1
|
Nasrallah JB. Stop and go signals at the stigma-pollen interface of the Brassicaceae. PLANT PHYSIOLOGY 2023; 193:927-948. [PMID: 37423711 PMCID: PMC10517188 DOI: 10.1093/plphys/kiad301] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/16/2023] [Indexed: 07/11/2023]
Affiliation(s)
- June B Nasrallah
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
2
|
Wang Y, Liu P, Cai Y, Li Y, Tang C, Zhu N, Wang P, Zhang S, Wu J. PbrBZR1 interacts with PbrARI2.3 to mediate brassinosteroid-regulated pollen tube growth during self-incompatibility signaling in pear. PLANT PHYSIOLOGY 2023; 192:2356-2373. [PMID: 37010117 PMCID: PMC10315279 DOI: 10.1093/plphys/kiad208] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
S-RNase-mediated self-incompatibility (SI) prevents self-fertilization and promotes outbreeding to ensure genetic diversity in many flowering plants, including pear (Pyrus sp.). Brassinosteroids (BRs) have well-documented functions in cell elongation, but their molecular mechanisms in pollen tube growth, especially in the SI response, remain elusive. Here, exogenously applied brassinolide (BL), an active BR, countered incompatible pollen tube growth inhibition during the SI response in pear. Antisense repression of BRASSINAZOLE-RESISTANT1 (PbrBZR1), a critical component of BR signaling, blocked the positive effect of BL on pollen tube elongation. Further analyses revealed that PbrBZR1 binds to the promoter of EXPANSIN-LIKE A3 (PbrEXLA3) to activate its expression. PbrEXLA3 encodes an expansin that promotes pollen tube elongation in pear. The stability of dephosphorylated PbrBZR1 was substantially reduced in incompatible pollen tubes, where it is targeted by ARIADNE2.3 (PbrARI2.3), an E3 ubiquitin ligase that is strongly expressed in pollen. Our results show that during the SI response, PbrARI2.3 accumulates and negatively regulates pollen tube growth by accelerating the degradation of PbrBZR1 via the 26S proteasome pathway. Together, our results show that an ubiquitin-mediated modification participates in BR signaling in pollen and reveal the molecular mechanism by which BRs regulate S-RNase-based SI.
Collapse
Affiliation(s)
- Yicheng Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Panpan Liu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiling Cai
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Li
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Tang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Nan Zhu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Juyou Wu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
3
|
Xing Y, Wang K, Huang C, Huang J, Zhao Y, Si X, Li Y. Global Transcriptome Analysis Revealed the Molecular Regulation Mechanism of Pigment and Reactive Oxygen Species Metabolism During the Stigma Development of Carya cathayensis. FRONTIERS IN PLANT SCIENCE 2022; 13:881394. [PMID: 35615144 PMCID: PMC9125253 DOI: 10.3389/fpls.2022.881394] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/22/2022] [Indexed: 05/20/2023]
Abstract
Hickory (Carya cathayensis Sarg.) is a monoecious plant of the genus Carya of the Juglandaceae family. Its nuts contain a number of nutritional compounds and are deeply loved by consumers. Interestingly, it was observed that the color of hickory stigma changed obviously from blooming to mature. However, the molecular mechanism underlying color formation during stigma development and the biological significance of this phenomenon was mostly unknown. In this work, pigment content, reactive oxygen species (ROS) removal capacity, and transcriptome analysis of developing stigma of hickory at 4 differential sampling time points (S1, S2, S3, and S4) were performed to reveal the dynamic changes of related pigment, antioxidant capacity, and its internal molecular regulatory mechanism. It was found that total chlorophyll content was decreased slightly from S1 to S4, while total carotenoids content was increased from S1 to S3 but decreased gradually from S3 to S4. Total anthocyanin content continued to increase during the four periods of stigma development, reaching the highest level at the S4. Similarly, the antioxidant capacity of stigma was also gradually improved from S1 to S4. Furthermore, transcriptome analysis of developing hickory stigma identified 31,027 genes. Time-series analysis of gene expressions showed that these genes were divided into 12 clusters. Cluster 5 was enriched with some genes responsible for porphyrin and chlorophyll metabolism, carotenoid metabolism, and photosynthesis. Meanwhile, cluster 10 was enriched with genes related to flavonoid metabolism, including anthocyanin involved in ROS scavenging, and its related genes were mainly distributed in cluster 12. Based on the selected threshold values, a total of 10432 differentially expressed genes were screened out and enriched in the chlorophyll, carotenoid, anthocyanin, and ROS metabolism. The expression trends of these genes provided plausible explanations for the dynamic change of color and ROS level of hickory stigma with development. qRT-PCR analyses were basically consistent with the results of RNA-seq. The gene co-regulatory networks of pigment and ROS metabolism were further constructed and MYB113 (CCA0887S0030) and WRKY75 (CCA0573S0068) were predicted to be two core transcriptional regulators. These results provided in-depth evidence for revealing the molecular mechanism of color formation in hickory stigma and its biological significance.
Collapse
|
4
|
Li B, Zhang X, Liu Z, Wang L, Song L, Liang X, Dou S, Tu J, Shen J, Yi B, Wen J, Fu T, Dai C, Gao C, Wang A, Ma C. Genetic and Molecular Characterization of a Self-Compatible Brassica rapa Line Possessing a New Class II S Haplotype. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122815. [PMID: 34961286 PMCID: PMC8709392 DOI: 10.3390/plants10122815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 05/20/2023]
Abstract
Most flowering plants have evolved a self-incompatibility (SI) system to maintain genetic diversity by preventing self-pollination. The Brassica species possesses sporophytic self-incompatibility (SSI), which is controlled by the pollen- and stigma-determinant factors SP11/SCR and SRK. However, the mysterious molecular mechanism of SI remains largely unknown. Here, a new class II S haplotype, named BrS-325, was identified in a pak choi line '325', which was responsible for the completely self-compatible phenotype. To obtain the entire S locus sequences, a complete pak choi genome was gained through Nanopore sequencing and de novo assembly, which provided a good reference genome for breeding and molecular research in B. rapa. S locus comparative analysis showed that the closest relatives to BrS-325 was BrS-60, and high sequence polymorphism existed in the S locus. Meanwhile, two duplicated SRKs (BrSRK-325a and BrSRK-325b) were distributed in the BrS-325 locus with opposite transcription directions. BrSRK-325b and BrSCR-325 were expressed normally at the transcriptional level. The multiple sequence alignment of SCRs and SRKs in class II S haplotypes showed that a number of amino acid variations were present in the contact regions (CR II and CR III) of BrSCR-325 and the hypervariable regions (HV I and HV II) of BrSRK-325s, which may influence the binding and interaction between the ligand and the receptor. Thus, these results suggested that amino acid variations in contact sites may lead to the SI destruction of a new class II S haplotype BrS-325 in B. rapa. The complete SC phenotype of '325' showed the potential for practical breeding application value in B. rapa.
