1
|
Abstract
Proteases are an evolutionarily conserved family of enzymes that degrade peptide bonds and have been implicated in several common gastrointestinal (GI) diseases. Although luminal proteolytic activity is important for maintenance of homeostasis and health, the current review describes recent advances in our understanding of how overactivity of luminal proteases contributes to the pathophysiology of celiac disease, irritable bowel syndrome, inflammatory bowel disease and GI infections. Luminal proteases, many of which are produced by the microbiota, can modulate the immunogenicity of dietary antigens, reduce mucosal barrier function and activate pro-inflammatory and pro-nociceptive host signaling. Increased proteolytic activity has been ascribed to both increases in protease production and decreases in inhibitors of luminal proteases. With the identification of strains of bacteria that are important sources of proteases and their inhibitors, the stage is set to develop drug or microbial therapies to restore protease balance and alleviate disease.
Collapse
Affiliation(s)
- Alberto Caminero
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Mabel Guzman
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen’s University, Kingston, Ontario, Canada
| | - Josie Libertucci
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Alan E. Lomax
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen’s University, Kingston, Ontario, Canada,CONTACT Alan E. Lomax Gastrointestinal Diseases Research Unit, Kingston General Hospital, Kingston, ON, K7L 2V7, Canada
| |
Collapse
|
2
|
Powell M, Blaskovich MAT, Hansford KA. Targeted Protein Degradation: The New Frontier of Antimicrobial Discovery? ACS Infect Dis 2021; 7:2050-2067. [PMID: 34259518 DOI: 10.1021/acsinfecdis.1c00203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Targeted protein degradation aims to hijack endogenous protein quality control systems to achieve direct knockdown of protein targets. This exciting technology utilizes event-based pharmacology to produce therapeutic outcomes, a feature that distinguishes it from classical occupancy-based inhibitor agents. Early degrader candidates display resilience to mutations while possessing potent nanomolar activity and high target specificity. Paired with the rapid advancement of our knowledge in the factors driving targeted degradation, the expansion of this style of therapeutic agent to a range of disease indications is eagerly awaited. In particular, the area of antibiotic discovery is sorely lacking in novel approaches, with the Antimicrobial Resistance (AMR) crisis looming as the next potential global health calamity. Here, the current advances in targeted protein degradation are highlighted, and potential approaches for designing novel antimicrobial protein degraders are proposed, ranging from adaptations of current strategies to completely novel approaches to targeted protein degradation.
Collapse
Affiliation(s)
- Matthew Powell
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mark A. T. Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Karl A. Hansford
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
3
|
Yedidi RS, Wendler P, Enenkel C. AAA-ATPases in Protein Degradation. Front Mol Biosci 2017; 4:42. [PMID: 28676851 PMCID: PMC5476697 DOI: 10.3389/fmolb.2017.00042] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 06/06/2017] [Indexed: 11/13/2022] Open
Abstract
Proteolytic machineries containing multisubunit protease complexes and AAA-ATPases play a key role in protein quality control and the regulation of protein homeostasis. In these protein degradation machineries, the proteolytically active sites are formed by either threonines or serines which are buried inside interior cavities of cylinder-shaped complexes. In eukaryotic cells, the proteasome is the most prominent protease complex harboring AAA-ATPases. To degrade protein substrates, the gates of the axial entry ports of the protease need to be open. Gate opening is accomplished by AAA-ATPases, which form a hexameric ring flanking the entry ports of the protease. Protein substrates with unstructured domains can loop into the entry ports without the assistance of AAA-ATPases. However, folded proteins require the action of AAA-ATPases to unveil an unstructured terminus or domain. Cycles of ATP binding/hydrolysis fuel the unfolding of protein substrates which are gripped by loops lining up the central pore of the AAA-ATPase ring. The AAA-ATPases pull on the unfolded polypeptide chain for translocation into the proteolytic cavity of the protease. Conformational changes within the AAA-ATPase ring and the adjacent protease chamber create a peristaltic movement for substrate degradation. The review focuses on new technologies toward the understanding of the function and structure of AAA-ATPases to achieve substrate recognition, unfolding and translocation into proteasomes in yeast and mammalian cells and into proteasome-equivalent proteases in bacteria and archaea.
Collapse
Affiliation(s)
| | - Petra Wendler
- Department of Biochemistry, Institute of Biochemistry and Biology, University of PotsdamPotsdam, Germany
| | - Cordula Enenkel
- Department of Biochemistry, University of TorontoToronto, ON, Canada
| |
Collapse
|
4
|
Nelson CJ, Li L, Millar AH. Quantitative analysis of protein turnover in plants. Proteomics 2014; 14:579-92. [DOI: 10.1002/pmic.201300240] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 10/02/2013] [Accepted: 10/14/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Clark J. Nelson
- ARC Centre of Excellence in Plant Energy Biology; University of Western Australia; WA Australia
- Centre for Comparative Analysis of Biomolecular Networks; University of Western Australia; WA Australia
| | - Lei Li
- ARC Centre of Excellence in Plant Energy Biology; University of Western Australia; WA Australia
- Centre for Comparative Analysis of Biomolecular Networks; University of Western Australia; WA Australia
| | - A. Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology; University of Western Australia; WA Australia
- Centre for Comparative Analysis of Biomolecular Networks; University of Western Australia; WA Australia
| |
Collapse
|
5
|
Abstract
Proteases have been successfully targeted for the treatment of several diseases, including hypertension, type 2 diabetes, multiple myeloma, HIV and hepatitis C virus infections. Given the demonstrated pharmacological tractability of this enzyme family and the pressing need for novel drugs to combat antibiotic resistance, proteases have also attracted interest as antibacterial targets--particularly the widely conserved intracellular bacterial degradative proteases, which are often indispensable for normal bacterial growth or virulence. This Review summarizes the roles of the key prokaryotic degradative proteases, with a focus on the initial efforts and associated challenges in developing specific therapeutic modulators of these enzymes as novel classes of antibacterial drugs.
Collapse
|
6
|
Solheim C, Li L, Hatzopoulos P, Millar AH. Loss of Lon1 in Arabidopsis changes the mitochondrial proteome leading to altered metabolite profiles and growth retardation without an accumulation of oxidative damage. PLANT PHYSIOLOGY 2012; 160:1187-203. [PMID: 22968828 PMCID: PMC3490588 DOI: 10.1104/pp.112.203711] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 09/07/2012] [Indexed: 05/20/2023]
Abstract
Lon1 is an ATP-dependent protease and chaperone located in the mitochondrial matrix in plants. Knockout in Arabidopsis (Arabidopsis thaliana) leads to a significant growth rate deficit in both roots and shoots and lowered activity of specific mitochondrial enzymes associated with respiratory metabolism. Analysis of the mitochondrial proteomes of two lon1 mutant alleles (lon1-1 and lon1-2) with different severities of phenotypes shows a common accumulation of several stress marker chaperones and lowered abundance of Complexes I, IV, and V of OXPHOS. Certain enzymes of the tricarboxylic acid (TCA) cycle are modified or accumulated, and TCA cycle bypasses were repressed rather than induced. While whole tissue respiratory rates were unaltered in roots and shoots, TCA cycle intermediate organic acids were depleted in leaf extracts in the day in lon1-1 and in both lon mutants at night. No significant evidence of broad steady-state oxidative damage to isolated mitochondrial samples could be found, but peptides from several specific proteins were more oxidized and selected functions were more debilitated in lon1-1. Collectively, the evidence suggests that loss of Lon1 significantly modifies respiratory function and plant performance by small but broad alterations in the mitochondrial proteome gained by subtly changing steady-state protein assembly, stability, and damage of a range of components that debilitate an anaplerotic role for mitochondria in cellular carbon metabolism.
