1
|
Islam MD, Islam MM, Inoue A, Yesmin S, Brindha S, Yoshizue T, Tsurui H, Kurosu T, Kuroda Y. Neutralizing antibodies against the Japanese encephalitis virus are produced by a 12 kDa E. coli- expressed envelope protein domain III (EDIII) tagged with a solubility-controlling peptide. Vaccine 2025; 56:127143. [PMID: 40267616 DOI: 10.1016/j.vaccine.2025.127143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/01/2025] [Accepted: 04/13/2025] [Indexed: 04/25/2025]
Abstract
Escherichia coli is a powerful and cost-effective platform for producing recombinant proteins. However, E. coli- produced proteins lack side-chain glycosylation and may be misfolded due to non-native disulfide bonds, often leading to poor immunogenicity. As a result, they are commonly perceived as unsuitable for use as antiviral vaccine antigens. This study addresses this challenge using the small 12 kDa envelope protein domain III of the Japanese encephalitis virus (JEV-EDIII) as a model. We demonstrate that the low immunogenicity of E. coli- produced proteins can be effectively overcome by employing a solubility-controlling peptide tag (SCP-tag) composed of five isoleucines (C5I). E. coli-produced JEV-EDIII oligomerized into 100 nm (Rh) soluble oligomers upon attachment of the C5I-tag, whereas the untagged JEV-EDIII remained monomeric (Rh ∼ 1.9 nm). The C5I-tag significantly enhanced anti-JEV EDIII IgG titers, as evidenced by ELISA, and increased the population of memory T cells in the spleen, as assessed by flow cytometry. Most notably, the C5I-tagged JEV-EDIII elicited neutralizing antibodies, confirmed by the FRNT50 neutralization assay using live JEV. These findings suggest that oligomerization via SCP-tagging offers a promising, adjuvant-free approach for producing neutralizing antibodies with long-term T cell memory, paving the way for developing E. coli- produced, protein domain-based vaccines.
Collapse
Affiliation(s)
- Md Din Islam
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Nakamachi 2-24-16, Tokyo 184-8588, Japan
| | - M Monirul Islam
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi, Tokyo 183-8538, Japan; Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Ayae Inoue
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Nakamachi 2-24-16, Tokyo 184-8588, Japan
| | - Sanjida Yesmin
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Nakamachi 2-24-16, Tokyo 184-8588, Japan
| | - Subbaian Brindha
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Nakamachi 2-24-16, Tokyo 184-8588, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi, Tokyo 183-8538, Japan
| | - Takahiro Yoshizue
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Nakamachi 2-24-16, Tokyo 184-8588, Japan
| | - Hiromichi Tsurui
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Nakamachi 2-24-16, Tokyo 184-8588, Japan; Department of Immunological Diagnosis, Juntendo University School of Medicine, Hongo 2-1-1, Tokyo 113-8421, Japan
| | - Takeshi Kurosu
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Gakuen 4-7-1, Tokyo 208-0011, Japan
| | - Yutaka Kuroda
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Nakamachi 2-24-16, Tokyo 184-8588, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi, Tokyo 183-8538, Japan.
| |
Collapse
|
2
|
Heath SG, Naughton JD, Magon NJ, Gray SG, Smith BR, Morris VK, Göbl C. Characterizing the amyloid core region of the tumor suppressor protein p16 INK4a using a limited proteolysis and peptide-based approach. J Biol Chem 2024; 300:107590. [PMID: 39032649 PMCID: PMC11375262 DOI: 10.1016/j.jbc.2024.107590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024] Open
Abstract
The human tumor suppressor p16INK4a is a small monomeric protein that can form amyloid structures. Formation of p16INK4a amyloid fibrils is induced by oxidation which creates an intermolecular disulfide bond. The conversion into amyloid is associated with a change from an all α-helical structure into β-sheet fibrils. Currently, structural insights into p16INK4a amyloid fibrils are lacking. Here, we investigate the amyloid-forming regions of this tumor suppressor using isotope-labeling limited-digestion mass spectrometry analysis. We discover two key regions that likely form the structured core of the amyloid. Further investigations using thioflavin-T fluorescence assays, electron microscopy, and solution nuclear magnetic resonance spectroscopy of shorter peptide regions confirm the self-assembly of the identified sequences that include methionine and leucine repeat regions. This work describes a simple approach for studying protein motifs involved in the conversion of monomeric species into aggregated fibril structures. It provides insight into the polypeptide sequence underlying the core structure of amyloid p16INK4a formed after a unique oxidation-driven structural transition.
Collapse
Affiliation(s)
- Sarah G Heath
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Jennifer D Naughton
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Nicholas J Magon
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Shelby G Gray
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Briana R Smith
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Vanessa K Morris
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
| | - Christoph Göbl
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand; Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
3
|
Lima MP, Hornsby BD, Lim CS, Cheatham TE. Molecular Modeling of Single- and Double-Hydrocarbon-Stapled Coiled-Coil Inhibitors against Bcr-Abl: Toward a Treatment Strategy for CML. J Phys Chem B 2024; 128:6476-6491. [PMID: 38951498 PMCID: PMC11247501 DOI: 10.1021/acs.jpcb.4c02699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/03/2024]
Abstract
The chimeric oncoprotein Bcr-Abl is the causative agent of virtually all chronic myeloid leukemias and a subset of acute lymphoblastic leukemias. As a result of the so-called Philadelphia chromosome translocation t(9;22), Bcr-Abl manifests as a constitutively active tyrosine kinase, which promotes leukemogenesis by activation of cell cycle signaling pathways. Constitutive and oncogenic activation is mediated by an N-terminal coiled-coil oligomerization domain in Bcr (Bcr-CC), presenting a therapeutic target for inhibition of Bcr-Abl activity toward the treatment of Bcr-Abl+ leukemias. Previously, we demonstrated that a rationally designed Bcr-CC mutant, CCmut3, exerts a dominant negative effect upon Bcr-Abl activity by preferential oligomerization with Bcr-CC. Moreover, we have shown that conjugation to a leukemia-specific cell-penetrating peptide (CPP-CCmut3) improves intracellular delivery and activity. However, our full-length CPP-CCmut3 construct (81 aa) is encumbered by an intrinsically high degree of conformational variability and susceptibility to proteolytic degradation relative to traditional small-molecule therapeutics. Here, we iterate a new generation of CCmut3 inhibitors against Bcr-CC-mediated Bcr-Abl assembly designed to address these constraints through incorporation of all-hydrocarbon staples spanning i and i + 7 positions in α-helix 2 (CPP-CCmut3-st). We utilize computational modeling and biomolecular simulation to evaluate single- and double-stapled CCmut3 candidates in silico for dynamics and binding energetics. We further model a truncated system characterized by the deletion of α-helix 1 and the flexible loop linker, which are known to impart high conformational variability. To study the impact of the N-terminal cyclic CPP toward model stability and inhibitor activity, we also model the full-length and truncated systems devoid of the CPP, with a cyclized CPP, and with an open-configuration CPP, for a total of six systems that comprise our library. From this library, we present lead-stapled peptide candidates to be synthesized and evaluated experimentally as our next iteration of inhibitors against Bcr-Abl.
Collapse
MESH Headings
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/metabolism
- Fusion Proteins, bcr-abl/chemistry
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Humans
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/metabolism
- Models, Molecular
- Molecular Dynamics Simulation
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Cell-Penetrating Peptides/chemistry
- Cell-Penetrating Peptides/pharmacology
- Cell-Penetrating Peptides/metabolism
Collapse
Affiliation(s)
- Maria
Carolina P. Lima
- Department
of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Braxten D. Hornsby
- Department
of Molecular Pharmaceutics, University of
Utah, Salt Lake City, Utah 84112, United States
| | - Carol S. Lim
- Department
of Molecular Pharmaceutics, University of
Utah, Salt Lake City, Utah 84112, United States
| | - Thomas E. Cheatham
- Department
of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
4
|
Tu T, Rathnayaka T, Kato T, Mizutani K, Saotome T, Noguchi K, Kidokoro SI, Kuroda Y. Design and Escherichia coli Expression of a Natively Folded Multi-Disulfide Bonded Influenza H1N1-PR8 Receptor-Binding Domain (RBD). Int J Mol Sci 2024; 25:3943. [PMID: 38612753 PMCID: PMC11012049 DOI: 10.3390/ijms25073943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Refolding multi-disulfide bonded proteins expressed in E. coli into their native structure is challenging. Nevertheless, because of its cost-effectiveness, handiness, and versatility, the E. coli expression of viral envelope proteins, such as the RBD (Receptor-Binding Domain) of the influenza Hemagglutinin protein, could significantly advance research on viral infections. Here, we show that H1N1-PR8-RBD (27 kDa, containing four cysteines forming two disulfide bonds) expressed in E. coli and was purified with nickel affinity chromatography, and reversed-phase HPLC was successfully refolded into its native structure, as assessed with several biophysical and biochemical techniques. Analytical ultracentrifugation indicated that H1N1-PR8-RBD was monomeric with a hydrodynamic radius of 2.5 nm. Thermal denaturation, monitored with DSC and CD at a wavelength of 222 nm, was cooperative with a midpoint temperature around 55 °C, strongly indicating a natively folded protein. In addition, the 15N-HSQC NMR spectrum exhibited several 1H-15N resonances indicative of a beta-sheeted protein. Our results indicate that a significant amount (40 mg/L) of pure and native H1N1-PR8-RBD can be produced using an E. coli expression system with our refolding procedure, offering potential insights into the molecular characterization of influenza virus infection.
