1
|
Wang J, Chen Q, Shan Y, Pan X, Zhang J. Activity-based proteomic profiling: application of releasable linker in photoaffinity probes. Drug Discov Today 2020; 25:133-140. [DOI: 10.1016/j.drudis.2019.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/21/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023]
|
2
|
Waring AJ, Walther FJ, Gordon LM, Hernandez-Juviel JM, Hong T, Sherman MA, Alonso C, Alig T, Braun A, Bacon D, Zasadzinski JA. The role of charged amphipathic helices in the structure and function of surfactant protein B. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2005; 66:364-74. [PMID: 16316452 DOI: 10.1111/j.1399-3011.2005.00300.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Surfactant protein B (SP-B) is essential for normal lung surfactant function. Theoretical models predict that the disulfide cross-linked, N- and C-terminal domains of SP-B fold as charged amphipathic helices, and suggest that these adjacent helices participate in critical surfactant activities. This hypothesis is tested using a disulfide-linked construct (Mini-B) based on the primary sequences of the N- and C-terminal domains. Consistent with theoretical predictions of the full-length protein, both isotope-enhanced Fourier transform infrared (FTIR) spectroscopy and molecular modeling confirm the presence of charged amphipathic alpha-helices in Mini-B. Similar to that observed with native SP-B, Mini-B in model surfactant lipid mixtures exhibits marked in vitro activity, with spread films showing near-zero minimum surface tensions during cycling using captive bubble surfactometry. In vivo, Mini-B shows oxygenation and dynamic compliance that compare favorably with that of full-length SP-B. Mini-B variants (i.e. reduced disulfides or cationic residues replaced by uncharged residues) or Mini-B fragments (i.e. unlinked N- and C-terminal domains) produced greatly attenuated in vivo and in vitro surfactant properties. Hence, the combination of structure and charge for the amphipathic alpha-helical N- and C-terminal domains are key to SP-B function.
Collapse
Affiliation(s)
- A J Waring
- Department of Medicine, Division of Infectious Diseases, UCLA School of Medicine, Center for Health Sciences, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Vargas-Villarreal J, Mata-Cárdenas BD, Palacios-Corona R, González-Salazar F, Cortes-Gutierrez EI, Martínez-Rodríguez HG, Said-Fernández S. TRICHOMONAS VAGINALIS: IDENTIFICATION OF SOLUBLE AND MEMBRANE-ASSOCIATED PHOSPHOLIPASE A1AND A2ACTIVITIES WITH DIRECT AND INDIRECT HEMOLYTIC EFFECTS. J Parasitol 2005; 91:5-11. [PMID: 15856864 DOI: 10.1645/ge-3338] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A direct hemolytic activity, dependent on phospholipase A (PLA) activity, was located in the particulate subcellular fraction (P30) of Trichomonas vaginalis. We identified soluble direct and indirect hemolytic activities in the spent medium and soluble fraction (S30) of T. vaginalis strain GT-13. Spent medium showed the highest specific indirect hemolytic activity (SIHA) at pH 6.0 (91 indirect hemolytic units [HU]/mg/hr). Spent medium and P30, but not S30, showed direct hemolytic activity. PLA activity was protein dose dependent and time dependent. The highest PLA activity was observed at pH 6.0. All trichomonad preparations showed phospholipase A1 (PLA A1) and phospholipase A2 (PLA A2) activities. Indirect and direct hemolytic activity and PLA A1 and PLA A2 diminished at pH 6.0 and 8.0 with increasing concentrations of Rosenthal's inhibitor. The greatest effect was observed with 80 microM at pH 6.0 on the SIHA of S30 (83% reduction) and the lowest at pH 8.0, also on the SIHA of S30 (26% reduction). In conclusion, T. vaginalis contains particulate and soluble acidic, and alkaline direct and indirect hemolytic activities, which are partially dependent on alkaline or acidic PLA A1 and PLA A2 enzymes. These could be responsible for the contact-dependent and -independent hemolytic and cytolytic activities of T. vaginalis.