Collapse
|
7
|
Venkatesh S, Lee J, Singh K, Lee I, Suzuki CK. Multitasking in the mitochondrion by the ATP-dependent Lon protease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:56-66. [PMID: 22119779 DOI: 10.1016/j.bbamcr.2011.11.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/30/2011] [Accepted: 11/06/2011] [Indexed: 01/13/2023]
Abstract
The AAA(+) Lon protease is a soluble single-ringed homo-oligomer, which represents the most streamlined operational unit mediating ATP-dependent proteolysis. Despite its simplicity, the architecture of Lon proteases exhibits a species-specific diversity. Homology modeling provides insights into the structural features that distinguish bacterial and human Lon proteases as hexameric complexes from yeast Lon, which is uniquely heptameric. The best-understood functions of mitochondrial Lon are linked to maintaining proteostasis under normal metabolic conditions, and preventing proteotoxicity during environmental and cellular stress. An intriguing property of human Lon is its specific binding to G-quadruplex DNA, and its association with the mitochondrial genome in cultured cells. A fraction of Lon preferentially binds to the control region of mitochondrial DNA where transcription and replication are initiated. Here, we present an overview of the diverse functions of mitochondrial Lon, as well as speculative perspectives on its role in protein and mtDNA quality control.
Collapse
Affiliation(s)
- Sundararajan Venkatesh
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 185 South Orange Avenue, MSB E-633, Newark, New Jersey 07103 USA
| | | | | | | | | |
Collapse
|
8
|
Gholizadeh A. Over-expression, purification and functional characterization of Celosia ClpS as a fused protein in Escherichia coli. APPL BIOCHEM MICRO+ 2011. [DOI: 10.1134/s000368381104003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Hwang W, Lang MJ. Mechanical design of translocating motor proteins. Cell Biochem Biophys 2009; 54:11-22. [PMID: 19452133 DOI: 10.1007/s12013-009-9049-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 04/29/2009] [Indexed: 01/10/2023]
Abstract
Translocating motors generate force and move along a biofilament track to achieve diverse functions including gene transcription, translation, intracellular cargo transport, protein degradation, and muscle contraction. Advances in single molecule manipulation experiments, structural biology, and computational analysis are making it possible to consider common mechanical design principles of these diverse families of motors. Here, we propose a mechanical parts list that include track, energy conversion machinery, and moving parts. Energy is supplied not just by burning of a fuel molecule, but there are other sources or sinks of free energy, by binding and release of a fuel or products, or similarly between the motor and the track. Dynamic conformational changes of the motor domain can be regarded as controlling the flow of free energy to and from the surrounding heat reservoir. Multiple motor domains are organized in distinct ways to achieve motility under imposed physical constraints. Transcending amino acid sequence and structure, physically and functionally similar mechanical parts may have evolved as nature's design strategy for these molecular engines.
Collapse
Affiliation(s)
- Wonmuk Hwang
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | | |
Collapse
|
10
|
Wei SJ, Williams JG, Dang H, Darden TA, Betz BL, Humble MM, Chang FM, Trempus CS, Johnson K, Cannon RE, Tennant RW. Identification of a specific motif of the DSS1 protein required for proteasome interaction and p53 protein degradation. J Mol Biol 2008; 383:693-712. [PMID: 18775730 DOI: 10.1016/j.jmb.2008.08.044] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 07/16/2008] [Accepted: 08/19/2008] [Indexed: 10/21/2022]
Abstract
Deleted in Split hand/Split foot 1 (DSS1) was previously identified as a novel 12-O-tetradecanoylphorbol-13-acetate (TPA)-inducible gene with possible involvement in early event of mouse skin carcinogenesis. The mechanisms by which human DSS1 (HsDSS1) exerts its biological effects via regulation of the ubiquitin-proteasome system (UPS) are currently unknown. Here, we demonstrated that HsDSS1 regulates the human proteasome by associating with it in the cytosol and nucleus via the RPN3/S3 subunit of the 19S regulatory particle (RP). Molecular anatomy of HsDSS1 revealed an RPN3/S3-interacting motif (R3IM), located at amino acid residues 15 to 21 of the NH(2) terminus. Importantly, negative charges of the R3IM motif were demonstrated to be required for proteasome interaction and binding to poly-ubiquitinated substrates. Indeed, the R3IM motif of HsDSS1 protein alone was sufficient to replace the ability of intact HsDSS1 protein to pull down proteasome complexes and protein substrates with high-molecular mass ubiquitin conjugates. Interestingly, this interaction is highly conserved throughout evolution from humans to nematodes. Functional study, lowering the levels of the endogenous HsDSS1 using siRNA, indicates that the R3IM/proteasome complex binds and targets p53 for ubiquitin-mediated degradation via gankyrin-MDM2/HDM2 pathway. Most significantly, this work indicates that the R3IM motif of HsDSS1, in conjunction with the complexes of 19S RP and 20S core particle (CP), regulates proteasome interaction through RPN3/S3 molecule, and utilizes a specific subset of poly-ubiquitinated p53 as a substrate.
Collapse
Affiliation(s)
- Sung-Jen Wei
- Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Krojer T, Pangerl K, Kurt J, Sawa J, Stingl C, Mechtler K, Huber R, Ehrmann M, Clausen T. Interplay of PDZ and protease domain of DegP ensures efficient elimination of misfolded proteins. Proc Natl Acad Sci U S A 2008; 105:7702-7. [PMID: 18505836 PMCID: PMC2396557 DOI: 10.1073/pnas.0803392105] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Indexed: 11/18/2022] Open
Abstract
Aberrant proteins represent an extreme hazard to cells. Therefore, molecular chaperones and proteases have to carry out protein quality control in each cellular compartment. In contrast to the ATP-dependent cytosolic proteases and chaperones, the molecular mechanisms of extracytosolic factors are largely unknown. To address this question, we studied the protease function of DegP, the central housekeeping protein in the bacterial envelope. Our data reveal that DegP processively degrades misfolded proteins into peptides of defined size by employing a molecular ruler comprised of the PDZ1 domain and the proteolytic site. Furthermore, peptide binding to the PDZ domain transforms the resting protease into its active state. This allosteric activation mechanism ensures the regulated and rapid elimination of misfolded proteins upon folding stress. In comparison to the cytosolic proteases, the regulatory features of DegP are established by entirely different mechanisms reflecting the convergent evolution of an extracytosolic housekeeping protease.