Collapse
Affiliation(s)
- Thao Tu
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi 184-8588, Tokyo, Japan; (T.T.); (T.R.)
| | - Tharangani Rathnayaka
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi 184-8588, Tokyo, Japan; (T.T.); (T.R.)
| | - Toshiyo Kato
- NMR Group, Smart-Core-Facility Promotion Organization, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi 184-8588, Tokyo, Japan; (T.K.); (K.N.)
| | - Kenji Mizutani
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama 230-0045, Kanagawa, Japan;
| | - Tomonori Saotome
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka-shi 940-2188, Niigata, Japan; (T.S.); (S.-i.K.)
| | - Keiichi Noguchi
- NMR Group, Smart-Core-Facility Promotion Organization, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi 184-8588, Tokyo, Japan; (T.K.); (K.N.)
| | - Shun-ichi Kidokoro
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka-shi 940-2188, Niigata, Japan; (T.S.); (S.-i.K.)
| | - Yutaka Kuroda
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi 184-8588, Tokyo, Japan; (T.T.); (T.R.)
| |
Collapse
|
5
|
Cook KD, Tran T, Thomas VA, Devanaboyina SC, Rock DA, Pearson JT. Correlation of In Vitro Kinetic Stability to Preclinical In Vivo Pharmacokinetics for a Panel of Anti-PD-1 Monoclonal Antibody Interleukin 21 Mutein Immunocytokines. Drug Metab Dispos 2024; 52:228-235. [PMID: 38135505 DOI: 10.1124/dmd.123.001555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023] Open
Abstract
The development of therapeutic fusion protein drugs is often impeded by the unintended consequences that occur from fusing together domains from independent naturally occurring proteins, consequences such as altered biodistribution, tissue uptake, or rapid clearance and potential immunogenicity. For therapeutic fusion proteins containing globular domains, we hypothesized that aberrant in vivo behavior could be related to low kinetic stability of these domains leading to local unfolding and susceptibility to partial proteolysis and/or salvage and uptake. Herein we describe an assay to measure kinetic stability of therapeutic fusion proteins by way of their sensitivity to the protease thermolysin. The results indicate that in vivo pharmacokinetics of a panel of anti-programmed cell death protein 1 monocolonal antibody:interleukin 21 immunocytokines in both mice and nonhuman primates are highly correlated with their in vitro susceptibility to thermolysin-mediated proteolysis. This assay can be used as a tool to quickly identify in vivo liabilities of globular domains of therapeutic proteins, thus aiding in the optimization and development of new multispecific drug candidates. SIGNIFICANCE STATEMENT: This work describes a novel assay utilizing protein kinetic stability to identify preclinical in vivo pharmacokinetic liabilities of multispecific therapeutic fusion proteins. This provides an efficient, inexpensive method to ascertain inherent protein stability in vitro before conducting in vivo studies, which can rapidly increase the speed of preclinical drug development.
Collapse
Affiliation(s)
- Kevin D Cook
- Amgen Research, Pharmacokinetics & Drug Metabolism, South San Francisco, California
| | - Thuy Tran
- Amgen Research, Pharmacokinetics & Drug Metabolism, South San Francisco, California
| | - Veena A Thomas
- Amgen Research, Pharmacokinetics & Drug Metabolism, South San Francisco, California
| | | | - Dan A Rock
- Amgen Research, Pharmacokinetics & Drug Metabolism, South San Francisco, California
| | - Josh T Pearson
- Amgen Research, Pharmacokinetics & Drug Metabolism, South San Francisco, California
| |
Collapse
|
6
|
Wongnak R, Brindha S, Yoshizue T, Onchaiya S, Mizutani K, Kuroda Y. E. coli production of a multi-disulfide bonded SARS-CoV-2 Omicron BA.5 RBD exhibiting native-like biochemical and biophysical properties. Biophys Physicobiol 2023; 20:e200036. [PMID: 38344033 PMCID: PMC10850476 DOI: 10.2142/biophysico.bppb-v20.0036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/19/2023] [Indexed: 03/27/2024] Open
Abstract
Low-cost bacterial production of the receptor binding domain (RBD) of the SARS-CoV-2 Omicron spike protein holds significant potential in expediting the development of therapeutics against COVID-19. However, RBD contains eight cysteines forming four disulfide bonds, and expression in E. coli using standard protocols produces insoluble RBD forming non-native disulfide bonds. Here, we expressed RBD in E. coli T7 SHuffle with high aeration, which enhanced disulfide formation in the cytoplasm and reshuffling of non-native disulfide bonds, and at a low temperature of 16°C, which stabilized the native conformation and thus the formation of the native disulfide bonds. The yield of RBD was as high as 3 mg per 200 mL culture. We analyzed the conformational and biophysical properties of our E. coli-expressed RBD. First, the RP-HPLC elution profile indicated a single peak, suggesting that RBD was folded with a single disulfide bond pairing pattern. Next, circular dichroism analysis indicated a secondary structure content very close to that computed from the crystal structure. RBD's thermal denaturation monitored by CD was cooperative, strongly indicating a well-folded protein structure. Moreover, limited proteolysis showed that RBD was nearly as stable as RNase A, and the formation of native disulfide bonds was confirmed by LC-MS analysis. Furthermore, BLI analysis indicated a strong binding of RBD with the hACE2 with a dissociation constant of 0.83 nM, confirming the folded nature of RBD. Altogether, these results demonstrate that our E. coli-expression system can provide a large amount of highly purified RBD with correct disulfide bonds and native-like biochemical and biophysical properties.
Collapse
Affiliation(s)
- Rawiwan Wongnak
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Subbaian Brindha
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8538, Japan
| | - Takahiro Yoshizue
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Sawaros Onchaiya
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Kenji Mizutani
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Yutaka Kuroda
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8538, Japan
| |
Collapse
|
7
|
González LJ, Bahr G, González MM, Bonomo RA, Vila AJ. In-cell kinetic stability is an essential trait in metallo-β-lactamase evolution. Nat Chem Biol 2023; 19:1116-1126. [PMID: 37188957 PMCID: PMC11534350 DOI: 10.1038/s41589-023-01319-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/21/2023] [Indexed: 05/17/2023]
Abstract
Protein stability is an essential property for biological function. In contrast to the vast knowledge on protein stability in vitro, little is known about the factors governing in-cell stability. Here we show that the metallo-β-lactamase (MBL) New Delhi MBL-1 (NDM-1) is a kinetically unstable protein on metal restriction that has evolved by acquiring different biochemical traits that optimize its in-cell stability. The nonmetalated (apo) NDM-1 is degraded by the periplasmic protease Prc that recognizes its partially unstructured C-terminal domain. Zn(II) binding renders the protein refractory to degradation by quenching the flexibility of this region. Membrane anchoring makes apo-NDM-1 less accessible to Prc and protects it from DegP, a cellular protease degrading misfolded, nonmetalated NDM-1 precursors. NDM variants accumulate substitutions at the C terminus that quench its flexibility, enhancing their kinetic stability and bypassing proteolysis. These observations link MBL-mediated resistance with the essential periplasmic metabolism, highlighting the importance of the cellular protein homeostasis.
Collapse
Affiliation(s)
- Lisandro J González
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Mariano M González
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Robert A Bonomo
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Medical Service and GRECC, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina.
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA.
| |
Collapse
|
8
|
Skorupska-Stasiak A, Bystranowska D, Tran JB, Krężel A, Ożyhar A. Nesfatin-3 possesses divalent metal ion binding properties, which remain hidden in the nucleobindin-2 precursor protein. Cell Commun Signal 2023; 21:165. [PMID: 37386441 PMCID: PMC10308643 DOI: 10.1186/s12964-023-01181-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Nucleobindin-2 (Nucb2) is a multidomain protein that, due to its structure, participates in many physiological processes. It was originally identified in several regions of the hypothalamus. However, more recent studies have redefined and extended the function of Nucb2 far beyond its initially observed role as a negative modulator of food intake. RESULTS Previously, we described Nucb2 as structurally divided into two parts: the Zn2+-sensitive N-terminal half and the Ca2+-sensitive C-terminal half. Here, we investigated the structural and biochemical properties of its C-terminal half, which, after posttranslational processing, yields the formation of a fully uncharacterized peptide product known as nesfatin-3. Nesfatin-3 likely contains all the key respective structural regions of Nucb2. Hence, we expected that its molecular properties and affinity toward divalent metal ions might resemble those of Nucb2. Surprisingly, the obtained results showed that the molecular properties of nesftain-3 were completely different from those of its precursor protein. Moreover, we designed our work as a comparative analysis of two nesfatin-3 homologs. We noticed that in their apo forms, both proteins had similar shapes and existed in solution as extended molecules. They both interacted with divalent metal ions, and this interaction manifested itself in a compaction of the protein molecules. Despite their similarities, the differences between the homologous nesfatin-3s were even more informative. Each of them favored interaction with a different metal cation and displayed unique binding affinities compared either to each other or to Nucb2. CONCLUSIONS The observed alterations suggested different from Nucb2 physiological roles of nesfatin-3 and different impacts on the functioning of the tissues and on metabolism and its control. Our results clearly demonstrated that nesfatin-3 possessed divalent metal ion binding properties, which remained hidden in the nucleobindin-2 precursor protein.
Collapse
Affiliation(s)
- Anna Skorupska-Stasiak
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50 370 Wrocław, Poland
| | - Dominika Bystranowska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50 370 Wrocław, Poland
| | - Józef Ba Tran
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50 370 Wrocław, Poland
| |
Collapse
|
9
|
Gupta MN, Uversky VN. Pre-Molten, Wet, and Dry Molten Globules en Route to the Functional State of Proteins. Int J Mol Sci 2023; 24:ijms24032424. [PMID: 36768742 PMCID: PMC9916686 DOI: 10.3390/ijms24032424] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Transitions between the unfolded and native states of the ordered globular proteins are accompanied by the accumulation of several intermediates, such as pre-molten globules, wet molten globules, and dry molten globules. Structurally equivalent conformations can serve as native functional states of intrinsically disordered proteins. This overview captures the characteristics and importance of these molten globules in both structured and intrinsically disordered proteins. It also discusses examples of engineered molten globules. The formation of these intermediates under conditions of macromolecular crowding and their interactions with nanomaterials are also reviewed.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-494-5816
| |
Collapse
|
10
|
Acquasaliente L, De Filippis V. The Role of Proteolysis in Amyloidosis. Int J Mol Sci 2022; 24:ijms24010699. [PMID: 36614141 PMCID: PMC9820691 DOI: 10.3390/ijms24010699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Amyloidoses are a group of diseases associated with deposits of amyloid fibrils in different tissues. So far, 36 different types of amyloidosis are known, each due to the misfolding and accumulation of a specific protein. Amyloid deposits can be found in several organs, including the heart, brain, kidneys, and spleen, and can affect single or multiple organs. Generally, amyloid-forming proteins become prone to aggregate due to genetic mutations, acquired environmental factors, excessive concentration, or post-translational modifications. Interestingly, amyloid aggregates are often composed of proteolytic fragments, derived from the degradation of precursor proteins by yet unidentified proteases, which display higher amyloidogenic tendency compared to precursor proteins, thus representing an important mechanism in the onset of amyloid-based diseases. In the present review, we summarize the current knowledge on the proteolytic susceptibility of three of the main human amyloidogenic proteins, i.e., transthyretin, β-amyloid precursor protein, and α-synuclein, in the onset of amyloidosis. We also highlight the role that proteolytic enzymes can play in the crosstalk between intestinal inflammation and amyloid-based diseases.
