apoptosis of endothelial cells in the ischemic myocardium can help to achieve long-term cardiac angiogenesis. Therefore, it is of great importance to investigate the molecular pathophysiology of angiogenesis in-depth and to find the key targets that promote angiogenesis. Recently years, many studies have found that microRNAs play important regulatory roles in almost all process of angiogenesis, including vascular sprouting, proliferation, survival and migration of vascular endothelial cells, recruitment of vascular progenitor cells, and control of angiopoietin expression. This review presents detailed information about the regulatory role of miRNAs in the angiogenesis of IHD in recent years, and provides new therapeutic ideas for the treatment of IHD.
Collapse
Affiliation(s)
- Jinghui Sun
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yaru Ge
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiantian Chao
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruina Bai
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Chenglong Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Chen H, Ma D, Yue F, Qi Y, Dou M, Cui L, Xing Y. The Potential Role of Hypoxia-Inducible Factor-1 in the Progression and Therapy of Central Nervous System Diseases. Curr Neuropharmacol 2022; 20:1651-1666. [PMID: 34325641 PMCID: PMC9881070 DOI: 10.2174/1570159x19666210729123137] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/19/2021] [Accepted: 07/16/2021] [Indexed: 11/22/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a heterodimer protein composed of an oxygenregulated functional subunit, HIF-1α, and a structural subunit, HIF-1β, belonging to the basic helixloop- helix family. Strict regulation of HIF-1 protein stability and subsequent transcriptional activity involves various molecular interactions and is primarily controlled by post-transcriptional modifications. Hypoxia, owing to impaired cerebral blood flow, has been implicated in a range of central nervous system (CNS) diseases by exerting a deleterious effect on brain function. As a master oxygen- sensitive transcription regulator, HIF-1 is responsible for upregulating a wide spectrum of target genes involved in glucose metabolism, angiogenesis, and erythropoiesis to generate the adaptive response to avoid, or at least minimize, hypoxic brain injury. However, prolonged, severe oxygen deprivation may directly contribute to the role-conversion of HIF-1, namely, from neuroprotection to the promotion of cell death. Currently, an increasing number of studies support the fact HIF-1 is involved in a variety of CNS-related diseases, such as intracranial atherosclerosis, stroke, and neurodegenerative diseases. This review article chiefly focuses on the effect of HIF-1 on the pathogenesis and mechanism of progression of numerous CNS-related disorders by mediating the expression of various downstream genes and extensive biological functional events and presents robust evidence that HIF-1 may represent a potential therapeutic target for CNS-related diseases.
Collapse
Affiliation(s)
- Hongxiu Chen
- Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Beijing, China; ,Beijing Diagnostic Center of Vascular Ultrasound, Beijing, China; ,Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, 45 Changchun Road, Xicheng District, Beijing, 100053, China; ,Hongxiu Chen and Di Ma contributed equally to this work.
| | - Di Ma
- Department of Neurology, The First Hospital of Jilin University, Changchun, China,Hongxiu Chen and Di Ma contributed equally to this work.
| | - Feixue Yue
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yajie Qi
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Manman Dou
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Liuping Cui
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yingqi Xing
- Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Beijing, China; ,Beijing Diagnostic Center of Vascular Ultrasound, Beijing, China; ,Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, 45 Changchun Road, Xicheng District, Beijing, 100053, China; ,Address correspondence to this author at the Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Beijing Diagnostic Center of Vascular Ultrasound, Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, 45 Changchun Road, Xicheng District, Beijing, 100053, China; E-mail: This work is recommended by Pro Jiachun Feng, The First Hospital of Jilin University.
| |
Collapse
|
3
|
Extracellular Vesicle Transmission of Chemoresistance to Ovarian Cancer Cells Is Associated with Hypoxia-Induced Expression of Glycolytic Pathway Proteins, and Prediction of Epithelial Ovarian Cancer Disease Recurrence. Cancers (Basel) 2021; 13:cancers13143388. [PMID: 34298602 PMCID: PMC8305505 DOI: 10.3390/cancers13143388] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Ovarian cancer is one of the most lethal cancers affecting women worldwide. Its high mortality rate is often attributed to the non-specific nature of early symptoms of the disease. Developing a better understanding of the disease progression and identifying clinically useful biomarkers that aid in clinical management are requisite to reducing the mortality rate of ovarian cancer. Reduced oxygen tension (i.e., hypoxia) is not only a characteristic of solid tumors but may also enhance the metastatic capacity of tumors by inducing the release of tumor growth promoting factors. Recently, it has been proposed that small tumor-derived extracellular vesicles (sEVs) facilitate cancer progression. In this study, we established that sEVs produced under low oxygen tension induce a metabolic switch in ovarian cancer cells associated with changes in glycolytic pathway proteins that promote resistance to carboplatin. Significantly, we identified a suite of sEV-associated glycolysis pathway proteins that are present in patients with ovarian cancer that can predict disease recurrence with over 90% accuracy. Abstract Hypoxia is a key regulator of cancer progression and chemoresistance. Ambiguity remains about how cancer cells adapt to hypoxic microenvironments and transfer oncogenic factors to surrounding cells. In this study, we determined the effects of hypoxia on the bioactivity of sEVs in a panel of ovarian cancer (OvCar) cell lines. The data obtained demonstrate a varying degree of platinum resistance induced in OvCar cells when exposed to low oxygen tension (1% oxygen). Using quantitative mass spectrometry (Sequential Window Acquisition of All Theoretical Fragment Ion Mass Spectra, SWATH) and targeted multiple reaction monitoring (MRM), we identified a suite of proteins associated with glycolysis that change under hypoxic conditions in cells and sEVs. Interestingly, we identified a differential response to hypoxia in the OvCar cell lines and their secreted sEVs, highlighting the cells’ heterogeneity. Proteins are involved in metabolic reprogramming such as glycolysis, including putative hexokinase (HK), UDP-glucuronosyltransferase 1–6 (UD16), and 6-phosphogluconolactonase (6 PGL), and their presence correlates with the induction of platinum resistance. Furthermore, when normoxic cells were exposed to sEVs from hypoxic cells, platinum-resistance increased significantly (p < 0.05). Altered chemoresistance was associated with changes in glycolysis and fatty acid synthesis. Finally, sEVs isolated from a clinical cohort (n = 31) were also found to be enriched in glycolysis-pathway proteins, especially in patients with recurrent disease. These data support the hypothesis that hypoxia induces changes in sEVs composition and bioactivity that confers carboplatin resistance on target cells. Furthermore, we propose that the expression of sEV-associated glycolysis-pathway proteins is predictive of ovarian cancer recurrence and is of clinical utility in disease management.
Collapse
|
4
|
Chong D, Chen Z, Guan S, Zhang T, Xu N, Zhao Y, Li C. Geranylgeranyl pyrophosphate-mediated protein geranylgeranylation regulates endothelial cell proliferation and apoptosis during vasculogenesis in mouse embryo. J Genet Genomics 2021; 48:300-311. [PMID: 34049800 DOI: 10.1016/j.jgg.2021.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 11/17/2022]
Abstract
Vascular development is essential for the establishment of the circulatory system during embryonic development and requires the proliferation of endothelial cells. However, the underpinning regulatory mechanisms are not well understood. Here, we report that geranylgeranyl pyrophosphate (GGPP), a metabolite involved in protein geranylgeranylation, plays an indispensable role in embryonic vascular development. GGPP is synthesized by geranylgeranyl pyrophosphate synthase (GGPPS) in the mevalonate pathway. The selective knockout of Ggpps in endothelial cells led to aberrant vascular development and embryonic lethality, resulting from the decreased proliferation and enhanced apoptosis of endothelial cells during vasculogenesis. The defect in protein geranylgeranylation induced by GGPP depletion inhibited the membrane localization of RhoA and enhanced yes-associated protein (YAP) phosphorylation, thereby prohibiting the entry of YAP into the nucleus and the expression of YAP target genes related to cell proliferation and the antiapoptosis process. Moreover, inhibition of the mevalonate pathway by simvastatin induced endothelial cell proliferation defects and apoptosis, which were ameliorated by GGPP. Geranylgeraniol (GGOH), a precursor of GGPP, ameliorated the harmful effects of simvastatin on vascular development of developing fetuses in pregnant mice. These results indicate that GGPP-mediated protein geranylgeranylation is essential for endothelial cell proliferation and the antiapoptosis process during embryonic vascular development.