Collapse
Affiliation(s)
- Tobias Krojer
- *Research Institute of Molecular Pathology, Dr. Bohrgasse 7, A-1030 Vienna, Austria
| | - Karen Pangerl
- *Research Institute of Molecular Pathology, Dr. Bohrgasse 7, A-1030 Vienna, Austria
| | - Juliane Kurt
- *Research Institute of Molecular Pathology, Dr. Bohrgasse 7, A-1030 Vienna, Austria
| | - Justyna Sawa
- *Research Institute of Molecular Pathology, Dr. Bohrgasse 7, A-1030 Vienna, Austria
| | - Christoph Stingl
- *Research Institute of Molecular Pathology, Dr. Bohrgasse 7, A-1030 Vienna, Austria
| | - Karl Mechtler
- *Research Institute of Molecular Pathology, Dr. Bohrgasse 7, A-1030 Vienna, Austria
| | - Robert Huber
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, D-82152 Martinsried, Germany
- School of Biosciences, Cardiff University, Cardiff CF10 3US, United Kingdom; and
- Centre for Medical Biotechnology, FB Biology and Geography, University Duisburg–Essen, Universitätsstrasse, D-45117 Essen, Germany
| | - Michael Ehrmann
- Centre for Medical Biotechnology, FB Biology and Geography, University Duisburg–Essen, Universitätsstrasse, D-45117 Essen, Germany
| | - Tim Clausen
- *Research Institute of Molecular Pathology, Dr. Bohrgasse 7, A-1030 Vienna, Austria
| |
Collapse
|
12
|
Szyk A, Maurizi MR. Crystal structure at 1.9Å of E. coli ClpP with a peptide covalently bound at the active site. J Struct Biol 2006; 156:165-74. [PMID: 16682229 DOI: 10.1016/j.jsb.2006.03.013] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 03/02/2006] [Accepted: 03/15/2006] [Indexed: 10/24/2022]
Abstract
ClpP, the proteolytic component of the ATP-dependent ClpAP and ClpXP chaperone/protease complexes, has 14 identical subunits organized in two stacked heptameric rings. The active sites are in an interior aqueous chamber accessible through axial channels. We have determined a 1.9 A crystal structure of Escherichia coli ClpP with benzyloxycarbonyl-leucyltyrosine chloromethyl ketone (Z-LY-CMK) bound at each active site. The complex mimics a tetrahedral intermediate during peptide cleavage, with the inhibitor covalently linked to the active site residues, Ser97 and His122. Binding is further stabilized by six hydrogen bonds between backbone atoms of the peptide and ClpP as well as by hydrophobic binding of the phenolic ring of tyrosine in the S1 pocket. The peptide portion of Z-LY-CMK displaces three water molecules in the native enzyme resulting in little change in the conformation of the peptide binding groove. The heptameric rings of ClpP-CMK are slightly more compact than in native ClpP, but overall structural changes were minimal (rmsd approximately 0.5 A). The side chain of Ser97 is rotated approximately 90 degrees in forming the covalent adduct with Z-LY-CMK, indicating that rearrangement of the active site residues to a active configuration occurs upon substrate binding. The N-terminal peptide of ClpP-CMK is stabilized in a beta-hairpin conformation with the proximal N-terminal residues lining the axial channel and the loop extending beyond the apical surface of the heptameric ring. The lack of major substrate-induced conformational changes suggests that changes in ClpP structure needed to facilitate substrate entry or product release must be limited to rigid body motions affecting subunit packing or contacts between ClpP rings.
Collapse
Affiliation(s)
- Agnieszka Szyk
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
13
|
Okuno T, Yamanaka K, Ogura T. An AAA protease FtsH can initiate proteolysis from internal sites of a model substrate, apo-flavodoxin. Genes Cells 2006; 11:261-8. [PMID: 16483314 DOI: 10.1111/j.1365-2443.2006.00940.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Escherichia coli FtsH, which belongs to the AAA (ATPases associated with diverse cellular activities) family, is an ATP-dependent and membrane-bound protease. FtsH degrades misassembled membrane proteins and a subset of cytoplasmic regulatory proteins. It has been proposed that ATP-dependent proteases unfold substrate proteins and initiate a processive proteolysis from either terminus of the substrate polypeptide. We have found that FtsH degrades E. coli apo-flavodoxin (apo-Fld) but not holo-Fld containing non-covalently bound flavin mononucleotide (FMN). A mutant Fld carrying a substitution of Tyr94 to Asp (Fld(YD)) with a lower affinity for FMN was efficiently degraded by FtsH. To elucidate the directionality of Fld(YD) degradation by FtsH, we constructed several Fld(YD) fusion proteins with glutathione S-transferase (GST), green fluorescent protein (GFP), or both GST and GFP. It was found that FtsH was able to initiate degradation of the Fld(YD) moiety even when it was sandwiched by GST and GFP. Evidence indicated that FtsH can initiate proteolysis of GST-Fld(YD)-GFP from the Fld(YD) moiety by translocating an internal loop to the protease chamber in an ATP-dependent manner and that, at least, the proteolysis in the C to N direction proceeds processively.
Collapse
Affiliation(s)
- Takashi Okuno
- Division of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | | | | |
Collapse
|
14
|
Khor B, Bredemeyer AL, Huang CY, Turnbull IR, Evans R, Maggi LB, White JM, Walker LM, Carnes K, Hess RA, Sleckman BP. Proteasome activator PA200 is required for normal spermatogenesis. Mol Cell Biol 2006; 26:2999-3007. [PMID: 16581775 PMCID: PMC1446934 DOI: 10.1128/mcb.26.8.2999-3007.2006] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 01/28/2006] [Accepted: 01/30/2006] [Indexed: 11/20/2022] Open
Abstract
The PA200 proteasome activator is a broadly expressed nuclear protein. Although how PA200 normally functions is not fully understood, it has been suggested to be involved in the repair of DNA double-strand breaks (DSBs). The PA200 gene (Psme4) is composed of 45 coding exons spanning 108 kb on mouse chromosome 11. We generated a PA200 null allele (PA200(Delta)) through Cre-loxP-mediated interchromosomal recombination after targeting loxP sites at either end of the locus. PA200(Delta/Delta) mice are viable and have no obvious developmental abnormalities. Both lymphocyte development and immunoglobulin class switching, which rely on the generation and repair of DNA DSBs, are unperturbed in PA200(Delta/Delta) mice. Additionally, PA200(Delta/Delta) embryonic stem cells do not exhibit increased sensitivity to either ionizing radiation or bleomycin. Thus, PA200 is not essential for the repair of DNA DSBs generated in these settings. Notably, loss of PA200 led to a marked reduction in male, but not female, fertility. This was due to defects in spermatogenesis observed in meiotic spermatocytes and during the maturation of postmeiotic haploid spermatids. Thus, PA200 serves an important nonredundant function during spermatogenesis, suggesting that the efficient generation of male gametes has distinct protein metabolic requirements.
Collapse
Affiliation(s)
- Bernard Khor
- Department of Pathology and Immunology, Campus Box 8118, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Okuno T, Yamanaka K, Ogura T. Characterization of mutants of the Escherichia coli AAA protease, FtsH, carrying a mutation in the central pore region. J Struct Biol 2006; 156:109-14. [PMID: 16563799 DOI: 10.1016/j.jsb.2006.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 02/02/2006] [Accepted: 02/09/2006] [Indexed: 10/24/2022]
Abstract
Escherichia coli FtsH is an ATP-dependent and membrane-bound protease, which belongs to the ATPases associated with diverse cellular activities family. FtsH degrades a subset of cytoplasmic regulatory proteins and misassembled membrane proteins. It has been proposed that ATP-dependent proteases unfold and translocate substrate proteins into the protease chamber. Previously, we reported that Phe228 and Gly230 in the conserved motif, @XG (where @ is an aromatic residue and X is any residue), in the central pore of the FtsH ATPase ring have important roles in proteolysis and its coupling to ATP hydrolysis. In this paper, we constructed and characterized additional pore mutants. Results indicated that certain acidic residues located in the pore region are also important for the activity of FtsH. Proteolytic activities of most mutants are correlated with their ATPase activities. Evidence also indicated that Val229, the 2nd residue of the @XG motif, may have a substrate-specific role.
Collapse
Affiliation(s)
- Takashi Okuno
- Division of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | | | | |
Collapse
|
16
|
Schmidt M, Hanna J, Elsasser S, Finley D. Proteasome-associated proteins: regulation of a proteolytic machine. Biol Chem 2005; 386:725-37. [PMID: 16201867 DOI: 10.1515/bc.2005.085] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The proteasome is a compartmentalized, ATP-dependent protease composed of more than 30 subunits that recognizes and degrades polyubiquitinated substrates. Despite its physiological importance, many aspects of the proteasome's structural organization and regulation remain poorly understood. In addition to the proteins that form the proteasome holocomplex, there is increasing evidence that proteasomal function is affected by a wide variety of associating proteins. A group of ubiquitin-binding proteins assist in delivery of substrates to the proteasome, whereas proteasome-associated ubiquitin ligases and deubiquitinating enzymes may alter the dynamics of ubiquitin chains already associated with the proteasome. Some proteins appear to influence the overall stability of the complex, and still others have the capacity to activate or inhibit the hydrolytic activity of the core particle. The increasing number of interacting proteins identified suggests that proteasomes, as they exist in the cell, are larger and more diverse in composition than previously assumed. Thus, the study of proteasome-associated proteins will lead to new perspectives on the dynamics of this uniquely complex proteolytic machine.
