1
|
Correy GJ, Rachman MM, Togo T, Gahbauer S, Doruk YU, Stevens MGV, Jaishankar P, Kelley B, Goldman B, Schmidt M, Kramer T, Radchenko DS, Moroz YS, Ashworth A, Riley P, Shoichet BK, Renslo AR, Walters WP, Fraser JS. Exploration of structure-activity relationships for the SARS-CoV-2 macrodomain from shape-based fragment linking and active learning. SCIENCE ADVANCES 2025; 11:eads7187. [PMID: 40435250 PMCID: PMC12118597 DOI: 10.1126/sciadv.ads7187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 04/22/2025] [Indexed: 06/01/2025]
Abstract
The macrodomain of severe acute respiratory syndrome coronavirus 2 nonstructural protein 3 is required for viral pathogenesis and is an emerging antiviral target. We previously performed an x-ray crystallography-based fragment screen and found submicromolar inhibitors by fragment linking. However, these compounds had poor membrane permeability and liabilities that complicated optimization. Here, we developed a shape-based virtual screening pipeline-FrankenROCS. We screened the Enamine high-throughput collection of 2.1 million compounds, selecting 39 compounds for testing, with the most potent binding with a 130 μM median inhibitory concentration (IC50). We then paired FrankenROCS with an active learning algorithm (Thompson sampling) to efficiently search the Enamine REAL database of 22 billion molecules, testing 32 compounds with the most potent binding with a 220 μM IC50. Further optimization led to analogs with IC50 values better than 10 μM. This lead series has improved membrane permeability and is poised for optimization. FrankenROCS is a scalable method for fragment linking to exploit synthesis-on-demand libraries.
Collapse
Affiliation(s)
- Galen J. Correy
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Moira M. Rachman
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Takaya Togo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Stefan Gahbauer
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yagmur U. Doruk
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Maisie G. V. Stevens
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Priyadarshini Jaishankar
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | - Yurii S. Moroz
- Enamine Ltd., Kyiv, Ukraine
- Chemspace LLC, Kyiv, Ukraine
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | | | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Adam R. Renslo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | | | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
2
|
Danner L, Kroenke K, Olivier-Van Stichelen S. Non-nutritive sweeteners in food-drug interactions: An overview of current evidence. Mol Pharmacol 2025; 107:100035. [PMID: 40318386 DOI: 10.1016/j.molpha.2025.100035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/14/2025] [Accepted: 03/25/2025] [Indexed: 05/07/2025] Open
Abstract
Food-drug interactions occur when the presence of foods interferes with the absorption, distribution, metabolism, or excretion of pharmaceuticals. Specific compounds within foods, like certain phytochemicals from grapefruit, have been known to precipitate food-drug interactions for decades, leading to guidance from physicians and pharmacists about patients' dietary restrictions while taking certain drugs. Although approved by the Food and Drug Administration, high-intensity non-nutritive sweeteners (NNS) share qualities with drugs that suggest the potential for similar interactions. In this minireview, we have reviewed 5 of the most popular NNS, including saccharin, aspartame, acesulfame potassium, sucralose, and stevia, and detail their drug-like qualities, regulatory status, pharmacokinetics, and primary research articles containing evidence of NNS interacting with drug absorption, distribution, metabolism, and excretion. Although studies varied widely in concentration ranges for NNS, model systems, and methods, all NNS included in this review were found to have known interactions with mediators of absorption, distribution, metabolism, and excretion from studies conducted after their Food and Drug Administration approval or generally recognized as safe designation. We have highlighted essential gaps in the literature and recommend the scientific community actively research NNS as food additives that may interact with drugs. SIGNIFICANCE STATEMENT: Food-drug interactions are a growing concern in Western societies where polypharmacy and ultraprocessed foods and beverages are increasingly common. High-intensity non-nutritive sweeteners bear structural similarities to pharmaceuticals, and evidence suggests they interact with mediators of drug pharmacokinetics. This minireview highlights the interactions uncovered thus far and serves as a call to action for the scientific community to establish rigorous, consistent testing that will enable updated safety guidelines for consumers.
Collapse
Affiliation(s)
- Laura Danner
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kale Kroenke
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin; Rowan University, Glassboro, New Jersey
| | - Stephanie Olivier-Van Stichelen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Obstetrics & Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
3
|
Kalitin N, Koroleva N, Lushnikova A, Babaeva M, Samoylenkova N, Savchenko E, Smirnova G, Borisova Y, Kostarev A, Karamysheva A, Pavlova G. N-Glycoside of Indolo[2,3- a]pyrrolo[3,4- c]carbazole LCS1269 Exerts Anti-Glioblastoma Effects by G2 Cell Cycle Arrest and CDK1 Activity Modulation: Molecular Docking Studies, Biological Investigations, and ADMET Prediction. Pharmaceuticals (Basel) 2024; 17:1642. [PMID: 39770484 PMCID: PMC11676706 DOI: 10.3390/ph17121642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Background/Objectives: Indolo[2,3-a]pyrrolo[3,4-c]carbazole scaffold is successfully used as an efficient structural motif for the design and development of different antitumor agents. In this study, we investigated the anti-glioblastoma therapeutic potential of glycosylated indolocarbazole analog LCS1269 utilizing in vitro, in vivo, and in silico approaches. Methods: Cell viability was estimated by an MTT assay. The distribution of cell cycle phases was monitored using flow cytometry. Mitotic figures were visualized by fluorescence microscopy. Quantitative RT-PCR was used to evaluate the gene expression. The protein expression was assessed by Western blotting. Molecular docking and computational ADMET were approved for the probable protein target simulations and predicted pharmacological assessments, respectively. Results: Our findings clearly suggest that LCS1269 displayed a significant cytotoxic effect against diverse glioblastoma cell lines and patient-derived glioblastoma cultures as well as strongly suppressed xenograft growth in nude mice. LCS1269 exhibited more potent anti-proliferative activity toward glioblastoma cell lines and patient-derived glioblastoma cultures compared to conventional drug temozolomide. We further demonstrated that LCS1269 treatment caused the severe G2 phase arrest of cell cycle in a dose-dependent manner. Mechanistically, we proposed that LCS1269 could affect the CDK1 activity both by targeting active site of this enzyme and indirectly, in particular through the modulation of the Wee1/Myt1 and FOXM1/Plk1 signaling pathways, and via p21 up-regulation. LCS1269 also showed favorable pharmacological characteristics in in silico ADME prediction in comparison with staurosporine, rebeccamycin, and becatecarin as reference drugs. Conclusions: Further investigations of LCS1269 as an anti-glioblastoma medicinal agent could be very promising.
Collapse
Affiliation(s)
- Nikolay Kalitin
- Laboratory of Tumor Cell Genetics, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoe Shosse 24, 115478 Moscow, Russia;
| | - Natalia Koroleva
- Laboratory of Oncogenomics, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (N.K.); (A.L.)
| | - Anna Lushnikova
- Laboratory of Oncogenomics, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (N.K.); (A.L.)
| | - Maria Babaeva
- Molecular Medicine, Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Nadezhda Samoylenkova
- Laboratory of Molecular and Cellular Neurogenetics, N.N. Burdenko National Medical Research Center of Neurosurgery, 125047 Moscow, Russia; (N.S.); (E.S.); (G.P.)
| | - Ekaterina Savchenko
- Laboratory of Molecular and Cellular Neurogenetics, N.N. Burdenko National Medical Research Center of Neurosurgery, 125047 Moscow, Russia; (N.S.); (E.S.); (G.P.)
| | - Galina Smirnova
- Laboratory of Biochemical Pharmacology and Tumor Models, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (G.S.); (Y.B.)
| | - Yulia Borisova
- Laboratory of Biochemical Pharmacology and Tumor Models, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (G.S.); (Y.B.)
| | - Alexander Kostarev
- Max Planck Institute for Biology, University of Tübingen, 72074 Tübingen, Germany;
| | - Aida Karamysheva
- Laboratory of Tumor Cell Genetics, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoe Shosse 24, 115478 Moscow, Russia;
| | - Galina Pavlova
- Laboratory of Molecular and Cellular Neurogenetics, N.N. Burdenko National Medical Research Center of Neurosurgery, 125047 Moscow, Russia; (N.S.); (E.S.); (G.P.)
- Laboratory of Neurogenetics and Developmental Genetics, Institute of Higher Nervous Activity and Neurophysiology of RAS, 117485 Moscow, Russia
| |
Collapse
|
4
|
Almeida-Bezerra JW, Menezes SA, Silva JTDC, de Sousa SG, Alves DS, Alencar GG, Araújo IM, Rodrigues EYDS, Oliveira-Tintino CDDM, da Cruz RP, Rocha JE, Tintino SR, Barbosa-Filho JM, Morais-Braga MFB, de Menezes IRA, Raposo A, Coutinho HDM. Analysis of the Antibiotic-Potentiating Activity, Absorption, Distribution, Metabolism, and Excretion (ADME) and the Molecular Docking Properties of Phytol Against Multi-Drug-Resistant (MDR) Strains. Antibiotics (Basel) 2024; 13:1171. [PMID: 39766561 PMCID: PMC11672802 DOI: 10.3390/antibiotics13121171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Phytol is a diterpene from the long-chain unsaturated acyclic alcohols, known for its diverse biological effects, including antimicrobial and anti-inflammatory activities. Present in essential oils, phytol is a promising candidate for various applications in the pharmaceutical and biotechnological sectors. This study aimed to evaluate the in vitro antibacterial and drug-potentiating effects of phytol against multidrug-resistant bacteria and to evaluate its in silico properties: ADME and molecular docking. Methods: The in vitro antibacterial activity of phytol and the phytol combined with conventional drugs was evaluated by microdilution tests against standard and resistant bacterial strains. Finally, the SwissADME platform was employed to analyse the physicochemical and pharmacokinetic characteristics of phytol. Results: Phytol significantly reduced the Minimum Inhibitory Concentration (MIC) of norfloxacin and gentamicin required to inhibit multidrug-resistant strains of Escherichia coli and Staphylococcus aureus, respectively. Additionally, ADME analysis revealed that phytol exhibits low toxicity and favourable pharmacokinetic properties; in addition, it is revealed through molecular docking that phytol showed a relevant affinity with the proteins 6GJ1 and 5KDR, however, with values lower than the drugs gentamicin and ampicillin. Conclusions: Collectively, these findings suggest that phytol holds potential as an effective adjuvant in combating antimicrobial resistance.
Collapse
Affiliation(s)
- José Weverton Almeida-Bezerra
- Department of Biological Chemistry, Regional University of Cariri—URCA, Crato 63105-000, CE, Brazil; (J.W.A.-B.); (I.M.A.); (C.D.d.M.O.-T.); (I.R.A.d.M.)
| | - Saulo Almeida Menezes
- Biotechnology Center, Federal University of Rio Grande do Sul—UFRGS, Porto Alegre 91501-970, RS, Brazil;
| | - José Thyálisson da Costa Silva
- Department of Biological Sciences, Regional University of Cariri—URCA, Crato 63105-000, CE, Brazil; (J.T.d.C.S.); (S.G.d.S.); (D.S.A.); (G.G.A.); (E.Y.d.S.R.); (R.P.d.C.); (S.R.T.); (M.F.B.M.-B.)
| | - Simone Galdino de Sousa
- Department of Biological Sciences, Regional University of Cariri—URCA, Crato 63105-000, CE, Brazil; (J.T.d.C.S.); (S.G.d.S.); (D.S.A.); (G.G.A.); (E.Y.d.S.R.); (R.P.d.C.); (S.R.T.); (M.F.B.M.-B.)
| | - Daniel Sampaio Alves
- Department of Biological Sciences, Regional University of Cariri—URCA, Crato 63105-000, CE, Brazil; (J.T.d.C.S.); (S.G.d.S.); (D.S.A.); (G.G.A.); (E.Y.d.S.R.); (R.P.d.C.); (S.R.T.); (M.F.B.M.-B.)
| | - Gabriel Gonçalves Alencar
- Department of Biological Sciences, Regional University of Cariri—URCA, Crato 63105-000, CE, Brazil; (J.T.d.C.S.); (S.G.d.S.); (D.S.A.); (G.G.A.); (E.Y.d.S.R.); (R.P.d.C.); (S.R.T.); (M.F.B.M.-B.)
| | - Isaac Moura Araújo
- Department of Biological Chemistry, Regional University of Cariri—URCA, Crato 63105-000, CE, Brazil; (J.W.A.-B.); (I.M.A.); (C.D.d.M.O.-T.); (I.R.A.d.M.)
| | - Ewerton Yago de Sousa Rodrigues
- Department of Biological Sciences, Regional University of Cariri—URCA, Crato 63105-000, CE, Brazil; (J.T.d.C.S.); (S.G.d.S.); (D.S.A.); (G.G.A.); (E.Y.d.S.R.); (R.P.d.C.); (S.R.T.); (M.F.B.M.-B.)
| | | | - Rafael Pereira da Cruz
- Department of Biological Sciences, Regional University of Cariri—URCA, Crato 63105-000, CE, Brazil; (J.T.d.C.S.); (S.G.d.S.); (D.S.A.); (G.G.A.); (E.Y.d.S.R.); (R.P.d.C.); (S.R.T.); (M.F.B.M.-B.)
| | - Janaína Esmeraldo Rocha
- Center of Science and Technology CCT, State University of Ceara—UECE, Fortaleza 63100-000, CE, Brazil;
| | - Saulo Relison Tintino
- Department of Biological Sciences, Regional University of Cariri—URCA, Crato 63105-000, CE, Brazil; (J.T.d.C.S.); (S.G.d.S.); (D.S.A.); (G.G.A.); (E.Y.d.S.R.); (R.P.d.C.); (S.R.T.); (M.F.B.M.-B.)
| | | | - Maria Flaviana Bezerra Morais-Braga
- Department of Biological Sciences, Regional University of Cariri—URCA, Crato 63105-000, CE, Brazil; (J.T.d.C.S.); (S.G.d.S.); (D.S.A.); (G.G.A.); (E.Y.d.S.R.); (R.P.d.C.); (S.R.T.); (M.F.B.M.-B.)
| | - Irwin Rose Alencar de Menezes
- Department of Biological Chemistry, Regional University of Cariri—URCA, Crato 63105-000, CE, Brazil; (J.W.A.-B.); (I.M.A.); (C.D.d.M.O.-T.); (I.R.A.d.M.)