Collapse
Affiliation(s)
- Laura Acquasaliente
- Correspondence: (L.A.); (V.D.F.); Tel.: +39-0498275703 (L.A.); +39-0498275698 (V.D.F.)
| | - Vincenzo De Filippis
- Correspondence: (L.A.); (V.D.F.); Tel.: +39-0498275703 (L.A.); +39-0498275698 (V.D.F.)
| |
Collapse
|
11
|
Weninger G, Pochechueva T, El Chami D, Luo X, Kohl T, Brandenburg S, Urlaub H, Guan K, Lenz C, Lehnart SE. Calpain cleavage of Junctophilin-2 generates a spectrum of calcium-dependent cleavage products and DNA-rich NT 1-fragment domains in cardiomyocytes. Sci Rep 2022; 12:10387. [PMID: 35725601 PMCID: PMC9209451 DOI: 10.1038/s41598-022-14320-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Calpains are calcium-activated neutral proteases involved in the regulation of key signaling pathways. Junctophilin-2 (JP2) is a Calpain-specific proteolytic target and essential structural protein inside Ca2+ release units required for excitation-contraction coupling in cardiomyocytes. While downregulation of JP2 by Calpain cleavage in heart failure has been reported, the precise molecular identity of the Calpain cleavage sites and the (patho-)physiological roles of the JP2 proteolytic products remain controversial. We systematically analyzed the JP2 cleavage fragments as function of Calpain-1 versus Calpain-2 proteolytic activities, revealing that both Calpain isoforms preferentially cleave mouse JP2 at R565, but subsequently at three additional secondary Calpain cleavage sites. Moreover, we identified the Calpain-specific primary cleavage products for the first time in human iPSC-derived cardiomyocytes. Knockout of RyR2 in hiPSC-cardiomyocytes destabilized JP2 resulting in an increase of the Calpain-specific cleavage fragments. The primary N-terminal cleavage product NT1 accumulated in the nucleus of mouse and human cardiomyocytes in a Ca2+-dependent manner, closely associated with euchromatic chromosomal regions, where NT1 is proposed to function as a cardio-protective transcriptional regulator in heart failure. Taken together, our data suggest that stabilizing NT1 by preventing secondary cleavage events by Calpain and other proteases could be an important therapeutic target for future studies.
Collapse
Affiliation(s)
- Gunnar Weninger
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Robert-Koch-Str. 42a, 37075, Göttingen, Germany.,Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075, Göttingen, Germany.,Collaborative Research Center SFB1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, 37073, Göttingen, Germany.,Department of Physiology and Cellular Biophysics, Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Tatiana Pochechueva
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Robert-Koch-Str. 42a, 37075, Göttingen, Germany.,Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075, Göttingen, Germany.,Collaborative Research Center SFB1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, 37073, Göttingen, Germany
| | - Dana El Chami
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Robert-Koch-Str. 42a, 37075, Göttingen, Germany.,Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075, Göttingen, Germany.,Collaborative Research Center SFB1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, 37073, Göttingen, Germany
| | - Xiaojing Luo
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, 01307, Dresden, Germany
| | - Tobias Kohl
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Robert-Koch-Str. 42a, 37075, Göttingen, Germany.,Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075, Göttingen, Germany.,Collaborative Research Center SFB1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, 37073, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC2067), University of Göttingen, 37073, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site, 37075, Göttingen, Germany
| | - Sören Brandenburg
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Robert-Koch-Str. 42a, 37075, Göttingen, Germany.,Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075, Göttingen, Germany.,Collaborative Research Center SFB1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, 37073, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC2067), University of Göttingen, 37073, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site, 37075, Göttingen, Germany
| | - Henning Urlaub
- Collaborative Research Center SFB1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, 37073, Göttingen, Germany.,Proteomanalyse, Department of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.,Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, 01307, Dresden, Germany
| | - Christof Lenz
- Proteomanalyse, Department of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany. .,Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany.
| | - Stephan E Lehnart
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Robert-Koch-Str. 42a, 37075, Göttingen, Germany. .,Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075, Göttingen, Germany. .,Collaborative Research Center SFB1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, 37073, Göttingen, Germany. .,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC2067), University of Göttingen, 37073, Göttingen, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site, 37075, Göttingen, Germany.
| |
Collapse
|
12
|
Structural Analysis and Construction of a Thermostable Antifungal Chitinase. Appl Environ Microbiol 2022; 88:e0065222. [PMID: 35652665 DOI: 10.1128/aem.00652-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chitin is a biopolymer of N-acetyl-d-glucosamine with β-1,4-bond and is the main component of arthropod exoskeletons and the cell walls of many fungi. Chitinase (EC 3.2.1.14) is an enzyme that hydrolyzes the β-1,4-bond in chitin and degrades chitin into oligomers. It has been found in a wide range of organisms. Chitinase from Gazyumaru (Ficus microcarpa) latex exhibits antifungal activity by degrading chitin in the cell wall of fungi and is expected to be used in medical and agricultural fields. However, the enzyme's thermostability is an important factor; chitinase is not thermostable enough to maintain its activity under the actual application conditions. In addition to the fact that thermostable chitinases exhibiting antifungal activity can be used under various conditions, they have some advantages for the production process and long-term preservation, which are highly demanded in industrial use. We solved the crystal structure of chitinase to explore the target sites to improve its thermostability. We rationally introduced proline residues, a disulfide bond, and salt bridges in the chitinase using protein-engineering methods based on the crystal structure and sequence alignment among other chitinases. As a result, we successfully constructed the thermostable mutant chitinases rationally with high antifungal and specific activities. The results provide a useful strategy to enhance the thermostability of this enzyme family. IMPORTANCE We solved the crystal structure of the chitinase from Gazyumaru (Ficus microcarpa) latex exhibiting antifungal activity. Furthermore, we demonstrated that the thermostable mutant enzyme with a melting temperature (Tm) 6.9°C higher than wild type (WT) and a half-life at 60°C that is 15 times longer than WT was constructed through 10 amino acid substitutions, including 5 proline residues substitutions, making disulfide bonding, and building a salt bridge network in the enzyme. These mutations do not affect its high antifungal activity and chitinase activity, and the principle for the construction of the thermostable chitinase was well explained by its crystal structure. Our results provide a useful strategy to enhance the thermostability of this enzyme family and to use the thermostable mutant as a seed for antifungal agents for practical use.
Collapse
|
13
|
Rivera Del Rio A, Möller AC, Boom RM, Janssen AEM. In vitro gastro-small intestinal digestion of conventional and mildly processed pea protein ingredients. Food Chem 2022; 387:132894. [PMID: 35397266 DOI: 10.1016/j.foodchem.2022.132894] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 02/21/2022] [Accepted: 04/02/2022] [Indexed: 11/04/2022]
Abstract
We report on the effect of processing, particularly heating, on the digestion dynamics of pea proteins using the standardised semi-dynamic in vitro digestion method. Fractions with native proteins were obtained by mild aqueous fractionation of pea flour. A commercial pea protein isolate was chosen as a benchmark. Heating dispersions of pea flour and mild protein fractions reduced the trypsin inhibitory activity to levels similar to that of the protein isolate. Protein-rich and non-soluble protein fractions were up to 18% better hydrolysed after being thermally denatured, particularly for proteins emptied later in the gastric phase. The degree of hydrolysis throughout the digestion was similar for these heated fractions and the conventional isolate. Further heating of the protein isolate reduced its digestibility as much as 9%. Protein solubility enhances the digestibility of native proteins, while heating aggregates the proteins, which ultimately reduces the achieved extent of hydrolysis from gastro-small intestinal enzymes.
Collapse
Affiliation(s)
- Andrea Rivera Del Rio
- Food Process Engineering, Wageningen University and Research, Bornse Weilanden 9, Wageningen 6708 WG, The Netherlands.
| | - Anna C Möller
- Food Process Engineering, Wageningen University and Research, Bornse Weilanden 9, Wageningen 6708 WG, The Netherlands.
| | - Remko M Boom
- Food Process Engineering, Wageningen University and Research, Bornse Weilanden 9, Wageningen 6708 WG, The Netherlands.
| | - Anja E M Janssen
- Food Process Engineering, Wageningen University and Research, Bornse Weilanden 9, Wageningen 6708 WG, The Netherlands.
| |
Collapse
|
14
|
Khoshaman K, Ghahramani M, Shahsavani MB, Moosavi-Movahedi AA, Kurganov BI, Yousefi R. Myopathy-associated G154S mutation causes important changes in the conformational stability, amyloidogenic properties, and chaperone-like activity of human αB-crystallin. Biophys Chem 2022; 282:106744. [PMID: 34983005 DOI: 10.1016/j.bpc.2021.106744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/02/2022]
Abstract
Glycine to serine substitution at position 154 of human αB-crystallin (αB-Cry) is behind the development of cardiomyopathy and late-onset distal myopathy. The current study was conducted with the aim to investigate the structural and functional features of the G154S mutant αB-Cry using various spectroscopic techniques and microscopic analyses. The secondary and tertiary structures of human αB-Cry were preserved mainly in the presence of G154S mutation, but the mutant protein indicated a reduced chaperone-like activity when γ-Cry as its natural partner in eye lenses was the substrate protein. Moreover, a significant reduction in the enzyme refolding ability and in vivo chaperone activity of the mutant protein were observed. Also, the mutant protein displayed reduced conformational stability upon urea-induced denaturation. Both fluorescence and electron microscopic analyses suggested that G154S mutant protein has an increased susceptibility for amyloid fibril formation. Therefore, the pathomechanism of G154S mutation can be explained by its attenuated chaperone function, decreased conformational stability, and increased amyloidogenic propensity. Some of these important changes may also alter the correct interaction of the mutated αB-Cry with its target proteins in myopathy.