Collapse
Affiliation(s)
- Danyang Chong
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Center for Mutant Mice, Nanjing 210093, China
| | - Zhong Chen
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Center for Mutant Mice, Nanjing 210093, China
| | - Shan Guan
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Center for Mutant Mice, Nanjing 210093, China
| | - Tongyu Zhang
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Center for Mutant Mice, Nanjing 210093, China
| | - Na Xu
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Center for Mutant Mice, Nanjing 210093, China
| | - Yue Zhao
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Center for Mutant Mice, Nanjing 210093, China.
| | - Chaojun Li
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Center for Mutant Mice, Nanjing 210093, China.
| |
Collapse
|
5
|
Hypoxia-Induced Suppression of Antiapoptotic Bcl-2 Expression in Human Bladder Tumor Cells Is Regulated by Caveolin-1-Dependent Adenosine Monophosphate-Activated Protein Kinase Activity. Int Neurourol J 2021; 25:137-149. [PMID: 33752282 PMCID: PMC8255828 DOI: 10.5213/inj.2040444.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/28/2021] [Indexed: 11/08/2022] Open
Abstract
Purpose Adenosine monophosphate-activated protein kinase (AMPK) is thought to inhibit cell proliferation or promote cell death, but the details remain unclear. In this study, we propose that AMPK inhibits the expression of anti-apoptotic B-cell lymphoma 2 (Bcl-2) by relying on the hypoxia-inducible factor 1 alpha (HIF-1α)-induced caveolin-1 (Cav-1) expression pathway in noninvasive human bladder tumor (RT4) cells. Methods In cells exposed to a hypoxic environment (0.5% oxygen), the levels of expression and phospho-activity of the relevant signaling enzymes were examined via Western blots and reverse transcription-polymerase chain reaction. Cell proliferation was assessed using a Cell Counting Kit-8 assay. Results The level of expression of Cav-1 was very low or undetectable in RT4 cells. Hypoxia was associated with significantly decreased cell growth, along with marked induction of HIF-1α and Cav-1 expression; additionally, it suppressed the expression of the antiapoptotic marker Bcl-2 while leaving AMPK activity unchanged. Under hypoxic conditions, HIF-1α acts as a transcription factor for Cav-1 mRNA gene expression. The cell growth and Bcl-2 expression suppressed under hypoxia were reversed along with decreases in the induced HIF-1α and Cav-1 levels by AMPK activation with metformin (1mM) or phenformin (0.1mM). In addition, pretreatment with AMPK small interfering RNA not only increased the hypoxia-induced expression of HIF-1α and Cav-1, but also reversed the suppression of Bcl-2 expression. These results suggest that HIF-1α and Cav-1 expression in hypoxic environments is regulated by basal AMPK activity; therefore, the inhibition of Bcl-2 expression cannot be expected when AMPK activity is suppressed, even if Cav-1 expression is elevated. Conclusions For the first time, we find that AMPK activation can regulate HIF-1α induction as well as HIF-1α-induced Cav1 expression, and the hypoxia-induced inhibitory effect on the antiapoptotic pathway in RT4 cells is due to Cav-1-dependent AMPK activity.
Collapse
|
6
|
Ghafouri-Fard S, Shoorei H, Mohaqiq M, Taheri M. Non-coding RNAs regulate angiogenic processes. Vascul Pharmacol 2020; 133-134:106778. [PMID: 32784009 DOI: 10.1016/j.vph.2020.106778] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023]
Abstract
Angiogenesis has critical roles in numerous physiologic processes during embryonic and adult life such as wound healing and tissue regeneration. However, aberrant angiogenic processes have also been involved in the pathogenesis of several disorders such as cancer and diabetes mellitus. Vascular endothelial growth factor (VEGF) is implicated in the regulation of this process in several physiologic and pathologic conditions. Notably, several non-coding RNAs (ncRNAs) have been shown to influence angiogenesis through modulation of expression of VEGF or other angiogenic factors. In the current review, we summarize the function and characteristics of microRNAs and long non-coding RNAs which regulate angiogenic processes. Understanding the role of these transcripts in the angiogenesis can facilitate design of therapeutic strategies to defeat the pathogenic events during this process especially in the human malignancies. Besides, angiogenesis-related mechanisms can improve tissue regeneration after conditions such as arteriosclerosis, myocardial infarction and limb ischemia. Thus, ncRNA-regulated angiogenesis can be involved in the pathogenesis of several disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdi Mohaqiq
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Konings K, Vandevoorde C, Baselet B, Baatout S, Moreels M. Combination Therapy With Charged Particles and Molecular Targeting: A Promising Avenue to Overcome Radioresistance. Front Oncol 2020; 10:128. [PMID: 32117774 PMCID: PMC7033551 DOI: 10.3389/fonc.2020.00128] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Radiotherapy plays a central role in the treatment of cancer patients. Over the past decades, remarkable technological progress has been made in the field of conventional radiotherapy. In addition, the use of charged particles (e.g., protons and carbon ions) makes it possible to further improve dose deposition to the tumor, while sparing the surrounding healthy tissues. Despite these improvements, radioresistance and tumor recurrence are still observed. Although the mechanisms underlying resistance to conventional radiotherapy are well-studied, scientific evidence on the impact of charged particle therapy on cancer cell radioresistance is restricted. The purpose of this review is to discuss the potential role that charged particles could play to overcome radioresistance. This review will focus on hypoxia, cancer stem cells, and specific signaling pathways of EGFR, NFκB, and Hedgehog as well as DNA damage signaling involving PARP, as mechanisms of radioresistance for which pharmacological targets have been identified. Finally, new lines of future research will be proposed, with a focus on novel molecular inhibitors that could be used in combination with charged particle therapy as a novel treatment option for radioresistant tumors.
Collapse
Affiliation(s)
- Katrien Konings
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Department of Nuclear Medicine, iThemba LABS, Cape Town, South Africa
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium.,Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Marjan Moreels
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| |
Collapse
|
8
|
Xie J, Cheng C, Jie Y, Ma H, Feng J, Su Y, Deng Y, Xu H, Guo Z. Expression of lactate dehydrogenase is induced during hypoxia via HIF-1 in the mud crab Scylla paramamosain. Comp Biochem Physiol C Toxicol Pharmacol 2019; 225:108563. [PMID: 31276813 DOI: 10.1016/j.cbpc.2019.108563] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/14/2019] [Accepted: 06/25/2019] [Indexed: 01/01/2023]
Abstract
Lactate dehydrogenase (LDH) is a key enzyme involved in anaerobic metabolism in most organisms. In the present study, we determined the structure and function of LDH sequence in Scylla paramamosain (SpLDH) by gene cloning, expression and RNA interference techniques in order to explore the genetic characteristics of LDH and its relationship with HIF-1 during hypoxia. The full-length cDNA was 1453 bp with an open reading frame (ORF) of 996 bp, and encoded a polypeptide of 332 amino acids. Homology analysis showed that the SpLDH gene is highly similar to arthropods. The SpLDH transcript increased after hypoxia in all tested tissues. The silencing of HIF-1 blocked the increase in LDH mRNA and activity, which were induced by hypoxia in gill and muscle tissues. Our results indicated that SpLDH expression was regulated transcriptionally by HIF-1.
Collapse
Affiliation(s)
- Jiawei Xie
- Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China; Shanghai Ocean University, Shanghai 201206, PR China
| | - Changhong Cheng
- Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China
| | - Yukun Jie
- Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China; Shanghai Ocean University, Shanghai 201206, PR China
| | - Hongling Ma
- Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China
| | - Juan Feng
- Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China
| | - Youlu Su
- Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China
| | - Yiqin Deng
- Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China
| | - Haidong Xu
- Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China
| | - Zhixun Guo
- Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China; Shanghai Ocean University, Shanghai 201206, PR China.
| |
Collapse
|
9
|
Genome-Wide Association Analysis of Anoxia Tolerance in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2019; 9:2989-2999. [PMID: 31311780 PMCID: PMC6723132 DOI: 10.1534/g3.119.400421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
As the genetic bases to variation in anoxia tolerance are poorly understood, we used the Drosophila Genetics Reference Panel (DGRP) to conduct a genome-wide association study (GWAS) of anoxia tolerance in adult and larval Drosophila melanogaster Survival ranged from 0-100% in adults exposed to 6 h of anoxia and from 20-98% for larvae exposed to 1 h of anoxia. Anoxia tolerance had a broad-sense heritability of 0.552 in adults and 0.433 in larvae. Larval and adult phenotypes were weakly correlated but the anoxia tolerance of adult males and females were strongly correlated. The GWA identified 180 SNPs in adults and 32 SNPs in larvae associated with anoxia tolerance. Gene ontology enrichment analysis indicated that many of the 119 polymorphic genes associated with adult anoxia-tolerance were associated with ionic transport or immune function. In contrast, the 22 polymorphic genes associated with larval anoxia-tolerance were mostly associated with regulation of transcription and DNA replication. RNAi of mapped genes generally supported the hypothesis that disruption of these genes reduces anoxia tolerance. For two ion transport genes, we tested predicted directional and sex-specific effects of SNP alleles on adult anoxia tolerance and found strong support in one case but not the other. Correlating our phenotype to prior DGRP studies suggests that genes affecting anoxia tolerance also influence stress-resistance, immune function and ionic balance. Overall, our results provide evidence for multiple new potential genetic influences on anoxia tolerance and provide additional support for important roles of ion balance and immune processes in determining variation in anoxia tolerance.
Collapse
|
10
|
The Hypoxia-Mimetic Agent Cobalt Chloride Differently Affects Human Mesenchymal Stem Cells in Their Chondrogenic Potential. Stem Cells Int 2018; 2018:3237253. [PMID: 29731777 PMCID: PMC5872594 DOI: 10.1155/2018/3237253] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/10/2017] [Accepted: 01/01/2018] [Indexed: 12/19/2022] Open
Abstract
Adult stem cells are a promising cell source for cartilage regeneration. They resided in a special microenvironment known as the stem-cell niche, characterized by the presence of low oxygen concentration. Cobalt chloride (CoCl2) imitates hypoxia in vitro by stabilizing hypoxia-inducible factor-alpha (HIF-1α), which is the master regulator in the cellular adaptive response to hypoxia. In this study, the influence of CoCl2 on the chondrogenic potential of human MSCs, isolated from dental pulp, umbilical cord, and adipose tissue, was investigated. Cells were treated with concentrations of CoCl2 ranging from 50 to 400 μM. Cell viability, HIF-1α protein synthesis, and the expression of the chondrogenic markers were analyzed. The results showed that the CoCl2 supplementation had no effect on cell viability, while the upregulation of chondrogenic markers such as SOX9, COL2A1, VCAN, and ACAN was dependent on the cellular source. This study shows that hypoxia, induced by CoCl2 treatment, can differently influence the behavior of MSCs, isolated from different sources, in their chondrogenic potential. These findings should be taken into consideration in the treatment of cartilage repair and regeneration based on stem cell therapies.