Collapse
Affiliation(s)
- Javier Vargas-Villarreal
- División de Biología Celular y Molecular, Centro de Investigacíon Biomédica del Noreste, Instituto Mexicano del Seguro Social, Administración de correo No. 4, Apartado postal 020-E, Colonia Independencia, Monterrey, CP 64720, Nuevo León, México
| | | | | | | | | | | | | |
Collapse
|
4
|
Stenger S. Cytolytic T cells in the immune response to mycobacterium tuberculosis. SCANDINAVIAN JOURNAL OF INFECTIOUS DISEASES 2002; 33:483-7. [PMID: 11515755 DOI: 10.1080/00365540110026584] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Cytolytic T cells (CTL) are of paramount importance in immune defense against tumors and viruses. Work over the past decade has revealed that lysis of infected cells is also involved in protective immunity to bacteria and parasites, including Mycobacterium tuberculosis. Experiments involving gene-deleted mice and the characterization of CTL lines derived from tuberculosis patients suggest an important role of CTL in immunity to tuberculosis. More recently, the identification of an effector pathway of human CTL provided evidence for direct antimicrobial activity of CTL. This pathway involves the combined action of the pore-forming perforin and the antibacterial granulysin, both expressed in the granules of CTL. Granulysin binds to the bacterial cell surface, thereby disrupting the membrane and causing osmotic lysis. The relevance of this pathway for protection against intracellular pathogens is suggested by the expression of high amounts of granulysin in tissue from patients with tuberculoid leprosy, which are able to contain the spread of the bacilli. These findings support the current concept of designing novel vaccination strategies which elicit not only CD4 + T helper cells, but also CD8 + CTL with direct antibacterial activity.
Collapse
Affiliation(s)
- S Stenger
- Friedrich Alexander Universität Erlangen-Nürnberg, Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Erlangen, Germany
| |
Collapse
|
5
|
Saxena IM, Brown RM, Dandekar T. Structure--function characterization of cellulose synthase: relationship to other glycosyltransferases. PHYTOCHEMISTRY 2001; 57:1135-1148. [PMID: 11430986 DOI: 10.1016/s0031-9422(01)00048-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A combined structural and functional model of the catalytic region of cellulose synthase is presented as a prototype for the action of processive beta-glycosyltransferases and other glycosyltransferases. A 285 amino acid segment of the Acetobacter xylinum cellulose synthase containing all the conserved residues in the globular region was subjected to protein modeling using the genetic algorithm. This region folds into a single large domain with a topology exhibiting a mixed alpha/beta structure. The predicted structure serves as a topological outline for the structure of this processive beta-glycosyltransferase. By incorporating new site-directed mutagenesis data and comparative analysis of the conserved aspartic acid residues and the QXXRW motif we deduce a number of functional implications based on the structure. This includes location of the UDP--glucose substrate-binding cavity, suggestions for the catalytic processing including positions of conserved and catalytic residues, secondary structure arrangement and domain organization. Comparisons to cellulose synthases from higher plants (genetic algorithm based model for cotton CelA1), data from neural network predictions (PHD), and to the recently experimentally determined structures of the non-processive SpsA and beta 4-galactosyltransferase retest and further validate our structure-function description of this glycosyltransferase.
Collapse
Affiliation(s)
- I M Saxena
- Section of Molecular Genetics and Microbiology, School of Biological Sciences, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
6
|
Ernst WA, Thoma-Uszynski S, Teitelbaum R, Ko C, Hanson DA, Clayberger C, Krensky AM, Leippe M, Bloom BR, Ganz T, Modlin RL. Granulysin, a T cell product, kills bacteria by altering membrane permeability. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:7102-8. [PMID: 11120840 DOI: 10.4049/jimmunol.165.12.7102] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Granulysin, a protein located in the acidic granules of human NK cells and cytotoxic T cells, has antimicrobial activity against a broad spectrum of microbial pathogens. A predicted model generated from the nuclear magnetic resonance structure of a related protein, NK lysin, suggested that granulysin contains a four alpha helical bundle motif, with the alpha helices enriched for positively charged amino acids, including arginine and lysine residues. Denaturation of the polypeptide reduced the alpha helical content from 49 to 18% resulted in complete inhibition of antimicrobial activity. Chemical modification of the arginine, but not the lysine, residues also blocked the antimicrobial activity and interfered with the ability of granulysin to adhere to Escherichia coli and Mycobacterium tuberculosis. Granulysin increased the permeability of bacterial membranes, as judged by its ability to allow access of cytosolic ss-galactosidase to its impermeant substrate. By electron microscopy, granulysin triggered fluid accumulation in the periplasm of M. tuberculosis, consistent with osmotic perturbation. These data suggest that the ability of granulysin to kill microbial pathogens is dependent on direct interaction with the microbial cell wall and/or membrane, leading to increased permeability and lysis.