Collapse
Affiliation(s)
- Kazem Khoshaman
- Protein Chemistry Laboratory (PCL), Department of Biology, Shiraz University, Shiraz, Iran
| | - Maryam Ghahramani
- Protein Chemistry Laboratory (PCL), Department of Biology, Shiraz University, Shiraz, Iran
| | | | | | - Boris I Kurganov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia
| | - Reza Yousefi
- Protein Chemistry Laboratory (PCL), Department of Biology, Shiraz University, Shiraz, Iran; Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
15
|
Abstract
This mini-review represents a brief, disorder-centric consideration of the interplay between order and disorder in proteins. The goal here is to show that inside the cell, folding, non-folding, and misfolding of proteins are interlinked on multiple levels. This is evidenced by the highly heterogeneous spatio-temporal structural organization of a protein molecule, where one can find differently (dis)ordered components that can undergo local or global order-to-disorder and disorder-to-order transitions needed for functionality. This is further illustrated by the fact that at particular moments of their life, most notably during their synthesis and degradation, all proteins are at least partially disordered. In addition to these intrinsic forms of disorder, proteins are constantly facing extrinsic disorder, which is intrinsic disorder in their functional partners. All this comprises the multileveled protein disorder cycle.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612 USA
| |
Collapse
|
16
|
Jaswal SS. Lessons from a quarter century of being human in protein science. Protein Sci 2022; 31:768-783. [PMID: 35048424 PMCID: PMC8927861 DOI: 10.1002/pro.4278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 11/05/2022]
Abstract
Over the past quarter century, my engagement with the protein society has allowed me to witness first-hand the evolution of our deepening understanding of the complexity of protein folding landscapes. During my own evolution as a protein scientist, my passion for protein folding has deepened into an obsession with mapping and decoding the thermodynamic and kinetic secrets of protein landscapes - especially those of rebel proteins, whose "non-traditional" behavior has challenged our paradigms and inspired the expansion of our models and methods. It is perhaps not surprising that I see parallels in the evolution of the landscape framework and in the development of our own trajectories as humans in STEM. Just as with proteins however, we need to recognize that our individual human landscapes are not isolated from our local departmental and institutional communities, and are integrated into the larger networks of our STEM disciplines, academia, industry and/or government, not to mention society. My experience with hundreds of participants in the Being Human in STEM initiative that Amherst College undergraduates and I co-founded in 2016 has helped me find hope for STEM and humanity. If we commit to reconciling our identities as scientists with our responsibilities as human beings, together we can accelerate the evolution of individual, community and societal landscapes to contribute to addressing the dire challenges facing our planet. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sheila S Jaswal
- Department of Chemistry, and Program in Biochemistry & Biophysics Amherst College
| |
Collapse
|
17
|
Mishra RP, Goel G. Multiscale Model for Quantitative Prediction of Insulin Aggregation Nucleation Kinetics. J Chem Theory Comput 2021; 17:7886-7898. [PMID: 34813303 DOI: 10.1021/acs.jctc.1c00499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We combined kinetic, thermodynamic, and structural information from single-molecule (protein folding) and two-molecule (association) explicit-solvent simulations for determination of kinetic parameters in protein aggregation nucleation with insulin as the model protein. A structural bioinformatics approach was developed to account for heterogeneity of aggregation-prone species, with the transition complex theory found applicable in modeling association kinetics involving non-native species. Specifically, the kinetic pathway for formation of aggregation-prone oligomeric species was found to contain a structurally specific dominant binding mode, making the kinetic process similar to native protein association. The kinetic parameters thus obtained were used in a population balance model, and accurate predictions for aggregation nucleation time varying over 2 orders of magnitude with changes in either insulin concentration or an aggregation-inhibitor ligand concentration were obtained, while an empirical parameter set was not found to be transferable for prediction of ligand effects. Further, this physically determined kinetic parameter set provided several mechanistic insights, such as identification of the rate-limiting step in aggregation nucleation and a quantitative explanation for the switch from Arrhenius to non-Arrhenius aggregation kinetics around the melting temperature of insulin.
Collapse
Affiliation(s)
- Rit Pratik Mishra
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi 110016, India
| | - Gaurav Goel
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi 110016, India
| |
Collapse
|
18
|
Mule SN, Rosa-Fernandes L, Coutinho JVP, Gomes VDM, Macedo-da-Silva J, Santiago VF, Quina D, de Oliveira GS, Thaysen-Andersen M, Larsen MR, Labriola L, Palmisano G. Systems-wide analysis of glycoprotein conformational changes by limited deglycosylation assay. J Proteomics 2021; 248:104355. [PMID: 34450331 DOI: 10.1016/j.jprot.2021.104355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/08/2021] [Accepted: 08/14/2021] [Indexed: 10/20/2022]
Abstract
A new method to probe the conformational changes of glycoproteins on a systems-wide scale, termed limited deglycosylation assay (LDA), is described. The method measures the differential rate of deglycosylation of N-glycans on natively folded proteins by the common peptide:N-glycosidase F (PNGase F) enzyme which in turn informs on their spatial presentation and solvent exposure on the protein surface hence ultimately the glycoprotein conformation. LDA involves 1) protein-level N-deglycosylation under native conditions, 2) trypsin digestion, 3) glycopeptide enrichment, 4) peptide-level N-deglycosylation and 5) quantitative MS-based analysis of formerly N-glycosylated peptides (FNGPs). LDA was initially developed and the experimental conditions optimized using bovine RNase B and fetuin. The method was then applied to glycoprotein extracts from LLC-MK2 epithelial cells upon treatment with dithiothreitol to induce endoplasmic reticulum stress and promote protein misfolding. Data from the LDA and 3D structure analysis showed that glycoproteins predominantly undergo structural changes in loops/turns upon ER stress as exemplified with detailed analysis of ephrin-A5, GALNT10, PVR and BCAM. These results show that LDA accurately reports on systems-wide conformational changes of glycoproteins induced under controlled treatment regimes. Thus, LDA opens avenues to study glycoprotein structural changes in a range of other physiological and pathophysiological conditions relevant to acute and chronic diseases. SIGNIFICANCE: We describe a novel method termed limited deglycosylation assay (LDA), to probe conformational changes of glycoproteins on a systems-wide scale. This method improves the current toolbox of structural proteomics by combining site and conformational-specific PNGase F enzymatic activity with large scale quantitative proteomics. X-ray crystallography, nuclear magnetic resonance spectroscopy and cryoEM techniques are the major techniques applied to elucidate macromolecule structures. However, the size and heterogeneity of the oligosaccharide chains poses several challenges to the applications of these techniques to glycoproteins. The LDA method presented here, can be applied to a range of pathophysiological conditions and expanded to investigate PTMs-mediated structural changes in complex proteomes.
Collapse
Affiliation(s)
- Simon Ngao Mule
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Livia Rosa-Fernandes
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - João V P Coutinho
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Vinícius De Morais Gomes
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil; Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Janaina Macedo-da-Silva
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Verônica Feijoli Santiago
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Daniel Quina
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Gilberto Santos de Oliveira
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, DK, Denmark
| | - Letícia Labriola
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
19
|
Nemati R, Molakarimi M, Mohseni A, Taghdir M, Khalifeh K, H. Sajedi R. Thermostability of Ctenophore and Coelenterate Ca 2+-Regulated Apo-photoproteins: A Comparative Study. ACS Chem Biol 2021; 16:1538-1545. [PMID: 34181382 DOI: 10.1021/acschembio.1c00401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The stabilities of Ca2+-regulated ctenophore and coelenterate apo-photoproteins, apo-mnemiopsin (apo-Mne) and apo-aequorin (apo-Aeq), respectively, were compared biochemically, biophysically, and structurally. Despite high degrees of structural and functional conservation, drastic variations in stability and structural dynamics were found between the two proteins. Irreversible thermoinactivation experiments were performed upon incubation of apo-photoproteins at representative temperatures. The inactivation rate constants (kinact) at 50 °C were determined to be 0.001 and 0.004 min-1 for apo-Mne and apo-Aeq, respectively. Detailed analysis of the inactivation process suggests that the higher thermostability of apo-Mne is due to the higher activation energy (Ea) and subsequently higher values of ΔH* and ΔG* at a given temperature. According to molecular dynamics simulation studies, the higher hydrogen bond, electrostatic, and van der Waals energies in apo-Mne can validate the relationship between the thermal adaptation of apo-Mne and the energy barrier for the inactivation process. Our results show that favorable residues for protein thermostability such as hydrophobic, charged, and adopted α-helical structure residues are more frequent in the apo-Mne structure. Although the effect of acrylamide on fluorescence quenching suggests that the local flexibility in regions around Trp and Tyr residues of apo-Aeq is higher than that of apo-Mne, which results in it having a better ability to penetrate acrylamide molecules, the root-mean-square fluctuation of helix A in apo-Mne is higher than that in apo-Aeq. It seems that the greater flexibility of apo-Mne in these regions may be considered as a determining factor, affecting the thermal stability of apo-Mne through a balance between structural rigidity and flexibility.