Collapse
Affiliation(s)
- Bing Li
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
| | - Xueli Zhang
- Wuhan Vegetable Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430345, China; (X.Z.); (L.S.)
| | - Zhiquan Liu
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China;
| | - Lulin Wang
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
| | - Liping Song
- Wuhan Vegetable Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430345, China; (X.Z.); (L.S.)
| | - Xiaomei Liang
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
| | - Shengwei Dou
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
| | - Jinxing Tu
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
| | - Jinxiong Shen
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
| | - Bin Yi
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
| | - Jing Wen
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
| | - Tingdong Fu
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
| | - Cheng Dai
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
| | - Changbin Gao
- Wuhan Vegetable Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430345, China; (X.Z.); (L.S.)
- Correspondence: (C.G.); (A.W.); (C.M.); Tel.: +86-27-8728-18-07 (C.M.)
| | - Aihua Wang
- Wuhan Vegetable Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430345, China; (X.Z.); (L.S.)
- Correspondence: (C.G.); (A.W.); (C.M.); Tel.: +86-27-8728-18-07 (C.M.)
| | - Chaozhi Ma
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
- Correspondence: (C.G.); (A.W.); (C.M.); Tel.: +86-27-8728-18-07 (C.M.)
| |
Collapse
|
5
|
Vekemans X, Castric V. When the genetic architecture matters: evolutionary and ecological implications of self versus nonself recognition in plant self-incompatibility. THE NEW PHYTOLOGIST 2021; 231:1304-1307. [PMID: 34146416 DOI: 10.1111/nph.17471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Xavier Vekemans
- CNRS, Univ. Lille, UMR 8198 - Evo-Eco-Paleo, Lille, F-59000, France
| | - Vincent Castric
- CNRS, Univ. Lille, UMR 8198 - Evo-Eco-Paleo, Lille, F-59000, France
| |
Collapse
|
6
|
Azibi T, Hadj-Arab H, Lodé M, Ferreira de Carvalho J, Trotoux G, Nègre S, Gilet MM, Boutte J, Lucas J, Vekemans X, Chèvre AM, Rousseau-Gueutin M. Impact of whole genome triplication on the evolutionary history and the functional dynamics of regulatory genes involved in Brassica self-incompatibility signalling pathway. PLANT REPRODUCTION 2020; 33:43-58. [PMID: 32080762 DOI: 10.1007/s00497-020-00385-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Polyploidy or whole genome duplication is a frequent and recurrent phenomenon in flowering plants that has played a major role in their diversification, adaptation and speciation. The adaptive success of polyploids relates to the different evolutionary fates of duplicated genes. In this study, we explored the impact of the whole genome triplication (WGT) event in the Brassiceae tribe on the genes involved in the self-incompatibility (SI) signalling pathway, a mechanism allowing recognition and rejection of self-pollen in hermaphrodite plants. By taking advantage of the knowledge acquired on this pathway as well as of several reference genomes in Brassicaceae species, we determined copy number of the different genes involved in this pathway and investigated their structural and functional evolutionary dynamics. We could infer that whereas most genes involved in the SI signalling returned to single copies after the WGT event (i.e. ARC1, JDP1, THL1, THL2, Exo70A01) in diploid Brassica species, a few were retained in duplicated (GLO1 and PLDα) or triplicated copies (MLPK). We also carefully studied the gene structure of these latter duplicated genes (including the conservation of functional domains and active sites) and tested their transcription in the stigma to identify which copies seem to be involved in the SI signalling pathway. By taking advantage of these analyses, we then explored the putative origin of a contrasted SI phenotype between two Brassica rapa varieties that have been fully sequenced and shared the same S-allele (S60).
Collapse
Affiliation(s)
- Thanina Azibi
- University of Sciences and Technology Houari Boumedienne USTHB, Faculty of Biological Sciences FSB, Laboratory of Biology and Physiology of Organisms LBPO, Bab-Ezzouar, El-Alia, BP 32, 16111, Algiers, Algeria
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | - Houria Hadj-Arab
- University of Sciences and Technology Houari Boumedienne USTHB, Faculty of Biological Sciences FSB, Laboratory of Biology and Physiology of Organisms LBPO, Bab-Ezzouar, El-Alia, BP 32, 16111, Algiers, Algeria.
| | - Maryse Lodé
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | | | - Gwenn Trotoux
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | - Sylvie Nègre
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | | | - Julien Boutte
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | - Jérémy Lucas
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | - Xavier Vekemans
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, 59000, Lille, France
| | - Anne-Marie Chèvre
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | | |
Collapse
|
7
|
Affiliation(s)
- B. K. Singh
- Indian Council of Agricultural Research–Indian Institute of Vegetable Research, Shahanshahpur, Varanasi, Uttar Pradesh, India
| | - Bijendra Singh
- Indian Council of Agricultural Research–Indian Institute of Vegetable Research, Shahanshahpur, Varanasi, Uttar Pradesh, India
| | - P. M. Singh
- Indian Council of Agricultural Research–Indian Institute of Vegetable Research, Shahanshahpur, Varanasi, Uttar Pradesh, India
| |
Collapse
|
8
|
Liu J, Zhang H, Lian X, Converse R, Zhu L. Identification of Interacting Motifs Between Armadillo Repeat Containing 1 (ARC1) and Exocyst 70 A1 (Exo70A1) Proteins in Brassica oleracea. Protein J 2015; 35:34-43. [DOI: 10.1007/s10930-015-9644-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Millner HJ, McCrea AR, Baldwin TC. An investigation of self-incompatibility within the genus Restrepia. AMERICAN JOURNAL OF BOTANY 2015; 102:487-494. [PMID: 25784481 DOI: 10.3732/ajb.1400555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
UNLABELLED • PREMISE OF THE STUDY The genus Restrepia (Orchidaceae) is indigenous to montane rain forests of Central and South America. Recently, as habitat has fragmented and wild populations dwindled, the chances for successful cross-pollination within the genus have been reduced. Since cultivated species of Restrepia have been vegetatively propagated, they remain genetically close to those in the wild, making ex situ collections of the genus useful model populations for investigating breeding systems. Restrepia are found in clade B of the Pleurothallidinae, the only clade in which self-incompatibility (SI) has not yet been confirmed. In the current study, private collections of Restrepia were used to study the operation of SI within the genus to assist future ex situ conservation of this and related genera.• METHODS A variety of self-pollination, intraspecific, and interspecific crosses were performed across the genus, and pollen tube growth was studied.• KEY RESULTS Individual species exhibited varying degrees of SI. Self-pollinations performed across 26 species in the genus produced few viable seeds, with the exception of R. aberrans. Viable "filled" seeds with embryos were shown to require an intraspecific cross. Primary hybrids between species produced >90% seeds with embryos that germinated well.• CONCLUSIONS The type of SI operating within the genus was considered to be best explained by gametophytic self-incompatibility (GSI) with interspecific variation in its phenotypic expression. The implications of these findings are discussed in relation to SI in the Pleurothallidinae and conservation strategies for Restrepia and related genera.
