1
|
Morgan RA, Walker R, Carter CS, Natarajan V, Tavel JA, Bechtel C, Herpin B, Muul L, Zheng Z, Jagannatha S, Bunnell BA, Fellowes V, Metcalf JA, Stevens R, Baseler M, Leitman SF, Read EJ, Blaese RM, Lane HC. Preferential Survival of CD4+ T Lymphocytes Engineered with Anti-Human Immunodeficiency Virus (HIV) Genes in HIV-Infected Individuals. Hum Gene Ther 2005; 16:1065-74. [PMID: 16149905 DOI: 10.1089/hum.2005.16.1065] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The present study examined the safety and relative in vivo survival of genetically engineered CD4+ T lymphocytes in human immunodeficiency virus (HIV)-infected individuals. Ten pairs of identical twins discordant for HIV infection were recruited, with the uninfected twin serving as the lymphocyte donor. Ten subjects were treated with a total of 19 separate infusions of retroviral vector-transduced CD4+ enriched T cells. Control (neo gene) or anti-HIV gene (antisense trans-activation response [TAR] element and/or trans-dominant Rev)-engineered lymphocytes were monitored in peripheral blood for 3 years, using a vector-specific PCR assay. Data from 9 of the 10 patients (15 of the 19 infusions) demonstrated preferential survival of CD4+ lymphocytes containing the anti-HIV gene(s) in the immediate weeks after infusion. In six of six patients studied long term (>100 weeks), only T cells containing the anti-HIV genes were consistently detected. In addition, a marked survival advantage of anti-HIV gene-containing T cells was observed in a patient treated during a period of high viral load. Thus, these data strongly support the hypothesis that anti-HIV genes afford a survival advantage to T cells and potential benefit to HIV-1+ individuals.
Collapse
Affiliation(s)
- Richard A Morgan
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Morgan RA, Walker R, Carter CS, Natarajan V, Tavel JA, Bechtel C, Herpin B, Muul L, Zheng Z, Jagannatha S, Bunnell BA, Fellowes V, Metcalf JA, Stevens R, Baseler M, Leitman SF, Read EJ, Blaese RM, Lane HC. Preferential Survival of CD4+ T Lymphocytes Engineered with Anti-Human Immunodeficiency Virus (HIV) Genes in HIV-Infected Individuals. Hum Gene Ther 2005. [DOI: 10.1089/hum.2005.16.ft-108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
3
|
Peptide nucleic acids as epigenetic inhibitors of HIV-1. Int J Pept Res Ther 2005. [DOI: 10.1007/s10989-005-4925-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Peptide nucleic acids as epigenetic inhibitors of HIV-1. Int J Pept Res Ther 2003. [DOI: 10.1007/s10989-004-4925-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Herschhorn A, Admon A, Hizi A. Recombinant human antibodies against the reverse transcriptase of human immunodeficiency virus type-1. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1648:154-63. [PMID: 12758158 DOI: 10.1016/s1570-9639(03)00118-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inhibitory antibodies to the reverse transcriptase (RT) of human immunodeficiency virus type-1 (HIV-1) can be used to block the life cycle of the virus. We have isolated five different human single chain Fv (ScFv) antibodies specific for HIV-1 RT from an antibody phage display library. Three of these antibodies inhibited the RNA-dependent DNA polymerase (RDDP) activity of RT and one of the three (F-6) inhibited also its DNA-dependent DNA polymerase (DDDP) activity. Unexpectedly, F-6 binds to the carboxyl terminus of the large subunit of RT, which contains the ribonuclease H (RNase H) domain, and not the polymerase domain of the protein. Moreover, this binding did not inhibit the RNase H enzymatic activity. To further characterize F-6 antibody, two cyclic synthetic peptides based on the amino acids sequences of the CDR3 of F-6 were synthesized. Peptide F-6CDRH3, with the sequence of CDR3 of the heavy chain, inhibited the RDDP activity of RT while peptide F-6CDRL3, with the sequence of CDR3 of the light chain, had no effect on this activity of RT. These results indicate that some of the effects of F-6 are mediated by the CDR3 of the heavy chain. The antibodies identified here will be further tested as intrabodies for their capacity to protect human cells from HIV-1 infection.