Collapse
Affiliation(s)
- Marion Schmidt
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | | | | | | |
Collapse
|
17
|
Paschoalin T, Carmona AK, Oliveira V, Juliano L, Travassos LR. Characterization of thimet- and neurolysin-like activities in Escherichia coli M 3 A peptidases and description of a specific substrate. Arch Biochem Biophys 2005; 441:25-34. [PMID: 16098472 DOI: 10.1016/j.abb.2005.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 06/15/2005] [Accepted: 06/16/2005] [Indexed: 10/25/2022]
Abstract
M 3 A oligopeptidases from Escherichia coli, with hydrolytic properties similar to Zn-dependent mammalian thimet oligopeptidase (EP 24.15) and neurolysin (EP 24.16), were studied aiming at identification of comparative enzyme and substrate specificity, hydrolytic products, and susceptibility to inhibitors. Fluorescent peptides, neurotensin (NT) and bradykinin (BK), were used as substrates for bacterial lysates. Bacterial enzymes were totally inhibited by o-phenanthrolin, JA-2 and partially by Pro-Ile, but not by leupeptin, PMSF, E-64, and Z-Pro-Prolinal, using internally quenched Abz-GFSPFRQ-EDDnp as substrate. The molecular mass of the bacterial oligopeptidase activity (77--78 kDa) was determined by gel filtration, and the effect of inhibitors, including captopril, suggested that it results from a combination of oligopeptidase A (OpdA) and peptidyl dipeptidase Dcp (77.1 and 77.5 kDa, respectively). Recombinant OpdA cloned from the same E. coli strain entirely reproduced the primary cleavage of fluorescent peptides, NT and BK, by the bacterial lysate. Genes encoding these M 3 A enzymes were those recognized in E. coli genome, bearing identity at the amino acid level (25--31%) with mammalian Zn-dependent oligopeptidases. We also describe a substrate, Abz-GFSPFRQ-EDDnp, that differentiates bacterial and mammalian oligopeptidases.
Collapse
Affiliation(s)
- Thaysa Paschoalin
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), Rua Botucatu, 862 São Paulo, SP 04023-062, Brazil
| | | | | | | | | |
Collapse
|
18
|
Ward DE, Shockley KR, Chang LS, Levy RD, Michel JK, Conners SB, Kelly RM. Proteolysis in hyperthermophilic microorganisms. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2005; 1:63-74. [PMID: 15803660 PMCID: PMC2685542 DOI: 10.1155/2002/503191] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Proteases are found in every cell, where they recognize and break down unneeded or abnormal polypeptides or peptide-based nutrients within or outside the cell. Genome sequence data can be used to compare proteolytic enzyme inventories of different organisms as they relate to physiological needs for protein modification and hydrolysis. In this review, we exploit genome sequence data to compare hyperthermophilic microorganisms from the euryarchaeotal genus Pyrococcus, the crenarchaeote Sulfolobus solfataricus, and the bacterium Thermotoga maritima. An overview of the proteases in these organisms is given based on those proteases that have been characterized and on putative proteases that have been identified from genomic sequences, but have yet to be characterized. The analysis revealed both similarities and differences in the mechanisms utilized for proteolysis by each of these hyperthermophiles and indicated how these mechanisms relate to proteolysis in less thermophilic cells and organisms.
Collapse
Affiliation(s)
- Donald E. Ward
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Keith R. Shockley
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Lara S. Chang
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Ryan D. Levy
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Joshua K. Michel
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Shannon B. Conners
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Robert M. Kelly
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
- Corresponding author ()
| |
Collapse
|
19
|
Franzetti B, Schoehn G, Garcia D, Ruigrok RWH, Zaccai G. Characterization of the proteasome from the extremely halophilic archaeon Haloarcula marismortui. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2005; 1:53-61. [PMID: 15803659 PMCID: PMC2685540 DOI: 10.1155/2002/601719] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A 20S proteasome, comprising two subunits alpha and beta, was purified from the extreme halophilic archaeon Haloarcula marismortui, which grows only in saturated salt conditions. The three-dimensional reconstruction of the H. marismortui proteasome (Hm proteasome), obtained from negatively stained electron micrographs, is virtually identical to the structure of a thermophilic proteasome filtered to the same resolution. The stability of the Hm proteasome was found to be less salt-dependent than that of other halophilic enzymes previously described. The proteolytic activity of the Hm proteasome was investigated using the malate dehydrogenase from H. marismortui (HmMalDH) as a model substrate. The HmMalDH denatures when the salt concentration is decreased below 2 M. Under these conditions, the proteasome efficiently cleaves HmMalDH during its denaturation process, but the fully denatured HmMalDH is poorly degraded. These in vitro experiments show that, at low salt concentrations, the 20S proteasome from halophilic archaea eliminates a misfolded protein.
Collapse
Affiliation(s)
- B Franzetti
- Institut de Biologie Structurale, CNRS-CEA, 41 rue J. Horowitz, 38027 Grenoble cedex 1, France.
| | | | | | | | | |
Collapse
|
20
|
Schmidt M, Haas W, Crosas B, Santamaria PG, Gygi SP, Walz T, Finley D. The HEAT repeat protein Blm10 regulates the yeast proteasome by capping the core particle. Nat Struct Mol Biol 2005; 12:294-303. [PMID: 15778719 DOI: 10.1038/nsmb914] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Accepted: 02/10/2005] [Indexed: 11/08/2022]
Abstract
Proteasome activity is fine-tuned by associating the proteolytic core particle (CP) with stimulatory and inhibitory complexes. Although several mammalian regulatory complexes are known, knowledge of yeast proteasome regulators is limited to the 19-subunit regulatory particle (RP), which confers ubiquitin-dependence on proteasomes. Here we describe an alternative proteasome activator from Saccharomyces cerevisiae, Blm10. Synthetic interactions between blm10Delta and other mutations that impair proteasome function show that Blm10 functions together with proteasomes in vivo. This large, internally repetitive protein is found predominantly within hybrid Blm10-CP-RP complexes, representing a distinct pool of mature proteasomes. EM studies show that Blm10 has a highly elongated, curved structure. The near-circular profile of Blm10 adapts it to the end of the CP cylinder, where it is properly positioned to activate the CP by opening the axial channel into its proteolytic chamber.
Collapse
Affiliation(s)
- Marion Schmidt
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Liu T, Lu B, Lee I, Ondrovicová G, Kutejová E, Suzuki CK. DNA and RNA binding by the mitochondrial lon protease is regulated by nucleotide and protein substrate. J Biol Chem 2004; 279:13902-10. [PMID: 14739292 DOI: 10.1074/jbc.m309642200] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ATP-dependent Lon protease belongs to a unique group of proteases that bind DNA. Eukaryotic Lon is a homo-oligomeric ring-shaped complex localized to the mitochondrial matrix. In vitro, human Lon binds specifically to a single-stranded GT-rich DNA sequence overlapping the light strand promoter of human mitochondrial DNA (mtDNA). We demonstrate that Lon binds GT-rich DNA sequences found throughout the heavy strand of mtDNA and that it also interacts specifically with GU-rich RNA. ATP inhibits the binding of Lon to DNA or RNA, whereas the presence of protein substrate increases the DNA binding affinity of Lon 3.5-fold. We show that nucleotide inhibition and protein substrate stimulation coordinately regulate DNA binding. In contrast to the wild type enzyme, a Lon mutant lacking both ATPase and protease activity binds nucleic acid; however, protein substrate fails to stimulate binding. These results suggest that conformational changes in the Lon holoenzyme induced by nucleotide and protein substrate modulate the binding affinity for single-stranded mtDNA and RNA in vivo. Co-immunoprecipitation experiments show that Lon interacts with mtDNA polymerase gamma and the Twinkle helicase, which are components of mitochondrial nucleoids. Taken together, these results suggest that Lon participates directly in the metabolism of mtDNA.