Collapse
|
11
|
Eskandani M, Vandghanooni S, Barar J, Nazemiyeh H, Omidi Y. Cell physiology regulation by hypoxia inducible factor-1: Targeting oxygen-related nanomachineries of hypoxic cells. Int J Biol Macromol 2017; 99:46-62. [DOI: 10.1016/j.ijbiomac.2016.10.113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/26/2016] [Indexed: 12/27/2022]
|
12
|
Park KJ, Yu MO, Park DH, Park JY, Chung YG, Kang SH. Role of vincristine in the inhibition of angiogenesis in glioblastoma. Neurol Res 2016; 38:871-9. [PMID: 27472259 DOI: 10.1080/01616412.2016.1211231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Vincristine, a microtubule-destabilizing drug, was found to exhibit anti-angiogenic effects and anti-tumoral activity. However, the precise mechanism by which vincristine inhibits angiogenesis in glioblastomas is not well understood. Our aim was to investigate whether vincristine affects vascular endothelial growth factor (VEGF) expression in glioblastoma cells and determine whether it is mediated by the downregulation of hypoxia-inducible factor-1α (HIF-1α). METHODS We investigated the expression of HIF-1α in glioblastoma tissues resected from patients and in human glioblastoma cell lines using immunohistochemistry, Western blot analysis, and immunocytochemistry. In addition to an MTT assay assessing the effect of vincristine on cell proliferation and viability, the effects of vincristine on VEGF mRNA expression and HIF-1α protein were examined using real-time RT-PCR and Western blot analysis under 1% O2 (hypoxia). RESULTS HIF-1α was expressed in the majority of glioblastoma tissues and was detected mainly in the nucleus. Strong immunoreactivity for HIF- 1 α was found often in the hypercellular zones. Under hypoxic conditions, HIF-1α protein levels in the glioblastoma cell lines increased, primarily localizing into the nucleus similar to glioblastoma tissues. Exposure of glioblastoma cells to vincristine resulted in enrichment of the G2-M fraction of the cell cycle, which suggests that vincristine-mediated growth inhibition of glioblastoma is correlated with mitotic inhibition. Using doses lower than those found to reduce the viability and proliferation of cells by 50% (IC50), vincristine decreased both the expression of VEGF mRNA and the level of HIF-1α protein in hypoxic glioblastoma cells. In addition, following exposure to vincristine, the expression of VEGF mRNA was correlated with HIF-1α protein levels. CONCLUSIONS Our results suggest that the mechanism by which vincristine elicits an anti-angiogenic effect in glioblastomas under hypoxic conditions might be mediated, in part, by HIF-1α inhibition.
Collapse
Affiliation(s)
- Kyung-Jae Park
- a Department of Neurosurgery, College of Medicine , Korea University Medical Center, Korea University , Seoul , Korea
| | - Mi Ok Yu
- a Department of Neurosurgery, College of Medicine , Korea University Medical Center, Korea University , Seoul , Korea
| | - Dong-Hyuk Park
- a Department of Neurosurgery, College of Medicine , Korea University Medical Center, Korea University , Seoul , Korea
| | - Jung-Yul Park
- a Department of Neurosurgery, College of Medicine , Korea University Medical Center, Korea University , Seoul , Korea
| | - Yong-Gu Chung
- a Department of Neurosurgery, College of Medicine , Korea University Medical Center, Korea University , Seoul , Korea
| | - Shin-Hyuk Kang
- a Department of Neurosurgery, College of Medicine , Korea University Medical Center, Korea University , Seoul , Korea
| |
Collapse
|
13
|
Zhang H, Lu C, Fang M, Yan W, Chen M, Ji Y, He S, Liu T, Chen T, Xiao J. HIF-1α activates hypoxia-induced PFKFB4 expression in human bladder cancer cells. Biochem Biophys Res Commun 2016; 476:146-52. [PMID: 27181362 DOI: 10.1016/j.bbrc.2016.05.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/03/2016] [Indexed: 10/21/2022]
Abstract
PFKFB4 is reported to regulate glycolysis by synthesizing fructose-2, 6-bisphosphate (F2,6BP) and has proved to be associated with most malignancies. However, the underlying mechanism for increased PFKFB4 expression in bladder cancer remains unclear. The present study demonstrated that PFKFB4 was overexpressed in bladder cancer tissues. In addition, the expression of PFKFB4 elevated in bladder cancer cells in the hypoxic condition, while in nomoxic condition, the expression of PFKFB4 still very low. Furthermore, we identified the hypoxia-responsive elements (HRE)-D from five putative HREs in the promoter region of PFKFB4 and demonstrated that the HRE-D was transactivated by the HIF-1α in bladder cancer cells. By using the Double-immunofluorescence co-localization assay, we revealed that the HIF-1α expression was associated with PFKFB4 expression in human bladder cancer specimens. Altogether, our study for the first time identified the pivotal role of HIF-1α in the connection between PFKFB4 and hypoxia in bladder cancer, which may prove to be a potential target for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Chengyin Lu
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Meng Fang
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wangjun Yan
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Mo Chen
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yingzheng Ji
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Shaohui He
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Tielong Liu
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China.
| | - Tianrui Chen
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China.
| | - Jianru Xiao
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
14
|
Spugnini EP, Sonveaux P, Stock C, Perez-Sayans M, De Milito A, Avnet S, Garcìa AG, Harguindey S, Fais S. Proton channels and exchangers in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2715-26. [PMID: 25449995 DOI: 10.1016/j.bbamem.2014.10.015] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/07/2014] [Accepted: 10/13/2014] [Indexed: 12/18/2022]
Abstract
Although cancer is characterized by an intratumoral genetic heterogeneity, a totally deranged pH control is a common feature of most cancer histotypes. Major determinants of aberrant pH gradient in cancer are proton exchangers and transporters, including V-ATPase, Na+/H+ exchanger (NHE), monocarboxylate transporters (MCTs) and carbonic anhydrases (CAs). Thanks to the activity of these proton transporters and exchangers, cancer becomes isolated and/or protected not only from the body reaction against the growing tumor, but also from the vast majority of drugs that when protonated into the acidic tumor microenvironment do not enter into cancer cells. Proton transporters and exchangers represent a key feature tumor cells use to survive in the very hostile microenvironmental conditions that they create and maintain. Detoxifying mechanisms may thus represent both a key survival option and a selection outcome for cells that behave as unicellular microorganisms rather than belonging to an organ, compartment or body. It is, in fact, typical of malignant tumors that, after a clinically measurable yet transient initial response to a therapy, resistant tumor clones emerge and proliferate, thus bursting a more malignant behavior and rapid tumor progression. This review critically presents the background of a novel and efficient approach that aims to fight cancer through blocking or inhibiting well characterized proton exchangers and transporters active in human cancer cells. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Enrico Pierluigi Spugnini
- Anti-Cancer Drug Section, Department of Drug Research and Medicine Evaluation, Istituto Superiore di Sanità (National Institute of Health), Rome, Italy
| | - Pierre Sonveaux
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology, Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Christian Stock
- Department of Gastroenterology, Hannover Medical School, Hannover, Germany
| | - Mario Perez-Sayans
- Oral Medicine, Oral Surgery and Implantology Unit, Faculty of Medicine and Dentistry, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Angelo De Milito
- Cancer Center Karolinska, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Sofia Avnet
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Abel Garcìa Garcìa
- Oral Medicine, Oral Surgery and Implantology Unit, Faculty of Medicine and Dentistry, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | | | - Stefano Fais
- Anti-Cancer Drug Section, Department of Drug Research and Medicine Evaluation, Istituto Superiore di Sanità (National Institute of Health), Rome, Italy.
| |
Collapse
|
15
|
Niklas A, Proff P, Gosau M, Römer P. The role of hypoxia in orthodontic tooth movement. Int J Dent 2013; 2013:841840. [PMID: 24228034 PMCID: PMC3818850 DOI: 10.1155/2013/841840] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/16/2013] [Indexed: 12/12/2022] Open
Abstract
Orthodontic forces are known to have various effects on the alveolar process, such as cell deformation, inflammation, and circulatory disturbances. Each of these conditions affecting cell differentiation, cell repair, and cell migration, is driven by numerous molecular and inflammatory mediators. As a result, bone remodeling is induced, facilitating orthodontic tooth movement. However, orthodontic forces not only have cellular effects but also induce vascular changes. Orthodontic forces are known to occlude periodontal ligament vessels on the pressure side of the dental root, decreasing the blood perfusion of the tissue. This condition is accompanied by hypoxia, which is known to either affect cell proliferation or induce apoptosis, depending on the oxygen gradient. Because upregulated tissue proliferation rates are often accompanied by angiogenesis, hypoxia may be assumed to fundamentally contribute to bone remodeling processes during orthodontic treatment.