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Henrique Douglas Melo Coutinho
- Department of Biological Chemistry, Regional University of Cariri—URCA, Crato 63105-000, CE, Brazil; (J.W.A.-B.); (I.M.A.); (C.D.d.M.O.-T.); (I.R.A.d.M.)
| |
Collapse
|
5
|
Akash S, Shanto SKHI, Islam MR, Bayil I, Afolabi SO, Guendouzi A, Abdellattif MH, Zaki MEA. Discovery of novel MLK4 inhibitors against colorectal cancer through computational approaches. Comput Biol Med 2024; 182:109136. [PMID: 39298888 DOI: 10.1016/j.compbiomed.2024.109136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/20/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
Colorectal cancer (CRC) is a significant health issue globally, affecting approximately 10 % of the world's population. The prevalence of CRC highlights the need for effective treatments and prevention strategies. The current therapeutic option, such as chemotherapy, has significant side effects. Thus, this study investigated the anticancer properties of Sanguinarine derivatives, an alkaloid found in traditional herbs via chemoinformatic approaches. Six Sanguinarine derivatives were discovered through virtual screening and molecular docking to determine their binding affinities against the mixed lineage kinase (MLK4) protein which is responsible for CRC. All the compounds were found to be more effective than standard drug used for colorectal cancer treatment, with Sanguinarine derivative 11 showing the highest affinity. The stability of the drug was confirmed through molecular dynamics simulations at 500 ns. This suggests that compound 11 has a higher chance of replacing 5-Fluorouracil, which is currently a widely used chemotherapy drug. Before molecular dynamics simulations, the pharmacokinetic and chemical properties of Sanguinarine derivatives were determined using pkCSM server and DFT method, respectively. The results support that compound 11 is a good drug candidate, as evidenced by Lipinski's Rule of Five. Therefore, compound 11 is recommended for further analysis via in vivo and in vitro studies to confirm its efficacy and safety.
Collapse
Affiliation(s)
- Shopnil Akash
- Department of Pharmacy, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh.
| | - S K Hasibul Islam Shanto
- Department of Pharmacy, Faculty of Health Science, Northern University Bangladesh, Ashkona, Dhaka, 1230, Bangladesh.
| | - Md Rezaul Islam
- Department of Pharmacy, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Imren Bayil
- Department of Bioinformatics and Computational Biology, Gaziantep University, Turkey.
| | | | - Abdelkrim Guendouzi
- Laboratory of Chemistry: Synthesis, Properties and Applications (LCSPA), University of Saïda, Algeria.
| | - Magda H Abdellattif
- Chemistry Department, College of Sciences, University College of Taraba, Taif University, Saudi Arabia.
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University Riyadh, Saudi Arabia.
| |
Collapse
|
6
|
Correy GJ, Rachman M, Togo T, Gahbauer S, Doruk YU, Stevens M, Jaishankar P, Kelley B, Goldman B, Schmidt M, Kramer T, Ashworth A, Riley P, Shoichet BK, Renslo AR, Walters WP, Fraser JS. Extensive exploration of structure activity relationships for the SARS-CoV-2 macrodomain from shape-based fragment merging and active learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.25.609621. [PMID: 39253507 PMCID: PMC11383323 DOI: 10.1101/2024.08.25.609621] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The macrodomain contained in the SARS-CoV-2 non-structural protein 3 (NSP3) is required for viral pathogenesis and lethality. Inhibitors that block the macrodomain could be a new therapeutic strategy for viral suppression. We previously performed a large-scale X-ray crystallography-based fragment screen and discovered a sub-micromolar inhibitor by fragment linking. However, this carboxylic acid-containing lead had poor membrane permeability and other liabilities that made optimization difficult. Here, we developed a shape-based virtual screening pipeline - FrankenROCS - to identify new macrodomain inhibitors using fragment X-ray crystal structures. We used FrankenROCS to exhaustively screen the Enamine high-throughput screening (HTS) collection of 2.1 million compounds and selected 39 compounds for testing, with the most potent compound having an IC50 value equal to 130 μM. We then paired FrankenROCS with an active learning algorithm (Thompson sampling) to efficiently search the Enamine REAL database of 22 billion molecules, testing 32 compounds with the most potent having an IC50 equal to 220 μM. Further optimization led to analogs with IC50 values better than 10 μM, with X-ray crystal structures revealing diverse binding modes despite conserved chemical features. These analogs represent a new lead series with improved membrane permeability that is poised for optimization. In addition, the collection of 137 X-ray crystal structures with associated binding data will serve as a resource for the development of structure-based drug discovery methods. FrankenROCS may be a scalable method for fragment linking to exploit ever-growing synthesis-on-demand libraries.
Collapse
Affiliation(s)
- Galen J. Correy
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158
| | - Moira Rachman
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158
| | - Takaya Togo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158
| | - Stefan Gahbauer
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158
| | - Yagmur U. Doruk
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158
| | - Maisie Stevens
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158
| | - Priyadarshini Jaishankar
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158
| | | | | | | | | | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158
| | | | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158
| | - Adam R. Renslo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158
| | | | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158
| |
Collapse
|
7
|
Xia W, Xiao J, Bian H, Zhang J, Zhang JZH, Zhang H. Deep Learning-Based construction of a Drug-Like compound database and its application in virtual screening of HsDHODH inhibitors. Methods 2024; 225:44-51. [PMID: 38518843 DOI: 10.1016/j.ymeth.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/24/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024] Open
Abstract
The process of virtual screening relies heavily on the databases, but it is disadvantageous to conduct virtual screening based on commercial databases with patent-protected compounds, high compound toxicity and side effects. Therefore, this paper utilizes generative recurrent neural networks (RNN) containing long short-term memory (LSTM) cells to learn the properties of drug compounds in the DrugBank, aiming to obtain a new and virtual screening compounds database with drug-like properties. Ultimately, a compounds database consisting of 26,316 compounds is obtained by this method. To evaluate the potential of this compounds database, a series of tests are performed, including chemical space, ADME properties, compound fragmentation, and synthesizability analysis. As a result, it is proved that the database is equipped with good drug-like properties and a relatively new backbone, its potential in virtual screening is further tested. Finally, a series of seedling compounds with completely new backbones are obtained through docking and binding free energy calculations.
Collapse
Affiliation(s)
- Wei Xia
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jin Xiao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University at Shanghai, 200062, China
| | - Hengwei Bian
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University at Shanghai, 200062, China.
| | - Jiajun Zhang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - John Z H Zhang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University at Shanghai, 200062, China; NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China; Department of Chemistry, New York University, NY, NY10003, USA; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China.
| | - Haiping Zhang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
8
|
Hossain MS, Rahman MA, Dey PR, Khandocar MP, Ali MY, Snigdha M, Coutinho HDM, Islam MT. Natural Isatin Derivatives Against Black Fungus: In Silico Studies. Curr Microbiol 2024; 81:113. [PMID: 38472456 DOI: 10.1007/s00284-024-03621-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/18/2024] [Indexed: 03/14/2024]
Abstract
During this coronavirus pandemic, when a lot of people are already severely afflicted with SARS-CoV-19, the dispersion of black fungus is making it worse, especially in the Indian subcontinent. Considering this situation, the idea for an in silico study to identify the potential inhibitor against black fungal infection is envisioned and computational analysis has been conducted with isatin derivatives that exhibit considerable antifungal activity. Through this in silico study, several pharmacokinetics properties like absorption, distribution, metabolism, excretion, and toxicity (ADMET) are estimated for various derivatives. Lipinski rules have been used to observe the drug likeliness property, and to study the electronic properties of the molecules, quantum mechanism was analyzed using the density functional theory (DFT). After applying molecular docking of the isatin derivatives with sterol 14-alpha demethylase enzyme of black fungus, a far higher docking affinity score has been observed for the isatin sulfonamide-34 (derivative 1) than the standard fluconazole. Lastly, molecular dynamic (MD) simulation has been performed for 100 ns to examine the stability of the proposed drug complex by estimating Root Mean Square Deviation (RMSD), Radius of gyration (Rg), Solvent accessible surface area (SASA), Root Mean Square Fluctuation (RMSF), as well as hydrogen bond. Listed ligands have precisely satisfied every pharmacokinetics requirement for a qualified drug candidate and they are non-toxic, non-carcinogenic, and have high stability. This natural molecule known as isatin derivative 1 has shown the potential of being a drug for fungal treatment. However, the impact of the chemicals on living cells requires more investigation and research.
Collapse
Affiliation(s)
- Md Saddam Hossain
- Department of Biomedical Engineering, Islamic University, Kushtia, 7003, Bangladesh
| | - Md Anisur Rahman
- Department of Pharmacy, Islamic University, Kushtia, 7003, Bangladesh
| | - Prithbey Raj Dey
- Department of Industrial and Production Engineering, Dhaka University of Engineering and Technology, Gazipur, 1707, Bangladesh
| | - Md Parvez Khandocar
- Department of Biomedical Engineering, Islamic University, Kushtia, 7003, Bangladesh
| | - Md Yeakub Ali
- Department of Biomedical Engineering, Islamic University, Kushtia, 7003, Bangladesh
| | - Mahajabin Snigdha
- Department of Pharmacy, Islamic University, Kushtia, 7003, Bangladesh
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
9
|
Akash S, Bayıl I, Mahmood S, Mukerjee N, Mili TA, Dhama K, Rahman MA, Maitra S, Mohany M, Al-Rejaie SS, Ali N, Semwal P, Sharma R. Mechanistic inhibition of gastric cancer-associated bacteria Helicobacter pylori by selected phytocompounds: A new cutting-edge computational approach. Heliyon 2023; 9:e20670. [PMID: 37876433 PMCID: PMC10590806 DOI: 10.1016/j.heliyon.2023.e20670] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/09/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023] Open
Abstract
Background Helicobacter pylori (H. pylori) is a persistent bacterial inhabitant in the stomachs of approximately half the global populace. This bacterium is directly linked to chronic gastritis, leading to a heightened risk of duodenal and gastric ulcer diseases, and is the predominant risk factor for gastric cancer - the second most common cause of cancer-related deaths globally. The increasing prevalence of antibiotic resistance necessitates the exploration of innovative treatment alternatives to mitigate the H. pylori menace. Methods Initiating our study, we curated a list of thirty phytochemicals based on previous literature and subjected them to molecular docking studies. Subsequently, eight phytocompounds-Glabridin, Isoliquiritin, Sanguinarine, Liquiritin, Glycyrrhetic acid, Beta-carotin, Diosgenin, and Sarsasapogenin-were meticulously chosen based on superior binding scores. These were further subjected to an extensive computational analysis encompassing ADMET profiling, drug-likeness evaluation, principal component analysis (PCA), and molecular dynamic simulations (MDs) in comparison with the conventional drug, Mitomycin. Results The natural compounds investigated demonstrated superior docking affinities to H. pylori targets compared to the standard Mitomycin. Notably, the phytocompounds Diosgenin and Sarsasapogenin stood out due to their exceptional binding affinities and pharmacokinetic properties, including favorable ADMET profiles. Conclusion Our comprehensive and technologically-advanced approach showcases the potential of identified phytocompounds as pioneering therapeutic agents against H. pylori-induced gastric malignancies. In light of our promising in silico results, we recommend these natural compounds as potential candidates for advancing H. pylori-targeted drug development. Given their potential, we strongly advocate for subsequent in vitro and in vivo studies to validate their therapeutic efficacy against this formidable gastrointestinal bacterium.