Collapse
Affiliation(s)
- Tong Liu
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103, USA
| | | | | | | | | | | |
Collapse
|
22
|
Donaldson LW, Wojtyra U, Houry WA. Solution Structure of the Dimeric Zinc Binding Domain of the Chaperone ClpX. J Biol Chem 2003; 278:48991-6. [PMID: 14525985 DOI: 10.1074/jbc.m307826200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ClpX (423 amino acids), a member of the Clp/Hsp100 family of molecular chaperones and the protease, ClpP, comprise a multimeric complex supporting targeted protein degradation in Escherichia coli. The ClpX sequence consists of an NH2-terminal zinc binding domain (ZBD) and a COOH-terminal ATPase domain. Earlier, we have demonstrated that the zinc binding domain forms a constitutive dimer that is essential for the degradation of some ClpX substrates such as gammaO and MuA but is not required for the degradation of other substrates such as green fluorescent protein-SsrA. In this report, we present the NMR solution structure of the zinc binding domain dimer. The monomer fold reveals that ZBD is a member of the treble clef zinc finger family, a motif known to facilitate protein-ligand, protein-DNA, and protein-protein interactions. However, the dimeric ZBD structure is not related to any protein structure in the Protein Data Bank. A trimer-of-dimers model of ZBD is presented, which might reflect the closed state of the ClpX hexamer.
Collapse
Affiliation(s)
- Logan W Donaldson
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada.
| | | | | |
Collapse
|
23
|
Wah DA, Levchenko I, Rieckhof GE, Bolon DN, Baker TA, Sauer RT. Flexible linkers leash the substrate binding domain of SspB to a peptide module that stabilizes delivery complexes with the AAA+ ClpXP protease. Mol Cell 2003; 12:355-63. [PMID: 14536075 DOI: 10.1016/s1097-2765(03)00272-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
SspB dimers bind proteins bearing the ssrA-degradation tag and stimulate their degradation by the ClpXP protease. Here, E. coli SspB is shown to contain a dimeric substrate binding domain of 110-120 N-terminal residues, which binds ssrA-tagged substrates but does not stimulate their degradation. The C-terminal 40-50 residues of SspB are unstructured but are required for SspB to form substrate-delivery complexes with ClpXP. A synthetic peptide containing the 10 C-terminal residues of SspB binds ClpX, stimulates its ATPase activity, and prevents SspB-mediated delivery of GFP-ssrA for ClpXP degradation. This tripartite structure--an ssrA-tag binding and dimerization domain, a flexible linker, and a short peptide module that docks with ClpX--allows SspB to deliver tagged substrates to ClpXP without interfering with their denaturation or degradation.
Collapse
Affiliation(s)
- David A Wah
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
24
|
Levchenko I, Grant RA, Wah DA, Sauer RT, Baker TA. Structure of a Delivery Protein for an AAA+ Protease in Complex with a Peptide Degradation Tag. Mol Cell 2003; 12:365-72. [PMID: 14536076 DOI: 10.1016/j.molcel.2003.08.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Substrate selection by AAA+ ATPases that function to unfold proteins or alter protein conformation is often regulated by delivery or adaptor proteins. SspB is a protein dimer that binds to the ssrA degradation tag and delivers proteins bearing this tag to ClpXP, an AAA+ protease, for degradation. Here, we describe the structure of the peptide binding domain of H. influenzae SspB in complex with an ssrA peptide at 1.6 A resolution. The ssrA peptides are bound in well-defined clefts located at the extreme ends of the SspB homodimer. SspB contacts residues within the N-terminal and central regions of the 11 residue ssrA tag but leaves the C-terminal residues exposed and positioned to dock with ClpX. This structure, taken together with biochemical analysis of SspB, suggests mechanisms by which proteins like SspB escort substrates to AAA+ ATPases and enhance the specificity and affinity of target recognition.
Collapse
Affiliation(s)
- Igor Levchenko
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
25
|
Maupin-Furlow JA, Kaczowka SJ, Reuter CJ, Zuobi-Hasona K, Gil MA. Archaeal proteasomes: potential in metabolic engineering. Metab Eng 2003; 5:151-63. [PMID: 12948749 DOI: 10.1016/s1096-7176(03)00030-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Archaea are a valuable source of enzymes for industrial and scientific applications because of their ability to survive extreme conditions including high salt and temperature. Thanks to advances in molecular biology and genetics, archaea are also attractive hosts for metabolic engineering. Understanding how energy-dependent proteases and chaperones function to maintain protein quality control is key to high-level synthesis of recombinant products. In archaea, proteasomes are central players in energy-dependent proteolysis and form elaborate nanocompartments that degrade proteins into oligopeptides by processive hydrolysis. The catalytic core responsible for this proteolytic activity is the 20S proteasome, a barrel-shaped particle with a central channel and axial gates on each end that limit substrate access to a central proteolytic chamber. AAA proteins (ATPases associated with various cellular activities) are likely to play several roles in mediating energy-dependent proteolysis by the proteasome. These include ATP binding/hydrolysis, substrate binding/unfolding, opening of the axial gates, and translocation of substrate into the proteolytic chamber.
Collapse
Affiliation(s)
- Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Room 1052, Building 981, Gainesville, FL 32611-0700, USA.
| | | | | | | | | |
Collapse
|
26
|
Abstract
The twin arginine translocation (Tat) system is a machinery which can translocate folded proteins across energy transducing membranes. Currently it is supposed that Tat substrates bind directly to Tat translocon components before a ApH-driven translocation occurs. In this review, an alternative model is presented which proposes that membrane integration could precede Tat-dependent translocation. This idea is mainly supported by the recent observations of Tat-independent membrane insertion of Tat substrates in vivo and in vitro. Membrane insertion may allow i) a quality control of the folded state by membrane bound proteases like FtsH, ii) the recognition of the membrane spanning signal peptide by Tat system components, and iii) a pulling mechanism of translocation. In some cases of folded Tat substrates, the membrane targeting process may require ATP-dependent N-terminal unfolding-steps.
Collapse
Affiliation(s)
- Thomas Brüser
- Institut für Mikrobiologie, Universitat Halle, D-06120 Halle, Germany.
| | | |
Collapse
|
27
|
Abstract
Intracellular proteolysis is an essential process. In eukaryotes, most proteins in the cytosol and nucleus are degraded by the ubiquitin (Ub)-proteasome pathway. A major component within this system is the 26S proteasome, a 2.5MDa molecular machine, built from more than 31 different subunits. This complex is formed by a cylinder-shaped multimeric complex referred to as the proteolytic 20S proteasome (core particle, CP) capped at each end by another multimeric component called the 19S complex (regulatory particle, RP) or PA700. Structure, assembly and enzymatic mechanism have been elucidated only for the CP, whereas the organization of the RP is less well understood. The CP is composed of 28 subunits, which are arranged as an alpha7beta7beta7alpha7-complex in four stacked rings. The interior of the free core particle, which harbors the active sites, is inaccessible for folded and unfolded substrates and represents a latent state. This inhibition is relieved upon binding of the RP to the CP by formation of the 26S proteasome holoenzyme. This review summarizes the current knowledge of the structural features of 20S proteasomes.
Collapse
|
28
|
Abstract
Regulation by proteolysis plays a major role in bacterial stress responses, the cell cycle and development. Key regulators of these processes are subject to conditional proteolysis that depends on complex cellular information processing. This information includes temporal and spatial cues, and recent research has revealed a striking potential for multiple signal integration.