Collapse
Affiliation(s)
- W A Ernst
- Division of Dermatology, Division of Pulmonary Medicine, Department of Microbiology and Immunology, and Molecular Biology Institute, University of California School of Medicine, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Mammalian lung surfactant is a mixture of phospholipids and four surfactant-associated proteins (SP-A, SP-B, SP-C, and SP-D). Its major function is to reduce surface tension at the air-water interface in the terminal airways by the formation of a surface-active film highly enriched in dipalmitoyl phosphatidylcholine (DPPC), thereby preventing alveolar collapse during expiration. SP-A and SP-D are large hydrophilic proteins, which play an important role in host defense, whereas the small hydrophobic peptides SP-B and SP-C interact with DPPC to generate and maintain a surface-active film. Surfactant replacement therapy with bovine and porcine lung surfactant extracts, which contain only polar lipids and SP-B and SP-C, has revolutionized the clinical management of premature infants with respiratory distress syndrome. Newer surfactant preparations will probably be based on SP-B and SP-C, produced by recombinant technology or peptide synthesis, and reconstituted with selected synthetic lipids. The development of peptide analogues of SP-B and SP-C offers the possibility to study their molecular mechanism of action and will allow the design of surfactant formulations for specific pulmonary diseases and better quality control. This review describes the hydrophobic peptide analogues developed thus far and their potential for use in a new generation of synthetic surfactant preparations.
Collapse
Affiliation(s)
- F J Walther
- Harbor-UCLA Research and Education Institute, Torrance, California 90502, USA.
| | | | | | | | | |
Collapse
|
8
|
Abstract
Cytotoxic peptides are relatively small cationic molecules such as those found 1) in venoms, e.g., melittin in bee, scorpion toxins in scorpion, pilosulin 1 in jumper ant, and lycotoxin I and II in wolf spider; 2) in skin secretions (e.g., magainin I and II from Xenopus laevis, dermaseptin from frog, antimicrobials from carp) and cells of the immune system (e.g., insect, scorpion, and mammalian defensins and cryptdins); 3) as autocytotoxicity peptides, e.g., amylin cytotoxic to pancreatic beta-cells, prion peptide fragment 106-126 [PrP-(106-126)], and amyloid beta-protein (AbetaP) cytotoxic to neurons; and 4) as designed synthetic peptides based on the sequences and properties of naturally occurring cytotoxic peptides. The small cytotoxic peptides are composed of beta-sheets, e.g., mammalian defensins, AbetaP, amylin, and PrP-(106-126), whereas the larger cytotoxic peptides have several domains composed of both alpha-helices and beta-sheets stabilized by cysteine bonds, e.g., scorpion toxins, scorpion, and insect defensins. Electrophysiological and molecular biology techniques indicate that these structures modify cell membranes via 1) interaction with intrinsic ion transport proteins and/or 2) formation of ion channels. These two nonexclusive mechanisms of action lead to changes in second messenger systems that further augment the abnormal electrical activity and distortion of the signal transduction causing cell death.