Collapse
Affiliation(s)
- Helen J Millner
- Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1LY, UK
| | - Alison R McCrea
- Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1LY, UK
| | - Timothy C Baldwin
- Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1LY, UK
| |
Collapse
|
10
|
Sakamoto T, Deguchi M, Brustolini OJB, Santos AA, Silva FF, Fontes EPB. The tomato RLK superfamily: phylogeny and functional predictions about the role of the LRRII-RLK subfamily in antiviral defense. BMC PLANT BIOLOGY 2012; 12:229. [PMID: 23198823 PMCID: PMC3552996 DOI: 10.1186/1471-2229-12-229] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 11/18/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND Receptor-like kinases (RLKs) play key roles during development and in responses to the environment. Despite the relevance of the RLK family and the completion of the tomato genome sequencing, the tomato RLK family has not yet been characterized, and a framework for functional predictions of the members of the family is lacking. RESULTS To generate a complete list of all the members of the tomato RLK family, we performed a phylogenetic analysis using the Arabidopsis family as a template. A total of 647 RLKs were identified in the tomato genome, which were organized into the same subfamily clades as Arabidopsis RLKs. Only eight of 58 RLK subfamilies exhibited specific expansion/reduction compared to their Arabidopsis counterparts. We also characterized the LRRII-RLK family by phylogeny, genomic analysis, expression profile and interaction with the virulence factor from begomoviruses, the nuclear shuttle protein (NSP). The LRRII subfamily members from tomato and Arabidopsis were highly conserved in both sequence and structure. Nevertheless, the majority of the orthologous pairs did not display similar conservation in the gene expression profile, indicating that these orthologs may have diverged in function after speciation. Based on the fact that members of the Arabidopsis LRRII subfamily (AtNIK1, AtNIK2 and AtNIK3) interact with the begomovirus nuclear shuttle protein (NSP), we examined whether the tomato orthologs of NIK, BAK1 and NsAK genes interact with NSP of Tomato Yellow Spot Virus (ToYSV). The tomato orthologs of NSP interactors, SlNIKs and SlNsAK, interacted specifically with NSP in yeast and displayed an expression pattern consistent with the pattern of geminivirus infection. In addition to suggesting a functional analogy between these phylogenetically classified orthologs, these results expand our previous observation that NSP-NIK interactions are neither virus-specific nor host-specific. CONCLUSIONS The tomato RLK superfamily is made-up of 647 proteins that form a monophyletic tree with the Arabidopsis RLKs and is divided into 58 subfamilies. Few subfamilies have undergone expansion/reduction, and only six proteins were lineage-specific. Therefore, the tomato RLK family shares functional and structural conservation with Arabidopsis. For the LRRII-RLK members SlNIK1 and SlNIK3, we observed functions analogous to those of their Arabidopsis counterparts with respect to protein-protein interactions and similar expression profiles, which predominated in tissues that support high efficiency of begomovirus infection. Therefore, NIK-mediated antiviral signaling is also likely to operate in tomato, suggesting that tomato NIKs may be good targets for engineering resistance against tomato-infecting begomoviruses.
Collapse
Affiliation(s)
- Tetsu Sakamoto
- National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil
| | - Michihito Deguchi
- National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil
- Departamento de Bioquímica e Biologia Molecular/BIOAGRO, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil
| | - Otávio JB Brustolini
- National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil
- Departamento de Bioquímica e Biologia Molecular/BIOAGRO, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil
| | - Anésia A Santos
- National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil
- Departamento de Bioquímica e Biologia Molecular/BIOAGRO, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil
| | - Fabyano F Silva
- Departamento de Estatística, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil
| | - Elizabeth PB Fontes
- National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil
- Departamento de Bioquímica e Biologia Molecular/BIOAGRO, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil
| |
Collapse
|
11
|
Zhang X, Wang L, Yuan Y, Tian D, Yang S. Rapid copy number expansion and recent recruitment of domains in S-receptor kinase-like genes contribute to the origin of self-incompatibility. FEBS J 2011; 278:4323-37. [DOI: 10.1111/j.1742-4658.2011.08349.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Abstract
Major progress has been made in unravelling of regulatory mechanisms in eukaryotic cells. Modification of target protein properties by reversible phosphorylation events has been found to be one of the most prominent cellular control processes in all organisms. The phospho-status of a protein is dynamically controlled by protein kinases and counteracting phosphatases. Therefore, monitoring of kinase and phosphatase activities, identification of specific phosphorylation sites, and assessment of their functional significance are of crucial importance to understand development and homeostasis. Recent advances in the area of molecular biology and biochemistry, for instance, mass spectrometry-based phosphoproteomics or fluorescence spectroscopical methods, open new possibilities to reach an unprecidented depth and a proteome-wide understanding of phosphorylation processes in plants and other species. In addition, the growing number of model species allows now deepening evolutionary insights into signal transduction cascades and the use of kinase/phosphatase systems. Thus, this is the age where we move from an understanding of the structure and function of individual protein modules to insights how these proteins are organized into pathways and networks. In this introductory chapter, we briefly review general definitions, methodology, and current concepts of the molecular mechanisms of protein kinase function as a foundation for this methods book. We briefly review biochemistry and structural biology of kinases and provide selected examples for the role of kinases in biological systems.
Collapse
|
13
|
Structure of styles and pollen tubes of distylous Turnera joelii and T. scabra (Turneraceae): are there different mechanisms of incompatibility between the morphs? ACTA ACUST UNITED AC 2010; 23:225-37. [DOI: 10.1007/s00497-010-0135-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 01/30/2010] [Indexed: 02/04/2023]
|
14
|
Lin H, Moghe G, Ouyang S, Iezzoni A, Shiu SH, Gu X, Buell CR. Comparative analyses reveal distinct sets of lineage-specific genes within Arabidopsis thaliana. BMC Evol Biol 2010; 10:41. [PMID: 20152032 PMCID: PMC2829037 DOI: 10.1186/1471-2148-10-41] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 02/12/2010] [Indexed: 11/25/2022] Open
Abstract
Background The availability of genome and transcriptome sequences for a number of species permits the identification and characterization of conserved as well as divergent genes such as lineage-specific genes which have no detectable sequence similarity to genes from other lineages. While genes conserved among taxa provide insight into the core processes among species, lineage-specific genes provide insights into evolutionary processes and biological functions that are likely clade or species specific. Results Comparative analyses using the Arabidopsis thaliana genome and sequences from 178 other species within the Plant Kingdom enabled the identification of 24,624 A. thaliana genes (91.7%) that were termed Evolutionary Conserved (EC) as defined by sequence similarity to a database entry as well as two sets of lineage-specific genes within A. thaliana. One of the A. thaliana lineage-specific gene sets share sequence similarity only to sequences from species within the Brassicaceae family and are termed Conserved Brassicaceae-Specific Genes (914, 3.4%, CBSG). The other set of A. thaliana lineage-specific genes, the Arabidopsis Lineage-Specific Genes (1,324, 4.9%, ALSG), lack sequence similarity to any sequence outside A. thaliana. While many CBSGs (76.7%) and ALSGs (52.9%) are transcribed, the majority of the CBSGs (76.1%) and ALSGs (94.4%) have no annotated function. Co-expression analysis indicated significant enrichment of the CBSGs and ALSGs in multiple functional categories suggesting their involvement in a wide range of biological functions. Subcellular localization prediction revealed that the CBSGs were significantly enriched in proteins targeted to the secretory pathway (412, 45.1%). Among the 107 putatively secreted CBSGs with known functions, 67 encode a putative pollen coat protein or cysteine-rich protein with sequence similarity to the S-locus cysteine-rich protein that is the pollen determinant controlling allele specific pollen rejection in self-incompatible Brassicaceae species. Overall, the ALSGs and CBSGs were more highly methylated in floral tissue compared to the ECs. Single Nucleotide Polymorphism (SNP) analysis showed an elevated ratio of non-synonymous to synonymous SNPs within the ALSGs (1.99) and CBSGs (1.65) relative to the EC set (0.92), mainly caused by an elevated number of non-synonymous SNPs, indicating that they are fast-evolving at the protein sequence level. Conclusions Our analyses suggest that while a significant fraction of the A. thaliana proteome is conserved within the Plant Kingdom, evolutionarily distinct sets of genes that may function in defining biological processes unique to these lineages have arisen within the Brassicaceae and A. thaliana.