Collapse
Affiliation(s)
- Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, 1216, Ashulia, Dhaka, Bangladesh
| | - Imren Bayıl
- Department of Bioinformatics and Computational Biology, Gaziantep University, Turkey
| | - Sajjat Mahmood
- Department of Microbiology, Jagannath University, Chittaranjan Avenue in Sadarghat, Dhaka, 1100, Bangladesh
| | - Nobendu Mukerjee
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute Of Medical and Technical Sciences, Chennai, India
- Department of Microbiology, West Bengal State University, West Bengal, Kolkata, 700126, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Tamanna Akter Mili
- Department of Pharmacy, University of Asia Pacific, 74/A Green Rd, Dhaka, 1205, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, 243122, Bareilly, Uttar Pradesh, India
| | | | - Swastika Maitra
- Department of Microbiology, Adamas University, West Bengal, Kolkata, 700126, India
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh, 1145, Saudi Arabia
| | - Salim S. Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh, 1145, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh, 1145, Saudi Arabia
| | - Prabhakar Semwal
- Department of Biotechnology, Graphic Era University, Dehradun, Uttarakhand, 248002, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
10
|
Akash S, Mir SA, Mahmood S, Hossain S, Islam MR, Mukerjee N, Nayak B, Nafidi HA, Bin Jardan YA, Mekonnen A, Bourhia M. Novel computational and drug design strategies for inhibition of monkeypox virus and Babesia microti: molecular docking, molecular dynamic simulation and drug design approach by natural compounds. Front Microbiol 2023; 14:1206816. [PMID: 37538847 PMCID: PMC10394520 DOI: 10.3389/fmicb.2023.1206816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/20/2023] [Indexed: 08/05/2023] Open
Abstract
Background The alarming increase in tick-borne pathogens such as human Babesia microti is an existential threat to global public health. It is a protozoan parasitic infection transmitted by numerous species of the genus Babesia. Second, monkeypox has recently emerged as a public health crisis, and the virus has spread around the world in the post-COVID-19 period with a very rapid transmission rate. These two novel pathogens are a new concern for human health globally and have become a significant obstacle to the development of modern medicine and the economy of the whole world. Currently, there are no approved drugs for the treatment of this disease. So, this research gap encourages us to find a potential inhibitor from a natural source. Methods and materials In this study, a series of natural plant-based biomolecules were subjected to in-depth computational investigation to find the most potent inhibitors targeting major pathogenic proteins responsible for the diseases caused by these two pathogens. Results Among them, most of the selected natural compounds are predicted to bind tightly to the targeted proteins that are crucial for the replication of these novel pathogens. Moreover, all the molecules have outstanding ADMET properties such as high aqueous solubility, a higher human gastrointestinal absorption rate, and a lack of any carcinogenic or hepatotoxic effects; most of them followed Lipinski's rule. Finally, the stability of the compounds was determined by molecular dynamics simulations (MDs) for 100 ns. During MDs, we observed that the mentioned compounds have exceptional stability against selected pathogens. Conclusion These advanced computational strategies reported that 11 lead compounds, including dieckol and amentoflavone, exhibited high potency, excellent drug-like properties, and no toxicity. These compounds demonstrated strong binding affinities to the target enzymes, especially dieckol, which displayed superior stability during molecular dynamics simulations. The MM/PBSA method confirmed the favorable binding energies of amentoflavone and dieckol. However, further in vitro and in vivo studies are necessary to validate their efficacy. Our research highlights the role of Dieckol and Amentoflavone as promising candidates for inhibiting both monkeypox and Babesia microti, demonstrating their multifaceted roles in the control of these pathogens.
Collapse
Affiliation(s)
- Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International, University, Dhaka, Bangladesh
| | - Showkat Ahmad Mir
- School of Life Sciences, Sambalpur University, Sambalpur, Odisha, India
| | - Sajjat Mahmood
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Saddam Hossain
- Department of Biomedical Engineering, Faculty of Engineering and Technology, Islamic University, Kushtia, Bangladesh
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International, University, Dhaka, Bangladesh
| | - Nobendu Mukerjee
- Department of Microbiology, West Bengal State University, Kolkata, West Bengal, India
| | - Binata Nayak
- School of Life Sciences, Sambalpur University, Sambalpur, Odisha, India
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec City, QC, Canada
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amare Mekonnen
- Department of Biology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, Morocco
| |
Collapse
|
11
|
Langevin M, Grebner C, Güssregen S, Sauer S, Li Y, Matter H, Bianciotto M. Impact of Applicability Domains to Generative Artificial Intelligence. ACS OMEGA 2023; 8:23148-23167. [PMID: 37396211 PMCID: PMC10308412 DOI: 10.1021/acsomega.3c00883] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023]
Abstract
Molecular generative artificial intelligence is drawing significant attention in the drug design community, with several experimentally validated proof of concepts already published. Nevertheless, generative models are known for sometimes generating unrealistic, unstable, unsynthesizable, or uninteresting structures. This calls for methods to constrain those algorithms to generate structures in drug-like portions of the chemical space. While the concept of applicability domains for predictive models is well studied, its counterpart for generative models is not yet well-defined. In this work, we empirically examine various possibilities and propose applicability domains suited for generative models. Using both public and internal data sets, we use generative methods to generate novel structures that are predicted to be actives by a corresponding quantitative structure-activity relationships model while constraining the generative model to stay within a given applicability domain. Our work looks at several applicability domain definitions, combining various criteria, such as structural similarity to the training set, similarity of physicochemical properties, unwanted substructures, and quantitative estimate of drug-likeness. We assess the structures generated from both qualitative and quantitative points of view and find that the applicability domain definitions have a strong influence on the drug-likeness of generated molecules. An extensive analysis of our results allows us to identify applicability domain definitions that are best suited for generating drug-like molecules with generative models. We anticipate that this work will help foster the adoption of generative models in an industrial context.
Collapse
Affiliation(s)
- Maxime Langevin
- PASTEUR,
Département de Chimie, École
Normale Supérieure, PSL University, Sorbonne Université,
CNRS, 75005 Paris, France
- Molecular
Design Sciences−Integrated Drug Discovery, R&D, Sanofi, 94400 Vitry-sur-Seine, France
| | - Christoph Grebner
- Molecular
Design Sciences−Integrated Drug Discovery, R&D, Sanofi, 65929 Frankfurt-am-Main, Germany
| | - Stefan Güssregen
- Molecular
Design Sciences−Integrated Drug Discovery, R&D, Sanofi, 65929 Frankfurt-am-Main, Germany
| | - Susanne Sauer
- Molecular
Design Sciences−Integrated Drug Discovery, R&D, Sanofi, 65929 Frankfurt-am-Main, Germany
| | - Yi Li
- Molecular
Design Sciences−Integrated Drug Discovery, R&D, Sanofi, Waltham, Massachusetts 02451, United States
| | - Hans Matter
- Molecular
Design Sciences−Integrated Drug Discovery, R&D, Sanofi, 65929 Frankfurt-am-Main, Germany
| | - Marc Bianciotto
- Molecular
Design Sciences−Integrated Drug Discovery, R&D, Sanofi, 94400 Vitry-sur-Seine, France
| |
Collapse
|
12
|
Miah MM, Tabassum N, Afroj Zinnia M, Islam ABMMK. Drug and Anti-Viral Peptide Design to Inhibit the Monkeypox Virus by Restricting A36R Protein. Bioinform Biol Insights 2022; 16:11779322221141164. [PMID: 36570327 PMCID: PMC9772960 DOI: 10.1177/11779322221141164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/06/2022] [Indexed: 12/24/2022] Open
Abstract
Most recently, monkeypox virus (MPXV) has emanated as a global public health threat. Unavailability of effective medicament against MPXV escalates demand for new therapeutic agent. In this study, in silico strategies were conducted to identify novel drug against the A36R protein of MPXV. The A36R protein of MPXV is responsible for the viral migration, adhesion, and vesicle trafficking to the host cell. To block the A36R protein, 4893 potential antiviral peptides (AVPs) were retrieved from DRAMP and SATPdb databases. Finally, 57 sequences were screened based on peptide filtering criteria, which were then modeled. Likewise, 31 monkeypox virus A36R protein sequences were collected from NCBI protein database to find consensus sequence and to predict 3D protein model. The refined and validated models of the A36R protein and AVP peptides were used to predict receptor-ligand interactions using DINC 2 server. Three peptides that showed best interactions were SATPdb10193, SATPdb21850, and SATPdb26811 with binding energies -6.10, -6.10, and -6.30 kcal/mol, respectively. Small molecules from drug databases were also used to perform virtual screening against the A36R protein. Among databases, Enamine-HTSC showed strong affinity with docking scores ranging from -8.8 to 9.8 kcal/mol. Interaction of target protein A36R with the top 3 peptides and the most probable drug (Z55287118) examined by molecular dynamic (MD) simulation. Trajectory analyses (RMSD, RMSF, SASA, and Rg) confirmed the stable nature of protein-ligand and protein-peptide complexes. This work suggests that identified top AVPs and small molecules might interfere with the function of the A36R protein of MPXV.
Collapse
Affiliation(s)
| | - Nuzhat Tabassum
- Department of Pharmacy, East West University, Dhaka, Bangladesh
| | | | - Abul Bashar Mir Md. Khademul Islam
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh,Abul Bashar Mir Md. Khademul Islam, Department of Genetic Engineering and Biotechnology, University of Dhaka, Nilkhet Rd, Dhaka 1000, Bangladesh.
| |
Collapse
|
13
|
Shearer J, Castro JL, Lawson ADG, MacCoss M, Taylor RD. Rings in Clinical Trials and Drugs: Present and Future. J Med Chem 2022; 65:8699-8712. [PMID: 35730680 PMCID: PMC9289879 DOI: 10.1021/acs.jmedchem.2c00473] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a comprehensive analysis of all ring systems (both heterocyclic and nonheterocyclic) in clinical trial compounds and FDA-approved drugs. We show 67% of small molecules in clinical trials comprise only ring systems found in marketed drugs, which mirrors previously published findings for newly approved drugs. We also show there are approximately 450 000 unique ring systems derived from 2.24 billion molecules currently available in synthesized chemical space, and molecules in clinical trials utilize only 0.1% of this available pool. Moreover, there are fewer ring systems in drugs compared with those in clinical trials, but this is balanced by the drug ring systems being reused more often. Furthermore, systematic changes of up to two atoms on existing drug and clinical trial ring systems give a set of 3902 future clinical trial ring systems, which are predicted to cover approximately 50% of the novel ring systems entering clinical trials.
Collapse
Affiliation(s)
| | | | | | - Malcolm MacCoss
- Bohicket Pharma Consulting Limited Liability Company, 2556 Seabrook Island Road, Seabrook Island, South Carolina29455, United States
| | | |
Collapse
|
14
|
Comparative Analyses of Medicinal Chemistry and Cheminformatics Filters with Accessible Implementation in Konstanz Information Miner (KNIME). Int J Mol Sci 2022; 23:ijms23105727. [PMID: 35628532 PMCID: PMC9147459 DOI: 10.3390/ijms23105727] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022] Open
Abstract
High-throughput virtual screening (HTVS) is, in conjunction with rapid advances in computer hardware, becoming a staple in drug design research campaigns and cheminformatics. In this context, virtual compound library design becomes crucial as it generally constitutes the first step where quality filtered databases are essential for the efficient downstream research. Therefore, multiple filters for compound library design were devised and reported in the scientific literature. We collected the most common filters in medicinal chemistry (PAINS, REOS, Aggregators, van de Waterbeemd, Oprea, Fichert, Ghose, Mozzicconacci, Muegge, Egan, Murcko, Veber, Ro3, Ro4, and Ro5) to facilitate their open access use and compared them. Then, we implemented these filters in the open platform Konstanz Information Miner (KNIME) as a freely accessible and simple workflow compatible with small or large compound databases for the benefit of the readers and for the help in the early drug design steps.