Collapse
Affiliation(s)
- Robabeh Nemati
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran
| | - Maryam Molakarimi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran
| | - Ammar Mohseni
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran
| | - Majid Taghdir
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran
| | - Khosrow Khalifeh
- Department of Biology, Faculty of Sciences, University of Zanjan, Zanjan 45371-38791, Iran
| | - Reza H. Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran
| |
Collapse
|
20
|
Sun B, Lv J, Chen J, Liu Z, Zhou Y, Liu L, Jin Y, Wang F. Size-Selective VAILase Proteolysis Provides Dynamic Insights into Protein Structures. Anal Chem 2021; 93:10653-10660. [PMID: 34291915 DOI: 10.1021/acs.analchem.1c02042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Monitoring the dynamic alterations of protein structures within an aqueous solution remains enormously challenging. In this study, we describe a size-selective VAILase proteolysis (SVP)-mass spectrometry (MS) strategy to probe the protein structure changes without strict control of the proteolysis kinetics. The unique conformation selectivity of SVP depends on the uniform nano-sized entrance pores of the VAILase hexameric cage as well as the six inherent molecular rulers in the VAILase-substrate recognition and cleavage. The dynamic insights into subtle conformation alterations of both myoglobin unfolding transition and Aurora kinase A-inhibitor binding are successfully captured using the SVP strategy, which matches well with the results in the molecular dynamics simulation. Our work provides a new paradigm of size-selective native proteolysis for exploring the aqueous protein structure-function relationships.
Collapse
Affiliation(s)
- Binwen Sun
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji Lv
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jin Chen
- Clinical Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ye Zhou
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lin Liu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Yan Jin
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Suwareh O, Causeur D, Jardin J, Briard-Bion V, Le Feunteun S, Pezennec S, Nau F. Statistical modeling of in vitro pepsin specificity. Food Chem 2021; 362:130098. [PMID: 34090041 DOI: 10.1016/j.foodchem.2021.130098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/13/2021] [Accepted: 05/11/2021] [Indexed: 11/30/2022]
Abstract
The specificity of pepsin, the major protease of gastric digestion, has been previously investigated, but only regarding the primary sequence of the protein substrates. The present study aimed to consider in addition physicochemical and structural characteristics, at the molecular and sub-molecular scales. For six different proteins submitted to in vitro gastric digestion, the peptide bonds cleaved were determined from the peptides released and identified by LC-MS/MS. An original statistical approach, based on propensity scores calculated for each amino acid residue on both sides of the peptide bonds, concluded that preferential cleavage occurred after Leu and Phe, and before Ile. Moreover, reliable statistical models developed for predicting peptide bond cleavage, highlighted the predominant role of the amino acid residues at the N-terminal side of the peptide bonds, up to the seventh position (P7 and P7'). The significant influence of hydrophobicity, charge and structural constraints around the peptide bonds was also evidenced.
Collapse
Affiliation(s)
- Ousmane Suwareh
- STLO, INRAE, Institut Agro, 65 rue de Saint-Brieuc, 35042 Rennes, France.
| | - David Causeur
- IRMAR UMR6625, CNRS, Institut Agro, 65 rue de Saint-Brieuc, 35042 Rennes, France.
| | - Julien Jardin
- STLO, INRAE, Institut Agro, 65 rue de Saint-Brieuc, 35042 Rennes, France.
| | | | - Steven Le Feunteun
- STLO, INRAE, Institut Agro, 65 rue de Saint-Brieuc, 35042 Rennes, France.
| | - Stéphane Pezennec
- STLO, INRAE, Institut Agro, 65 rue de Saint-Brieuc, 35042 Rennes, France.
| | - Françoise Nau
- STLO, INRAE, Institut Agro, 65 rue de Saint-Brieuc, 35042 Rennes, France.
| |
Collapse
|
22
|
Bhat ZF, Morton JD, Bekhit AEDA, Kumar S, Bhat HF. Non-thermal processing has an impact on the digestibility of the muscle proteins. Crit Rev Food Sci Nutr 2021; 62:7773-7800. [PMID: 33939555 DOI: 10.1080/10408398.2021.1918629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Muscle proteins undergo several processes before being ready in a final consumable form. All these processes affect the digestibility of muscle proteins and subsequent release of amino acids and peptides during digestion in the human gut. The present review examines the effects of different processing techniques, such as curing, drying, ripening, comminution, aging, and marination on the digestibility of muscle proteins. The review also examines how the source of muscle proteins alters the gastrointestinal protein digestion. Processing techniques affect the structural and functional properties of muscle proteins and can affect their digestibility negatively or positively depending on the processing conditions. Some of these techniques, such as aging and mincing, can induce favorable changes in muscle proteins, such as partial unfolding or exposure of cleavage sites, and increase susceptibility to hydrolysis by digestive enzymes whereas others, such as drying and marination, can induce unfavorable changes, such as severe cross-linking, protein aggregation, oxidation induced changes or increased disulfide (S-S) bond content, thereby decreasing proteolysis. The underlying mechanisms have been discussed in detail and the conclusions drawn in the light of existing knowledge provide information with potential industrial importance.
Collapse
Affiliation(s)
- Zuhaib F Bhat
- Division of Livestock Products Technology, SKUAST of Jammu, Jammu, India
| | - James D Morton
- Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | | | - Sunil Kumar
- Division of Livestock Products Technology, SKUAST of Jammu, Jammu, India
| | - Hina F Bhat
- Division of Biotechnology, SKUAST of Kashmir, Srinagar, India
| |
Collapse
|
23
|
Bhat ZF, Morton JD, Bekhit AEDA, Kumar S, Bhat HF. Emerging processing technologies for improved digestibility of muscle proteins. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Zhu T, Wang SH, Li D, Wang SY, Liu X, Song J, Wang YT, Zhang SY. Progress of tubulin polymerization activity detection methods. Bioorg Med Chem Lett 2021; 37:127698. [PMID: 33468346 DOI: 10.1016/j.bmcl.2020.127698] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/05/2020] [Accepted: 11/14/2020] [Indexed: 12/13/2022]
Abstract
Tubulin, an important target in tumor therapy, is one of the hotspots in the field of antineoplastic drugs in recent years, and it is of great significance to design and screen new inhibitors for this target. Natural products and chemical synthetic drugs are the main sources of tubulin inhibitors. However, due to the variety of compound structure types, it has always been difficult for researchers to screen out polymerization inhibitors with simple operation, high efficiency and low cost. A large number of articles have reported the screening methods of tubulin inhibitors and their biological activity. In this article, the biological activity detection methods of tubulin polymerization inhibitors are reviewed. Thus, it provides a theoretical basis for the further study of tubulin polymerization inhibitors and the selection of methods for tubulin inhibitors.
Collapse
Affiliation(s)
- Ting Zhu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Sheng-Hui Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Dong Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shu-Yu Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xu Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Ya-Ting Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
25
|
A serine protease secreted from Bacillus subtilis cleaves human plasma transthyretin to generate an amyloidogenic fragment. Commun Biol 2020; 3:764. [PMID: 33311636 PMCID: PMC7733459 DOI: 10.1038/s42003-020-01493-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
Aggregation of human wild-type transthyretin (hTTR), a homo-tetrameric plasma protein, leads to acquired senile systemic amyloidosis (SSA), recently recognised as a major cause of cardiomyopathies in 1-3% older adults. Fragmented hTTR is the standard composition of amyloid deposits in SSA, but the protease(s) responsible for amyloidogenic fragments generation in vivo is(are) still elusive. Here, we show that subtilisin secreted from Bacillus subtilis, a gut microbiota commensal bacterium, translocates across a simulated intestinal epithelium and cleaves hTTR both in solution and human plasma, generating the amyloidogenic fragment hTTR(59-127), which is also found in SSA amyloids in vivo. To the best of our knowledge, these findings highlight a novel pathogenic mechanism for SSA whereby increased permeability of the gut mucosa, as often occurs in elderly people, allows subtilisin (and perhaps other yet unidentified bacterial proteases) to reach the bloodstream and trigger generation of hTTR fragments, acting as seeding nuclei for preferential amyloid fibrils deposition in the heart.
Collapse
|
26
|
Khan MA, Akram MF, Alam K, Ahsan H, Rizvi MA. Peroxynitrite-Mediated Structural Changes in Histone H2A: Biochemical and Biophysical Analysis. Protein Pept Lett 2020; 27:989-998. [DOI: 10.2174/0929866527666200427213722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/29/2020] [Accepted: 03/04/2020] [Indexed: 11/22/2022]
Abstract
Background:
Peroxynitrite, a nitrating and oxidizing agent, is formed by the interaction
between nitric oxide and superoxide radicals. H2A histone is a basic nucleoprotein and is one of
the major core histones responsible for packaging DNA. It has been shown that they are highly sensitive
to oxidizing and nitrating agents.
Objective:
Nitration of tyrosine residues in proteins by peroxynitrite is regarded as a marker of
nitrosative damage. The dityrosine bond, an oxidative covalent cross-link between two tyrosines in
protein, is increasingly identified as a marker of oxidative stress, aging and neurodegerative
diseases.
Methods:
Peroxinitrite-mediated nitration and dinitration in H2A histone was assessed by various
biophysical techniques.
Results:
The data presented in this study showed that the dityrosine content was found to be elevated
in H2A histone modified with peroxynitrite. The formation of dityrosine showed a decrease in
fluorescence intensity, generation of a new peak in FT-IR, increase in hydrodynamic size, and loss
of secondary and tertiary structure of H2A resulting in a partially folded structure.
Conclusion:
We report that H2A may undergo conformational and structural changes under nitrosative
and oxidative stress from the deleterious effects of peroxynitrite.