Collapse
Affiliation(s)
- A. Niklas
- Department of Orthodontics, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - P. Proff
- Department of Orthodontics, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - M. Gosau
- Department of Orthodontics, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - P. Römer
- Department of Orthodontics, University Medical Center Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
16
|
Abstract
Since the initial hypotheses on the importance of angiogenesis in the pathogenesis of cancer approximately 30 years ago, there have been major advances in the understanding of the cellular and molecular mechanisms involved in the regulation of this complex process of new vessel formation. Among the multitude of factors, vascular endothelial growth factor (VEGF) has emerged as one of the most potent angiogenic factors, being implicated in the initiation of signal transduction responsible for cell proliferation, survival, migration and adhesion. Inhibition of VEGF and its signaling pathway offers a potential new molecular target in cancer therapy. This article reviews the role of angiogenesis and its mediators, particularly vascular endothelial growth factors, in hematological malignancies, as well as the potential use of anti-angiogenic therapies in the management of these conditions.
Collapse
Affiliation(s)
- Soon Thye Lim
- Keck School of Medicine/Norris, university of Southern california, Comprehensive Cancer center, Los Angeles, CA 90033, USA
| | | |
Collapse
|
17
|
Ahn JE, Zhou X, Dowd SE, Chapkin RS, Zhu-Salzman K. Insight into hypoxia tolerance in cowpea bruchid: metabolic repression and heat shock protein regulation via hypoxia-inducible factor 1. PLoS One 2013; 8:e57267. [PMID: 23593115 PMCID: PMC3625201 DOI: 10.1371/journal.pone.0057267] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/18/2013] [Indexed: 11/18/2022] Open
Abstract
Oxygen is of fundamental importance for most living organisms including insects. Hermetic storage uses airtight containment facilities to withhold oxygen required for development, thus preventing damage by insect pests in stored grain. Cowpea bruchid (Callosobruchus maculatus) ceases feeding and growth when exposed to 2% oxygen. However, although population expansion is temporarily arrested, the bruchids (especially late stage larvae) can survive extended periods of hypoxia and recover development if normoxic conditions resume, an ability rarely found in mammals. To begin to understand fundamental mechanisms that enable insects to cope with oxygen deprivation, we constructed a 3'-anchored cDNA library from 4(th) instar larvae subjected to normoxic and hypoxic treatments (respectively), and performed 454-pyrosequencing. Quality filtering and contig assembly resulted in 20,846 unique sequences. Of these, 5,335 sequences had hits in BlastX searches (E = 10(-6)), constituting a 2,979 unigene set. Further analysis based on gene ontology terms indicated that 1,036 genes were involved in a diverse range of cellular functions. Genes encoding putative glycolytic and TCA cycle enzymes as well as components of respiratory chain complexes were selected and assessed for transcript responses to low oxygen. The majority of these genes were down-regulated, suggesting that hypoxia repressed metabolic activity. However, a group of genes encoding heat shock proteins (HSPs) was induced. Promoter analyses of representative HSP genes suggested the involvement of hypoxia-inducible transcription factor 1 (HIF1) in regulating these hypoxia-induced genes. Its activator function has been confirmed by transient co-transfection into S2 cells of constructs of HIF1 subunits and the HSP promoter-driven reporter.
Collapse
Affiliation(s)
- Ji-Eun Ahn
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
- Institute of Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas, United States of America
| | - Xin Zhou
- Institute of Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas, United States of America
| | - Scot E. Dowd
- MR DNA Molecular Research, Shallowater, Texas, United States of America
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas, United States of America
| | - Keyan Zhu-Salzman
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, China
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
- Institute of Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
18
|
The Warburg effect: insights from the past decade. Pharmacol Ther 2012; 137:318-30. [PMID: 23159371 DOI: 10.1016/j.pharmthera.2012.11.003] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/01/2012] [Indexed: 02/07/2023]
Abstract
Several decades ago, Otto Warburg discovered that cancer cells produce energy predominantly by glycolysis; a phenomenon now termed "Warburg effect". Warburg linked mitochondrial respiratory defects in cancer cells to aerobic glycolysis; this theory of his gradually lost its importance with the lack of conclusive evidence confirming the presence of mitochondrial defects in cancer cells. Scientists began to believe that this altered mechanism of energy production in cancer cells was more of an effect than the cause. More than 50 years later, the clinical use of FDG-PET imaging in the diagnosis and monitoring of cancers rekindled the interest of the scientific community in Warburg's hypothesis. In the last ten years considerable progress in the field has advanced our understanding of the Warburg effect. However, it still remains unclear if the Warburg effect plays a causal role in cancers or it is an epiphenomenon in tumorigenesis. In this review we aim to discuss the molecular mechanisms associated with the Warburg effect with emphasis on recent advances in the field including the role of epigenetic changes, miRNAs and post-translational modification of proteins. In addition, we also discuss emerging therapeutic strategies that target the dependence of cancer cells on altered energy processing through aerobic glycolysis.
Collapse
|
19
|
Wu K, Xu W, You Q, Guo R, Feng J, Zhang C, Wu W. Increased expression of heat shock protein 90 under chemical hypoxic conditions protects cardiomyocytes against injury induced by serum and glucose deprivation. Int J Mol Med 2012; 30:1138-44. [PMID: 22922826 DOI: 10.3892/ijmm.2012.1099] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/04/2012] [Indexed: 11/06/2022] Open
Abstract
Heat shock proteins (HSPs) are critical for adaptation to hypoxia and/or ischemia. Previously, we demonstrated that cobalt chloride (CoCl2), a well-known hypoxia mimetic agent, is an inducer of HSP90. In the present study, we tested the hypothesis that CoCl₂-induced upregulation of HSP90 is able to provide cardioprotection in serum and glucose-deprived H9c2 cardiomyocytes (H9c2 cells). Cell viability was detected using a CCK-8 assay, while HSP90 expression was detected via western blotting. The findings of this study showed that serum and glucose deprivation (SGD) induced significant cytotoxicity, overproduction of reactive oxygen species (ROS) and a loss of mitochondrial membrane potential (MMP) in H9c2 cells. In addition, SGD downregulated the expression of HSP90 in a time-dependent manner. The selective inhibitor of HSP90 17-allylamino-17-demethoxygeldanamycin (17-AAG) aggravated SGD-induced cytotoxicity. CoCl₂ at 100 µM time-dependently enhanced the expression of HSP90. Treatment with CoCl₂ from 50 to 200 µM significantly attenuated cytotoxicity and the downregulation of HSP90 expression induced by SGD for 24 h, respectively. Notably, pretreatment of H9c2 cells with 17-AAG at 2 µM for 60 min before exposure to both CoCl2 (100 µM) and SGD significantly blocked the CoCl2-induced cardioprotective effect, demonstrated by decreased cell viability and MMP loss, as well as increased ROS generation. Taken together, these results suggest that HSP90 may be one of the endogenous defensive mechanisms for resisting ischemia-like injury in H9c2 cells, and that HSP90 plays an important role in chemical hypoxia-induced cardioprotection against SGD-induced injury by its antioxidation and preservation of mitochondrial function.
Collapse
Affiliation(s)
- Keng Wu
- Department of Cardiology, The Affiliated Hospital, Guangdong Medical College, Zhanjiang, PR China
| | | | | | | | | | | | | |
Collapse
|
20
|
Simoni J, Simoni G, Moeller JF, Feola M, Griswold JA, Wesson DE. Adenosine-5'-triphosphate-adenosine-glutathione cross-linked hemoglobin as erythropoiesis-stimulating agent. Artif Organs 2012; 36:139-50. [PMID: 22339724 DOI: 10.1111/j.1525-1594.2011.01431.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An effective hemoglobin (Hb)-based blood substitute that acts as a physiological oxygen carrier and volume expander ought to stimulate erythropoiesis. A speedy replacement of blood loss with endogenous red blood cells should be an essential feature of any blood substitute product because of its relatively short circulatory retention time and high autoxidation rate. Erythropoiesis is a complex process controlled by oxygen and redox-regulated transcription factors and their target genes that can be affected by Hb physicochemical properties. Using an in vitro cellular model, we investigated the molecular mechanisms of erythropoietic action of unmodified tetrameric Hb (UHb) and Hb cross-linked with adenosine-5'-triphosphate (ATP), adenosine, and reduced glutathione (GSH). These effects were studied under normoxic and hypoxic conditions. Results indicate that these Hb solutions have different effects on stabilization and nuclear translocation of hypoxia-inducible factor (HIF)-1 alpha, induction of the erythropoietin (EPO) gene, activation of nuclear factor (NF)-kappa B, and expression of the anti-erythropoietic agents-tumor necrosis factor-alpha and transforming growth factor-beta 1. UHb suppresses erythropoiesis by increasing the cytoplasmic degradation of HIF-1 alpha and decreasing binding to the EPO gene while inducing NF-kappa B-dependent anti-erythropoietic genes. Cross-linked Hb accelerates erythropoiesis by downregulating NF-kappa B, stabilizing and facilitating HIF-1 alpha binding to the EPO gene, under both oxygen conditions. ATP and adenosine contribute to normoxic stabilization of HIF-1 and, with GSH, inhibit the NF-kappa B pathway that is involved in the suppression of erythroid-specific genes. Proper chemical/pharmacological modification is required to consider acellular Hb as an erythropoiesis-stimulating agent.