Collapse
Affiliation(s)
- Urs Jenal
- Division of Molecular Microbiology, Biozentrum, Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | | |
Collapse
|
29
|
Rock KL, York IA, Saric T, Goldberg AL. Protein degradation and the generation of MHC class I-presented peptides. Adv Immunol 2002; 80:1-70. [PMID: 12078479 DOI: 10.1016/s0065-2776(02)80012-8] [Citation(s) in RCA: 251] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Over the past decade there has been considerable progress in understanding how MHC class I-presented peptides are generated. The emerging theme is that the immune system has not evolved its own specialized proteolytic mechanisms but instead utilizes the phylogenetically ancient catabolic pathways that continually turnover proteins in all cells. Three distinct proteolytic steps have now been defined in MHC class I antigen presentation. The first step is the degradation of proteins by the ubiquitin-proteasome pathway into oligopeptides that either are of the correct size for presentation or are extended on their amino-termini. In the second step, aminopeptidases trim N-extended precursors into peptides of the correct length to be presented on class I molecules. The third step involves the destruction of peptides by endo- and exopeptidases, which limits antigen presentation, but is important for preventing the accumulation of peptides and recycling them back to amino acids for protein synthesis or production of energy. The immune system has evolved several components that modify the activity of these ancient pathways in ways that enhance the generation of class I-presented peptides. These include catalytically active subunits of the proteasome, the PA28 proteasome activator, and leucine aminopeptidase, all of which are upregulated by interferon-gamma. In addition to these pathways that operate in all cells, dendritic cells and macrophages can also generate class I-presented peptides from proteins internalized from the extracellular fluids by degrading them in endocytic compartments or transferring them to the cyotosol for degradation by proteasomes.
Collapse
Affiliation(s)
- Kenneth L Rock
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | |
Collapse
|
30
|
Esser K, Tursun B, Ingenhoven M, Michaelis G, Pratje E. A novel two-step mechanism for removal of a mitochondrial signal sequence involves the mAAA complex and the putative rhomboid protease Pcp1. J Mol Biol 2002; 323:835-43. [PMID: 12417197 DOI: 10.1016/s0022-2836(02)01000-8] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The yeast protein cytochrome c peroxidase (Ccp1) is nuclearly encoded and imported into the mitochondrial intermembrane space, where it is involved in degradation of reactive oxygen species. It is known, that Ccp1 is synthesised as a precursor with a N-terminal pre-sequence, that is proteolytically removed during transport of the protein. Here we present evidence for a new processing pathway, involving novel signal peptidase activities. The mAAA protease subunits Yta10 (Afg3) and Yta12 (Rca1) were identified both to be essential for the first processing step. In addition, the Pcp1 (Ygr101w) gene product was found to be required for the second processing step, yielding the mature Ccp1 protein. The newly identified Pcp1 protein belongs to the rhomboid-GlpG superfamily of putative intramembrane peptidases. Inactivation of the protease motifs in mAAA and Pcp1 blocks the respective steps of proteolysis. A model of coupled Ccp1 transport and N-terminal processing by the mAAA complex and Pcp1 is discussed. Similar processing mechanisms may exist, because the mAAA subunits and the newly identified Pcp1 protein belong to ubiquitous protein families.
Collapse
Affiliation(s)
- Karlheinz Esser
- Botanisches Institut der Universität Düsseldorf, Universitätsstr. 1, Germany.
| | | | | | | | | |
Collapse
|
31
|
Wah DA, Levchenko I, Baker TA, Sauer RT. Characterization of a specificity factor for an AAA+ ATPase: assembly of SspB dimers with ssrA-tagged proteins and the ClpX hexamer. CHEMISTRY & BIOLOGY 2002; 9:1237-45. [PMID: 12445774 DOI: 10.1016/s1074-5521(02)00268-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
SspB, a specificity factor for the ATP-dependent ClpXP protease, stimulates proteolysis of protein substrates bearing the ssrA degradation tag. The SspB protein is shown here to form a stable homodimer with two independent binding sites for ssrA-tagged proteins or peptides. SspB by itself binds to ClpX and stimulates the ATPase activity of this enzyme. In the presence of ATPgammaS, a ternary complex of SspB, GFP-ssrA, and the ClpX ATPase was sufficiently stable to isolate by gel-filtration or ion-exchange chromatography. This complex consists of one SspB dimer, two molecules of GFP-ssrA, and one ClpX hexamer. SspB dimers do not commit bound substrates to ClpXP degradation but increase the affinity and cooperativity of binding of ssrA-tagged substrates to ClpX, facilitating enhanced degradation at low substrate concentrations.
Collapse
Affiliation(s)
- David A Wah
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
32
|
Thess A, Hutschenreiter S, Hofmann M, Tampé R, Baumeister W, Guckenberger R. Specific orientation and two-dimensional crystallization of the proteasome at metal-chelating lipid interfaces. J Biol Chem 2002; 277:36321-8. [PMID: 12114506 DOI: 10.1074/jbc.m202145200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The potential of a protein-engineered His tag to immobilize macromolecules in a predictable orientation at metal-chelating lipid interfaces was investigated using recombinant 20 S proteasomes His-tagged in various positions. Electron micrographs demonstrated that the orientation of proteasomes bound to chelating lipid films could be controlled via the location of their His tags: proteasomes His-tagged at their sides displayed exclusively side-on views, while proteasomes His-tagged at their ends displayed exclusively end-on views. The activity of proteasomes immobilized at chelating lipid interfaces was well preserved. In solution, His-tagged proteasomes hydrolyzed casein at rates comparable with wild-type proteasomes, unless the His tags were located in the vicinity of the N termini of alpha-subunits. The N termini of alpha-subunits might partly occlude the entrance channel in alpha-rings through which substrates enter the proteasome for subsequent degradation. A combination of electron micrographs and atomic force microscope topographs revealed a propensity of vertically oriented proteasomes to crystallize in two dimensions on fluid lipid films. The oriented immobilization of His-tagged proteins at biocompatible lipid interfaces will assist structural studies as well as the investigation of biomolecular interaction via a wide variety of surface-sensitive techniques including single-molecule analysis.
Collapse
Affiliation(s)
- Andreas Thess
- Abteilung Molekulare Strukturbiologie, Max-Planck-Institut für Biochemie, 82152 Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Arnold I, Langer T. Membrane protein degradation by AAA proteases in mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1592:89-96. [PMID: 12191771 DOI: 10.1016/s0167-4889(02)00267-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The inner membrane of mitochondria is one of the protein's richest cellular membranes. The biogenesis of the respiratory chain and ATP-synthase complexes present in this membrane is an intricate process requiring the coordinated function of various membrane-bound proteins including protein translocases and assembly factors. It is therefore not surprising that a distinct quality control system is present in this membrane that selectively removes nonassembled polypeptides and prevents their possibly deleterious accumulation in the membrane. The key components of this system are two AAA proteases, membrane-embedded ATP-dependent proteolytic complexes, which expose their catalytic sites at opposite membrane surfaces. Other components include the prohibitin complex with apparently chaperone-like properties and a regulatory function during proteolysis and a recently identified ATP-binding cassette (ABC) transporter that exports peptides derived from the degradation of membrane proteins from the matrix to the intermembrane space. All of these components are highly conserved during evolution and appear to be ubiquitously present in mitochondria of eukaryotic cells, indicating important cellular functions. This review will summarize our current understanding of this proteolytic system and, in particular, focus on the mechanisms guiding the degradation of membrane proteins by AAA proteases.
Collapse
Affiliation(s)
- Isabel Arnold
- Institut für Genetik, Universität zu Köln, Zülpicher Str. 47, D-50674, Cologne, Germany.
| | | |
Collapse
|
34
|
Abstract
FtsH, a membrane-bound metalloprotease, with cytoplasmic metalloprotease and AAA ATPase domains, degrades both soluble and integral membrane proteins in Escherichia coli. In this paper we investigated how membrane-embedded substrates are recognized by this enzyme. We showed previously that FtsH can initiate processive proteolysis at an N-terminal cytosolic tail of a membrane protein, by recognizing its length (more than 20 amino acid residues) but not exact sequence. Subsequent proteolysis should involve dislocation of the substrates into the cytosol. We now show that this enzyme can also initiate proteolysis at a C-terminal cytosolic tail and that the initiation efficiency depends on the length of the tail. This mode of degradation also appeared to be processive, which can be aborted by a tightly folded periplasmic domain. These results indicate that FtsH can exhibit processivity against membrane-embedded substrates in either the N-to-C or C-to-N direction. Our results also suggest that some membrane proteins receive bidirectional degradation simultaneously. These results raise intriguing questions about the molecular directionality of the dislocation and proteolysis catalyzed by FtsH.