Collapse
Affiliation(s)
- Md. Asad Khan
- Faculty of Dentistry, Jamia Millia Islamia, New Delhi-110025, India
| | - Md. Faiz Akram
- Faculty of Dentistry, Jamia Millia Islamia, New Delhi-110025, India
| | - Khursheed Alam
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh-202002, India
| | - Haseeb Ahsan
- Faculty of Dentistry, Jamia Millia Islamia, New Delhi-110025, India
| | - Moshahid A. Rizvi
- Department of Biosciences, Jamia Millia Islamia, New Delhi-110025, India
| |
Collapse
|
27
|
Elrashdy F, Redwan EM, Uversky VN. Intrinsic disorder perspective of an interplay between the renin-angiotensin-aldosterone system and SARS-CoV-2. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104510. [PMID: 32853823 PMCID: PMC7444473 DOI: 10.1016/j.meegid.2020.104510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023]
Abstract
The novel severe acute respiratory syndrome (SARS) coronavirus SARS-CoV-2 walks the planet causing the rapid spread of the CoV disease 2019 (COVID-19) that has especially deleterious consequences for the patients with underlying cardiovascular diseases (CVDs). Entry of the SARS-CoV-2 into the host cell involves interaction of the virus (via the receptor-binding domain (RBD) of its spike glycoprotein) with the membrane-bound form of angiotensin-converting enzyme 2 (ACE2) followed by the virus-ACE2 complex internalization by the cell. Since ACE2 is expressed in various tissues, such as brain, gut, heart, kidney, and lung, and since these organs represent obvious targets for the SARS-CoV-2 infection, therapeutic approaches were developed to either inhibit ACE2 or reduce its expression as a means of prevention of the virus entry into the corresponding host cells. The problem here is that in addition to be a receptor for the SARS-CoV-2 entry into the host cells, ACE2 acts as a key component of the renin-angiotensin-aldosterone system (RAAS) aimed at the generation of a cascade of vasoactive peptides coordinating several physiological processes. In RAAS, ACE2 degrades angiotensin II, which is a multifunctional CVD-promoting peptide hormone and converts it to a heptapeptide angiotensin-(1-7) acting as the angiotensin II antagonist. As protein multifunctionality is commonly associated with the presence of flexible or disordered regions, we analyze here the intrinsic disorder predisposition of major players related to the SARS-CoV-2 - RAAS axis. We show that all considered proteins contain intrinsically disordered regions that might have specific functions. Since intrinsic disorder might play a role in the functionality of query proteins and be related to the COVID-19 pathogenesis, this work represents an important disorder-based outlook of an interplay between the renin-angiotensin-aldosterone system and SARS-CoV-2. It also suggests that consideration of the intrinsic disorder phenomenon should be added to the modern arsenal of means for drug development.
Collapse
Affiliation(s)
- Fatma Elrashdy
- Department of Endemic Medicine and Hepatogastroenterology, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - Elrashdy M Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| | - Vladimir N Uversky
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow region 142290, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Bruce B. Downs Blvd., MDC07, Tampa, FL 33612, USA.
| |
Collapse
|
28
|
Dai L, Li Z, Chen D, Jia L, Guo J, Zhao T, Nordlund P. Target identification and validation of natural products with label-free methodology: A critical review from 2005 to 2020. Pharmacol Ther 2020; 216:107690. [PMID: 32980441 DOI: 10.1016/j.pharmthera.2020.107690] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023]
Abstract
Natural products (NPs) have been an important source of therapeutic drugs in clinic use and contributed many chemical probes for research. The usefulness of NPs is however often marred by the incomplete understanding of their direct cellular targets. A number of experimental methods for drug target identification have been developed over the years. One class of methods, termed "label-free" methodology, exploits the energetic and biophysical features accompanying the association of macromolecules with drugs and other compounds in their native forms. Herein we review the working principles, assay implementations, and key applications of the most important approaches, and also give examples where they have been applied to NPs. We also assess the key advantages and limitations of each method. Furthermore, we address when and how the label-free methodology can be particularly useful considering some of the unique features of NP chemistry and bioactivation.
Collapse
Affiliation(s)
- Lingyun Dai
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen 518020, Guangdong, China; Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore.
| | - Zhijie Li
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen 518020, Guangdong, China; Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Dan Chen
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
| | - Lin Jia
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Jinan Guo
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen 518020, Guangdong, China
| | - Tianyun Zhao
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
| | - Pär Nordlund
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore; Department of Oncology and Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
29
|
Harman JL, Loes AN, Warren GD, Heaphy MC, Lampi KJ, Harms MJ. Evolution of multifunctionality through a pleiotropic substitution in the innate immune protein S100A9. eLife 2020; 9:e54100. [PMID: 32255429 PMCID: PMC7213983 DOI: 10.7554/elife.54100] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/03/2020] [Indexed: 12/16/2022] Open
Abstract
Multifunctional proteins are evolutionary puzzles: how do proteins evolve to satisfy multiple functional constraints? S100A9 is one such multifunctional protein. It potently amplifies inflammation via Toll-like receptor four and is antimicrobial as part of a heterocomplex with S100A8. These two functions are seemingly regulated by proteolysis: S100A9 is readily degraded, while S100A8/S100A9 is resistant. We take an evolutionary biochemical approach to show that S100A9 evolved both functions and lost proteolytic resistance from a weakly proinflammatory, proteolytically resistant amniote ancestor. We identify a historical substitution that has pleiotropic effects on S100A9 proinflammatory activity and proteolytic resistance but has little effect on S100A8/S100A9 antimicrobial activity. We thus propose that mammals evolved S100A8/S100A9 antimicrobial and S100A9 proinflammatory activities concomitantly with a proteolytic 'timer' to selectively regulate S100A9. This highlights how the same mutation can have pleiotropic effects on one functional state of a protein but not another, thus facilitating the evolution of multifunctionality.
Collapse
Affiliation(s)
- Joseph L Harman
- Department of Chemistry and Biochemistry, University of OregonEugeneUnited States
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Andrea N Loes
- Department of Chemistry and Biochemistry, University of OregonEugeneUnited States
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Gus D Warren
- Department of Chemistry and Biochemistry, University of OregonEugeneUnited States
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Maureen C Heaphy
- Department of Chemistry and Biochemistry, University of OregonEugeneUnited States
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | | | - Michael J Harms
- Department of Chemistry and Biochemistry, University of OregonEugeneUnited States
- Institute of Molecular Biology, University of OregonEugeneUnited States
| |
Collapse
|
30
|
Intrinsically disordered proteins of viruses: Involvement in the mechanism of cell regulation and pathogenesis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:1-78. [PMID: 32828463 PMCID: PMC7129803 DOI: 10.1016/bs.pmbts.2020.03.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intrinsically disordered proteins (IDPs) possess the property of inherent flexibility and can be distinguished from other proteins in terms of lack of any fixed structure. Such dynamic behavior of IDPs earned the name "Dancing Proteins." The exploration of these dancing proteins in viruses has just started and crucial details such as correlation of rapid evolution, high rate of mutation and accumulation of disordered contents in viral proteome at least understood partially. In order to gain a complete understanding of this correlation, there is a need to decipher the complexity of viral mediated cell hijacking and pathogenesis in the host organism. Further there is necessity to identify the specific patterns within viral and host IDPs such as aggregation; Molecular recognition features (MoRFs) and their association to virulence, host range and rate of evolution of viruses in order to tackle the viral-mediated diseases. The current book chapter summarizes the aforementioned details and suggests the novel opportunities for further research of IDPs senses in viruses.
Collapse
|
31
|
Calcium ions modulate the structure of the intrinsically disordered Nucleobindin-2 protein. Int J Biol Macromol 2020; 154:1091-1104. [PMID: 32184136 DOI: 10.1016/j.ijbiomac.2020.03.110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 01/05/2023]
Abstract
Nucleobindin-2 (Nucb2) is a widely expressed multi-domain protein. Nucb2 participates in many physiological processes, i.e. calcium level maintenance, feeding regulation in the hypothalamus, emotion and stress regulation, and many others. To date, this protein has not been structurally characterized. We describe the first comparative structural analysis of two homologs, a Gallus gallus and a Homo sapiens Nucb2. The in silico analysis suggested that apo-Nucb2s contain a mosaic-like structure, consisting of intertwined disordered and ordered regions. Surprisingly, the hydrogen-deuterium exchange mass spectrometry results revealed that Nucb2 is divided into two parts: an N-terminal half with a stable mosaic-like structure and a disordered C-terminal half. However, the presence of Ca2+ induces the formation of a mosaic-like structure in the C-terminal half of the Nucb2s. The Ca2+ also affects the tertiary and quaternary structure of Nucb2s. The presence of Ca2+ leads to an overall compaction of the Nucb2 molecule, resulting in structural change that is propagated along the molecule, which in turn affects the quaternary structure of the protein. Intrinsic disorder, and the mosaic-like Ca2+ dependent structure of Nucb2s, might be seen as the molecular factors responsible for their multifunctionality. Thus, Nucb2s might function as the versatile Ca2+ sensor involved in signal transduction.
Collapse
|
32
|
Thermostabilization of VPR, a kinetically stable cold adapted subtilase, via multiple proline substitutions into surface loops. Sci Rep 2020; 10:1045. [PMID: 31974391 PMCID: PMC6978356 DOI: 10.1038/s41598-020-57873-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/27/2019] [Indexed: 11/24/2022] Open
Abstract
Protein stability is a widely studied topic, there are still aspects however that need addressing. In this paper we examined the effects of multiple proline substitutions into loop regions of the kinetically stable proteinase K-like serine protease VPR, using the thermostable structural homologue AQUI as a template. Four locations for proline substitutions were chosen to imitate the structure of AQUI. Variants were produced and characterized using differential scanning calorimetry (DSC), circular dichroism (CD), steady state fluorescence, acrylamide fluorescence quenching and thermal inactivation experiments. The final product VPRΔC_N3P/I5P/N238P/T265P was greatly stabilized which was achieved without any noticeable detrimental effects to the catalytic efficiency of the enzyme. This stabilization seems to be derived from the conformation restrictive properties of the proline residue in its ability to act as an anchor point and strengthen pre-existing interactions within the protein and allowing for these interactions to prevail when thermal energy is applied to the system. In addition, the results underline the importance of the synergy between distant local protein motions needed to result in stabilizing effects and thus giving an insight into the nature of the stability of VPR, its unfolding landscape and how proline residues can infer kinetic stability onto protein structures.
Collapse
|
33
|
Akbarian M, Yousefi R, Farjadian F, Uversky VN. Insulin fibrillation: toward strategies for attenuating the process. Chem Commun (Camb) 2020; 56:11354-11373. [DOI: 10.1039/d0cc05171c] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The environmental factors affecting the rate of insulin fibrillation. The factors are representative.