Collapse
Affiliation(s)
- Haining Lin
- Department of Plant Biology, Michigan State University, 166 Plant Biology Building, East Lansing, MI 48824, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Hadj-Arab H, Chèvre AM, Gaude T, Chable V. Variability of the self-incompatibility reaction in Brassica oleracea L. with S 15 haplotype. ACTA ACUST UNITED AC 2009; 23:141-51. [PMID: 20490967 DOI: 10.1007/s00497-009-0119-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Accepted: 10/26/2009] [Indexed: 10/20/2022]
Abstract
Self-incompatibility (SI) is thought to have played a key role in the evolution of species as it promotes their outcrossing through the recognition and rejection of self-pollen grains. In most species, SI is under the control of a complex, multiallelic S-locus. The recognition system is associated with quantitative variations of the strength of the SI reaction; the origin of these variations is still not elucidated. To define the genetic regulations involved, we studied the variability of the SI response in homozygous S 15 S 15 plants in cauliflower. These plants were obtained from a self-progeny of a self-compatible (SC) plant heterozygous for S 15, which was generated after five selfing generations from one strongly self-incompatible initial plant. We found a continuous phenotypic variation for SI response in the offspring plants homozygous for the S 15 haplotype, from the strict SI reaction to self-compatibility, with a great proportion of the plants being partially self-compatible (PSC). Decrease in SI levels was also observed during the life of the flower. The number of pollen tubes passing through the stigma barrier was higher when counted 3 or 5 days after pollination than one day after pollination. Analysis of the expression of the two key genes regulating self-pollen recognition in cauliflower, the S-locus receptor kinase (SRK) and S-locus cysteine-rich (SCR/SP11) genes, revealed that self-compatibility or PSC was associated with decreased SRK or SCR/SP11 expression. Our work shows the particularly high level of phenotypic plasticity of the SI response associated with certain S-haplotypes in cauliflower.
Collapse
Affiliation(s)
- Houria Hadj-Arab
- USTHB FSB Laboratoire de Biologie et Physiologie des Organismes, BP 32 El-Alia, 16111, Alger, Algerie.
| | | | | | | |
Collapse
|
16
|
Abstract
The interplay of balancing selection within a species and rapid gene evolution between species can confound our ability to determine the functional equivalence of interspecific and intergeneric pairs of alleles underlying reproduction. In crucifer plants, mating specificity in the barrier to self-fertilization called self-incompatibility (SI) is controlled by allele-specific interactions between two highly polymorphic and co-evolving proteins, the S-locus receptor kinase (SRK) and its S-locus cysteine rich (SCR) ligand. These proteins have diversified both within and between species such that it is often difficult to determine from sequence information alone if they encode the same or different SI specificity. The self-fertile Arabidopsis thaliana was derived from an obligate outbreeding ancestor by loss of self-incompatibility, often in conjunction with inactivation of SRK or SCR. Nevertheless, some accessions of A. thaliana can express self-incompatibility upon transformation with an SRK-SCR gene pair isolated from its self-incompatible close relative A. lyrata. Here we show that several additional and highly diverged SRK/SCR genes from A. lyrata and another crucifer plant, Capsella grandiflora, confer self-incompatibility in A. thaliana, either as intact genes isolated from genomic libraries or after manipulation to generate chimeric fusions. We describe how the use of this newly developed chimeric protein strategy has allowed us to test the functional equivalence of SRK/SCR gene pairs from different taxa and to assay the functionality of endogenous A. thaliana SRK and SCR sequences.
Collapse
|
17
|
Boggs NA, Nasrallah JB, Nasrallah ME. Independent S-locus mutations caused self-fertility in Arabidopsis thaliana. PLoS Genet 2009; 5:e1000426. [PMID: 19300485 PMCID: PMC2650789 DOI: 10.1371/journal.pgen.1000426] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 02/17/2009] [Indexed: 11/30/2022] Open
Abstract
A common yet poorly understood evolutionary transition among flowering plants is a switch from outbreeding to an inbreeding mode of mating. The model plant Arabidopsis thaliana evolved to an inbreeding state through the loss of self-incompatibility, a pollen-rejection system in which pollen recognition by the stigma is determined by tightly linked and co-evolving alleles of the S-locus receptor kinase (SRK) and its S-locus cysteine-rich ligand (SCR). Transformation of A. thaliana, with a functional AlSRKb-SCRb gene pair from its outcrossing relative A. lyrata, demonstrated that A. thaliana accessions harbor different sets of cryptic self-fertility–promoting mutations, not only in S-locus genes, but also in other loci required for self-incompatibility. However, it is still not known how many times and in what manner the switch to self-fertility occurred in the A. thaliana lineage. Here, we report on our identification of four accessions that are reverted to full self-incompatibility by transformation with AlSRKb-SCRb, bringing to five the number of accessions in which self-fertility is due to, and was likely caused by, S-locus inactivation. Analysis of S-haplotype organization reveals that inter-haplotypic recombination events, rearrangements, and deletions have restructured the S locus and its genes in these accessions. We also perform a Quantitative Trait Loci (QTL) analysis to identify modifier loci associated with self-fertility in the Col-0 reference accession, which cannot be reverted to full self-incompatibility. Our results indicate that the transition to inbreeding occurred by at least two, and possibly more, independent S-locus mutations, and identify a novel unstable modifier locus that contributes to self-fertility in Col-0. The mating system adopted by a species has a profound influence on extent of polymorphism, population structure, and evolutionary potential. In flowering plants, the switch from outbreeding to inbreeding has occurred repeatedly, yet little is known about the underlying genetic events. This is true even for the model species A. thaliana, a highly self-fertile member of the crucifer family. In this family, outbreeding is enforced by a self-incompatibility system controlled by the S locus, which involves the recognition of pollen by the stigma to prevent self-fertilization and familial inbreeding. We recently demonstrated that A. thaliana accessions may be reverted to full or partial self-incompatibility by transformation with S-locus genes isolated from its close self-incompatible relative A. lyrata. Despite much recent debate, however, we still do not know how A. thaliana became self-fertile. Here, we use our recently established A. thaliana transgenic self-incompatible experimental model to address these issues. Analysis of the S locus in accessions that can be reverted to full self-incompatibility demonstrates that self-fertility in A. thaliana arose by at least two independent S-locus mutations. Furthermore, analysis of an accession that expresses only partial self-incompatibility shows that self-fertility is associated with an unstable allele at a locus unlinked to the S locus.