Collapse
Affiliation(s)
- Shinobu Chiba
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
35
|
Zwickl P, Seemüller E, Kapelari B, Baumeister W. The proteasome: a supramolecular assembly designed for controlled proteolysis. ADVANCES IN PROTEIN CHEMISTRY 2002; 59:187-222. [PMID: 11868272 DOI: 10.1016/s0065-3233(01)59006-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- P Zwickl
- Department of Molecular Structural Biology, Max-Planck Institute for Biochemistry, Am Klopferspitz 18a, 82152 Martinsried, Germany
| | | | | | | |
Collapse
|
36
|
Krzywda S, Brzozowski AM, Verma C, Karata K, Ogura T, Wilkinson AJ. The crystal structure of the AAA domain of the ATP-dependent protease FtsH of Escherichia coli at 1.5 A resolution. Structure 2002; 10:1073-83. [PMID: 12176385 DOI: 10.1016/s0969-2126(02)00806-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Eubacteria and eukaryotic cellular organelles have membrane-bound ATP-dependent proteases, which degrade misassembled membrane protein complexes and play a vital role in membrane quality control. The bacterial protease FtsH also degrades an interesting subset of cytoplasmic regulatory proteins, including sigma(32), LpxC, and lambda CII. The crystal structure of the ATPase module of FtsH has been solved, revealing an alpha/beta nucleotide binding domain connected to a four-helix bundle, similar to the AAA modules of proteins involved in DNA replication and membrane fusion. A sulfate anion in the ATP binding pocket mimics the beta-phosphate group of an adenine nucleotide. A hexamer form of FtsH has been modeled, providing insights into possible modes of nucleotide binding and intersubunit catalysis.
Collapse
Affiliation(s)
- Szymon Krzywda
- Structural Biology Laboratory, Department of Chemistry, University of York, United Kingdom
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Proteasomes are large, multisubunit proteases that are found, in one form or another, in all domains of life and play a critical role in intracellular protein degradation. Although they have substantial structural similarity, the proteasomes of bacteria, archaea, and eukaryotes show many differences in architecture and subunit composition. This article discusses possible paths by which proteasomes may have evolved from simple precursors to the highly complicated and diverse complexes observed today.
Collapse
Affiliation(s)
- C Volker
- SmithKline Beecham Pharmaceuticals, UP 1345, 1250 South Collegeville Road, Collegeville, PA 19426-0989, USA
| | | |
Collapse
|
38
|
Maupin-Furlow JA, Kaczowka SJ, Ou MS, Wilson HL. Archaeal proteasomes: proteolytic nanocompartments of the cell. ADVANCES IN APPLIED MICROBIOLOGY 2002; 50:279-338. [PMID: 11677686 DOI: 10.1016/s0065-2164(01)50008-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- J A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611-0700, USA
| | | | | | | |
Collapse
|
39
|
Tsai B, Ye Y, Rapoport TA. Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nat Rev Mol Cell Biol 2002; 3:246-55. [PMID: 11994744 DOI: 10.1038/nrm780] [Citation(s) in RCA: 492] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Proteins that are misfolded in the endoplasmic reticulum are transported back into the cytosol for destruction by the proteasome. This retro-translocation pathway has been co-opted by certain viruses, and by plant and bacterial toxins. The mechanism of retro-translocation is still mysterious, but several aspects of this process are now being unravelled.
Collapse
Affiliation(s)
- Billy Tsai
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
40
|
Abstract
Cytoplasmic proteolysis is an indispensable process for proper function of a cell. Degradation of many intracellular proteins is initiated by ATP-dependent proteinases, which are involved in the regulation of the level of proteins with short half-lives. In addition, they remove many damaged and abnormal proteins and thus play also an important role during stress. ATP-dependent proteinases are large multi-subunit assemblies composed of proteolytic core domains and ATPase-containing regulatory domains on a single polypeptide chain or on distinct subunits, which can act as molecular chaperones. This review briefly summarizes the data about four main groups of these proteinases in bacteria (i.e. Lon, Clp family, HslUV and FtsH) and characterizes their structure, mechanism of action and properties.
Collapse
Affiliation(s)
- O Hlavácek
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 142 20 Prague, Czechia
| | | |
Collapse
|
41
|
Ye Y, Meyer HH, Rapoport TA. The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 2001; 414:652-6. [PMID: 11740563 DOI: 10.1038/414652a] [Citation(s) in RCA: 897] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In eukaryotic cells, incorrectly folded proteins in the endoplasmic reticulum (ER) are exported into the cytosol and degraded by the proteasome. This pathway is co-opted by some viruses. For example, the US11 protein of the human cytomegalovirus targets the major histocompatibility complex class I heavy chain for cytosolic degradation. How proteins are extracted from the ER membrane is unknown. In bacteria and mitochondria, members of the AAA ATPase family are involved in extracting and degrading membrane proteins. Here we demonstrate that another member of this family, Cdc48 in yeast and p97 in mammals, is required for the export of ER proteins into the cytosol. Whereas Cdc48/p97 was previously known to function in a complex with the cofactor p47 (ref. 5) in membrane fusion, we demonstrate that its role in ER protein export requires the interacting partners Ufd1 and Npl4. The AAA ATPase interacts with substrates at the ER membrane and is needed to release them as polyubiquitinated species into the cytosol. We propose that the Cdc48/p97-Ufd1-Npl4 complex extracts proteins from the ER membrane for cytosolic degradation.
Collapse
Affiliation(s)
- Y Ye
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
42
|
Klanner C, Prokisch H, Langer T. MAP-1 and IAP-1, two novel AAA proteases with catalytic sites on opposite membrane surfaces in mitochondrial inner membrane of Neurospora crassa. Mol Biol Cell 2001; 12:2858-69. [PMID: 11553723 PMCID: PMC59719 DOI: 10.1091/mbc.12.9.2858] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Eukaryotic AAA proteases form a conserved family of membrane-embedded ATP-dependent proteases but have been analyzed functionally only in the yeast Saccharomyces cerevisiae. Here, we have identified two novel members of this protein family in the filamentous fungus Neurospora crassa, which were termed MAP-1 and IAP-1. Both proteins are localized to the inner membrane of mitochondria. They are part of two similar-sized high molecular mass complexes, but expose their catalytic sites to opposite membrane surfaces, namely, the intermembrane and the matrix space. Disruption of iap-1 by repeat-induced point mutation caused a slow growth phenotype at high temperature and stabilization of a misfolded inner membrane protein against degradation. IAP-1 could partially substitute for functions of its yeast homolog Yme1, demonstrating functional conservation. However, respiratory growth at 37 degrees C was not restored. Our results identify two components of the quality control system of the mitochondrial inner membrane in N. crassa and suggest that AAA proteases with catalytic sites exposed to opposite membrane surfaces are present in mitochondria of all eukaryotic cells.
Collapse
Affiliation(s)
- C Klanner
- Institut für Physiologische Chemie, Universität München, 81377 München, Germany
| | | | | |
Collapse
|
43
|
Abstract
The AAA+ superfamily of ATPases, which contain a homologous ATPase module, are found in all kingdoms of living organisms where they participate in diverse cellular processes including membrane fusion, proteolysis and DNA replication. Recent structural studies have revealed that they usually form ring-shaped oligomers, which are crucial for their ATPase activities and mechanisms of action. These ring-shaped oligomeric complexes are versatile in their mode of action, which collectively seem to involve some form of disruption of molecular or macromolecular structure; unfolding of proteins, disassembly of protein complexes, unwinding of DNA, or alteration of the state of DNA-protein complexes. Thus, the AAA+ proteins represent a novel type of molecular chaperone. Comparative analyses have also revealed significant similarities and differences in structure and molecular mechanism between AAA+ ATPases and other ring-shaped ATPases.