Collapse
Affiliation(s)
- Jan Simoni
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Pérez-Sayáns M, Suárez-Peñaranda JM, Pilar GD, Supuran CT, Pastorekova S, Barros-Angueira F, Gándara-Rey JM, García-García A. Expression of CA-IX is associated with advanced stage tumors and poor survival in oral squamous cell carcinoma patients. J Oral Pathol Med 2012; 41:667-74. [DOI: 10.1111/j.1600-0714.2012.01147.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Pérez-Sayáns M, Supuran CT, Pastorekova S, Suárez-Peñaranda JM, Pilar GD, Barros-Angueira F, Gándara-Rey JM, García-García A. The role of carbonic anhydrase IX in hypoxia control in OSCC. J Oral Pathol Med 2012; 42:1-8. [DOI: 10.1111/j.1600-0714.2012.01144.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Garofalo A, Farce A, Ravez S, Lemoine A, Six P, Chavatte P, Goossens L, Depreux P. Synthesis and structure-activity relationships of (aryloxy)quinazoline ureas as novel, potent, and selective vascular endothelial growth factor receptor-2 inhibitors. J Med Chem 2012; 55:1189-204. [PMID: 22229669 DOI: 10.1021/jm2013453] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In our continuing search for medicinal agents to treat proliferative diseases, quinazoline derivatives were synthesized and evaluated pharmacologically as epithelial growth factor receptor and vascular endothelial growth factor receptor 2 (VEGFR-2) tyrosine kinase inhibitors. A quantitative structure-activity relationship analysis was conducted to rationalize the structure-activity relationship and to predict how similar the inhibitor-binding profiles of two protein kinases are likely to be on the basis of the docking of lead coumpounds into the ATP-binding site. This model was used to direct the synthesis of new compounds. A series of N-(aromatic)-N'-{4-[(6,7-dimethoxyquinazolin-4-yl)oxy]phenyl}urea were identified as potent and selective inhibitors of the tyrosine kinase activity of VEGFR-2 (fetal liver kinase 1, kinase insert domain-containing receptor). An efficient route was developed that enabled the synthesis of a wide variety of analogues with substitution on several positions of the template. Substitution of diarylurea, competitive with ATP, afforded several analogues with low nanomolar inhibition of enzymatic activity of VEGFR-2. In this paper, we describe the synthesis, structure-activity relationships, and pharmacological characterization of the series.
Collapse
|
24
|
Diminished Pulmonary Expression of Hypoxia-Inducible Factor 2- α, Vascular Endothelial Growth Factor and Hepatocyte Growth Factor in Chickens Exposed to Chronic Hypobaric Hypoxia. J Poult Sci 2012. [DOI: 10.2141/jpsa.011036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
25
|
Cañuelo A, Martínez-Romero R, Martínez-Lara E, Sánchez-Alcázar JA, Siles E. The hypoxic preconditioning agent deferoxamine induces poly(ADP-ribose) polymerase-1-dependent inhibition of the mitochondrial respiratory chain. Mol Cell Biochem 2011; 363:101-8. [PMID: 22147195 DOI: 10.1007/s11010-011-1162-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 11/23/2011] [Indexed: 12/21/2022]
Abstract
We previously reported that treatment with a single dose of deferoxamine (DFO), which acts as a hypoxic-mimetic agent, only induces reactive oxygen species (ROS) production in the presence of poly(ADP-ribose) polymerase (PARP-1). Given that mitochondria are one of the main sources of ROS, the present study was designed to assess the effect of DFO treatment on the activity of mitochondrial respiratory chain complexes, and more importantly, to determine whether this effect is modulated by PARP-1. We found that DFO treatment induced a progressive decline in complex II and IV activity, but that this activity was preserved in PARP-1 knock-out cells, demonstrating that this decrease is mediated by PARP-1. We also confirmed that complex II inhibition after DFO treatment occurs in parallel with poly-ADP ribosylation. Consequently, we recommend that PARP-1 activation be taken into account when using DFO as a hypoxia-mimetic agent, because it mediates alteration of the mitochondrial respiratory chain.
Collapse
Affiliation(s)
- Ana Cañuelo
- Department of Experimental Biology, University of Jaén, Paraje Las Lagunillas s/n, 23071, Jaén, Spain
| | | | | | | | | |
Collapse
|
26
|
Abstract
Cellular energy metabolism is one of the main processes affected during the transition from normal to cancer cells, and it is a crucial determinant of cell proliferation or cell death. As a support for rapid proliferation, cancer cells choose to use glycolysis even in the presence of oxygen (Warburg effect) to fuel macromolecules for the synthesis of nucleotides, fatty acids, and amino acids for the accelerated mitosis, rather than fuel the tricarboxylic acid cycle and oxidative phosphorylation. Mitochondria biogenesis is also reprogrammed in cancer cells, and the destiny of those cells is determined by the balance between energy and macromolecule supplies, and the efficiency of buffering of the cumulative radical oxygen species. In glioblastoma, the most frequent and malignant adult brain tumor, a metabolic shift toward aerobic glycolysis is observed, with regulation by well known genes as integrants of oncogenic pathways such as phosphoinositide 3-kinase/protein kinase, MYC, and hypoxia regulated gene as hypoxia induced factor 1. The expression profile of a set of genes coding for glycolysis and the tricarboxylic acid cycle in glioblastoma cases confirms this metabolic switch. An understanding of how the main metabolic pathways are modified by cancer cells and the interactions between oncogenes and tumor suppressor genes with these pathways may enlighten new strategies in cancer therapy. In the present review, the main metabolic pathways are compared in normal and cancer cells, and key regulations by the main oncogenes and tumor suppressor genes are discussed. Potential therapeutic targets of the cancer energetic metabolism are enumerated, highlighting the astrocytomas, the most common brain cancer.
Collapse
|
27
|
Swietach P, Hulikova A, Vaughan-Jones RD, Harris AL. New insights into the physiological role of carbonic anhydrase IX in tumour pH regulation. Oncogene 2010; 29:6509-21. [PMID: 20890298 DOI: 10.1038/onc.2010.455] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 08/30/2010] [Accepted: 08/31/2010] [Indexed: 12/15/2022]
Abstract
In this review, we discuss the role of the tumour-associated carbonic anhydrase isoform IX (CAIX) in the context of pH regulation. We summarise recent experimental findings on the effect of CAIX on cell growth and survival, and present a diffusion-reaction model to help in the assessment of CAIX function under physiological conditions. CAIX emerges as an important facilitator of acid diffusion and acid transport, helping to overcome large cell-to-capillary distances that are characteristic of solid tumours. The source of substrate for CAIX catalysis is likely to be CO₂, generated by adequately oxygenated mitochondria or from the titration of metabolic acids with HCO₃⁻ taken up from the extracellular milieu. The relative importance of these pathways will depend on oxygen and metabolite availability, the spatiotemporal patterns of the cell's exposure to hypoxia and on the regulation of metabolism by genes. This is now an important avenue for further investigation. The importance of CAIX in regulating tumour pH highlights the protein as a potential target for cancer therapy.
Collapse
Affiliation(s)
- P Swietach
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | | | | | | |
Collapse
|
28
|
Rizzo A, Spedicato M, Mutinati M, Minoia G, Angioni S, Jirillo F, Pantaleo M, Sciorsci RL. Peritoneal adhesions in human and veterinary medicine: from pathogenesis to therapy. A review. Immunopharmacol Immunotoxicol 2010; 32:481-94. [PMID: 20128633 DOI: 10.3109/08923970903524367] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Any peritoneal inflammatory process consequent to infections or surgical injuries may induce abdominal adhesion formation. Peritoneal adhesions are connective laciniae that develop among abdomino-pelvic organs that limit physiologic visceral motion. Consequently, fertility may be impaired, and intestinal obstruction and pelvic pain may develop, mainly in subjects that had undergone gynaecological surgery. This review illustrates the pathogenic steps of adhesiogenesis and the therapeutic scenario that evolved over the years to tackle the threat of peritoneal adhesions, both in domestic animals and in women.
Collapse
Affiliation(s)
- Annalisa Rizzo
- Department of Animal Production, Faculty of Veterinary Medicine, University of Bari, Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Sub-chronic oral toxicity study in Sprague-Dawley rats with hypoxia mimetic cobalt chloride towards the development of promising neutraceutical for oxygen deprivation. ACTA ACUST UNITED AC 2010; 62:489-96. [DOI: 10.1016/j.etp.2009.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 05/31/2009] [Accepted: 06/24/2009] [Indexed: 11/18/2022]
|
30
|
Stubbs M, Griffiths JR. The altered metabolism of tumors: HIF-1 and its role in the Warburg effect. ADVANCES IN ENZYME REGULATION 2009; 50:44-55. [PMID: 19896967 DOI: 10.1016/j.advenzreg.2009.10.027] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Marion Stubbs
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK.
| | | |
Collapse
|
31
|
Fletcher NM, Jiang ZL, Diamond MP, Abu-Soud HM, Saed GM. Hypoxia-generated superoxide induces the development of the adhesion phenotype. Free Radic Biol Med 2008; 45:530-6. [PMID: 18538674 PMCID: PMC2574925 DOI: 10.1016/j.freeradbiomed.2008.05.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 04/30/2008] [Accepted: 05/05/2008] [Indexed: 01/04/2023]
Abstract
Adhesion fibroblasts exhibit higher TGF-beta1 and type I collagen expression as compared to normal peritoneal fibroblasts. Furthermore, exposure of normal peritoneal fibroblasts to hypoxia results in an irreversible increase in TGF-beta1 and type I collagen. We postulated that the mechanism by which hypoxia induced the adhesion phenotype is through the production of superoxide either directly or through the formation of peroxynitrite. To test this hypothesis, normal peritoneal and adhesion fibroblasts were treated with superoxide dismutase (SOD), a superoxide scavenger, and xanthine/xanthine oxidase, a superoxide-generating system, under normoxic and hypoxic conditions. Also, cells were treated with peroxynitrite. TGF-beta1 and type I collagen expression was determined before and after all treatments using real-time RT/PCR. Hypoxia treatment resulted in a time-dependent increase in TGF-beta1 and type I collagen mRNA levels in both normal peritoneal and adhesion fibroblasts. Similarly, treatment with xanthine oxidase, to endogenously generate superoxide, resulted in higher mRNA levels of TGF-beta1 and type I collagen in both normal peritoneal and adhesion fibroblasts. In contrast, treatment with SOD, to scavenge endogenous superoxide, resulted in a decrease in TGF-beta1 and type I collagen expression in adhesion fibroblasts to levels seen in normal peritoneal fibroblasts; no effect on the expression of these molecules was seen in normal peritoneal fibroblasts. Exposure to hypoxia in the presence of SOD had no effect on mRNA levels of TGF-beta1 and type I collagen in either normal peritoneal or adhesion fibroblasts. Peroxynitrite treatment alone significantly induced both adhesion phenotype markers. In conclusion, hypoxia, through the production of superoxide, causes normal peritoneal fibroblasts to acquire the adhesion phenotype. Scavenging superoxide, even in the presence of hypoxia, prevented the development of the adhesion phenotype. These findings further support the central role of free radicals in the development of adhesions.