Collapse
Affiliation(s)
- Mohsen Akbarian
- Pharmaceutical Sciences Research Center
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - Reza Yousefi
- Protein Chemistry Laboratory
- Department of Biology
- College of Sciences
- Shiraz University
- Shiraz
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Health Byrd Alzheimer's Institute
- Morsani College of Medicine
- University of South Florida
- Tampa
- USA
| |
Collapse
|
34
|
Assad‐Bustillos M, Palier J, Rabesona H, Choiset Y, Della Valle G, Feron G. Role of the bolus degree of structure on the protein digestibility during in vitro digestion of a pea protein‐fortified sponge cake chewed by elderly. J Texture Stud 2019; 51:134-143. [DOI: 10.1111/jtxs.12486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/26/2019] [Accepted: 10/02/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Melissa Assad‐Bustillos
- INRA UR‐1268 Biopolymères Interactions et Assemblages Nantes France
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAUniversité Bourgogne Franche‐Comté Dijon France
- CERELAB® Aiserey France
| | - Juliette Palier
- INRA UR‐1268 Biopolymères Interactions et Assemblages Nantes France
| | - Hanitra Rabesona
- INRA UR‐1268 Biopolymères Interactions et Assemblages Nantes France
| | - Yvan Choiset
- INRA UR‐1268 Biopolymères Interactions et Assemblages Nantes France
| | - Guy Della Valle
- INRA UR‐1268 Biopolymères Interactions et Assemblages Nantes France
| | - Gilles Feron
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAUniversité Bourgogne Franche‐Comté Dijon France
| |
Collapse
|
35
|
Structural modeling and role of HAX-1 as a positive allosteric modulator of human serine protease HtrA2. Biochem J 2019; 476:2965-2980. [PMID: 31548268 DOI: 10.1042/bcj20190569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 11/17/2022]
Abstract
HAX-1, a multifunctional protein involved in cell proliferation, calcium homeostasis, and regulation of apoptosis, is a promising therapeutic target. It regulates apoptosis through multiple pathways, understanding of which is limited by the obscurity of its structural details and its intricate interaction with its cellular partners. Therefore, using computational modeling, biochemical, functional enzymology and spectroscopic tools, we predicted the structure of HAX-1 as well as delineated its interaction with one of it pro-apoptotic partner, HtrA2. In this study, three-dimensional structure of HAX-1 was predicted by threading and ab initio tools that were validated using limited proteolysis and fluorescence quenching studies. Our pull-down studies distinctly demonstrate that the interaction of HtrA2 with HAX-1 is directly through its protease domain and not via the conventional PDZ domain. Enzymology studies further depicted that HAX-1 acts as an allosteric activator of HtrA2. This 'allosteric regulation' offers promising opportunities for the specific control and functional modulation of a wide range of biological processes associated with HtrA2. Hence, this study for the first time dissects the structural architecture of HAX-1 and elucidates its role in PDZ-independent activation of HtrA2.
Collapse
|
36
|
Degueldre M, Wielant A, Girot E, Burkitt W, O'Hara J, Debauve G, Gervais A, Jone C. Native peptide mapping - A simple method to routinely monitor higher order structure changes and relation to functional activity. MAbs 2019; 11:1391-1401. [PMID: 31223055 PMCID: PMC6816347 DOI: 10.1080/19420862.2019.1634460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the biopharmaceutical environment, controlling the Critical Quality Attributes (CQA) of a product is essential to prevent changes that affect its safety or efficacy. Physico-chemical techniques and bioassays are used to screen and monitor these CQAs. The higher order structure (HOS) is a CQA that is typically studied using techniques that are not commonly considered amenable to quality control laboratories. Here, we propose a peptide mapping-based method, named native peptide mapping, which could be considered as straightforward for HOS analysis and applicable for IgG4 and IgG1 antibodies. The method was demonstrated to be fit-for-purpose as a stability-indicating assay by showing differences at the peptide level between stressed and unstressed material. The unfolding pathway induced by a heat stress was also studied via native peptide mapping assay. Furthermore, we demonstrated the structure–activity relationship between HOS and biological activity by analyzing different types of stressed samples with a cell-based assay and the native peptide mapping. The correlation between both sets of results was highlighted by monitoring peptides located in the complementary-determining regions and the relative potency of the biotherapeutic product. This relationship represents a useful approach to interrogate the criticality of HOS as a CQA of a drug.
Collapse
Affiliation(s)
- Michel Degueldre
- Department of Analytical Science Biologicals, UCB , Braine L'Alleud , Belgium
| | - Annemie Wielant
- Department of Analytical Science Biologicals, UCB , Braine L'Alleud , Belgium
| | - Eglantine Girot
- Department of Analytical Science Biologicals, UCB , Braine L'Alleud , Belgium
| | - Will Burkitt
- Department of Analytical Science Biologicals, UCB , Slough , UK
| | - John O'Hara
- Department of Analytical Science Biologicals, UCB , Slough , UK
| | - Gaël Debauve
- Department of Analytical Science Biologicals, UCB , Braine L'Alleud , Belgium
| | - Annick Gervais
- Department of Analytical Science Biologicals, UCB , Braine L'Alleud , Belgium
| | - Carl Jone
- Department of Analytical Science Biologicals, UCB , Braine L'Alleud , Belgium
| |
Collapse
|
37
|
Schramm A, Bignon C, Brocca S, Grandori R, Santambrogio C, Longhi S. An arsenal of methods for the experimental characterization of intrinsically disordered proteins - How to choose and combine them? Arch Biochem Biophys 2019; 676:108055. [PMID: 31356778 DOI: 10.1016/j.abb.2019.07.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/16/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
Abstract
In this review, we detail the most common experimental approaches to assess and characterize protein intrinsic structural disorder, with the notable exception of NMR and EPR spectroscopy, two ideally suited approaches that will be described in depth in two other reviews within this special issue. We discuss the advantages, the limitations, as well as the caveats of the various methods. We also describe less common and more demanding approaches that enable achieving further insights into the conformational properties of IDPs. Finally, we present recent developments that have enabled assessment of structural disorder in living cells, and discuss the currently available methods to model IDPs as conformational ensembles.
Collapse
Affiliation(s)
- Antoine Schramm
- CNRS and Aix-Marseille Univ, Laboratoire Architecture et Fonction des Macromolecules Biologiques (AFMB), UMR 7257, Marseille, France
| | - Christophe Bignon
- CNRS and Aix-Marseille Univ, Laboratoire Architecture et Fonction des Macromolecules Biologiques (AFMB), UMR 7257, Marseille, France
| | - Stefania Brocca
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Sonia Longhi
- CNRS and Aix-Marseille Univ, Laboratoire Architecture et Fonction des Macromolecules Biologiques (AFMB), UMR 7257, Marseille, France.
| |
Collapse
|
38
|
Pulsed electric field: Effect on in-vitro simulated gastrointestinal protein digestion of deer Longissimus dorsi. Food Res Int 2019; 120:793-799. [DOI: 10.1016/j.foodres.2018.11.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/12/2018] [Accepted: 11/16/2018] [Indexed: 11/22/2022]
|
39
|
Wang S, Nosworthy MG, House JD, Ai Y, Hood‐Niefer S, Nickerson MT. Effect of barrel temperature and feed moisture on the physical properties of chickpea–sorghum and chickpea–maize extrudates, and the functionality and nutritional value of their resultant flours—Part II. Cereal Chem 2019. [DOI: 10.1002/cche.10162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shuyang Wang
- Department of Food and Bioproduct Sciences University of Saskatchewan Saskatoon Saskatchewan Canada
| | - Matthew G. Nosworthy
- Department of Food and Human Nutritional Sciences University of Manitoba Winnipeg Manitoba Canada
| | - James D. House
- Department of Food and Human Nutritional Sciences University of Manitoba Winnipeg Manitoba Canada
- Richardson Centre for Functional Foods and Nutraceuticals Winnipeg Manitoba Canada
- Canadian Centre for Agri‐Food Research in Health and Medicine Winnipeg Manitoba Canada
| | - Yongfeng Ai
- Department of Food and Bioproduct Sciences University of Saskatchewan Saskatoon Saskatchewan Canada
| | - Shannon Hood‐Niefer
- Saskatchewan Food Industry Development Centre Inc Saskatoon Saskatchewan Canada
| | - Michael T. Nickerson
- Department of Food and Bioproduct Sciences University of Saskatchewan Saskatoon Saskatchewan Canada
| |
Collapse
|
40
|
Ma KM, Thomas ES, Wereszczynski J, Menhart N. Empirical and Computational Comparison of Alternative Therapeutic Exon Skip Repairs for Duchenne Muscular Dystrophy. Biochemistry 2019; 58:2061-2076. [PMID: 30896926 DOI: 10.1021/acs.biochem.9b00062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a common and devastating genetic disease primarily caused by exon deletions that create a genetic frameshift in dystrophin. Exon skipping therapy seeks to correct this by masking an exon during the mRNA maturation process, restoring dystrophin expression, but creating an edited protein missing both the original defect and the therapeutically skipped region. Crucially, it is possible to correct many defects in alternative ways, by skipping an exon either before or after the patient's defect. This results in alternatively edited, hybrid proteins that might have different properties and therapeutic consequences. We examined three such dystrophin exon-skipped edits, Δe45-53, Δe46-54, and Δe47-55, comprising two pairs of alternative repairs of Δe46-53 and Δe47-54 DMD defects. We found that in both cases, Δe46-54 was the more stable repair as determined by a variety of thermodynamic and biochemical measurements. We also examined the origin of these differences with molecular dynamics simulations, which showed that these stability differences were the result of different types of structural perturbations. For example, in one edit there was partial unfolding at the edit site that caused domain-localized perturbations while in another there was unfolding at the protein domain junctions distal to the edit site that increased molecular flexibility. These results demonstrate that alternative exon skip repairs of the same underlying defect can have very different consequences at the level of protein structure and stability and furthermore that these can arise by different mechanisms, either locally or by more subtle long-range perturbations.