Collapse
Affiliation(s)
- J I Kourie
- Membrane Transport Group, Department of Chemistry, The Australian National University, Canberra City, Australian Capital Territory, 0200 Australia.
| | | |
Collapse
|
9
|
Gordon LM, Lee KY, Lipp MM, Zasadzinski JA, Walther FJ, Sherman MA, Waring AJ. Conformational mapping of the N-terminal segment of surfactant protein B in lipid using 13C-enhanced Fourier transform infrared spectroscopy. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2000; 55:330-47. [PMID: 10798379 DOI: 10.1034/j.1399-3011.2000.00693.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Synthetic peptides based on the N-terminal domain of human surfactant protein B (SP-B1-25; 25 amino acid residues; NH2-FPIPLPYCWLCRALIKRIQAMIPKG) retain important lung activities of the full-length, 79-residue protein. Here, we used physical techniques to examine the secondary conformation of SP-B1-25 in aqueous, lipid and structure-promoting environments. Circular dichroism and conventional, 12C-Fourier transform infrared (FTIR) spectroscopy each indicated a predominate alpha-helical conformation for SP-B1-25 in phosphate-buffered saline, liposomes of 1-palmitoyl-2-oleoyl phosphatidylglycerol and the structure-promoting solvent hexafluoroisopropanol; FTIR spectra also showed significant beta- and random conformations for peptide in these three environments. In further experiments designed to map secondary structure to specific residues, isotope-enhanced FTIR spectroscopy was performed with 1-palmitoyl-2-oleoyl phosphatidylglycerol liposomes and a suite of SP-B1-25 peptides labeled with 13C-carbonyl groups at either single or multiple sites. Combining these 13C-enhanced FTIR results with energy minimizations and molecular simulations indicated the following model for SP-B1-25 in 1-palmitoyl-2-oleoyl phosphatidylglycerol: beta-sheet (residues 1-6), alpha-helix (residues 8-22) and random (residues 23-25) conformations. Analogous structural motifs are observed in the corresponding homologous N-terminal regions of several proteins that also share the 'saposin-like' (i.e. 5-helix bundle) folding pattern of full-length, human SP-B. In future studies, 13C-enhanced FTIR spectroscopy and energy minimizations may be of general use in defining backbone conformations at amino acid resolution, particularly for peptides or proteins in membrane environments.
Collapse
Affiliation(s)
- L M Gordon
- Department of Pediatrics, Martin Luther King, Jr./Drew University Medical Center and UCLA, Los Angeles, CA, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Nickel R, Ott C, Dandekar T, Leippe M. Pore-forming peptides of Entamoeba dispar. Similarity and divergence to amoebapores in structure, expression and activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:1002-7. [PMID: 10518795 DOI: 10.1046/j.1432-1327.1999.00807.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Amoebapore, a 77-residue peptide with pore-forming activity from the human pathogen Entamoeba histolytica, is implicated in the killing of phagocytosed bacteria and in the cytolytic reaction of the amoeba against host cells. Previously, we structurally and functionally characterized three amoebapore isoforms in E. histolytica but recognized only one homolog in the closely related but non-pathogenic species Entamoeba dispar. Here, we identified two novel amoebapore homologs from E. dispar by molecular cloning. Despite strong resemblance of the primary structures of the homologs, molecular modeling predicts a species-specific variance between the peptide structures. Parallel isolation from trophozoite extracts of the two species revealed a lower amount of pore-forming peptides in E. dispar and substantially higher activity of the major isoform from E. histolytica towards natural membranes than that from E. dispar. Differences in abundance and activity of the lytic polypeptides may have an impact on the pathogenicity of amoebae.
Collapse
Affiliation(s)
- R Nickel
- Bernard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | | |
Collapse
|
11
|
Leippe M. Antimicrobial and cytolytic polypeptides of amoeboid protozoa--effector molecules of primitive phagocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 1999; 23:267-279. [PMID: 10426421 DOI: 10.1016/s0145-305x(99)00010-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Amoebae are primitive, actively phagocytosing eukaryotic cells, many of which use bacteria as a major nutrient source. One may suppose that amoebae possess an array of potent antimicrobial molecules acting in synergy to combat bacterial growth inside their phagosomes. Lysosome-like granular vesicles of Entamoeba histolytica contain a family of 77-residue peptides with a compact alpha-helical, disulfide-bonded fold. These polypeptides, named amoebapores, exhibit antibacterial and cytolytic activity by forming pores in membranes of various origin. It is of particular interest that amoebapores are structurally and functionally most similar to polypeptides of mammalian cytotoxic lymphocytes. In addition, amoebic granules contain bacteriolytic proteins with lysozyme-like properties. Some amoebic polypeptides may represent archaic analogs of effector molecules from invertebrates and vertebrates.