Collapse
|
15
|
Hassan M, Vanjare BD, Sim KY, Raza H, Lee KH, Shahzadi S, Kloczkowski A. Biological and Cheminformatics Studies of Newly Designed Triazole Based Derivatives as Potent Inhibitors against Mushroom Tyrosinase. Molecules 2022; 27:1731. [PMID: 35268831 PMCID: PMC8911699 DOI: 10.3390/molecules27051731] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 02/01/2023] Open
Abstract
A series of nine novel 1,2,4-triazole based compounds were synthesized through a multistep reaction pathway and their structures were scrutinized by using spectral methods such as FTIR, LC-MS, 1H NMR, and 13C NMR. The synthesized derivatives were screened for inhibitory activity against the mushroom tyrosinase and we found that all the synthesized compounds demonstrated decent inhibitory activity against tyrosinase. However, among the series of compounds, N-(4-fluorophenyl)-2-(5-(2-fluorophenyl)-4-(4-fluorophenyl)-4H-1,2,4-triazol-3-ylthio) acetamide exhibited more prominent activity when accompanied with the standard drug kojic acid. Furthermore, the molecular docking studies identified the interaction profile of all synthesized derivatives at the active site of tyrosinase. Based on these results, N-(4-fluorophenyl)-2-(5-(2-fluorophenyl)-4-(4-fluorophenyl)-4H-1,2,4-triazol-3-ylthio) acetamide could be used as a novel scaffold to design some new drugs against melanogenesis.
Collapse
Affiliation(s)
- Mubashir Hassan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54590, Pakistan;
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Balasaheb D. Vanjare
- Department of Chemistry, Kongju National University, Gongju 32588, Korea; (B.D.V.); (K.-Y.S.)
- Department of Biological Science, Kongju National University, Gongju 32588, Korea;
| | - Kyou-Yeong Sim
- Department of Chemistry, Kongju National University, Gongju 32588, Korea; (B.D.V.); (K.-Y.S.)
| | - Hussain Raza
- Department of Biological Science, Kongju National University, Gongju 32588, Korea;
| | - Ki Hwan Lee
- Department of Chemistry, Kongju National University, Gongju 32588, Korea; (B.D.V.); (K.-Y.S.)
| | - Saba Shahzadi
- Institute of Molecular Sciences and Bioinformatics, Nesbit Road Lahore, Lahore 54590, Pakistan;
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
16
|
Parmar TH, Sangani CB, Kulkarni M. Synthesis of novel drug-like small molecules library based on 1H-benzo[d]imidazole. Aust J Chem 2022. [DOI: 10.1071/ch21238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Experimental, insilico, DFT studies of novel compound 2-{2-[(3,4-dimethoxyphenyl)methylidene]hydrazinecarbonothioyl}-N-methyl-N- phenylhydrazine-1-carbothioamide. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
18
|
Gao X, Turek-Herman JR, Choi YJ, Cohen RD, Hyster TK. Photoenzymatic Synthesis of α-Tertiary Amines by Engineered Flavin-Dependent "Ene"-Reductases. J Am Chem Soc 2021; 143:19643-19647. [PMID: 34784482 PMCID: PMC10157440 DOI: 10.1021/jacs.1c09828] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
α-Tertiary amines are a common motif in pharmaceutically important molecules but are challenging to prepare using asymmetric catalysis. Here, we demonstrate engineered flavin-dependent 'ene'-reductases (EREDs) can catalyze radical additions into oximes to prepare this motif. Two different EREDs were evolved into competent catalysts for this transformation with high levels of stereoselectivity. Mechanistic studies indicate that the oxime contributes to the enzyme templated charge-transfer complex formed between the substrate and cofactor. These products can be further derivatized to prepare a variety of motifs, highlighting the versatility of ERED photoenzymatic catalysis for organic synthesis.
Collapse
Affiliation(s)
- Xin Gao
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Joshua R Turek-Herman
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Young Joo Choi
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Ryan D Cohen
- Analytical Research & Development, Merck & Company Inc., Rahway, New Jersey 07065, United States
| | - Todd K Hyster
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
19
|
Steenhuis M, Corona F, ten Hagen-Jongman CM, Vollmer W, Lambin D, Selhorst P, Klaassen H, Versele M, Chaltin P, Luirink J. Combining Cell Envelope Stress Reporter Assays in a Screening Approach to Identify BAM Complex Inhibitors. ACS Infect Dis 2021; 7:2250-2263. [PMID: 34125508 PMCID: PMC8369490 DOI: 10.1021/acsinfecdis.0c00728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Indexed: 12/11/2022]
Abstract
The development of new antibiotics is particularly problematic in Gram-negative bacteria due to the presence of the outer membrane (OM), which serves as a permeability barrier. Recently, the β-barrel assembly machine (BAM), located in the OM and responsible for β-barrel type OM protein (OMP) assembly, has been validated as a novel target for antibiotics. Here, we identified potential BAM complex inhibitors using a screening approach that reports on cell envelope σE and Rcs stress in Escherichia coli. Screening a library consisting of 316 953 compounds yielded five compounds that induced σE and Rcs stress responses, while not inducing the intracellular heat-shock response. Two of the five compounds (compounds 2 and 14) showed the characteristics of known BAM complex inhibitors: synergy with OMP biogenesis mutants, decrease in the abundance of various OMPs, and loss of OM integrity. Importantly, compound 2 also inhibited BAM-dependent OMP folding in an in vitro refolding assay using purified BAM complex reconstituted in proteoliposomes.
Collapse
Affiliation(s)
- Maurice Steenhuis
- Department
of Molecular Microbiology, Amsterdam Institute
of Molecular and Life Sciences (AIMMS), Vrije Universiteit, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Federico Corona
- Centre
for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle
upon Tyne NE2 4HH, United
Kingdom
| | - Corinne M. ten Hagen-Jongman
- Department
of Molecular Microbiology, Amsterdam Institute
of Molecular and Life Sciences (AIMMS), Vrije Universiteit, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Waldemar Vollmer
- Centre
for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle
upon Tyne NE2 4HH, United
Kingdom
| | - Dominique Lambin
- Centre
for Innovation and Stimulation of Drug Discovery (CISTIM), Gaston Geenslaan 2, B-3001 Leuven, Belgium
| | - Philippe Selhorst
- Centre
for Innovation and Stimulation of Drug Discovery (CISTIM), Gaston Geenslaan 2, B-3001 Leuven, Belgium
| | - Hugo Klaassen
- Centre
for Innovation and Stimulation of Drug Discovery (CISTIM), Gaston Geenslaan 2, B-3001 Leuven, Belgium
| | - Matthias Versele
- Centre
for Innovation and Stimulation of Drug Discovery (CISTIM), Gaston Geenslaan 2, B-3001 Leuven, Belgium
| | - Patrick Chaltin
- Center
for Drug Design and Development (CD3), KU
Leuven R&D, Waaistraat 6, B-3000 Leuven, Belgium
| | - Joen Luirink
- Department
of Molecular Microbiology, Amsterdam Institute
of Molecular and Life Sciences (AIMMS), Vrije Universiteit, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
20
|
Mazzotta S, Berastegui-Cabrera J, Vega-Holm M, García-Lozano MDR, Carretero-Ledesma M, Aiello F, Vega-Pérez JM, Pachón J, Iglesias-Guerra F, Sánchez-Céspedes J. Design, synthesis and in vitro biological evaluation of a novel class of anti-adenovirus agents based on 3-amino-1,2-propanediol. Bioorg Chem 2021; 114:105095. [PMID: 34175724 DOI: 10.1016/j.bioorg.2021.105095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/09/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
Nowadays there is not an effective drug for the treatment of infections caused by human adenovirus (HAdV) which supposes a clinical challenge, especially for paediatric and immunosuppressed patients. Here, we describe the design, synthesis and biological evaluation as anti-adenovirus agents of a new library (57 compounds) of diester, monoester and triazole derivatives based on 3-amino-1,2-propanediol skeleton. Seven compounds (17, 20, 26, 34, 44, 60 and 66) were selected based on their high anti-HAdV activity at low micromolar concentration (IC50 from 2.47 to 5.75 µM) and low cytotoxicity (CC50 from 28.70 to >200 µM). In addition, our mechanistic assays revealed that compounds 20 and 44 might be targeting specifically the HAdV DNA replication process, and compound 66 would be targeting HAdV E1A mRNA transcription. For compounds 17, 20, 34 and 60, the mechanism of action seems to be associated with later steps after HAdV DNA replication.
Collapse
Affiliation(s)
- Sarah Mazzotta
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, E-41071 Seville, Spain; Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Judith Berastegui-Cabrera
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain
| | - Margarita Vega-Holm
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, E-41071 Seville, Spain.
| | - María Del Rosario García-Lozano
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, E-41071 Seville, Spain; Institute of Biomedicine of Seville (IBiS), SeLiver Group, University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain
| | - Marta Carretero-Ledesma
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
| | - José Manuel Vega-Pérez
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, E-41071 Seville, Spain
| | - Jerónimo Pachón
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain; Department of Medicine, University of Seville, E-41009 Seville, Spain
| | - Fernando Iglesias-Guerra
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, E-41071 Seville, Spain.
| | - Javier Sánchez-Céspedes
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain.
| |
Collapse
|
21
|
Nath A, Kumer A, Zaben F, Khan MW. Investigating the binding affinity, molecular dynamics, and ADMET properties of 2,3-dihydrobenzofuran derivatives as an inhibitor of fungi, bacteria, and virus protein. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021. [DOI: 10.1186/s43088-021-00117-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Background
2,3-Dihydrobenzofurans (DHB) have proposed as advantages structures, and used as chemical entresol to design small compound libraries. The present study illustrates to explore 2,3-dihydrobenzofurans(DHB) in comparison to selected some derivatives drugs by using molecular docking and molecular dynamics, as well as ADMET studies. The online database “Molinspiration online server” was used to detect the physicochemical pharmacokinetics and drug likeness score of DHB drugs. For estimation of molecular docking, six pathogens, such as Aspergillus niger (PDB id: 1kum), Candida albicans (3dra), Escherichia coli (6og7), Salmonella typhi (4k6l), Influenza (1ru7), and Hepatitis C (4tyd), were chosen due to close biological studies.
Results
From Molinspiration online server has showed that DHB did not violate the “Lipinski five rule” as drugs, leading compound for molecular docking exhibited the potential interaction to the active residue. The binding affinity of DHB2 (−7.00 kcal/mol) against 3dra was higher than DHB8 (−6.40 kcal/mol) and DHB (5.70 kcal/mol) for compounds. The results of molecular docking show that the compounds mentioned in this study are not equally effective against pathogens, such as fungi, viruses, and bacteria. However, DHB2, DHB3, and DHB 8 compounds can work against almost given pathogens which results are derived from auto dock vina in terms of binding affinity around 6.00 kcal/mol, and Fire Dock has values from about 38.0 to 42.0 kcal/mol. To explore the dynamic nature of the interaction, 50 ns molecular dynamics (MD) simulation was performed on the selected protein-DHB complexes. Thus, DHB 8 has greater potential to interact for further for fungi.
Conclusion
Finding from this study can play an effective role as a drug in any biological system. This study as well recommends to researchers to synthesize these DHBs for evaluation of its biological activity.
Graphical abstract
Collapse
|
22
|
Mphahlele MJ, Agbo EN, Choong YS. Synthesis, Structure, Carbohydrate Enzyme Inhibition, Antioxidant Activity, In Silico Drug-Receptor Interactions and Drug-Like Profiling of the 5-Styryl-2-Aminochalcone Hybrids. Molecules 2021; 26:2692. [PMID: 34064448 PMCID: PMC8125089 DOI: 10.3390/molecules26092692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 12/28/2022] Open
Abstract
The 2-amino-5-(3/4-fluorostyryl)acetophenones were prepared and reacted with benzaldehyde derivatives to afford the corresponding 5-styryl-2-aminochalcone hybrids. The trans geometry of the styryl and α,β-unsaturated carbonyl arms, and the presence of NH…O intramolecular hydrogen bond were validated using 1H-NMR and X-ray data. The 2-amino-5-styrylacetophenones and their 5-styryl-2-aminochalcone derivatives were screened in vitro for their capability to inhibit α-glucosidase and/or α-amylase activities. Their antioxidant properties were evaluated in vitro through the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) free radical scavenging assays. Kinetic studies of the most active derivatives from each series against α-glucosidase and/or α-amylase activities have been performed supported by molecular docking studies to determine plausible protein-ligand interactions on a molecular level. The key aspects of the pharmacokinetics of these compounds, i.e., absorption, distribution, metabolism, and excretion have also been simulated at theoretical level. The most active compounds from each series, namely, 2a and 3e, were evaluated for cytotoxicity against the normal monkey kidney cells (Vero cells) and the adenocarcinomic human epithelial (A549) cell line to establish their safety profile at least in vitro.