Collapse
|
41
|
Omidi-Ardali H, Aminian M, Golestani A, Shahaboddin ME, Maleki M. N∆89 and C∆274 Truncated Enzymes of Chondroitinase ABC I Regain More Imperturbable Microenvironments Around Structural Components in Comparison to their Wild Type. Protein J 2019; 38:151-159. [DOI: 10.1007/s10930-019-09821-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Redwan EM, AlJaddawi AA, Uversky VN. Structural disorder in the proteome and interactome of Alkhurma virus (ALKV). Cell Mol Life Sci 2019; 76:577-608. [PMID: 30443749 PMCID: PMC7079808 DOI: 10.1007/s00018-018-2968-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/30/2018] [Accepted: 11/05/2018] [Indexed: 12/13/2022]
Abstract
Infection by the Alkhurma virus (ALKV) leading to the Alkhurma hemorrhagic fever is a common thread in Saudi Arabia, with no efficient treatment or prevention available as of yet. Although the rational drug design traditionally uses information on known 3D structures of viral proteins, intrinsically disordered proteins (i.e., functional proteins that do not possess unique 3D structures), with their multitude of disorder-dependent functions, are crucial for the biology of viruses. Here, viruses utilize disordered regions in their invasion of the host organisms and in hijacking and repurposing of different host systems. Furthermore, the ability of viruses to efficiently adjust and accommodate to their hostile habitats is also intrinsic disorder-dependent. However, little is currently known on the level of penetrance and functional utilization of intrinsic disorder in the ALKV proteome. To fill this gap, we used here multiple computational tools to evaluate the abundance of intrinsic disorder in the ALKV genome polyprotein. We also analyzed the peculiarities of intrinsic disorder predisposition of the individual viral proteins, as well as human proteins known to be engaged in interaction with the ALKV proteins. Special attention was paid to finding a correlation between protein functionality and structural disorder. To the best of our knowledge, this work represents the first systematic study of the intrinsic disorder status of ALKV proteome and interactome.
Collapse
Affiliation(s)
- Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia.
| | - Abdullah A AlJaddawi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia
| | - Vladimir N Uversky
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia.
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, 142290, Moscow Region, Russia.
| |
Collapse
|
43
|
Krasinski CA, Zheng Q, Ivancic VA, Spratt DE, Lazo ND. The Longest Amyloid-β Precursor Protein Intracellular Domain Produced with Aβ42 Forms β-Sheet-Containing Monomers That Self-Assemble and Are Proteolyzed by Insulin-Degrading Enzyme. ACS Chem Neurosci 2018; 9:2892-2897. [PMID: 30067897 DOI: 10.1021/acschemneuro.8b00305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease resulting in dementia. It is characterized pathologically by extracellular amyloid plaques composed mainly of deposited Aβ42 and intracellular neurofibrillary tangles formed by hyperphosphorylated tau protein. Recent clinical trials targeting Aβ have failed, suggesting that other polypeptides produced from the amyloid-β precursor protein (APP) may be involved in AD. An attractive polypeptide is AICD57, the longest APP intracellular domain (AICD) coproduced with Aβ42. Here, we show that AICD57 forms micelle-like assemblies that are proteolyzed by insulin-degrading enzyme (IDE), indicating that AICD57 monomers are in dynamic equilibrium with AICD57 assemblies. The N-terminal part of AICD57 monomer is not degraded, but its C-terminal part is hydrolyzed, particularly in the YENPTY motif that has been associated with the hyperphosphorylation of tau. Therefore, sustaining IDE activity well into old age holds promise for regulating levels of not only Aβ but also AICD in the aging brain.
Collapse
Affiliation(s)
- Claire A. Krasinski
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, Massachusetts 01610, United States
| | - Qiuchen Zheng
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, Massachusetts 01610, United States
| | - Valerie A. Ivancic
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, Massachusetts 01610, United States
| | - Donald E. Spratt
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, Massachusetts 01610, United States
| | - Noel D. Lazo
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, Massachusetts 01610, United States
| |
Collapse
|
44
|
Bhat ZF, Morton JD, Mason SL, Bekhit AEDA. Pulsed electric field: Role in protein digestion of beef Biceps femoris. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2018.09.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
45
|
Lorieau L, Halabi A, Ligneul A, Hazart E, Dupont D, Floury J. Impact of the dairy product structure and protein nature on the proteolysis and amino acid bioaccessiblity during in vitro digestion. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.04.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
46
|
Samanta A, Kiselar J, Pumroy RA, Han S, Moiseenkova-Bell VY. Structural insights into the molecular mechanism of mouse TRPA1 activation and inhibition. J Gen Physiol 2018; 150:751-762. [PMID: 29703838 PMCID: PMC5940248 DOI: 10.1085/jgp.201711876] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 02/26/2018] [Accepted: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
Pain, though serving the beneficial function of provoking a response to dangerous situations, is an unpleasant sensory and emotional experience. Transient receptor potential ankyrin 1 (TRPA1) is a member of the transient receptor potential (TRP) cation channel family and is localized in "nociceptors," where it plays a key role in the transduction of chemical, inflammatory, and neuropathic pain. TRPA1 is a Ca2+-permeable, nonselective cation channel that is activated by a large variety of structurally unrelated electrophilic and nonelectrophilic chemical compounds. Electrophilic ligands are able to activate TRPA1 channels by interacting with critical cysteine residues on the N terminus of the channels via covalent modification and/or disulfide bonds. Activation by electrophilic compounds is dependent on their thiol-reactive moieties, accounting for the structural diversity of the group. On the other hand, nonelectrophilic ligands do not interact with critical cysteines on the channel, so the structural diversity of this group is unexplained. Although near-atomic-resolution structures of TRPA1 were resolved recently by cryo-electron microscopy, in the presence of both agonists and antagonists, detailed mechanisms of channel activation and inhibition by these modulators could not be determined. Here, we investigate the effect of both electrophilic and nonelectrophilic ligands on TRPA1 channel conformational rearrangements with limited proteolysis and mass spectrometry. Collectively, our results reveal that channel modulation results in conformational rearrangements in the N-terminal ankyrin repeats, the pre-S1 helix, the TRP-like domain, and the linker regions of the channel.
Collapse
Affiliation(s)
- Amrita Samanta
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Janna Kiselar
- Center for Proteomics, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Ruth A Pumroy
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA
| | | | - Vera Y Moiseenkova-Bell
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH .,Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
47
|
Cornillie SP, Bruno BJ, Lim CS, Cheatham TE. Computational Modeling of Stapled Peptides toward a Treatment Strategy for CML and Broader Implications in the Design of Lengthy Peptide Therapeutics. J Phys Chem B 2018. [DOI: 10.1021/acs.jpcb.8b01014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
48
|
Structural plasticity of T4 transcription co-activator gp33 revealed by a protease-resistant unfolded state. Biochem Biophys Res Commun 2017; 492:61-66. [PMID: 28807826 DOI: 10.1016/j.bbrc.2017.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 08/10/2017] [Indexed: 11/24/2022]
Abstract
Gene 33 protein (gp33) is a transcriptional coactivator for late genes of the T4 bacteriophage. gp33 possesses a 5-helix bundle core, with unstructured N- and C-terminal regions that account for >50% of the protein sequence. It plays a unique role of interacting with host RNA polymerase, couples transcription with DNA replication, and plays the dual function as repressor and co-activator in phage transcription. Here, we identify protein structural plasticity as the molecular basis of the dual nature in gp33. We find that gp33 has the peculiar property of remaining protease insensitive in its urea-unfolded state. Using NMR studies with spectroscopic measurements, we propose that intra-protein interactions are replaced by protein-urea interactions in gp33. This process not only unfolds gp33 but also renders it protease-resistant. Our studies shed new light on the unique structural malleability of gp33 that might be important in its transition from a repressor to a late transcription co-activator.
Collapse
|
49
|
Shahaboddin ME, Khajeh K, Maleki M, Golestani A. Improvement of activity and stability of Chondroitinase ABC I by introducing an aromatic cluster at the surface of protein. Enzyme Microb Technol 2017; 105:38-44. [DOI: 10.1016/j.enzmictec.2017.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 05/22/2017] [Accepted: 06/03/2017] [Indexed: 11/16/2022]
|
50
|
Leuenberger P, Ganscha S, Kahraman A, Cappelletti V, Boersema PJ, von Mering C, Claassen M, Picotti P. Cell-wide analysis of protein thermal unfolding reveals determinants of thermostability. Science 2017; 355:355/6327/eaai7825. [PMID: 28232526 DOI: 10.1126/science.aai7825] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/12/2017] [Indexed: 12/14/2022]
Abstract
Temperature-induced cell death is thought to be due to protein denaturation, but the determinants of thermal sensitivity of proteomes remain largely uncharacterized. We developed a structural proteomic strategy to measure protein thermostability on a proteome-wide scale and with domain-level resolution. We applied it to Escherichia coli, Saccharomyces cerevisiae, Thermus thermophilus, and human cells, yielding thermostability data for more than 8000 proteins. Our results (i) indicate that temperature-induced cellular collapse is due to the loss of a subset of proteins with key functions, (ii) shed light on the evolutionary conservation of protein and domain stability, and (iii) suggest that natively disordered proteins in a cell are less prevalent than predicted and (iv) that highly expressed proteins are stable because they are designed to tolerate translational errors that would lead to the accumulation of toxic misfolded species.
Collapse
Affiliation(s)
- Pascal Leuenberger
- Institute of Biochemistry, Department of Biology, ETH Zurich (ETHZ), CH-8093 Zurich, Switzerland.,Systems Biology Graduate School PhD Program, ETHZ and University of Zurich, CH-8093 Zurich, Switzerland
| | - Stefan Ganscha
- Systems Biology Graduate School PhD Program, ETHZ and University of Zurich, CH-8093 Zurich, Switzerland.,Institute of Molecular Systems Biology, Department of Biology, ETHZ, CH-8093 Zurich, Switzerland
| | - Abdullah Kahraman
- Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, CH-8057 Zurich, Switzerland
| | - Valentina Cappelletti
- Institute of Biochemistry, Department of Biology, ETH Zurich (ETHZ), CH-8093 Zurich, Switzerland
| | - Paul J Boersema
- Institute of Biochemistry, Department of Biology, ETH Zurich (ETHZ), CH-8093 Zurich, Switzerland
| | - Christian von Mering
- Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, CH-8057 Zurich, Switzerland
| | - Manfred Claassen
- Institute of Molecular Systems Biology, Department of Biology, ETHZ, CH-8093 Zurich, Switzerland
| | - Paola Picotti
- Institute of Biochemistry, Department of Biology, ETH Zurich (ETHZ), CH-8093 Zurich, Switzerland.
| |
Collapse
|