Collapse
Affiliation(s)
- M Leippe
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
12
|
Liu Z, Song D, Kramer A, Martin AC, Dandekar T, Schneider-Mergener J, Bautz EK, Dübel S. Fine mapping of the antigen-antibody interaction of scFv215, a recombinant antibody inhibiting RNA polymerase II from Drosophila melanogaster. J Mol Recognit 1999; 12:103-11. [PMID: 10398401 DOI: 10.1002/(sici)1099-1352(199903/04)12:2<103::aid-jmr447>3.0.co;2-b] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A bacterially expressed single chain antibody (scFv215) directed against the largest subunit of drosophila RNA polymerase II was analysed. Structure and function of the antigen binding site in scFv215 were probed by chain shuffling and by site-specific mutagenesis. The entire variable region of either the heavy or light chain was replaced by an unrelated heavy or light chain. Both replacements resulted in a total loss of binding activity suggesting that the antigen binding site is contributed by both chains. The functional contributions of each complementarity determining region (CDR) were investigated by site specific mutagenesis of each CDR separately. Mutations in two of the CDRs, CDR1 of light chain and CDR2 of heavy chain, reduced the binding activity significantly. Each of the amino acids in these two CDRs was replaced individually by alanine (alanine walking). Seven amino acid substitutions in the two CDRs were found to reduce the binding activity by more than 50%. The data support a computer model of scFv215 which fits an epitope model based on a mutational analysis of the epitope suggesting an alpha-helical structure for the main contact area.
Collapse
Affiliation(s)
- Z Liu
- Universität Heidelberg, Molekulare Genetik, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Niederkorn JY, Alizadeh H, Leher HF, McCulley JP. The immunobiology of Acanthamoeba keratitis. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 1999; 21:147-60. [PMID: 10457588 DOI: 10.1007/bf00810247] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- J Y Niederkorn
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas 75235-9057, USA
| | | | | | | |
Collapse
|
14
|
Zaltash S, Johansson J. Secondary structure and limited proteolysis give experimental evidence that the precursor of pulmonary surfactant protein B contains three saposin-like domains. FEBS Lett 1998; 423:1-4. [PMID: 9506830 DOI: 10.1016/s0014-5793(97)01582-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The 42 kDa precursor of surfactant protein B generates the 79 residue mature SP-B polypeptide, which belongs to the family of saposin-like proteins and has unique functional roles in pulmonary surfactant. From sequence comparisons it has been suggested that proSP-B, in addition to SP-B, contains two saposin-like domains, but their existence has until now not been experimentally verified. The 381 residue human proSP-B was now fused to an N-terminal poly-His tag, expressed in Escherichia coli, and purified from inclusion bodies by resolubilisation with 2.5% (w/v) SDS and, after removal of SDS, subsequent metal affinity chromatography. Recombinant proSP-B thus obtained exhibits about 35% alpha-helical structure in sodium phosphate buffer and is proteolytically cleaved preferentially between the three saposin-like domains. These results experimentally support that proSP contains, in addition to SP-B, two further saposin-like domains.