Collapse
Affiliation(s)
- Malose J. Mphahlele
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Private Bag X06, Florida 1710, South Africa;
| | - Emmanuel Ndubuisi Agbo
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Private Bag X06, Florida 1710, South Africa;
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Malaysia
| |
Collapse
|
23
|
In Vitro Enzymatic and Kinetic Studies, and In Silico Drug-Receptor Interactions, and Drug-Like Profiling of the 5-Styrylbenzamide Derivatives as Potential Cholinesterase and β-Secretase Inhibitors with Antioxidant Properties. Antioxidants (Basel) 2021; 10:antiox10050647. [PMID: 33922328 PMCID: PMC8145986 DOI: 10.3390/antiox10050647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/10/2021] [Accepted: 04/20/2021] [Indexed: 11/17/2022] Open
Abstract
The 5-(styryl)anthranilamides were transformed into the corresponding 5-styryl-2-(p-tolylsulfonamido)benzamide derivatives. These 5-styrylbenzamide derivatives were evaluated through enzymatic assays in vitro for their capability to inhibit acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-secretase (BACE-1) activities as well as for antioxidant potential. An in vitro cell-based antioxidant activity assay involving lipopolysaccharides (LPS)-induced reactive oxygen species (ROS) production revealed that compounds 2a and 3b have the capability of scavenging free radicals. The potential of the most active compound, 5-styrylbenzamide (2a), to bind copper (II) or zinc (II) ions has also been evaluated spectrophotometrically. Kinetic studies of the most active derivatives from each series against the AChE, BChE, and β-secretase activities have been performed. The experimental results are complemented with molecular docking studies into the active sites of these enzymes to predict the hypothetical protein–ligand binding modes. Their drug likeness properties have also been predicted.
Collapse
|
24
|
Vella P, Rudraraju RS, Lundbäck T, Axelsson H, Almqvist H, Vallin M, Schneider G, Schnell R. A FabG inhibitor targeting an allosteric binding site inhibits several orthologs from Gram-negative ESKAPE pathogens. Bioorg Med Chem 2021; 30:115898. [PMID: 33388594 DOI: 10.1016/j.bmc.2020.115898] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/22/2020] [Indexed: 11/26/2022]
Abstract
The spread of antibiotic resistance within the ESKAPE group of human pathogenic bacteria poses severe challenges in the treatment of infections and maintenance of safe hospital environments. This motivates efforts to validate novel target proteins within these species that could be pursued as potential targets for antibiotic development. Genetic data suggest that the enzyme FabG, which is part of the bacterial fatty acid biosynthetic system FAS-II, is essential in several ESKAPE pathogens. FabG catalyzes the NADPH dependent reduction of 3-keto-acyl-ACP during fatty acid elongation, thus enabling lipid supply for production and maintenance of the cell envelope. Here we report on small-molecule screening on the FabG enzymes from A. baumannii and S. typhimurium to identify a set of µM inhibitors, with the most potent representative (1) demonstrating activity against six FabG-orthologues. A co-crystal structure with FabG from A. baumannii (PDB:6T65) confirms inhibitor binding at an allosteric site located in the subunit interface, as previously demonstrated for other sub-µM inhibitors of FabG from P. aeruginosa. We show that inhibitor binding distorts the oligomerization interface in the FabG tetramer and displaces crucial residues involved in the interaction with the co-substrate NADPH. These observations suggest a conserved allosteric site across the FabG family, which can be potentially targeted for interference with fatty acid biosynthesis in clinically relevant ESKAPE pathogens.
Collapse
Affiliation(s)
- Peter Vella
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17 165 Stockholm, Sweden
| | | | - Thomas Lundbäck
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 65 Stockholm, Sweden
| | - Hanna Axelsson
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 65 Stockholm, Sweden
| | - Helena Almqvist
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 65 Stockholm, Sweden
| | - Michaela Vallin
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 65 Stockholm, Sweden
| | - Gunter Schneider
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17 165 Stockholm, Sweden
| | - Robert Schnell
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17 165 Stockholm, Sweden.
| |
Collapse
|
25
|
Lamie PF, Philoppes JN. 2-Thiopyrimidine/chalcone hybrids: design, synthesis, ADMET prediction, and anticancer evaluation as STAT3/STAT5a inhibitors. J Enzyme Inhib Med Chem 2020; 35:864-879. [PMID: 32208772 PMCID: PMC7144330 DOI: 10.1080/14756366.2020.1740922] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 01/19/2023] Open
Abstract
A novel 2-thiopyrimidine/chalcone hybrid was designed, synthesised, and evaluated for their cytotoxic activities against three different cell lines, K-562, MCF-7, and HT-29. The most active cytotoxic derivatives were 9d, 9f, 9n, and 9p (IC50=0.77-1.74 µM, against K-562 cell line), 9a and 9r (IC50=1.37-3.56 µM against MCF-7 cell line), and 9a, 9l, and 9n (IC50=2.10 and 2.37 µM against HT-29 cell line). Compounds 9a, 9d, 9f, 9n, and 9r were further evaluated for their cytotoxicity against normal fibroblast cell line WI38. Moreover, STAT3 and STAT5a inhibitory activities were determined for the most active derivatives 9a, 9d, 9f, 9n, and 9r. Dual inhibitory activity was observed in compound 9n (IC50=113.31 and 50.75 µM, against STAT3 and STAT5a, respectively). Prediction of physicochemical properties, drug likeness score, pharmacokinetic and toxic properties was detected.
Collapse
Affiliation(s)
- Phoebe F. Lamie
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - John N. Philoppes
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
26
|
Synthesis, biological evaluation and computational studies of acrylohydrazide derivatives as potential Staphylococcus aureus NorA efflux pump inhibitors. Bioorg Chem 2020; 104:104225. [DOI: 10.1016/j.bioorg.2020.104225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 01/20/2023]
|
27
|
Thamaraiselvan V, Velayutham R. The putative binding site and SAR rationalization of small molecules against glucagon-like peptide-1 receptor using homology model and crystal structures: a comparative study. J Biomol Struct Dyn 2020; 40:2038-2052. [PMID: 33118484 DOI: 10.1080/07391102.2020.1835720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is involved in glucose-stimulated insulin secretion and weight regulating actions through the activation of the GLP-1 receptor (GLP-1R). Clinical effectiveness of GLP-1 mimetics is effective in improving glucose control in patients. Thus, identifying and developing orally active small-molecule agonists are highly desirable. This study summarizes the structure-function relationship of hGLP-1R through computational approaches and search of small molecule GLP-1R agonists. We carried out mutation guided data-driven study, for developing the GLP-1R model to explore and validate the putative site for quinoxaline analogues. The developed GLP-1R homology model was subjected to 500 ns MD simulation for validation. Various snapshots were considered to identify the best structure of GLP-1R based on correlation between experimental pEC50 and various theoretical parameters (docking score, MM-GBSA ΔG bind, WM/MM ΔG bind). The putative binding site (Sitemap and WaterMap has been predicted and it matched well with the available data. Excellent correlation (R2 =0.94), between pEC50 and WM/MM ΔG bind for the snapshot at 350 ns was observed after including induced-fit docking results of the most potent molecule. Enrichment calculation indicates better AUC (=0.75) for predicted complex structure. A comparison of the developed GLP-1R model with the available crystal structure shows excellent similarities and it was used for virtual screening to find small molecule agonists. The good correlation of our model with crystal structures of GLP-1R may help to understand the structure-function relationship of other secretin families.
Collapse
Affiliation(s)
| | - Ravichandiran Velayutham
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| |
Collapse
|
28
|
Practical guide on MALDI-TOF MS method development for high throughput profiling of pharmaceutically relevant, small molecule chemical reactions. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
29
|
Ester and amide derivatives of rhodamine B exert cytotoxic effects on different human tumor cell lines. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02591-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AbstractThree esters of rhodamine B (1–3) differing in their alkyl chain lengths as well as several rhodamine B amides (4–9) were synthesized in good yields and tested for their cytotoxicity in SRB assays employing several human tumor cell lines. The rhodamine B esters were unselective but showed cytotoxicity of as low as EC50 = 0.15 ± 0.02 µM. The rhodamine B amides were slightly less cytotoxic but showed good selectivity against MCF-7 and A2780 tumor cell lines. Especially a morpholinyl derivative 4 was ~20 time more cytotoxic for MCF-7 than for nonmalignant NIH 3T3 cells.
Collapse
|
30
|
Structure-Based Discovery of Dual-Target Hits for Acetylcholinesterase and the α7 Nicotinic Acetylcholine Receptors: In Silico Studies and In Vitro Confirmation. Molecules 2020; 25:molecules25122872. [PMID: 32580406 PMCID: PMC7355937 DOI: 10.3390/molecules25122872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 11/17/2022] Open
Abstract
Despite extensive efforts in the development of drugs for complex neurodegenerative diseases, treatment often remains challenging or ineffective, and hence new treatment strategies are necessary. One approach is the design of multi-target drugs, which can potentially address the complex nature of disorders such as Alzheimer's disease. We report a method for high throughput virtual screening aimed at identifying new dual target hit molecules. One of the identified hits, N,N-dimethyl-1-(4-(3-methyl-[1,2,4]triazolo[4,3-a]pyrimidin-6-yl)phenyl)ethan-1-amine (Ý;mir-2), has dual-activity as an acetylcholinesterase (AChE) inhibitor and as an α7 nicotinic acetylcholine receptor (α7 nAChR) agonist. Using computational chemistry methods, parallel and independent screening of a virtual compound library consisting of 3,848,234 drug-like and commercially available molecules from the ZINC15 database, resulted in an intersecting set of 57 compounds, that potentially possess activity at both of the two protein targets. Based on ligand efficiency as well as scaffold and molecular diversity, 16 of these compounds were purchased for in vitro validation by Ellman's method and two-electrode voltage-clamp electrophysiology. Ý;mir-2 was shown to exhibit the desired activity profile (AChE IC50 = 2.58 ± 0.96 µM; α7 nAChR activation = 7.0 ± 0.9% at 200 µM) making it the first reported compound with this particular profile and providing further evidence of the feasibility of in silico methods for the identification of novel multi-target hit molecules.
Collapse
|
31
|
Xu D, Zhou D, Bum-Erdene K, Bailey BJ, Sishtla K, Liu S, Wan J, Aryal UK, Lee JA, Wells CD, Fishel ML, Corson TW, Pollok KE, Meroueh SO. Phenotypic Screening of Chemical Libraries Enriched by Molecular Docking to Multiple Targets Selected from Glioblastoma Genomic Data. ACS Chem Biol 2020; 15:1424-1444. [PMID: 32243127 PMCID: PMC7919753 DOI: 10.1021/acschembio.0c00078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Like most solid tumors, glioblastoma multiforme (GBM) harbors multiple overexpressed and mutated genes that affect several signaling pathways. Suppressing tumor growth of solid tumors like GBM without toxicity may be achieved by small molecules that selectively modulate a collection of targets across different signaling pathways, also known as selective polypharmacology. Phenotypic screening can be an effective method to uncover such compounds, but the lack of approaches to create focused libraries tailored to tumor targets has limited its impact. Here, we create rational libraries for phenotypic screening by structure-based molecular docking chemical libraries to GBM-specific targets identified using the tumor's RNA sequence and mutation data along with cellular protein-protein interaction data. Screening this enriched library of 47 candidates led to several active compounds, including 1 (IPR-2025), which (i) inhibited cell viability of low-passage patient-derived GBM spheroids with single-digit micromolar IC50 values that are substantially better than standard-of-care temozolomide, (ii) blocked tube-formation of endothelial cells in Matrigel with submicromolar IC50 values, and (iii) had no effect on primary hematopoietic CD34+ progenitor spheroids or astrocyte cell viability. RNA sequencing provided the potential mechanism of action for 1, and mass spectrometry-based thermal proteome profiling confirmed that the compound engages multiple targets. The ability of 1 to inhibit GBM phenotypes without affecting normal cell viability suggests that our screening approach may hold promise for generating lead compounds with selective polypharmacology for the development of treatments of incurable diseases like GBM.