Collapse
Affiliation(s)
- Nathan A. Boggs
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - June B. Nasrallah
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Mikhail E. Nasrallah
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
18
|
Molecular population genetics of the SRK and SCR self-incompatibility genes in the wild plant species Brassica cretica (Brassicaceae). Genetics 2008; 181:985-95. [PMID: 19087967 DOI: 10.1534/genetics.108.090829] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Self-incompatibility (SI) in plants is a classic example of a trait evolving under strong frequency-dependent selection. As a consequence, population genetic theory predicts that the S locus, which controls SI, should maintain numerous alleles, display a high level of nucleotide diversity, and, in structured populations, show a lower level of among-population differentiation compared to neutral loci. Population-level investigations of DNA sequence variation at the S locus have recently been carried out in the genus Arabidopsis, largely confirming results from theoretical models of S-locus evolutionary dynamics, but no comparable studies have been done in wild Brassica species. In this study, we sequenced parts of the S-locus genes SRK and SCR, two tightly linked genes that are directly involved in the determination of SI specificity in samples from four natural populations of the wild species Brassica cretica. The amount and distribution of nucleotide diversity, as well as the frequency spectrum of putative functional haplotypes, observed at the S locus in B. cretica fit very well with expectations from theoretical models, providing strong evidence for frequency-dependent selection acting on the S locus in a wild Brassica species.
Collapse
|
19
|
Genetic causes and consequences of the breakdown of self-incompatibility: case studies in the Brassicaceae. Genet Res (Camb) 2008; 90:47-60. [PMID: 18289400 DOI: 10.1017/s0016672307008907] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The genetic consequences of inbreeding is a subject that has received thorough theoretical attention and has been of interest to empirical biologists since the time of Darwin. Particularly for species with genetically controlled mechanisms to promote outcrossing (self-incompatibility or SI systems), it is expected that high levels of genetic load should accumulate through sheltering of deleterious recessive mutations. Nevertheless, transitions to selfing are common across angiosperms, which suggests that the potentially negative consequences of reduced heterozygosity and genetic diversity are balanced by other factors, such as reproductive assurance. This mini-review focuses on empirical research in the Brassicaceae to emphasize some of the genetic consequences of shifts to inbreeding in terms of mechanisms for loss of SI, changes in genetic diversity following loss of SI, and inbreeding depression in relation to outcrossing history. Despite the long history of theoretical attention, there are still some surprisingly large gaps in our understanding in each of these areas. Rather than providing a complete overview, examples are drawn predominantly from published and emerging data from Arabidopsis thaliana and its relatives to highlight recent progress and remaining questions. We are currently on the brink of major breakthroughs in understanding due both to advances in sequencing technology and a shift in focus from crop plants to natural populations, where critical factors such as population structure, phylogeography, demographic history, partial compatibility and individual variation can be taken into account when investigating the nature of the selective forces regulating mating system evolution.
Collapse
|
20
|
Atomic force microscopic view of the fine topography on the tobacco stigma surface during its response to pollination. Sci Bull (Beijing) 2008. [DOI: 10.1007/s11434-008-0154-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Mable BK, Adam A. Patterns of genetic diversity in outcrossing and selfing populations ofArabidopsis lyrata. Mol Ecol 2007; 16:3565-80. [PMID: 17845431 DOI: 10.1111/j.1365-294x.2007.03416.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Arabidopsis lyrata is normally considered an obligately outcrossing species with a strong self-incompatibility system, but a shift in mating system towards inbreeding has been found in some North American populations (subspecies A. lyrata ssp. lyrata). This study provides a survey of the Great Lakes region of Canada to determine the extent of this mating system variation and how outcrossing rates are related to current population density, geographical distribution, and genetic diversity. Based on variation at microsatellite markers (progeny arrays to estimate multilocus outcrossing rates and population samples to estimate diversity measures) and controlled greenhouse pollinations, populations can be divided into two groups: (i) group A, consisting of individuals capable of setting selfed seed (including autogamous fruit set in the absence of pollinators), showing depressed outcrossing rates (T(m) = 0.2-0.6), heterozygosity (H(O) = 0.02-0.06) and genetic diversity (H(E) = 0.08-0.10); and (ii) group B, consisting of individuals that are predominantly self-incompatible (T(m) > 0.8), require pollinators for seeds set, and showing higher levels of heterozygosity (H(O) = 0.13-0.31) and diversity (H(E) = 0.19-0.410). Current population density is not related to the shift in mating system but does vary with latitude. Restricted gene flow among populations was evident among all but two populations (F(ST) = 0.11-0.8). Group A populations were more differentiated from one another (F(ST) = 0.78) than they were from group B populations (F(ST) = 0.59), with 41% of the variation partitioned within populations, 47% between populations, and 12% between groups. No significant relationship was found between genetic and geographical distance. Results are discussed in the context of possible postglacial expansion scenarios in relation to loss of self-incompatibility.
Collapse
Affiliation(s)
- Barbara K Mable
- Department of Botany, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| | | |
Collapse
|
22
|
Li M, Xu W, Yang W, Kong Z, Xue Y. Genome-wide gene expression profiling reveals conserved and novel molecular functions of the stigma in rice. PLANT PHYSIOLOGY 2007; 144:1797-812. [PMID: 17556504 PMCID: PMC1949881 DOI: 10.1104/pp.107.101600] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In angiosperms, the stigma provides initial nutrients and guidance cues for pollen grain germination and tube growth. However, little is known about the genes that regulate these processes in rice (Oryza sativa). Here, we generate rice stigma-specific or -preferential gene expression profiles through comparing genome-wide expression patterns of hand-dissected, unpollinated stigma at anthesis with seven tissues, including seedling shoot, seedling root, mature anther, ovary at anthesis, seeds 5 d after pollination, 10-d-old embryo, 10-d-old endosperm, and suspension-cultured cells by using both 57 K Affymetrix rice whole-genome array and 10 K rice cDNA microarray. A high reproducibility of the microarray results was detected between the two different technology platforms. In total, we identified 548 genes to be expressed specifically or predominantly in the stigma papillar cells of rice. Real-time quantitative reverse transcription-polymerase chain reaction analysis of 34 selected genes all confirmed their stigma-specific expression. The expression of five selected genes was further validated by RNA in situ hybridization. Gene Ontology analysis shows that several auxin-signaling components, transcription, and stress-related genes are significantly overrepresented in the rice stigma gene set. Interestingly, most of them also share several cis-regulatory elements with known stress-responsive genes, supporting the notion of an overlap of genetic programs regulating pollination and stress/defense responses. We also found that genes involved in cell wall metabolism and cellular communication appear to be conserved in the stigma between rice and Arabidopsis (Arabidopsis thaliana). Our results indicate that the stigmas appear to have conserved and novel molecular functions between rice and Arabidopsis.