Collapse
Affiliation(s)
- Nicole M. Fletcher
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock, Detroit, MI 48201, USA
| | - Zhong L. Jiang
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock, Detroit, MI 48201, USA
| | - Michael P. Diamond
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock, Detroit, MI 48201, USA
| | - Husam M. Abu-Soud
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock, Detroit, MI 48201, USA
| | - Ghassan M. Saed
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock, Detroit, MI 48201, USA
| |
Collapse
|
32
|
Vilar J, Waeckel L, Bonnin P, Cochain C, Loinard C, Duriez M, Silvestre JS, Lévy BI. Chronic hypoxia-induced angiogenesis normalizes blood pressure in spontaneously hypertensive rats. Circ Res 2008; 103:761-9. [PMID: 18703778 DOI: 10.1161/circresaha.108.182758] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We hypothesized that activation of angiogenesis by chronic hypoxia may affect vascular resistance and, subsequently, blood pressure levels in spontaneously hypertensive rats (SHRs). Five-week-old prehypertensive SHRs and age-matched normotensive Wistar-Kyoto (WKY) rats (n=8 per group) were maintained under normobaric normoxic or hypoxic (10% O(2)) conditions for 8 weeks. Three weeks later, the systolic blood pressure was lower by 26% in hypoxic SHRs compared to normoxic SHRs (P<0.05) and remained at the normoxic WKY level. Total peripheral vascular resistance, calculated as the mean arterial pressure/cardiac output (assessed by ultrasound imaging and Doppler), was 30% lower in hypoxic than in normoxic SHRs (P<0.001) and returned to WKY levels. Interestingly, chronic hypoxia also significantly reduced systolic blood pressure in adult 12-week-old SHRs with established hypertension; blood pressure was normalized (versus normoxic WKY rats) after 4 weeks of hypoxia. Changes in hemodynamic parameters were associated with activation of proangiogenic pathways. Protein levels of vascular endothelial growth factor (VEGF)-A in the skeletal muscles were increased by 2.2-fold in hypoxic compared to normoxic SHRs (P<0.001). At the end of the hypoxic period, capillary density in the quadriceps muscle was 1.2-fold higher in hypoxic than in normoxic SHRs (P<0.001). Myocardial capillary density and VEGF-A protein contents were also 1.2- and 2.1-fold higher in hypoxic compared to normoxic SHRs (P<0.001 and P<0.05, respectively). Moreover, treatment with neutralizing VEGF-A antibody abrogated the hypoxia-induced angiogenesis and subsequently worsened arterial hypertension. Therefore, our results suggest that chronic normobaric hypoxia (1) activates VEGF-A-induced angiogenesis and thereafter (2) prevents the occurrence of hypertension in young prehypertensive SHRs and (3) normalizes blood pressure in adult SHRs with established hypertension.
Collapse
Affiliation(s)
- José Vilar
- Cardiovascular Research Center, Institut National de la Santé et de la Recherche Médicale Lariboisière Unit 689, and Université Paris 7-Denis Diderot, Hôpital Lariboisière, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Martínez-Romero R, Martínez-Lara E, Aguilar-Quesada R, Peralta A, Oliver FJ, Siles E. PARP-1 modulates deferoxamine-induced HIF-1α accumulation through the regulation of nitric oxide and oxidative stress. J Cell Biochem 2008; 104:2248-60. [DOI: 10.1002/jcb.21781] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
Abstract
As described by Warburg more than 50 years ago, tumour cells maintain a high glycolytic rate even in conditions of adequate oxygen supply. However, most of tumours are subjected to hypoxic conditions due to the abnormal vasculature that supply them with oxygen and nutrients. Thus, glycolysis is essential for tumour survival and spread. A key step in controlling glycolytic rate is the conversion of fructose-6-P to fructose-1,6-P(2) by 6-phosphofructo-1-kinase (PFK-1). The activity of PFK-1 is allosterically controlled by fructose-2,6-P(2), the product of the enzymatic activity of a dual kinase/phosphatase family of enzymes (PFKFB1-4) that are increased in a significant number of tumour types. In turn, these enzymes are induced by hypoxia through the activation of the HIF-1 complex (hypoxia-inducible complex-1), a transcriptional activator that controls the expression of most of hypoxia-regulated genes. HIF-1 complex is overexpressed in a variety of tumours and its expression appears to correlate with poor prognosis and responses to chemo or radiotherapy. Thus, targeting PFKFB enzymes, either directly or through inhibition of HIF-1, appears as a promising approach for the treatment of certain tumours.
Collapse
Affiliation(s)
- Ramon Bartrons
- Unitat Bioquímica i Biologia Molecular, Departament de Ciències Fisiològiques, Campus de Ciències de la Salut, IDIBELL--Universitat de Barcelona, Barcelona, Spain.
| | | |
Collapse
|
35
|
Abstract
The high metabolic rate required for tumor growth often leads to hypoxia in poorly-perfused regions. Hypoxia activates a complex gene expression program, mediated by hypoxia inducible factor 1 (HIF1alpha). One of the consequences of HIF1alpha activation is up-regulation of glycolysis and hence the production of lactic acid. In addition to the lactic acid-output, intracellular titration of acid with bicarbonate and the engagement of the pentose phosphate shunt release CO(2) from cells. Expression of the enzyme carbonic anhydrase 9 on the tumor cell surface catalyses the extracellular trapping of acid by hydrating cell-generated CO(2) into [see text] and H(+). These mechanisms contribute towards an acidic extracellular milieu favoring tumor growth, invasion and development. The lactic acid released by tumor cells is further metabolized by the tumor stroma. Low extracellular pH may adversely affect the intracellular milieu, possibly triggering apoptosis. Therefore, primary and secondary active transporters operate in the tumor cell membrane to protect the cytosol from acidosis. We review mechanisms regulating tumor intracellular and extracellular pH, with a focus on carbonic anhydrase 9. We also review recent evidence that may suggest a role for CA9 in coordinating pH(i) among cells of large, unvascularized cell-clusters.
Collapse
Affiliation(s)
- Pawel Swietach
- Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre, Oxford OX1 3PT, UK
| | | | | |
Collapse
|
36
|
Effects of hypoxic gas mixtures on viability, expression of adhesion molecules, migration, and synthesis of interleukins by cultured human endothelial cells. Bull Exp Biol Med 2007; 144:130-5. [DOI: 10.1007/s10517-007-0272-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Yang CL, Wang Y, Zhao J, Zhang YL. Clinical significance of the expression of inducible nitric oxide synthase in non-small cell lung cancer. Chin J Cancer Res 2007. [DOI: 10.1007/s11670-007-0136-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
38
|
Kang SH, Cho HT, Devi S, Zhang Z, Escuin D, Liang Z, Mao H, Brat DJ, Olson JJ, Simons JW, Lavallee TM, Giannakakou P, Van Meir EG, Shim H. Antitumor effect of 2-methoxyestradiol in a rat orthotopic brain tumor model. Cancer Res 2007; 66:11991-7. [PMID: 17178898 DOI: 10.1158/0008-5472.can-06-1320] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Grade 4 malignant glioma (GBM) is a fatal disease despite aggressive surgical and adjuvant therapies. The hallmark of GBM tumors is the presence of pseudopalisading necrosis and microvascular proliferation. These tumor cells are hypoxic and express hypoxia-inducible factor-1 (HIF-1), a prosurvival transcription factor that promotes formation of neovasculature through activation of target genes, such as vascular endothelial growth factor. Here, we evaluated whether 2-methoxyestradiol, a microtubule and HIF-1 inhibitor, would have therapeutic potential for this disease in a 9L rat orthotopic gliosarcoma model using a combination of noninvasive imaging methods: magnetic resonance imaging to measure the tumor volume and bioluminescence imaging for HIF-1 activity. After imaging, histologic data were subsequently evaluated to elucidate the drug action mechanism in vivo. Treatment with 2-methoxyestradiol (60-600 mg/kg/d) resulted in a dose-dependent inhibition of tumor growth. This effect was also associated with improved tumor oxygenation as assessed by pimonidazole staining, decreased HIF-1alpha protein levels, and microtubule destabilization as assessed by deacetylation. Our results indicate that 2-methoxyestradiol may be a promising chemotherapeutic agent for the treatment of malignant gliomas, with significant growth inhibition. Further studies are needed to assess the effect of low or intermediate doses of 2-methoxyestradiol in combination with chemotherapeutic agents in clinical studies focused on malignant gliomas. In addition to showing tumor growth inhibition, we identified three potential surrogate biomarkers to determine the efficacy of 2-methoxyestradiol therapy: decreased HIF-1alpha levels, alpha-tubulin acetylation, and degree of hypoxia as determined by pimonidazole staining.