Collapse
Affiliation(s)
- Alon Herschhorn
- Department of Cell Biology and Histology, Sackler School of Medicine, Tel Aviv University, Israel
| | | | | |
Collapse
|
6
|
|
7
|
Mautino MR, Morgan RA. Enhanced inhibition of human immunodeficiency virus type 1 replication by novel lentiviral vectors expressing human immunodeficiency virus type 1 envelope antisense RNA. Hum Gene Ther 2002; 13:1027-37. [PMID: 12067436 DOI: 10.1089/104303402753812430] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have developed optimized versions of a conditionally replicating human immunodeficiency virus type 1 (HIV-1)-based lentiviral vector for gene therapy of HIV-1 infection. These vectors target HIV-1 RNAs containing sequences of the envelope gene by expressing a 1-kb fragment of the HIV-1 Tat/Rev intron in the antisense orientation. Expression of the envelope antisense gene (envAS) was evaluated under the control of different internal promoters such as the human phosphoglycerate kinase (PGK) promoter, the human EF1-alpha promoter, and the U3 region of the SL3 murine leukemia virus. The U3-SL3 promoter transactivates transcription from the vector HIV-1 LTR and drives higher expression levels of envAS-containing RNAs than other promoters in T-cell lines. The effect of other vector structural features was also evaluated. We found that the central polypurine tract and central termination sequence (cPPT) produce a small increase in vector infectivity of 2-fold to 3-fold and results in a 10-fold higher inhibition of wild-type viral replication in challenge experiments. The woodchuck hepatitis posttranscriptional regulatory element (WPRE) does not increase the cytoplasmic levels of envAS mRNA in T-cell lines. We observed that SupT1 and primary CD4(+) T cells transduced with these vectors showed high inhibition of HIV-1 replication, suppression of syncitium formation, and increased cell viability when infected with several HIV-1 laboratory strains. Our results suggest that higher vector copy number and increased levels of envAS RNA expression contribute to block replication of divergent strains of HIV-1.
Collapse
Affiliation(s)
- Mario R Mautino
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, Building 10, Room 10C103, Bethesda, MD 20892-1851, USA.
| | | |
Collapse
|
8
|
Tammur J, Sibul H, Ustav E, Ustav M, Metspalu A. A bovine papillomavirus-1 based vector restores the function of the low-density lipoprotein receptor in the receptor-deficient CHO-ldlA7 cell line. BMC Mol Biol 2002; 3:5. [PMID: 11967145 PMCID: PMC111063 DOI: 10.1186/1471-2199-3-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2001] [Accepted: 04/19/2002] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The rationale of using bovine papillomavirus-1 (BPV-1) derived vectors in gene therapy protocols lies in their episomal maintenance at intermediate to high copy number, and stable, high-level expression of the gene products. We constructed the BPV-1 based vector harbouring the human low-density lipoprotein receptor (LDLR) gene cDNA and tested its ability to restore the function of the LDLR in the receptor-deficient cell line CHO-ldlA7. RESULTS The introduced vector p3.7LDL produced functionally active LDL receptors in the receptor-deficient cell line CHO-ldlA7 during the 32-week period of observation as determined by the internalisation assay with the labelled LDL particles. CONCLUSION Bovine papillomavirus type-1 (BPV-1)-derived vectors could be suitable for gene therapy due to their episomal maintenance at intermediate to high copy number and stable, high-level expression of the gene products. The constructed BPV-1 based vector p3.7LDL produced functionally active LDL receptors in the LDLR-deficient cell line CHO-ldlA7 during the 32-week period of observation. In vivo experiments should reveal, whether 1-5% transfection efficiency obtained in the current work is sufficient to bring about detectable and clinically significant lowering of the amount of circulating LDL cholesterol particles.
Collapse
Affiliation(s)
- Jaana Tammur
- Institute of Molecular and Cell Biology, Tartu University, Estonian Biocentre, 23 Riia St., 51010 Tartu, Estonia
| | - Hiljar Sibul
- Institute of Molecular and Cell Biology, Tartu University, Estonian Biocentre, 23 Riia St., 51010 Tartu, Estonia
- Molecular Diagnostics Centre of United Laboratories of Tartu University Clinics 3 Oru St., 51005 Tartu, Estonia
| | - Ene Ustav
- Institute of Molecular and Cell Biology, Tartu University, Estonian Biocentre, 23 Riia St., 51010 Tartu, Estonia
| | - Mart Ustav
- Institute of Molecular and Cell Biology, Tartu University, Estonian Biocentre, 23 Riia St., 51010 Tartu, Estonia
| | - Andres Metspalu
- Institute of Molecular and Cell Biology, Tartu University, Estonian Biocentre, 23 Riia St., 51010 Tartu, Estonia
- Molecular Diagnostics Centre of United Laboratories of Tartu University Clinics 3 Oru St., 51005 Tartu, Estonia
| |
Collapse
|
9
|
Palù G, Li Pira G, Gennari F, Fenoglio D, Parolin C, Manca F. Genetically modified immunocompetent cells in HIV infection. Gene Ther 2001; 8:1593-600. [PMID: 11894997 DOI: 10.1038/sj.gt.3301569] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Even in the era of highly active antiretroviral therapy (HAART), gene therapy (GT) can remain a promising approach for suppressing HIV infection, especially if complemented with other forms of pharmacological and immunological intervention. A large number of vectors and targets have been studied. Here we discuss the potential of genetically treated, antigen-specific immunocompetent cells for adoptive autologous immunotherapy of HIV infection. Cellular therapies with gene-modified CD8 and CD4 lymphocytes are aimed at reconstituting the antigen-specific repertoires that may be deranged as a consequence of HIV infection. Even if complete eradication of HIV from the reservoirs cannot be achieved, reconstitution of cellular immunity specific for opportunistic pathogens and for HIV itself is a desirable option to control progression of HIV infection and AIDS pathogenesis better.