Collapse
Affiliation(s)
- David Xu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Department of BioHealth Informatics, Indiana University School of Informatics and Computing, Indianapolis, Indiana 46202, United States
| | - Donghui Zhou
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Khuchtumur Bum-Erdene
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Barbara J Bailey
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Kamakshi Sishtla
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Sheng Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Jun Wan
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Uma K Aryal
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jonathan A Lee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Clark D Wells
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Melissa L Fishel
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Timothy W Corson
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Karen E Pollok
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Samy O Meroueh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| |
Collapse
|
32
|
Shen C, Hu Y, Wang Z, Zhang X, Pang J, Wang G, Zhong H, Xu L, Cao D, Hou T. Beware of the generic machine learning-based scoring functions in structure-based virtual screening. Brief Bioinform 2020; 22:5850047. [PMID: 32484221 DOI: 10.1093/bib/bbaa070] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/17/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Machine learning-based scoring functions (MLSFs) have attracted extensive attention recently and are expected to be potential rescoring tools for structure-based virtual screening (SBVS). However, a major concern nowadays is whether MLSFs trained for generic uses rather than a given target can consistently be applicable for VS. In this study, a systematic assessment was carried out to re-evaluate the effectiveness of 14 reported MLSFs in VS. Overall, most of these MLSFs could hardly achieve satisfactory results for any dataset, and they could even not outperform the baseline of classical SFs such as Glide SP. An exception was observed for RFscore-VS trained on the Directory of Useful Decoys-Enhanced dataset, which showed its superiority for most targets. However, in most cases, it clearly illustrated rather limited performance on the targets that were dissimilar to the proteins in the corresponding training sets. We also used the top three docking poses rather than the top one for rescoring and retrained the models with the updated versions of the training set, but only minor improvements were observed. Taken together, generic MLSFs may have poor generalization capabilities to be applicable for the real VS campaigns. Therefore, it should be quite cautious to use this type of methods for VS.
Collapse
Affiliation(s)
| | - Ye Hu
- Central South University, China
| | | | | | | | | | | | - Lei Xu
- Central South University, China
| | | | | |
Collapse
|
33
|
Agoni C, Olotu FA, Ramharack P, Soliman ME. Druggability and drug-likeness concepts in drug design: are biomodelling and predictive tools having their say? J Mol Model 2020; 26:120. [PMID: 32382800 DOI: 10.1007/s00894-020-04385-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/22/2020] [Indexed: 11/29/2022]
Abstract
The drug discovery process typically involves target identification and design of suitable drug molecules against these targets. Despite decades of experimental investigations in the drug discovery domain, about 96% overall failure rate has been recorded in drug development due to the "undruggability" of various identified disease targets, in addition to other challenges. Likewise, the high attrition rate of drug candidates in the drug discovery process has also become an enormous challenge for the pharmaceutical industry. To alleviate this negative outlook, new trends in drug discovery have emerged. By drifting away from experimental research methods, computational tools and big data are becoming valuable in the prediction of biological target druggability and the drug-likeness of potential therapeutic agents. These tools have proven to be useful in saving time and reducing research costs. As with any emerging technique, however, controversial opinions have been presented regarding the validation of predictive computational tools. To address the challenges associated with these varying opinions, this review attempts to highlight the principles of druggability and drug-likeness and their recent advancements in the drug discovery field. Herein, we present the different computational tools and their reliability of predictive analysis in the drug discovery domain. We believe that this report would serve as a comprehensive guide towards computational-oriented drug discovery research. Graphical abstract Highlights of methods for assessing the druggability of biological targets.
Collapse
Affiliation(s)
- Clement Agoni
- Molecular Bio-Computation & Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa
| | - Fisayo A Olotu
- Molecular Bio-Computation & Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa
| | - Pritika Ramharack
- Molecular Bio-Computation & Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa
| | - Mahmoud E Soliman
- Molecular Bio-Computation & Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa.
| |
Collapse
|
34
|
Abramyan TM, An Y, Kireev D. Off-Pocket Activity Cliffs: A Puzzling Facet of Molecular Recognition. J Chem Inf Model 2019; 60:152-161. [PMID: 31790251 DOI: 10.1021/acs.jcim.9b00731] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
While accurate quantitative prediction of ligand-protein binding affinity remains an elusive goal, high-affinity ligands to therapeutic targets are being designed through heuristic optimization of ligand-protein contacts. However, herein, through large-scale data mining and analyses, we demonstrate that a ligand's binding can also be strongly affected through modifying its solvent-exposed portion that does not make contacts with the protein, thus resulting in "off-pocket activity cliffs" (OAC). We then exposed the roots of the OAC phenomenon by means of molecular dynamics (MD) simulations and MD data analyses. We expect OAC to extend our knowledge of molecular recognition and enhance the drug designer's toolkit.
Collapse
Affiliation(s)
- Tigran M Abramyan
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina , 27599-7363
| | - Yi An
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina , 27599-7363
| | - Dmitri Kireev
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina , 27599-7363
| |
Collapse
|
35
|
Facile synthesis of new quinazolinone benzamides as potent tyrosinase inhibitors: Comparative spectroscopic and molecular docking studies. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.126915] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
36
|
Dige NC, Mahajan PG, Raza H, Hassan M, Vanjare BD, Hong H, Hwan Lee K, latip J, Seo SY. Ultrasound mediated efficient synthesis of new 4-oxoquinazolin-3(4H)-yl)furan-2-carboxamides as potent tyrosinase inhibitors: Mechanistic approach through chemoinformatics and molecular docking studies. Bioorg Chem 2019; 92:103201. [DOI: 10.1016/j.bioorg.2019.103201] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
|
37
|
Hassan M, Abbasi MA, Aziz-Ur-Rehman, Siddiqui SZ, Shahzadi S, Raza H, Hussain G, Shah SAA, Ashraf M, Shahid M, Seo SY, Malik A. Designing of promising medicinal scaffolds for Alzheimer's disease through enzyme inhibition, lead optimization, molecular docking and dynamic simulation approaches. Bioorg Chem 2019; 91:103138. [PMID: 31446329 DOI: 10.1016/j.bioorg.2019.103138] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/08/2019] [Accepted: 07/19/2019] [Indexed: 12/11/2022]
Abstract
In the designed research work, a series of 2-furoyl piperazine based sulfonamide derivatives were synthesized as therapeutic agents to target the Alzheimer's disease. The structures of the newly synthesized compounds were characterized through spectral analysis and their inhibitory potential was evaluated against butyrylcholinesterase (BChE). The cytotoxicity of these sulfonamides was also ascertained through hemolysis of bovine red blood cells. Furthermore, compounds were inspected by Lipinki Rule and their binding profiles against BChE were discerned by molecular docking. The protein fluctuations in docking complexes were recognized by dynamic simulation. From our in vitro and in silico results 5c, 5j and 5k were identified as promising lead compounds for the treatment of targeted disease.
Collapse
Affiliation(s)
- Mubashir Hassan
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Raiwind Road, 55150 Lahore, Pakistan.
| | | | - Aziz-Ur-Rehman
- Department of Chemistry, Government College University, Lahore 54000, Pakistan
| | | | - Saba Shahzadi
- Institute of Molecular Science and Bioinformatics, Nisbat Road, Lahore, Pakistan
| | - Hussain Raza
- College of Natural Science, Department of Biological Sciences, Kongju National University, Gongju 32588, South Korea
| | - Ghulam Hussain
- Department of Chemistry, Government College University, Lahore 54000, Pakistan
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia; Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Level 9, FF3, Universiti Teknologi MARA, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Muhamamd Ashraf
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Shahid
- Department of Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan
| | - Sung-Yum Seo
- College of Natural Science, Department of Biological Sciences, Kongju National University, Gongju 32588, South Korea
| | - Arif Malik
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Raiwind Road, 55150 Lahore, Pakistan
| |
Collapse
|
38
|
Ayotte Y, Marando VM, Vaillancourt L, Bouchard P, Heffron G, Coote PW, Larda ST, LaPlante SR. Exposing Small-Molecule Nanoentities by a Nuclear Magnetic Resonance Relaxation Assay. J Med Chem 2019; 62:7885-7896. [PMID: 31422659 DOI: 10.1021/acs.jmedchem.9b00653] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Small molecules can self-assemble in aqueous solution into a wide range of nanoentity types and sizes (dimers, n-mers, micelles, colloids, etc.), each having their own unique properties. This has important consequences in the context of drug discovery including issues related to nonspecific binding, off-target effects, and false positives and negatives. Here, we demonstrate the use of the spin-spin relaxation Carr-Purcell-Meiboom-Gill NMR experiment, which is sensitive to molecular tumbling rates and can expose larger aggregate species that have slower rotational correlations. The strategy easily distinguishes lone-tumbling molecules versus nanoentities of various sizes. The technique is highly sensitive to chemical exchange between single-molecule and aggregate states and can therefore be used as a reporter when direct measurement of aggregates is not possible by NMR. Interestingly, we found differences in solution behavior for compounds within structurally related series, demonstrating structure-nanoentity relationships. This practical experiment is a valuable tool to support drug discovery efforts.
Collapse
Affiliation(s)
- Yann Ayotte
- INRS-Centre Armand-Frappier Santé Biotechnologie , 531 Boulevard des Prairies , Laval , Québec H7V 1B7 , Canada
| | - Victoria M Marando
- NMX Research and Solutions, Inc. , 500 Boulevard Cartier Ouest , Laval , Québec , H7V 5B7 , Canada
| | - Louis Vaillancourt
- NMX Research and Solutions, Inc. , 500 Boulevard Cartier Ouest , Laval , Québec , H7V 5B7 , Canada
| | - Patricia Bouchard
- NMX Research and Solutions, Inc. , 500 Boulevard Cartier Ouest , Laval , Québec , H7V 5B7 , Canada
| | - Gregory Heffron
- Harvard Medical School , 240 Longwood Avenue , Boston , Massachusetts 02115 , United States
| | - Paul W Coote
- NMX Research and Solutions, Inc. , 500 Boulevard Cartier Ouest , Laval , Québec , H7V 5B7 , Canada.,Harvard Medical School , 240 Longwood Avenue , Boston , Massachusetts 02115 , United States
| | - Sacha T Larda
- NMX Research and Solutions, Inc. , 500 Boulevard Cartier Ouest , Laval , Québec , H7V 5B7 , Canada
| | - Steven R LaPlante
- INRS-Centre Armand-Frappier Santé Biotechnologie , 531 Boulevard des Prairies , Laval , Québec H7V 1B7 , Canada.,NMX Research and Solutions, Inc. , 500 Boulevard Cartier Ouest , Laval , Québec , H7V 5B7 , Canada.,Harvard Medical School , 240 Longwood Avenue , Boston , Massachusetts 02115 , United States
| |
Collapse
|
39
|
Identification of Small Molecules Exhibiting Oxacillin Synergy through a Novel Assay for Inhibition of vraTSR Expression in Methicillin-Resistant Staphylococcus aureus. Antimicrob Agents Chemother 2019; 63:AAC.02593-18. [PMID: 31209003 DOI: 10.1128/aac.02593-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/26/2019] [Indexed: 11/20/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) strains that are resistant to all forms of penicillin have become an increasingly common and urgent problem threatening human health. They are responsible for a wide variety of infectious diseases ranging from minor skin abscesses to life-threatening severe infections. The vra operon that is conserved among S. aureus strains encodes a three-component signal transduction system (vraTSR) that is responsible for sensing and responding to cell wall stress. We developed a novel and multifaceted assay to identify compounds that potentiate the activity of oxacillin, essentially restoring efficacy of oxacillin against MRSA, and performed high-throughput screening (HTS) to identify oxacillin potentiators. HTS of 13,840 small-molecule compounds from an antimicrobial-focused Life Chemicals library, using the MRSA cell-based assay, identified three different inhibitor scaffolds. Checkerboard assays for synergy with oxacillin, reverse transcriptase PCR (RT-PCR) assays against vraR expression, and direct confirmation of interaction with VraS by surface plasmon resonance (SPR) further verified them to be viable hit compounds. A subsequent structure-activity relationship (SAR) study of the best scaffold with diverse analogs was utilized to improve potency and provides a strong foundation for further development.
Collapse
|
40
|
Kumar S, Waldo JP, Jaipuri FA, Marcinowicz A, Van Allen C, Adams J, Kesharwani T, Zhang X, Metz R, Oh AJ, Harris SF, Mautino MR. Discovery of Clinical Candidate (1 R,4 r)-4-(( R)-2-(( S)-6-Fluoro-5 H-imidazo[5,1- a]isoindol-5-yl)-1-hydroxyethyl)cyclohexan-1-ol (Navoximod), a Potent and Selective Inhibitor of Indoleamine 2,3-Dioxygenase 1. J Med Chem 2019; 62:6705-6733. [PMID: 31264862 DOI: 10.1021/acs.jmedchem.9b00662] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A novel class of 5-substituted 5H-imidazo[5,1-a]isoindoles are described as potent inhibitors of indoleamine 2,3-dioxygenase 1 (IDO1). A structure-based drug design approach was used to elaborate the 5H-imidazo[5,1-a]isoindole core and to improve potency and pharmacological properties. Suitably placed hydrophobic and polar functional groups in the lead molecule allowed improvement of IDO1 inhibitory activity while minimizing off-target liabilities. Structure-activity relationship studies focused on optimizing IDO1 inhibition potency and a pharmacokinetic profile amenable to oral dosing while controlling CYP450 and hERG inhibitory properties.