Collapse
Affiliation(s)
- Seung-Hee Kang
- Department of Hematology/Oncology,Emory University, School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bussink J, Kaanders JHAM, van der Kogel AJ. Microenvironmental transformations by VEGF- and EGF-receptor inhibition and potential implications for responsiveness to radiotherapy. Radiother Oncol 2006; 82:10-7. [PMID: 17141899 DOI: 10.1016/j.radonc.2006.10.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 10/19/2006] [Accepted: 10/25/2006] [Indexed: 01/12/2023]
Abstract
The microregional distribution and dynamics of tumor cell hypoxia and proliferation are important determinants of tumor aggressiveness and resistance to treatment. Modulation of these elements by biological targeted drugs such as EGFR- and VEGFR-inhibitors may improve the effect of radiotherapy significantly. These combinations are being evaluated in clinical trials and evidence of their effectiveness is accumulating. However, the mechanistic basis of this cooperative effect and the role and behavior of the microregional tumor phenotype under EGF- and VEGF-blockage is poorly understood. Unfolding of these interactions and effects further downstream is necessary to exploit these biological modifiers most profitably to unravel questions such as: (1) can microregional phenotypes be modulated by EGFR- or VEGFR-blockage and how do downstream effects in the signaling pathways relate to these changes? (2) How do the microregional changes induced by EGFR- and VEGF-blockage affect the responsiveness of tumors to ionizing radiation? Answering these questions will improve our understanding of tumor growth related phenotypic transformations at the microregional level and how these can be influenced by modulation of the EGF- and VEGF-signaling pathways. This knowledge can be used to identify and improve therapeutic combinations with the novel biological modifiers and test a variety of biological-based treatment approaches.
Collapse
Affiliation(s)
- Johan Bussink
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | |
Collapse
|
40
|
|
41
|
Levine AM, Tulpule A, Quinn DI, Gorospe G, Smith DL, Hornor L, Boswell WD, Espina BM, Groshen SG, Masood R, Gill PS. Phase I Study of Antisense Oligonucleotide Against Vascular Endothelial Growth Factor: Decrease in Plasma Vascular Endothelial Growth Factor With Potential Clinical Efficacy. J Clin Oncol 2006; 24:1712-9. [PMID: 16520466 DOI: 10.1200/jco.2005.03.4801] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PurposeVascular endothelial growth factor antisense (VEGF-AS) is an antisense oligonucleotide that targets VEGF, inhibiting angiogenesis and tumor cell proliferation. This study established the safety, biologic effects, and pharmacokinetics of VEGF-AS in 51 patients with advanced malignancies.MethodsVEGF-AS was administered as a 2-hour infusion daily for 5 consecutive days for only one cycle on the first four dose levels, and then administered daily for 5 days every other week for up to 4 months on subsequent levels. Pharmacokinetics, tumor response, and the effect on plasma VEGF levels were determined.ResultsThe maximum-tolerated dose was 200 mg/m2. Dose-limiting toxicities included grade 4 fever, and pulmonary embolism in one patient each at 250 mg/m2. Mild anemia, fever, fatigue, and gastrointestinal complaints were the most common adverse events. VEGF-AS t1/2β(beta-phase terminal half-life of drug concentration) was 2.25 hours (range, 1.97 to 2.95 hours). Mean plasma VEGF-A (P = .002) and VEGF-C (P = .01) levels decreased 24 hours postinfusion, with a trend towards greater decreases at higher dose levels. At the maximum-tolerated dose, five of six patients demonstrated reductions in plasma VEGF. Clinical responses included complete remission in one patient with AIDS-Kaposi's sarcoma, a mixed but dramatic response in one patient with cutaneous T-cell lymphoma, and prolongation of progression-free survival compared with that obtained on the immediate prior regimen in six patients (12%) with renal cell, bronchoalveolar, small cell lung, thyroid, and ovarian carcinomas, and chondrosarcoma, respectively.ConclusionVEGF-AS was well tolerated, with biologic effects and preliminary evidence of clinical efficacy.
Collapse
Affiliation(s)
- Alexandra M Levine
- Department of Medicine, University of Southern California (USC), Keck School of Medicine, Los Angeles, CA 90033, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Minchenko OH, Ogura T, Opentanova IL, Minchenko DO, Esumi H. Splice isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-4: expression and hypoxic regulation. Mol Cell Biochem 2006; 280:227-34. [PMID: 16311927 DOI: 10.1007/s11010-005-8009-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Accepted: 05/26/2005] [Indexed: 12/24/2022]
Abstract
The 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB) is responsible for maintaining the cellular levels of fructose-2,6-bisphosphate which is a key regulator of glycolysis. Here we have studied the expression of PFKFB-4 isozyme in the DB-1 melanoma cells. An additional isoform of PFKFB-4 mRNA with 148 bases insert in the amino-terminal region at high constitutive levels was identified in these cells. The expression of this splice isoform as well as main isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase was responsible to hypoxia and dimethyloxalylglycine, an inhibitor of HIF-1 alpha hydroxylase enzymes, suggesting that the hypoxia responsiveness of PFKFB-4 gene in these cells is regulated by HIF-1alpha protein. Hypoxic induction of PFKFB4 mRNA in the DB-1 melanoma cells correlates with the expression of PFKFB-3 and VEGF mRNA which are known as HIF-1 dependent genes. Thus, our results clearly demonstrated the existence of splice isoform of PFKFB-4 mRNA in the DB-1 melanoma cells and its overexpression under hypoxic conditions.
Collapse
Affiliation(s)
- Oleksandr H Minchenko
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovycha Street, Kyiv, 01601, Ukraine.
| | | | | | | | | |
Collapse
|
43
|
Saed GM, Diamond MP. Effects of interferon-γ reverse hypoxia-stimulated extracellular matrix expression in human peritoneal and adhesion fibroblasts. Fertil Steril 2006; 85 Suppl 1:1300-5. [PMID: 16616105 DOI: 10.1016/j.fertnstert.2005.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 12/21/2005] [Accepted: 12/21/2005] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To determine the response of adhesion and normal peritoneal fibroblasts to interferon-gamma (IFN-gamma) under normal and hypoxic conditions. DESIGN Prospective experimental study. SETTING University medical center. PATIENT(S) Primary cultures of fibroblasts established from peritoneal and adhesion tissue of the same patients. INTERVENTION(S) Hypoxia and IFN-gamma treatment of the primary cultured fibroblasts. MAIN OUTCOME MEASURE(S) Primary cultures of fibroblasts were established from peritoneal and adhesion tissues of the same patients (n = 5). The expression of extracellular matrix components (type I collagen and fibronectin) in adhesion and peritoneal fibroblasts under normal (20% O2) and hypoxic (2% O2) conditions was evaluated by multiplex reverse-transcription polymerase chain reaction analysis. RESULT(S) Adhesion fibroblasts (ADF) have increased basal levels of type I collagen as compared with normal peritoneal fibroblasts (NF). Interferon-gamma treatment resulted in a dose-response decrease in type I collagen and fibronectin mRNA levels in both ADF and NF. Hypoxia treatment resulted in a time-response increase in type I collagen and fibronectin mRNA levels in NF and ADF. Hypoxia had no effect on type I collagen and fibronectin mRNA levels in the presence of increasing dose of IFN-gamma in both NF and ADF. Interferon-gamma can block the stimulating effects of hypoxia on type I collagen expression, supporting the antifibrogenic nature of this cytokine. CONCLUSION(S) Understanding the mechanism by which IFN-gamma exerts its effect will be important in the utilization of this cytokine as a therapy for postoperative adhesion and tissue fibrosis.
Collapse
Affiliation(s)
- Ghassan M Saed
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Wayne State University School of Medicine-Detroit Medical Center, Detroit, Michigan, USA.
| | | |
Collapse
|
44
|
Tuncer MC, Hatipoglu ES, Ozturk H, Kervancioglu P, Buyukbayram H. The Effects of L-Arginine on Neurological Function, Histopathology, and Expression of Hypoxia-Inducible Factor-1 Alpha following Spinal Cord Ischemia in Rats. Eur Surg Res 2006; 37:323-9. [PMID: 16465055 DOI: 10.1159/000090331] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 10/27/2005] [Indexed: 11/19/2022]
Abstract
The aim of this study was to investigate the effects of L-arginine (L-Arg) on neurological function, histopathology, and expression of hypoxia-inducible factor-1 alpha (HIF-1alpha) following spinal cord ischemia in rats, and the interaction between therapy with the nitric oxide donor L-Arg and up-regulation of the expression of HIF-1alpha. Thirty Wistar rats weighing between 200 and 250 g were divided into three groups, each containing 10 rats: group 1, sham operation; group 2, untreated ischemia-reperfusion (I-R); group 3, I-R plus L-Arg treatment. Spinal cord ischemia was applied for 20 min. There were no significant differences in mean arterial pressures, temperatures, and blood gas levels among the groups. In group 2, malondialdehyde values were significantly increased compared with groups 1 and 3. The rats with aortic occlusion in group 2 had paraplegia or paraparesis. In group 3, all animals were neurologically intact. In group 3, spinal motor neurons did not decrease significantly, and little proliferation of microglia was observed compared with those in group 2. In group 2, spinal motor neurons in ventral gray matter decreased significantly compared with those in groups 1 and 3. HIF-1alpha-positive immunostaining was mildly detected in group 2 animals. The expression of immunoreactive cells was intensely increased in spinal cord tissue from I-R/L-Arg rats. In conclusion, our findings suggest that HIF-1alpha-positive immunostaining may be critical factors in the pathophysiology of inflammatory spinal cord injury induced by I-R. Nitric oxide may play an important role in the immunohistochemical expression of these molecules, and the neuroprotective benefit of L-Arg may be attributed to preventing neural cell necrosis.