Collapse
Affiliation(s)
- G Palù
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padua, Italy
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
This review article emphasizes the critical role of nonhuman primates (NHPs) in biomedical research. It focuses on the most recent contributions that NHPs have made to the understanding, treatment, and prevention of important infectious diseases (e.g., acquired immunodeficiency syndrome, hepatitis, malaria) and chronic degenerative disorders of the central nervous system (e.g., Parkinson's and Alzheimer's diseases). The close phylogenetic relation of NHPs to humans not only opens avenues for testing the safety and efficacy of new drugs and vaccines but also offers promise for evaluating the potential of new gene-based treatments for human infectious and genetic diseases.
Collapse
Affiliation(s)
- L R Sibal
- Foundation for Biomedical Research, Washington, D.C. USA
| | | |
Collapse
|
11
|
Ross RW, Wright ME, Tavel JA. Ongoing trials of immune-based therapies for HIV infection in adults. Expert Opin Biol Ther 2001; 1:413-24. [PMID: 11727515 DOI: 10.1517/14712598.1.3.413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Highly active antiretroviral therapy (HAART) can significantly alter the clinical course of patients infected with HIV. Unfortunately, effective lifelong HAART may not be a practical or achievable goal because of toxicities, cost, development of viral resistance and patient compliance issues. Immune-based therapies (IBTs) that target the host immune system may serve as rational additions to our current antiretroviral strategies. Investigations into IL-2 have culminated in two large Phase III clinical trials. Multiple therapeutic vaccine candidates are in various phases of investigation. In addition, gene therapy has been proposed as a potential treatment for HIV and Phase I trials are ongoing. Although IBTs are being investigated on many fronts, they remain difficult to study due to a lack of validated surrogate end points.
Collapse
Affiliation(s)
- R W Ross
- Clinical Center & National Institute of Allergy and Infectious Diseases, National Institutes of Health Critical Care Medicine Dept., Bethesda, Maryland, USA
| | | | | |
Collapse
|
12
|
Wahlers A, Schwieger M, Li Z, Meier-Tackmann D, Lindemann C, Eckert HG, von Laer D, Baum C. Influence of multiplicity of infection and protein stability on retroviral vector-mediated gene expression in hematopoietic cells. Gene Ther 2001; 8:477-86. [PMID: 11313827 DOI: 10.1038/sj.gt.3301426] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2000] [Accepted: 01/15/2001] [Indexed: 11/08/2022]
Abstract
Using retroviral vectors encoding enhanced green fluorescent protein (EGFP), we addressed to what extent expression of retroviral transgenes in hematopoietic cells depends on the multiplicity of infection (MOI) and on the half-life of the encoded protein. We show that an elevation of the MOI not only elevates the frequency of transduced cells, but also increases transgene expression levels and reduces interanimal variability in vivo (hematopoietic cells of C57BL/6J mice analyzed 13 weeks after transplantation). This suggests that the MOI has to be carefully controlled and should be adapted as desired for clinical studies when evaluating vector performance in preclinical models. The impact of protein stability is demonstrated by comparing vectors expressing EGFP or a destabilized variant with a C-terminal PEST-sequence, d2EGFP. The loss of expression with d2EGFP was more pronounced in terminally differentiated cells of the peripheral blood (>30 fold) than in progenitor cells (five- to 10-fold), indicating a stronger transcription of the retroviral promoter in progenitor cells and a predominant role of protein inheritance over de novo synthesis of transgenic protein in mature blood cells. This analysis reveals an important and differentiation-dependent contribution of protein half-life to the expression of retroviral vectors in hematopoietic cells, establishes d2EGFP as a more accurate reporter for determination of vector transcription, and also suggests that preclinical data obtained under conditions of high transduction rates or with vectors expressing stable reporter proteins require careful interpretation.
Collapse
Affiliation(s)
- A Wahlers
- Department Cell and Virus Genetics, Heinrich-Pette-Institute, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Advances in cell culture engineering, cell metabolism, bioreactor design and operation, and downstream processing will all positively impact the bioprocessing of viral vectors. Design of appropriate vectors and tailoring of packaging cells to support more productive infections will be of paramount importance for production of high-titer and high-quality vectors. Furthermore, quantitative analysis of the infection parameters during virus propagation, such as time of infection, multiplicity of infection, the length of replication cycle, virus half-life, and burst size, will also be important to the process optimization. Finally, procedures for separation, purification and formulation of vector preparations have to be further developed.
Collapse
Affiliation(s)
- N Wu
- Department of Chemical Engineering and Center for Biotechnology and Bioengineering, Pittsburgh, PA 15219, USA
| | | |
Collapse
|