Collapse
Affiliation(s)
- Sanjeev Kumar
- NewLink Genetics Corporation , Ames , Iowa 50010 , United States
| | - Jesse P Waldo
- NewLink Genetics Corporation , Ames , Iowa 50010 , United States
| | - Firoz A Jaipuri
- NewLink Genetics Corporation , Ames , Iowa 50010 , United States
| | | | | | - James Adams
- NewLink Genetics Corporation , Ames , Iowa 50010 , United States
| | - Tanay Kesharwani
- NewLink Genetics Corporation , Ames , Iowa 50010 , United States
| | - Xiaoxia Zhang
- NewLink Genetics Corporation , Ames , Iowa 50010 , United States
| | - Richard Metz
- NewLink Genetics Corporation , Ames , Iowa 50010 , United States
| | - Angela J Oh
- Structural Biology , Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Seth F Harris
- Structural Biology , Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Mario R Mautino
- NewLink Genetics Corporation , Ames , Iowa 50010 , United States
| |
Collapse
|
41
|
Ling T, Lang WH, Craig J, Potts MB, Budhraja A, Opferman J, Bollinger J, Maier J, Marsico TD, Rivas F. Studies of Jatrogossone A as a Reactive Oxygen Species Inducer in Cancer Cellular Models. JOURNAL OF NATURAL PRODUCTS 2019; 82:1301-1311. [PMID: 31084028 DOI: 10.1021/acs.jnatprod.8b01087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Natural products continue to provide a platform to study biological systems. A bioguided study of cancer cell models led us to a new member of the jatrophane natural products from Jatropha gossypiifolia, which was independently identified and characterized as jatrogossone A (1). Purification and structure elucidation was performed by column chromatography and high-performance liquid chromatography-mass spectrometry and NMR techniques, and the structure was confirmed via X-ray crystallography. The unique molecular scaffold of jatrogossone A prompted an evaluation of its mode of action. Cytotoxicity assays demonstrated that jatrogossone A displays selective antiproliferative activity against cancer cell models in the low micromolar range with a therapeutic window. Jatrogossone A (1) affects mitochondrial membrane potential (ΔΨm) in a time- and dose-dependent manner. This natural product induces radical oxygen species (ROS) selectively in cancer cellular models, with minimal ROS induction in noncancerous cells. Compound 1 induces ROS in the mitochondria, as determined by colocalization studies, and it induces mitophagy. It promotes also in vitro cell death by causing cell arrest at the G2/M stage, caspase (3/7) activation, and PARP-1 cleavage. The combined findings provide a potential mechanism by which 1 relies on upregulation of mitochondrial ROS to potentiate cytotoxic effects through intracellular signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Travis D Marsico
- Department of Biological Sciences , Arkansas State University , Jonesboro , Arkansas 72467 , United States
| | | |
Collapse
|
42
|
Boulton S, Selvaratnam R, Ahmed R, Van K, Cheng X, Melacini G. Mechanisms of Specific versus Nonspecific Interactions of Aggregation-Prone Inhibitors and Attenuators. J Med Chem 2019; 62:5063-5079. [PMID: 31074269 PMCID: PMC7255057 DOI: 10.1021/acs.jmedchem.9b00258] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A common source of false positives in drug discovery is ligand self-association into large colloidal assemblies that nonspecifically inhibit target proteins. However, the mechanisms of aggregation-based inhibition (ABI) and ABI-attenuation by additives, such as Triton X-100 (TX) and human serum albumin (HSA), are not fully understood. Here, we investigate the molecular basis of ABI and ABI-attenuation through the lens of NMR and coupled thermodynamic cycles. We unexpectedly discover a new class of aggregating ligands that exhibit negligible interactions with proteins but act as competitive sinks for the free inhibitor, resulting in bell-shaped dose-response curves. TX attenuates ABI by converting inhibitory, protein-binding aggregates into nonbinding coaggregates, whereas HSA minimizes nonspecific ligand interactions by functioning as a reservoir for free inhibitor and preventing self-association. Hence, both TX and HSA are useful tools to minimize false positives arising from nonspecific binding but at the cost of potentially introducing false negatives due to suppression of specific interactions.
Collapse
Affiliation(s)
- Stephen Boulton
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Rajeevan Selvaratnam
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Department of Laboratory Medicine, University Health Network, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| | - Rashik Ahmed
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Katherine Van
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology and Texas Therapeutics Institute, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, United States
| | - Giuseppe Melacini
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
43
|
Butt ARS, Abbasi MA, Aziz-ur-Rehman, Siddiqui SZ, Raza H, Hassan M, Shah SAA, Shahid M, Seo SY. Synthesis and structure-activity relationship of tyrosinase inhibiting novel bi-heterocyclic acetamides: Mechanistic insights through enzyme inhibition, kinetics and computational studies. Bioorg Chem 2019; 86:459-472. [DOI: 10.1016/j.bioorg.2019.01.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/07/2019] [Accepted: 01/21/2019] [Indexed: 02/06/2023]
|
44
|
Reker D, Bernardes GJL, Rodrigues T. Computational advances in combating colloidal aggregation in drug discovery. Nat Chem 2019; 11:402-418. [PMID: 30988417 DOI: 10.1038/s41557-019-0234-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 02/21/2019] [Indexed: 02/07/2023]
Abstract
Small molecule effectors are essential for drug discovery. Specific molecular recognition, reversible binding and dose-dependency are usually key requirements to ensure utility of a novel chemical entity. However, artefactual frequent-hitter and assay interference compounds may divert lead optimization and screening programmes towards attrition-prone chemical matter. Colloidal aggregates are the prime source of false positive readouts, either through protein sequestration or protein-scaffold mimicry. Nevertheless, assessment of colloidal aggregation remains somewhat overlooked and under-appreciated. In this Review, we discuss the impact of aggregation in drug discovery by analysing select examples from the literature and publicly-available datasets. We also examine and comment on technologies used to experimentally identify these potentially problematic entities. We focus on evidence-based computational filters and machine learning algorithms that may be swiftly deployed to flag chemical matter and mitigate the impact of aggregates in discovery programmes. We highlight the tools that can be used to scrutinize libraries, and identify and eliminate these problematic compounds.
Collapse
Affiliation(s)
- Daniel Reker
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,MIT-IBM Watson AI Lab, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Gonçalo J L Bernardes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK.,Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Tiago Rodrigues
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
45
|
Ikram N, Mirza MU, Vanmeert M, Froeyen M, Salo-Ahen OMH, Tahir M, Qazi A, Ahmad S. Inhibition of Oncogenic Kinases: An In Vitro Validated Computational Approach Identified Potential Multi-Target Anticancer Compounds. Biomolecules 2019; 9:E124. [PMID: 30925835 PMCID: PMC6523505 DOI: 10.3390/biom9040124] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/16/2022] Open
Abstract
Tumorigenesis in humans is a multistep progression that imitates genetic changes leading to cell transformation and malignancy. Oncogenic kinases play a central role in cancer progression, rendering them putative targets for the design of anti-cancer drugs. The presented work aims to identify the potential multi-target inhibitors of oncogenic receptor tyrosine kinases (RTKs) and serine/threonine kinases (STKs). For this, chemoinformatics and structure-based virtual screening approaches were combined with an in vitro validation of lead hits on both cancerous and non-cancerous cell lines. A total of 16 different kinase structures were screened against ~739,000 prefiltered compounds using diversity selection, after which the top hits were filtered for promising pharmacokinetic properties. This led to the identification of 12 and 9 compounds against RTKs and STKs, respectively. Molecular dynamics (MD) simulations were carried out to better comprehend the stability of the predicted hit kinase-compound complexes. Two top-ranked compounds against each kinase class were tested in vitro for cytotoxicity, with compound F34 showing the most promising inhibitory activity in HeLa, HepG2, and Vero cell lines with IC50 values of 145.46 μM, 175.48 μM, and 130.52 μM, respectively. Additional docking of F34 against various RTKs was carried out to support potential multi-target inhibition. Together with reliable MD simulations, these results suggest the promising potential of identified multi-target STK and RTK scaffolds for further kinase-specific anti-cancer drug development toward combinatorial therapies.
Collapse
Affiliation(s)
- Nazia Ikram
- Institute of Molecular Biology and Biotechnology, The University of Lahore, 54000 Lahore, Pakistan.
| | - Muhammad Usman Mirza
- Centre for Research in Molecular Medicine, The University of Lahore, 54000 Lahore, Pakistan.
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, B-3000 Leuven, Belgium.
| | - Michiel Vanmeert
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, B-3000 Leuven, Belgium.
| | - Matheus Froeyen
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, B-3000 Leuven, Belgium.
| | - Outi M H Salo-Ahen
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, FI-20520 Turku, Finland.
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University, FI-20520 Turku, Finland.
| | - Muhammad Tahir
- Centre for Research in Molecular Medicine, The University of Lahore, 54000 Lahore, Pakistan.
| | - Aamer Qazi
- Centre for Research in Molecular Medicine, The University of Lahore, 54000 Lahore, Pakistan.
| | - Sarfraz Ahmad
- Institute of Pharmaceutical Sciences, Riphah University, 54000 Lahore, Pakistan.
- Department of Chemistry, Faculty of Sciences, University Malaya, 59100, Kuala Lumpur, Malaysia.
| |
Collapse
|
46
|
Di Pizio A, Behrens M, Krautwurst D. Beyond the Flavour: The Potential Druggability of Chemosensory G Protein-Coupled Receptors. Int J Mol Sci 2019; 20:E1402. [PMID: 30897734 PMCID: PMC6471708 DOI: 10.3390/ijms20061402] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 12/21/2022] Open
Abstract
G protein-coupled receptors (GPCRs) belong to the largest class of drug targets. Approximately half of the members of the human GPCR superfamily are chemosensory receptors, including odorant receptors (ORs), trace amine-associated receptors (TAARs), bitter taste receptors (TAS2Rs), sweet and umami taste receptors (TAS1Rs). Interestingly, these chemosensory GPCRs (csGPCRs) are expressed in several tissues of the body where they are supposed to play a role in biological functions other than chemosensation. Despite their abundance and physiological/pathological relevance, the druggability of csGPCRs has been suggested but not fully characterized. Here, we aim to explore the potential of targeting csGPCRs to treat diseases by reviewing the current knowledge of csGPCRs expressed throughout the body and by analysing the chemical space and the drug-likeness of flavour molecules.
Collapse
Affiliation(s)
- Antonella Di Pizio
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, 85354, Germany.
| | - Maik Behrens
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, 85354, Germany.
| | - Dietmar Krautwurst
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, 85354, Germany.
| |
Collapse
|
47
|
Kearney SE, Zahoránszky-Kőhalmi G, Brimacombe KR, Henderson MJ, Lynch C, Zhao T, Wan K, Itkin Z, Dillon C, Shen M, Cheff D, Lee T, Bougie D, Cheng K, Coussens N, Dorjsuren D, Eastman R, Huang R, Iannotti M, Karavadhi S, Klumpp-Thomas C, Roth J, Sakamuru S, Sun W, Titus S, Yasgar A, Zhang YQ, Zhao J, Andrade R, Brown MK, Burns N, Cha JK, Mevers E, Clardy J, Clement J, Crooks P, Cuny G, Ganor J, Moreno J, Morrill L, Picazo E, Susick R, Garg N, Goess B, Grossman R, Hughes C, Johnston J, Joullie M, Kinghorn AD, Kingston D, Krische M, Kwon O, Maimone T, Majumdar S, Maloney K, Mohamed E, Murphy B, Nagorny P, Olson D, Overman L, Brown L, Snyder J, Porco J, Rivas F, Ross S, Sarpong R, Sharma I, Shaw J, Xu Z, Shen B, Shi W, Stephenson C, Verano A, Tan D, Tang Y, Taylor R, Thomson R, Vosburg D, Wu J, Wuest W, Zakarian A, Zhang Y, Ren T, Zuo Z, Inglese J, Michael S, Simeonov A, Zheng W, Shinn P, Jadhav A, Boxer M, Hall MD, Xia M, Guha R, Rohde JM. Canvass: A Crowd-Sourced, Natural-Product Screening Library for Exploring Biological Space. ACS CENTRAL SCIENCE 2018; 4:1727-1741. [PMID: 30648156 PMCID: PMC6311695 DOI: 10.1021/acscentsci.8b00747] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Indexed: 05/20/2023]
Abstract
Natural products and their derivatives continue to be wellsprings of nascent therapeutic potential. However, many laboratories have limited resources for biological evaluation, leaving their previously isolated or synthesized compounds largely or completely untested. To address this issue, the Canvass library of natural products was assembled, in collaboration with academic and industry researchers, for quantitative high-throughput screening (qHTS) across a diverse set of cell-based and biochemical assays. Characterization of the library in terms of physicochemical properties, structural diversity, and similarity to compounds in publicly available libraries indicates that the Canvass library contains many structural elements in common with approved drugs. The assay data generated were analyzed using a variety of quality control metrics, and the resultant assay profiles were explored using statistical methods, such as clustering and compound promiscuity analyses. Individual compounds were then sorted by structural class and activity profiles. Differential behavior based on these classifications, as well as noteworthy activities, are outlined herein. One such highlight is the activity of (-)-2(S)-cathafoline, which was found to stabilize calcium levels in the endoplasmic reticulum. The workflow described here illustrates a pilot effort to broadly survey the biological potential of natural products by utilizing the power of automation and high-throughput screening.