Collapse
Affiliation(s)
- S Zaltash
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
15
|
Leher H, Silvany R, Alizadeh H, Huang J, Niederkorn JY. Mannose induces the release of cytopathic factors from Acanthamoeba castellanii. Infect Immun 1998; 66:5-10. [PMID: 9423832 PMCID: PMC107851 DOI: 10.1128/iai.66.1.5-10.1998] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/1997] [Accepted: 10/09/1997] [Indexed: 02/05/2023] Open
Abstract
Acanthamoeba keratitis is a chronic inflammatory disease of the cornea which is highly resistant to many antimicrobial agents. The pathogenic mechanisms of this disease are poorly understood. However, it is believed that the initial phases in the pathogenesis of Acanthamoeba keratitis involve parasite binding and lysis of the corneal epithelium. These processes were examined in vitro, using Acanthamoeba castellanii trophozoites. Parasites readily adhered to Chinese hamster corneal epithelial cells in vitro; however, parasite binding was strongly inhibited by mannose but not by lactose. Although mannose prevented trophozoite binding, it did not affect cytolysis of corneal epithelial cells. Moreover, mannose treatment induced trophozoites to release cytolytic factors that lysed corneal epithelial cells in vitro. These factors were uniquely induced by mannose because supernatants collected from either untreated trophozoites or trophozoites treated with other sugars failed to lyse corneal cells. The soluble factors were size fractionated in centrifugal concentrators and found to be > or = 100 kDa. Treatment of the supernatants with the serine protease inhibitor phenylmethylsulfonyl fluoride inhibited most, but not all, of the cytopathic activity. These data suggest that the binding of Acanthamoeba to mannosylated proteins on the corneal epithelium may exacerbate the pathogenic cascade by initiating the release of cytolytic factors.
Collapse
Affiliation(s)
- H Leher
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas 75235-9057, USA
| | | | | | | | | |
Collapse
|
16
|
Waring AJ, Chen Y, Faull KF, Stevens R, Sherman MA, Fluharty AL. Porcine cerebroside sulfate activator (saposin B) secondary structure: CD, FTIR, and NMR studies. Mol Genet Metab 1998; 63:14-25. [PMID: 9538512 DOI: 10.1006/mgme.1997.2646] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cerebroside sulfate activator protein (CSAct or saposin B) is one of a group of heat stable, low-molecular-weight proteins that appear to share a common structural motif. These have been referred to as saposin-like proteins and are thought to share a multiple amphipathic helical barrel structure with a conserved pattern of disulfide linkages. Porcine kidney CSAct was prepared in high purity and consisted of three major glycosylated subforms. The protein was studied by physical-chemical methods and evaluated by various methods for structural prediction. All suggest that CSAct has high amounts of alpha-helical conformation and little if any beta-sheet. Circular dichroism (CD) studies indicate 45-50% helical conformation depending on buffer and temperature. There was only a moderate loss in helical content with increasing temperature and no indication of thermal denaturation. Fourier transform infrared spectroscopy (FTIR) measurements on deuterium hydrated self-films also indicated a predominantly helical structure. Helical axis orientation was investigated by both oriented CD and FTIR dichroism, which suggested that the helical axes were roughly parallel and oriented along the axis of the surface on which the self-films had been deposited. One-dimensional nuclear magnetic resonance spectra showed large chemical shift dispersion, indicating a defined tertiary structure with little variation between 6 and 85 degrees C. NOESY spectra failed to show the strong NOE cross peaks expected for a highly helical conformation. This may indicate short-term conformational flexibility within the helices or molecular aggregation at the high protein concentrations employed. These observations are consistent with the 3-4-helix bundle motif suggested for saposin-like proteins by various predictive algorithms.
Collapse
Affiliation(s)
- A J Waring
- Department of Pediatrics, Drew University-King Medical Center/University of California Los Angeles 90059, USA
| | | | | | | | | | | |
Collapse
|
17
|
Dandekar T, König R. Computational methods for the prediction of protein folds. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1343:1-15. [PMID: 9428653 DOI: 10.1016/s0167-4838(97)00132-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
18
|
Abstract
The enormous cytolytic potential of Entamoeba histolytica appeals to parasitologists and immunologists because it kills target cells in a contact-dependent reaction resembling that of cytotoxic lymphocytes. In this review, Matthias Leippe summarizes what is currently known about a family of pore-forming peptides termed 'amoebapores', to which the cytolytic effect has been attributed, and describes the structural and functional properties of these potent factors, as well as their structure-activity relationships. Finally, a comparison is made with effector molecules of the mammalian defensive system.
Collapse
Affiliation(s)
- M Leippe
- Department of Molecular Biology, Bernhard Nocht Institute for Tropical Medicine Bernhard-Nocht.-Str. 74, 20359 Hamburg, Germany.
| |
Collapse
|