Collapse
Affiliation(s)
- T Ogura
- Division of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 862-0976, Japan.
| | | |
Collapse
|
44
|
May AP, Whiteheart SW, Weis WI. Unraveling the mechanism of the vesicle transport ATPase NSF, the N-ethylmaleimide-sensitive factor. J Biol Chem 2001; 276:21991-4. [PMID: 11301340 DOI: 10.1074/jbc.r100013200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- A P May
- Department of Structural Biology and Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | |
Collapse
|
45
|
Köhler A, Cascio P, Leggett DS, Woo KM, Goldberg AL, Finley D. The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release. Mol Cell 2001; 7:1143-52. [PMID: 11430818 DOI: 10.1016/s1097-2765(01)00274-x] [Citation(s) in RCA: 307] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Substrates enter the proteasome core particle (CP) through a channel that opens upon association with the regulatory particle (RP). Using yeast mutants, we show that channel opening is mediated by the ATPase domain of Rpt2, one of six ATPases in the RP. To test whether degradation products exit through this channel, we analyzed their size distribution. Their median length from an open-channel CP mutant was 40% greater than that from the wild-type. Thus, channel opening may enhance the yield of peptides long enough to function in antigen presentation. These experiments demonstrate that gating of the RP channel controls both substrate entry and product release, and is specifically regulated by an ATPase in the base of the RP.
Collapse
Affiliation(s)
- A Köhler
- Department of Cell Biology, Harvard Medical School, 02115, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
46
|
Ishikawa T, Beuron F, Kessel M, Wickner S, Maurizi MR, Steven AC. Translocation pathway of protein substrates in ClpAP protease. Proc Natl Acad Sci U S A 2001; 98:4328-33. [PMID: 11287666 PMCID: PMC31834 DOI: 10.1073/pnas.081543698] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intracellular protein degradation, which must be tightly controlled to protect normal proteins, is carried out by ATP-dependent proteases. These multicomponent enzymes have chaperone-like ATPases that recognize and unfold protein substrates and deliver them to the proteinase components for digestion. In ClpAP, hexameric rings of the ClpA ATPase stack axially on either face of the ClpP proteinase, which consists of two apposed heptameric rings. We have used cryoelectron microscopy to characterize interactions of ClpAP with the model substrate, bacteriophage P1 protein, RepA. In complexes stabilized by ATPgammaS, which bind but do not process substrate, RepA dimers are seen at near-axial sites on the distal surface of ClpA. On ATP addition, RepA is translocated through approximately 150 A into the digestion chamber inside ClpP. Little change is observed in ClpAP, implying that translocation proceeds without major reorganization of the ClpA hexamer. When translocation is observed in complexes containing a ClpP mutant whose digestion chamber is already occupied by unprocessed propeptides, a small increase in density is observed within ClpP, and RepA-associated density is also seen at other axial sites. These sites appear to represent intermediate points on the translocation pathway, at which segments of unfolded RepA subunits transiently accumulate en route to the digestion chamber.
Collapse
Affiliation(s)
- T Ishikawa
- Laboratory of Structural Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, and Laboratories of Cell Biology and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
47
|
Köhler A, Bajorek M, Groll M, Moroder L, Rubin DM, Huber R, Glickman MH, Finley D. The substrate translocation channel of the proteasome. Biochimie 2001; 83:325-32. [PMID: 11295493 DOI: 10.1016/s0300-9084(01)01242-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The core particle (CP) of the yeast proteasome is composed of four heptameric rings of subunits arranged in a hollow, barrel-like structure. We have found that the CP is autoinhibited by the N-terminal tails of the outer (alpha) ring subunits. Crystallographic analysis showed that deletion of the tail of the alpha3 subunit opens a channel into the proteolytically active interior chamber of the CP, thus derepressing peptide hydrolysis. In the latent state of the particle, the tails prevent substrate entry by imposing topological closure on the CP. Inhibition by the alpha subunit tails is relieved upon binding of the regulatory particle to the CP to form the proteasome holoenzyme. Opening of the CP channel by assembly of the holoenzyme is regulated by the ATPase domain of Rpt2, one of 17 subunits in the RP. Thus, open-channel mutations in CP subunits suppress the closed-channel phenotype of an rpt2 mutant. These results identify a specific mechanism for allosteric regulation of the CP by the RP.
Collapse
Affiliation(s)
- A Köhler
- Department of Cell Biology, Harvard Medical School, Boston MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Tamura N, Pfeifer G, Baumeister W, Tamura T. Tricorn Protease in Bacteria: Characterization of the Enzyme from Streptomyces coelicolor. Biol Chem 2001; 382:449-58. [PMID: 11347893 DOI: 10.1515/bc.2001.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tricorn protease is believed to act downstream of the proteasome, or of other ATP-dependent proteases, cleaving the oligopeptides (mostly 6 to 12 residues) released by them into small peptides (2 to 4 residues), before an array of aminopeptidases finally converts them into free amino acids. Hitherto, the occurrence of Tricorn protease seemed to be limited to some archaea, but genes encoding Tricorn homologs have now been found in several bacterial genomes. Among them is Streptomyces coelicolor A3(2), which has, in fact, two Tricorn-like genes, ScC77.16c and ScE87.19. The proteins encoded by them (TRI-ScC77 and TRI-ScE87) are very similar in their PDZ and TSP domains, but rather divergent in their beta-propeller domains. We have expressed one of them, TRI-ScC77, in E. coil and characterized the recombinant protein structurally and functionally. TRI-ScC77 forms a homohexameric complex of approximately 700 kDa, both in E. coil and in S. coelicolor, with enzymatic properties very similar to the complex from the archaeon Thermoplasma acidophilum. The fact that Tricorn-like proteins exist not only in thermoacidophiles, but also in bacteria inhabiting radically different environments, rules out the possibility that Tricorn protease is an adaptive element that helps to meet the challenges of an extreme habitat.
Collapse
Affiliation(s)
- N Tamura
- Department of Molecular Structural Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | | | | | | |
Collapse
|
49
|
Ishikawa T, Maurizi MR, Belnap D, Steven AC. Docking of components in a bacterial complex. Nature 2000; 408:667-8. [PMID: 11130060 DOI: 10.1038/35047165] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- T Ishikawa
- Laboratory of Structural Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
50
|
Hoskins JR, Kim SY, Wickner S. Substrate recognition by the ClpA chaperone component of ClpAP protease. J Biol Chem 2000; 275:35361-7. [PMID: 10952988 DOI: 10.1074/jbc.m006288200] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ClpA, a member of the Clp/Hsp100 ATPase family, is a molecular chaperone and regulatory component of ClpAP protease. We explored the mechanism of protein recognition by ClpA using a high affinity substrate, RepA, which is activated for DNA binding by ClpA and degraded by ClpAP. By characterizing RepA derivatives with N- or C-terminal deletions, we found that the N-terminal portion of RepA is required for recognition. More precisely, RepA derivatives lacking the N-terminal 5 or 10 amino acids are degraded by ClpAP at a rate similar to full-length RepA, whereas RepA derivatives lacking 15 or 20 amino acids are degraded much more slowly. Thus, ClpA recognizes an N-terminal signal in RepA beginning in the vicinity of amino acids 10-15. Moreover, peptides corresponding to RepA amino acids 4-13 and 1-15 inhibit interactions between ClpA and RepA. We constructed fusions of RepA and green fluorescent protein, a protein not recognized by ClpA, and found that the N-terminal 15 amino acids of RepA are sufficient to target the fusion protein for degradation by ClpAP. However, fusion proteins containing 46 or 70 N-terminal amino acids of RepA are degraded more efficiently in vitro and are noticeably stabilized in vivo in clpADelta and clpPDelta strains compared with wild type.
Collapse
Affiliation(s)
- J R Hoskins
- Laboratory of Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|