Collapse
Affiliation(s)
- M Cudi Tuncer
- Department of Anatomy, Dicle University, Medical School, Diyarbakir, Turkey.
| | | | | | | | | |
Collapse
|
45
|
Saed GM, Galijasevic S, Diamond MP, Abu-Soud HM. Measurement of oxygen and nitric oxide levels in vitro and in vivo: relationship to postoperative adhesions. Fertil Steril 2005; 84:235-8. [PMID: 16009192 DOI: 10.1016/j.fertnstert.2005.01.105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Revised: 01/24/2005] [Accepted: 01/24/2005] [Indexed: 01/19/2023]
Abstract
This article demonstrates the ability to measure the actual oxygen and nitric oxide levels in cultured fibroblasts established from normal peritoneum and adhesion tissues with and without hypoxia treatment and to measure levels of oxygen and nitric oxide in vivo in various tissues before and after abrasion.
Collapse
Affiliation(s)
- Ghassan M Saed
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
46
|
Abstract
The Rho family of GTPases is part of the Ras superfamily. The Rho, Rac, and Cdc42 members of the family are present in mammalian cells and have been the subject of attention of researchers due to their vast spectrum of functions. Rac 1, Cdc42, and RhoA are well-known for their role in the regulation of the actin cytoskeleton in promoting the formation of lamellipodia, filopodia, and stress fibers, respectively. The Rho proteins also participate in the control of cell growth, motility, cell-cell adhesions, morphogenesis, cytoskeletal dynamics, and cellular trafficking. The mechanisms for eliciting these functions have become clearer during the last decade. Concordant with their roles in multiple processes of cellular control, the Rho proteins have been shown to be involved in tumor growth, progression, metastasis, and now angiogenesis.
Collapse
Affiliation(s)
- Sofia D Merajver
- Breast and Ovarian Cancer Risk Evaluation Program, University of Michigan Comprehensive Cancer Center, 7217 CCGC, 1500 East Medical Center Drive, Ann Arbor, MI 48109-0948, USA.
| | | |
Collapse
|
47
|
Vengellur A, Phillips JM, Hogenesch JB, LaPres JJ. Gene expression profiling of hypoxia signaling in human hepatocellular carcinoma cells. Physiol Genomics 2005; 22:308-18. [PMID: 15942021 DOI: 10.1152/physiolgenomics.00045.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cellular, local, and organismal responses to low O2 availability occur during processes such as anaerobic metabolism and wound healing and pathological conditions such as stroke and cancer. These responses include increases in glycolytic activity, vascularization, breathing, and red blood cell production. These responses are mediated in part by the hypoxia-inducible factors (HIFs), which receive information on O2 levels from a group of iron- and O2-dependent hydroxylases. Hypoxia mimics, such as cobalt chloride, nickel chloride, and deferoxamine, act to simulate hypoxia by altering the iron status of these hydroxylases. To determine whether these mimics are appropriate substitutes for the lower O2 tension evoked naturally, we compared transcriptional responses of a Hep3B cell line using high-density oligonucleotide arrays. A battery of core genes was identified that was shared by all four treatments (hypoxia, cobalt, nickel, and deferoxamine) including glycolytic enzymes, cell cycle regulators, and apoptotic genes. Importantly, cobalt, nickel, and deferoxamine influenced transcription of distinct sets of genes that were not affected by cellular hypoxia. These global responses to hypoxia indicate a balancing act between adaptation and programmed cell death and suggest caution in the use of hypoxia mimics as substitutes for the low O2 tension that occurs in vivo.
Collapse
Affiliation(s)
- A Vengellur
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | | | | | |
Collapse
|
48
|
Narayan AD, Ersek A, Campbell TA, Colón DM, Pixley JS, Zanjani ED. The effect of hypoxia and stem cell source on haemoglobin switching. Br J Haematol 2005; 128:562-70. [PMID: 15686468 DOI: 10.1111/j.1365-2141.2004.05336.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study investigated whether relative changes that accompany the naturally occurring shifts in haematopoietic sites during human development play a role in haemoglobin (Hb) switching or whether Hb switching is innately programmed into cells. CD34(+)/Lineage(-) haematopoietic stem/progenitor cells (HSCs) were isolated from human fetal liver (F-LVR), cord blood (CB), and adult bone marrow (ABM), and the Hb was characterized by flow cytometry on cultures that generated enucleated red cells. All feeder layers (stroma from F-LVR, ABM, and human fetal aorta) enhanced cell proliferation and erythropoiesis but did not affect Hb type. HSCs from CB and F-LVR generated the same Hb profile under normoxia and hypoxia. HSCs from ABM had single-positive HbA and double-positive HbA and HbF cells at normoxia and almost entirely double-positive cells at hypoxia. Further characterization of these ABM cultures was determined by following mRNA expression for the transcription factors erythroid Kruppel-like factor (EKLF) and fetal Kruppel-like factor (FKLF) as a function of time in cultures under hypoxia and normoxia. The erythroid-specific isoform of 5-amino-levulinate synthase (ALAS2) was also expressed under hypoxic conditions. We conclude that Hb switching is affected by the environment but not all HSCs are preprogrammed to respond.
Collapse
Affiliation(s)
- A Daisy Narayan
- Department of Animal Biotechnology, University of Nevada, Reno, NV 89557, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Zhuravin IA, Dubrovskaya NM, Tumanova NL. Postnatal physiological development of rats after acute prenatal hypoxia. ACTA ACUST UNITED AC 2005; 34:809-16. [PMID: 15587810 DOI: 10.1023/b:neab.0000038132.08219.31] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of the present work was to identify the characteristics of the physiological development of the brain and the formation of behavior in rats subjected to hypoxia on day 13.5 of embryogenesis. These animals showed delayed development and changes in nerve tissue structure in the sensorimotor cortex, along with disturbances to the processes forming normal movement responses during the first month after birth. These changes were partially compensated with age, though adult animals subjected to acute prenatal hypoxia were less able to learn new complex manipulatory movements. Alterations in nerve tissue structure and changes in the neuronal composition of the sensorimotor cortex correlated with the times of appearance of behavioral impairments at different stages of ontogenesis. Thus, changes in the conditions in which the body is formed during a defined period of embryogenesis lead to abnormalities in the process of ontogenetic development and the ability to learn new movements.
Collapse
Affiliation(s)
- I A Zhuravin
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 M. Torez Prospekt, 194223 St. Petersburg, Russia
| | | | | |
Collapse
|
50
|
Minchenko O, Opentanova I, Minchenko D, Ogura T, Esumi H. Hypoxia induces transcription of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-4 gene via hypoxia-inducible factor-1alpha activation. FEBS Lett 2004; 576:14-20. [PMID: 15474002 DOI: 10.1016/j.febslet.2004.08.053] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 07/15/2004] [Accepted: 08/30/2004] [Indexed: 12/14/2022]
Abstract
The PFKFB4 gene encodes isoenzyme of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB or PFK-2/FBPase-2) which originally was found in the testes. We have studied hypoxic regulation of PFKFB4 gene in prostate cancer cell line, PC-3, and several other cancer cell lines. It was shown that hypoxia significantly induced PFKFB4 mRNA levels in PC-3 as well as in HeLa, Hep3B and HepG2 cell lines. Hypoxia increased PFKFB4 protein levels also. Moreover, desferrioxamine and cobalt chloride, which are known to mimic hypoxia, also had a stimulatory effect on the expression of PFKFB4 mRNA. In order to investigate the mechanisms of hypoxic regulation of PFKFB4 gene expression, we used dimethyloxalylglycine, which has the ability to mimic effect of hypoxia by significant induction of hypoxia-inducible factor (HIF-1alpha) protein levels. Our studies showed that PFKFB4 mRNA expression in PC-3, HeLa, Hep3B and HepG2 cell lines was highly responsive to dimethyloxalylglycine, an inhibitor of HIF-1alpha hydroxylase enzymes, suggesting that the hypoxia responsiveness of this gene is regulated by HIF proteins. To better understand the hypoxic regulation of PFKFB4 gene expression, we isolated genomic DNA, which includes the promoter region of PFKFB4. Cell transfection, deletion and site-specific mutagenesis of the PFKFB4 promoter region indicates that hypoxic induction of PFKFB4 gene expression is mediated by the hypoxia-responsive element (HRE). These experiments identified a HRE 422-429 bp upstream from the translation start site. Thus, our results indicate that testis-specific form of PFKFB or PFK-2/FBPase-2 is also expressed in several cancer cell lines and that hypoxia induces transcription of PFKFB4 gene in these cell lines by HIF-1alpha dependent mechanism. HRE in 5'-promoter region of PFKFB4 gene mediates hypoxic induction of PFKFB4 gene transcription.
Collapse
Affiliation(s)
- Oleksandr Minchenko
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Science of Ukraine, Kyiv 01601, Ukraine.
| | | | | | | | | |
Collapse
|