Collapse
Affiliation(s)
- Meina Li
- Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Centre for Plant Gene Research, Beijing 100080, China
| | | | | | | | | |
Collapse
|
23
|
Tang C, Toomajian C, Sherman-Broyles S, Plagnol V, Guo YL, Hu TT, Clark RM, Nasrallah JB, Weigel D, Nordborg M. The evolution of selfing in Arabidopsis thaliana. Science 2007; 317:1070-2. [PMID: 17656687 DOI: 10.1126/science.1143153] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Unlike most of its close relatives, Arabidopsis thaliana is capable of self-pollination. In other members of the mustard family, outcrossing is ensured by the complex self-incompatibility (S) locus,which harbors multiple diverged specificity haplotypes that effectively prevent selfing. We investigated the role of the S locus in the evolution of and transition to selfing in A. thaliana. We found that the S locus of A. thaliana harbored considerable diversity, which is an apparent remnant of polymorphism in the outcrossing ancestor. Thus, the fixation of a single inactivated S-locus allele cannot have been a key step in the transition to selfing. An analysis of the genome-wide pattern of linkage disequilibrium suggests that selfing most likely evolved roughly a million years ago or more.
Collapse
Affiliation(s)
- Chunlao Tang
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sherman-Broyles S, Boggs N, Farkas A, Liu P, Vrebalov J, Nasrallah ME, Nasrallah JB. S locus genes and the evolution of self-fertility in Arabidopsis thaliana. THE PLANT CELL 2007; 19:94-106. [PMID: 17237349 PMCID: PMC1820967 DOI: 10.1105/tpc.106.048199] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Loss of self-incompatibility (SI) in Arabidopsis thaliana was accompanied by inactivation of genes required for SI, including S-LOCUS RECEPTOR KINASE (SRK) and S-LOCUS CYSTEINE-RICH PROTEIN (SCR), coadapted genes that constitute the SI specificity-determining S haplotype. Arabidopsis accessions are polymorphic for PsiSRK and PsiSCR, but it is unknown if the species harbors structurally different S haplotypes, either representing relics of ancestral functional and structurally heteromorphic S haplotypes or resulting from decay concomitant with or subsequent to the switch to self-fertility. We cloned and sequenced the S haplotype from C24, in which self-fertility is due solely to S locus inactivation, and show that this haplotype was produced by interhaplotypic recombination. The highly divergent organization and sequence of the C24 and Columbia-0 (Col-0) S haplotypes demonstrate that the A. thaliana S locus underwent extensive structural remodeling in conjunction with a relaxation of selective pressures that once preserved the integrity and linkage of coadapted SRK and SCR alleles. Additional evidence for this process was obtained by assaying 70 accessions for the presence of C24- or Col-0-specific sequences. Furthermore, analysis of SRK and SCR polymorphisms in these accessions argues against the occurrence of a selective sweep of a particular allele of SCR, as previously proposed.
Collapse
Affiliation(s)
- Sue Sherman-Broyles
- Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Chen ZJ. Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. ANNUAL REVIEW OF PLANT BIOLOGY 2007; 58:377-406. [PMID: 17280525 PMCID: PMC1949485 DOI: 10.1146/annurev.arplant.58.032806.103835] [Citation(s) in RCA: 600] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Polyploidy, or whole-genome duplication (WGD), is an important genomic feature for all eukaryotes, especially many plants and some animals. The common occurrence of polyploidy suggests an evolutionary advantage of having multiple sets of genetic material for adaptive evolution. However, increased gene and genome dosages in autopolyploids (duplications of a single genome) and allopolyploids (combinations of two or more divergent genomes) often cause genome instabilities, chromosome imbalances, regulatory incompatibilities, and reproductive failures. Therefore, new allopolyploids must establish a compatible relationship between alien cytoplasm and nuclei and between two divergent genomes, leading to rapid changes in genome structure, gene expression, and developmental traits such as fertility, inbreeding, apomixis, flowering time, and hybrid vigor. Although the underlying mechanisms for these changes are poorly understood, some themes are emerging. There is compelling evidence that changes in DNA sequence, cis- and trans-acting effects, chromatin modifications, RNA-mediated pathways, and regulatory networks modulate differential expression of homoeologous genes and phenotypic variation that may facilitate adaptive evolution in polyploid plants and domestication in crops.
Collapse
Affiliation(s)
- Z Jeffrey Chen
- Department of Molecular Cell and Developmental Biology and Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
26
|
Hagenblad J, Bechsgaard J, Charlesworth D. Linkage disequilibrium between incompatibility locus region genes in the plant Arabidopsis lyrata. Genetics 2006; 173:1057-73. [PMID: 16582433 PMCID: PMC1526524 DOI: 10.1534/genetics.106.055780] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have studied diversity in Arabidopsis lyrata of sequences orthologous to the ARK3 gene of A. thaliana. Our main goal was to test for recombination in the S-locus region. In A. thaliana, the single-copy ARK3 gene is closely linked to the non-functional copies of the self-incompatibility loci, and the ortholog in A. lyrata (a self-incompatible species) is in the homologous genome region and is known as Aly8. It is thus of interest to test whether Aly8 sequence diversity is elevated due to close linkage to the highly polymorphic incompatibility locus, as is theoretically predicted. However, Aly8 is not a single-copy gene, and the presence of paralogs could also lead to the appearance of elevated diversity. We established a typing approach based on different lengths of Aly8 PCR products and show that most A. lyrata haplotypes have a single copy, but some have two gene copies, both closely linked to the incompatibility locus, one being a pseudogene. We determined the phase of multiple haplotypes in families of plants from Icelandic and other populations. Different Aly8 sequence types are associated with different SRK alleles, while haplotypes with the same SRK sequences tend to have the same Aly8 sequence. There is evidence of some exchange of sequences between different Aly8 sequences, making it difficult to determine which ones are allelic or to estimate the diversity. However, the homogeneity of the Aly8 sequences of each S-haplotype suggests that recombination between the loci has been very infrequent over the evolutionary history of these populations. Overall, the results suggest that recombination rarely occurs in the interval between the S-loci and Aly8 and that linkage to the S-loci can probably account for the observed high Aly8 diversity.
Collapse
Affiliation(s)
- Jenny Hagenblad
- Institute of Evolutionary Biology, University of Edinburgh, UK
| | | | | |
Collapse
|
27
|
Robatzek S, Chinchilla D, Boller T. Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes Dev 2006; 20:537-42. [PMID: 16510871 PMCID: PMC1410809 DOI: 10.1101/gad.366506] [Citation(s) in RCA: 559] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pattern-recognition receptors (PRRs) trigger innate immune responses in animals and plants. One such PRR is the flagellin receptor FLS2 in Arabidopsis. Here, we demonstrate that a functional fusion of FLS2 to the green fluorescent protein (GFP) resides in cell membranes of most tissues. Stimulation with the flagellin epitope flg22 induces its transfer into intracellular mobile vesicles, followed by degradation. FLS2 internalization depends on cytoskeleton and proteasome functions, and receptor activation. A variant FLS2 mutated in Thr 867, a potential phosphorylation site, binds flg22 normally, but is impaired in flg22 responses and FLS2 endocytosis. We propose that plant cells regulate pathogen-associated molecular pattern (PAMP)-mediated PRR activities by subcellular compartmentalization.