Collapse
Affiliation(s)
- Sara E. Kearney
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Gergely Zahoránszky-Kőhalmi
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Kyle R. Brimacombe
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Mark J. Henderson
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Caitlin Lynch
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Tongan Zhao
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Kanny
K. Wan
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
- Department
of Chemistry, Harvey Mudd College, 301 Platt Boulevard, Claremont, California 91711, United States
| | - Zina Itkin
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Christopher Dillon
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Min Shen
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Dorian
M. Cheff
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Tobie
D. Lee
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Danielle Bougie
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Ken Cheng
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Nathan
P. Coussens
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Dorjbal Dorjsuren
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Richard
T. Eastman
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Ruili Huang
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Michael
J. Iannotti
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Surendra Karavadhi
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Carleen Klumpp-Thomas
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Jacob
S. Roth
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Srilatha Sakamuru
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Wei Sun
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Steven
A. Titus
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Adam Yasgar
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Ya-Qin Zhang
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Jinghua Zhao
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Rodrigo
B. Andrade
- Department
of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - M. Kevin Brown
- Department
of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Noah
Z. Burns
- Department
of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305, United States
| | - Jin K. Cha
- Department
of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Emily
E. Mevers
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Jon Clardy
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Jason
A. Clement
- Natural
Products Discovery Institute, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Peter
A. Crooks
- University
of Arkansas for Medical Sciences, 4301 West Markham Street 522, Little Rock, Arkansas 72205, United States
| | - Gregory
D. Cuny
- Department
of Pharmacological and Pharmaceutical Sciences, University of Houston, 4849 Calhoun Road, Houston, Texas 77204, United
States
| | - Jake Ganor
- Diamond
Age Corp., 344 East Louisiana
Street, McKinney, Texas 75069, United States
| | - Jesus Moreno
- Department
of Chemistry and Biochemistry, UCLA, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Lucas
A. Morrill
- Department
of Chemistry and Biochemistry, UCLA, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Elias Picazo
- Department
of Chemistry and Biochemistry, UCLA, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Robert
B. Susick
- Department
of Chemistry and Biochemistry, UCLA, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Neil
K. Garg
- Department
of Chemistry and Biochemistry, UCLA, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Brian
C. Goess
- Department
of Chemistry, Furman University, 3300 Poinsett Highway, Greenville, South Carolina 29613, United States
| | - Robert
B. Grossman
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Chambers
C. Hughes
- Scripps
Institution of Oceanography, UCSD, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jeffrey
N. Johnston
- Department
of Chemistry, Vanderbilt University, 7330 Stevenson Center, Nashville, Tennessee 37235, United States
| | - Madeleine
M. Joullie
- Department
of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - A. Douglas Kinghorn
- College
of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, Ohio 43210, United States
| | - David
G.I. Kingston
- Department
of Chemistry, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Michael
J. Krische
- Chemistry
Department, The University of Texas at Austin, 105 East 24th Street STOP A5300, Austin, Texas 78712, United States
| | - Ohyun Kwon
- Department
of Chemistry and Biochemistry, UCLA, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Thomas
J. Maimone
- Department
of Chemistry, University of California Berkeley, 826 Latimer Hall, Berkeley, California 94720, United States
| | - Susruta Majumdar
- Department
of Molecular Pharmacology and Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
- Center for
Clinical Pharmacology, St Louis College
of Pharmacy and Washington University School of Medicine, 2 Pharmacy Place, St. Louis, Missouri 63110, United States
| | - Katherine
N. Maloney
- Department
of Chemistry, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, California 92106, United States
| | - Enas Mohamed
- University
of Mississippi School of Pharmacy, 2500 North State Street, Jackson, Mississippi 39216, United States
| | - Brian
T. Murphy
- College
of Pharmacy, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, Illinois 60607, United States
| | - Pavel Nagorny
- Department
of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - David
E. Olson
- Department
of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
- School of
Medicine, Department of Biochemistry and Molecular Medicine, University of California, Davis, 2700 Stockton Boulevard, Suite 2102, Sacramento, California 95817, United States
- Center for
Neuroscience, University of California,
Davis, 1544 Newton Court, Davis, California 95618, United States
| | - Larry
E. Overman
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697, United States
| | - Lauren
E. Brown
- Department
of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - John
K. Snyder
- Department
of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - John
A. Porco
- Department
of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Fatima Rivas
- Department
of Chemical Biology and Therapeutics, St.
Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Samir
A. Ross
- University
of Mississippi School of Pharmacy, 2500 North State Street, Jackson, Mississippi 39216, United States
| | - Richmond Sarpong
- Department
of Chemistry, University of California Berkeley, 841-A Latimer Hall, Berkeley, California 94720, United States
| | - Indrajeet Sharma
- Department
of Chemistry and Biochemistry, and Institute of Natural Products and
Research Technologies, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Jared
T. Shaw
- Department
of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Zhengren Xu
- Department
of Chemistry, Florida Campus, The Scripps
Research Institute, 130
Scripps Way, Jupiter, Florida 33458, United States
| | - Ben Shen
- Department
of Chemistry, Florida Campus, The Scripps
Research Institute, 130
Scripps Way, Jupiter, Florida 33458, United States
| | - Wei Shi
- Department
of Chemistry and Biochemistry, University
of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Corey
R.J. Stephenson
- Department
of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Alyssa
L. Verano
- Pharmacology
Graduate Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Derek
S. Tan
- Pharmacology
Graduate Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
- Chemical
Biology Program, Sloan Kettering Institute and Tri-Institutional Research
Program, Memorial Sloan Kettering Cancer
Center, 1275 York Avenue, New York, New York 10065, United States
| | - Yi Tang
- Department
of Chemistry and Biochemistry, UCLA, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Richard
E. Taylor
- Department
of Chemistry and Biochemistry and the Warren Family Research Center
for Drug Discovery and Development, University
of Notre Dame, 305 McCourtney
Hall, Notre Dame, Indiana 46556, United States
| | - Regan
J. Thomson
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - David
A. Vosburg
- Department
of Chemistry, Harvey Mudd College, 301 Platt Boulevard, Claremont, California 91711, United States
| | - Jimmy Wu
- Department
of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - William
M. Wuest
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
- Emory Antibiotic
Resistance Center, Emory University School
of Medicine, 201 Dowman
Drive, Atlanta, Georgia 30322, United States
| | - Armen Zakarian
- Santa
Barbara
Department of Chemistry and Biochemistry, University of California, Santa
Barbara, California 93106, United States
| | - Yufeng Zhang
- School of
Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Sha Tin, New Territories, Hong Kong SAR
| | - Tianjing Ren
- School of
Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Sha Tin, New Territories, Hong Kong SAR
| | - Zhong Zuo
- School of
Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Sha Tin, New Territories, Hong Kong SAR
| | - James Inglese
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Sam Michael
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Anton Simeonov
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Wei Zheng
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Paul Shinn
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Ajit Jadhav
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Matthew
B. Boxer
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Matthew D. Hall
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Menghang Xia
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Rajarshi Guha
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Jason M. Rohde
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| |
Collapse
|
48
|
Exploration of synthetic multifunctional amides as new therapeutic agents for Alzheimer's disease through enzyme inhibition, chemoinformatic properties, molecular docking and dynamic simulation insights. J Theor Biol 2018; 458:169-183. [PMID: 30243565 DOI: 10.1016/j.jtbi.2018.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/06/2018] [Accepted: 09/17/2018] [Indexed: 12/12/2022]
Abstract
A new series of multifunctional amides has been synthesized having moderate enzyme inhibitory potentials and mild cytotoxicity. 2-Furyl(1-piperazinyl)methanone (1) was coupled with 3,5-dichloro-2-hydroxybenzenesulfonyl chloride (2) to form {4-[(3,5-dichloro-2-hydroxyphenyl)sulfonyl]-1-piperazinyl}(2-furyl)methanone (3). Different elecrophiles were synthesized by the reaction of various un/substituted anilines (4a-o) with 2-bromoacetylbromide (5), 2‑bromo‑N-(un/substituted-phenyl)acetamides (6a-o). Further, equimolar ratios of 3 and 6a-o were allowed to react in the presence of K2CO3 in acetonitrile to form desired multifunctional amides (7a-o). The structural confirmation of all the synthesized compounds was carried out by their EI-MS, IR, 1H NMR and 13C NMR spectral data. Enzyme inhibition activity was performed against acetyl and butyrylcholinestrase enzymes, whereby 7e showed very good activity having IC50 value of 5.54 ± 0.03 and 9.15 ± 0.01 μM, respectively, relative to eserine, a reference standard. Hemolytic activity of the molecules was checked to asertain their cytotoxicity towards red blood cell membrance and it was observed that most of the compounds were not toxic up to certain range. Moreover, chemoinformatic protepties and docking simulation results also showed the significance of 7e as compared to other compounds. Based on in vitro and in silico analysis 7e could be used as a template for the development of new drugs against Alzheimer's disease.
Collapse
|
49
|
Reithmeier A, Lundbäck T, Haraldsson M, Frank M, Ek-Rylander B, Nyholm PG, Gustavsson AL, Andersson G. Identification of inhibitors of Tartrate-resistant acid phosphatase (TRAP/ACP5) activity by small-molecule screening. Chem Biol Drug Des 2018; 92:1255-1271. [PMID: 29500863 DOI: 10.1111/cbdd.13187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/29/2018] [Accepted: 02/21/2018] [Indexed: 12/28/2022]
Abstract
Tartrate-resistant acid phosphatase (TRAP/ACP5) occurs as two isoforms-TRAP 5a with low enzymatic activity due to a loop interacting with the active site and the more active TRAP isoform 5b generated upon proteolytic cleavage of this loop. TRAP has been implicated in several diseases, including cancer. Thus, this study set out to identify small-molecule inhibitors of TRAP activity. A microplate-based enzymatic assay for TRAP 5b was applied in a screen of 30,315 compounds, resulting in the identification of 90 primary hits. After removal of promiscuous compounds, unwanted groups, and false positives by orthogonal assays and three-concentration validation, the properties of 52 compounds were further investigated to better understand their mechanism of action. Full-concentration-response curves for these compounds were established under different enzyme concentrations and (pre)incubation times to remove compounds with inconsistent results and low potencies. Full-concentration-response curves were also performed for both isoforms, to examine isoform prevalence. Filtering led to six prioritized compounds, representing different clusters. One of these, CBK289001 or (6S)-6-[3-(2H-1,3-benzodioxol-5-yl)-1,2,4-oxadiazol-5-yl]-N-(propan-2-yl)-1H,4H,5H,6H,7H-imidazo[4,5-c]pyridine-5-carboxamide, demonstrated efficacy in a migration assay and IC50 values from 4 to 125 μm. Molecular docking studies and analog testing were performed around CBK289001 to provide openings for further improvement toward more potent blockers of TRAP activity.
Collapse
Affiliation(s)
- Anja Reithmeier
- Department of Laboratory Medicine (LABMED), H5, Division of Pathology, F46, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Thomas Lundbäck
- Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Martin Haraldsson
- Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | - Barbro Ek-Rylander
- Department of Laboratory Medicine (LABMED), H5, Division of Pathology, F46, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | | | - Anna-Lena Gustavsson
- Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Göran Andersson
- Department of Laboratory Medicine (LABMED), H5, Division of Pathology, F46, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| |
Collapse
|
50
|
Hevener KE. Computational Toxicology Methods in Chemical Library Design and High-Throughput Screening Hit Validation. Methods Mol Biol 2018; 1800:275-285. [PMID: 29934898 DOI: 10.1007/978-1-4939-7899-1_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The discovery of molecular toxicity in a clinical drug candidate can have a significant impact on both the cost and timeline of the drug discovery process. Early identification of potentially toxic compounds during screening library preparation or, alternatively, during the hit validation process, is critical to ensure that valuable time and resources are not spent pursuing compounds that may possess a high propensity for human toxicity. This chapter focuses on the application of computational molecular filters, applied either prescreening or postscreening, to identify and remove known reactive and/or potentially toxic compounds from consideration in drug discovery campaigns.
Collapse
Affiliation(s)
- Kirk E Hevener
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|