Collapse
Affiliation(s)
- Silke Robatzek
- Zurich-Basel Plant Science Center, Botanical Institute, University of Basel, 4056 Basel, Switzerland.
| | | | | |
Collapse
|
28
|
Bonatto D, Brendel M, Henriques JAP. A new group of plant-specific ATP-dependent DNA ligases identified by protein phylogeny, hydrophobic cluster analysis and 3-dimensional modelling. FUNCTIONAL PLANT BIOLOGY : FPB 2005; 32:161-174. [PMID: 32689120 DOI: 10.1071/fp04143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Accepted: 01/06/2005] [Indexed: 06/11/2023]
Abstract
The eukaryotic ATP-dependent DNA ligases comprise a group of orthologous proteins that have distinct roles in DNA metabolism. In contrast with the well-known DNA ligases of animal cells, the DNA ligases of plant cells are poorly described. Until now, only two DNA ligases (I and IV) genes of Arabidopsis thaliana (L.) Heynh were isolated and characterised. Use of the complete genomic sequences of Oryza sativa L. and A. thaliana, as well as the partially assembled genomic data of Medicago truncatula L. and Brassica spp., allowed us to identify a new family of ATP-dependent DNA ligases that are found only in the Viridiplantae kingdom. An in-depth phylogenetic analysis of protein sequences showed that this family composes a distinct clade, which shares a last universal common ancestor with DNA ligases I. In silico sequence studies indicate that these proteins have distinct physico-chemical properties when compared with those of animal and fungal DNA ligases. Moreover, hydrophobic cluster analysis and 3-dimensional modelling allowed us to map two conserved domains within these DNA ligases I-like proteins. Additional data of microsynteny analysis indicate that these DNA ligases I-like genes are linked to the S and SLL2 loci of Brassica spp. and A. thaliana, respectively. Combining the results of all analyses, we propose the creation of the DNA ligases VI (LIG6) family, which is composed by plant-specific DNA ligases.
Collapse
Affiliation(s)
- Diego Bonatto
- Departamento de Biofísica/Centro de Biotecnologia, UFRGS, Av. Bento Gonçalves 9500, 91507-970 Porto Alegre, RS, Brazil
| | - Martin Brendel
- Departamento de Biofísica/Centro de Biotecnologia, UFRGS, Av. Bento Gonçalves 9500, 91507-970 Porto Alegre, RS, Brazil
| | - João Antonio Pêgas Henriques
- Departamento de Biofísica/Centro de Biotecnologia, UFRGS, Av. Bento Gonçalves 9500, 91507-970 Porto Alegre, RS, Brazil
| |
Collapse
|
29
|
Takebayashi N, Newbigin E, Uyenoyama MK. Maximum-likelihood estimation of rates of recombination within mating-type regions. Genetics 2005; 167:2097-109. [PMID: 15342543 PMCID: PMC1471000 DOI: 10.1534/genetics.103.021535] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Features common to many mating-type regions include recombination suppression over large genomic tracts and cosegregation of genes of various functions, not necessarily related to reproduction. Model systems for homomorphic self-incompatibility (SI) in flowering plants share these characteristics. We introduce a method for the exact computation of the joint probability of numbers of neutral mutations segregating at the determinant of mating type and at a linked marker locus. The underlying Markov model incorporates strong balancing selection into a two-locus coalescent. We apply the method to obtain a maximum-likelihood estimate of the rate of recombination between a marker locus, 48A, and S-RNase, the determinant of SI specificity in pistils of Nicotiana alata. Even though the sampled haplotypes show complete allelic linkage disequilibrium and recombinants have never been detected, a highly significant deficiency of synonymous substitutions at 48A compared to S-RNase suggests a history of recombination. Our maximum-likelihood estimate indicates a rate of recombination of perhaps 3 orders of magnitude greater than the rate of synonymous mutation. This approach may facilitate the construction of genetic maps of regions tightly linked to targets of strong balancing selection.
Collapse
Affiliation(s)
- Naoki Takebayashi
- Department of Biology, Duke University, Durham, North Carolina 27708-0338, USA
| | | | | |
Collapse
|
30
|
Abstract
Initially discovered in the context of photosynthesis, regulation by change in the redox state of thiol groups (S-S <--> 2SH) is now known to occur throughout biology. Several systems, each linking a hydrogen donor to an intermediary disulfide protein, act to effect changes that alter the activity of target proteins: the ferredoxin/thioredoxin system, comprised of reduced ferredoxin, a thioredoxin, and the enzyme, ferredoxin-thioredoxin reductase; the NADP/thioredoxin system, including NADPH, a thioredoxin, and NADP-thioredoxin reductase; and the glutathione/glutaredoxin system, composed of reduced glutathione and a glutaredoxin. A related disulfide protein, protein disulfide isomerase (PDI) acts in protein assembly. Regulation linked to plastoquinone and signaling induced by reactive oxygen species (ROS) and other agents are also being actively investigated. Progress made on these systems has linked redox to the regulation of an increasing number of processes not only in plants, but in other types of organisms as well. Research in areas currently under exploration promises to provide a fuller understanding of the role redox plays in cellular processes, and to further the application of this knowledge to technology and medicine.
Collapse
Affiliation(s)
- Bob B Buchanan
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
31
|
Abstract
Recent large-scale sequencing studies of mating type loci in a number of organisms offer insight into the origin and evolution of these genomic regions. Extensive tracts containing genes with a wide diversity of functions typically cosegregate with mating type. Cases in which mating type determination entails complementarity between distinct transcription units may descend from systems in which close physical linkage facilitated the coordinated expression and cosegregation of the interacting genes. In response to the particular selection pressures associated with the maintenance of more than one mating type, this nucleus of low recombination may expand over evolutionary time, engulfing neighboring tracts bearing genes with no direct role in reproduction. This scenario is consistent with the present-day structure of some mating type loci, including regulators of homomorphic self-incompatibility in angiosperms (S-loci). Recombination suppression and enforced S-locus heterozygosity accelerate the accumulation of genetic load and promote genetic associations between S-alleles and degenerating genes in cosegregating tracts. This S-allele-specific load may influence the evolution of self-incompatibility systems.
Collapse
Affiliation(s)
- Marcy K Uyenoyama
- Department of Biology, Box 90338, Duke University, Durham, NC 27708-0338, USA.
| |
Collapse
|
32
|
Bian XY, Friedrich A, Bai JR, Baumann U, Hayman DL, Barker SJ, Langridge P. High-resolution mapping of theSandZloci ofPhalaris coerulescens. Genome 2004; 47:918-30. [PMID: 15499406 DOI: 10.1139/g04-017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Self incompatibility (SI) in Phalaris coerulescens is gametophytically determined by two unlinked multi allelic loci (S and Z). Neither the S nor Z genes have yet been cloned. As part of a map-based cloning strategy, high-resolution maps of the S and Z regions were generated from distorted segregating populations using RFLP probes from wheat, barley, oat, and Phalaris. The S locus was delimited to 0.26 cM with two boundary markers (Xwg811 and Xpsr168) and cosegregated with Xbm2 and Xbcd762. Xbcd266 was the closest marker linked to Z (0.9 cM). A high level of colinearity in the S and Z regions was found in both self-incompatible and -compatible species. The S locus was localized to the subcentromere region of chromosome 1 and the Z locus to the long arm end of chromosome 2. Several rice BAC clones orthologous to the S and Z locus regions were identified. This opens the possibility of using the rice genome sequence data to generate more closely linked markers and identify SI candidate genes. These results add further support to the conservation of gene order in the S and Z regions of the grass genomes.Key words: Phalaris coerulescens, self-incompatibility, distorted segregation, mapping, map-based cloning, synteny mapping.
Collapse
Affiliation(s)
- X-Y Bian
- Department of Plant Science, The University of Adelaide, Waite Campus, SA5064 Glen Osmond, Australia
| | | | | | | | | | | | | |
Collapse
|
33
|
Bechsgaard J, Bataillon T, Schierup MH. Uneven segregation of sporophytic self-incompatibility alleles in Arabidopsis lyrata. J Evol Biol 2004; 17:554-61. [PMID: 15149398 DOI: 10.1111/j.1420-9101.2004.00699.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Self-incompatibility in Arabidopsis lyrata is sporophytically controlled by the multi-allelic S-locus. Self-incompatibility alleles (S-alleles) are under strong negative frequency dependent selection because pollen carrying common S-alleles have fewer mating opportunities. Population genetics theory predicts that deleterious alleles can accumulate if linked to the S-locus. This was tested by studying segregation of S-alleles in 11 large full sib families in A. lyrata. Significant segregation distortion leading to an up to fourfold difference in transmission rates was found in six families. Differences in transmission rates were not significantly different in reciprocal crosses and the distortions observed were compatible with selection acting at the gametic stage alone. The S-allele with the largest segregation advantage is also the most recessive, and is very common in natural populations concordant with its apparent segregation advantage. These results imply that frequencies of S-alleles in populations of A. lyrata cannot be predicted based on simple models of frequency-dependent selection alone.
Collapse
Affiliation(s)
- J Bechsgaard
- Department of Ecology and Genetics, University of Aarhus, Denmark
| | | | | |
Collapse
|
34
|
Fiebig A, Kimport R, Preuss D. Comparisons of pollen coat genes across Brassicaceae species reveal rapid evolution by repeat expansion and diversification. Proc Natl Acad Sci U S A 2004; 101:3286-91. [PMID: 14970339 PMCID: PMC365782 DOI: 10.1073/pnas.0305448101] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2003] [Indexed: 11/18/2022] Open
Abstract
Reproductive genes and traits evolve rapidly in many organisms, including mollusks, algae, and primates. Previously we demonstrated that a family of glycine-rich pollen surface proteins (GRPs) from Arabidopsis thaliana and Brassica oleracea had diverged substantially, making identification of homologous genes impossible despite a separation of only 20 million years. Here we address the molecular genetic mechanisms behind these changes, sequencing the eight members of the GRP cluster, along with 11 neighboring genes in four related species, Arabidopsis arenosa, Olimarabidopsis pumila, Capsella rubella, and Sisymbrium irio. We found that GRP genes change more rapidly than their neighbors; they are more repetitive and have undergone substantially more insertion/deletion events while preserving repeat amino acid composition. Genes flanking the GRP cluster had an average K(a)/K(s) approximately 0.2, indicating strong purifying selection. This ratio rose to approximately 0.5 in the first GRP exon, indicating relaxed selective constraints. The repetitive nature of the second GRP exon makes alignment difficult; even so, K(a)/K(s) within the Arabidopsis genus demonstrated an increase that correlated with exon length. We conclude that rapid GRP evolution is primarily due to duplication, deletion, and divergence of repetitive sequences. GRPs may mediate pollen recognition and hydration by female cells, and divergence of these genes could correlate with or even promote speciation. We tested cross-species interactions, showing that the ability of A. arenosa stigmas to hydrate pollen correlated with GRP divergence and identifying A. arenosa as a model for future studies of pollen recognition.
Collapse
Affiliation(s)
- Aretha Fiebig
- Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | | | | |
Collapse
|
35
|
Fobis-Loisy I, Miege C, Gaude T. Molecular evolution of the s locus controlling mating in the brassicaceae. PLANT BIOLOGY (STUTTGART, GERMANY) 2004; 6:109-18. [PMID: 15045661 DOI: 10.1055/s-2004-817804] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Flowering plants possess self-incompatibility (SI) mechanisms that promote outbreeding and thereby increase their genetic diversity. In the self-incompatible Brassicaceae, recognition and rejection of self-pollen is based on a receptor-ligand interaction between male and female SI determinants. A transmembrane receptor kinase (S locus Receptor Kinase, SRK) determines the SI specificity in stigmatic cells, whereas a pollen coat-localized ligand (S locus Cysteine-Rich, SCR) determines the SI specificity in pollen. During recent years, major advances have been made in the understanding of the molecular basis of self-pollen recognition by stigmatic cells. In this review, we will focus on evolutionary aspects of the SI system in Brassicaceae. We will describe how the study of the molecular aspect of SI, not only in the historical Brassica model but also in Arabidopsis species, has contributed to highlight certain aspects of evolution of SI in the Brassicaceae.
Collapse
Affiliation(s)
- I Fobis-Loisy
- Reproduction et Développement des Plantes, Ecole Normale Supérieure de Lyon, UMR 5667 CNRS-INRA-ENSL-UCBI Lyon, Lyon, France
| | | | | |
Collapse
|
36
|
Merkle T. Nucleo-cytoplasmic partitioning of proteins in plants: implications for the regulation of environmental and developmental signalling. Curr Genet 2003; 44:231-60. [PMID: 14523572 DOI: 10.1007/s00294-003-0444-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2003] [Revised: 08/21/2003] [Accepted: 09/01/2003] [Indexed: 12/21/2022]
Abstract
Considerable progress has been made in the past few years in characterising Arabidopsis nuclear transport receptors and in elucidating plant signal transduction pathways that employ nucleo-cytoplasmic partitioning of a member of the signal transduction chain. This review briefly introduces the major principles of nuclear transport of macromolecules across the nuclear envelope and the proteins involved, as they have been described in vertebrates and yeast. Proteins of the plant nuclear transport machinery that have been identified to date are discussed, the focus being on Importin beta-like nuclear transport receptors. Finally, the importance of nucleo-cytoplasmic partitioning as a regulatory tool for signalling is highlighted, and different plant signal transduction pathways that make use of this regulatory potential are presented.
Collapse
Affiliation(s)
- Thomas Merkle
- Institute of Biology II, Cell Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| |
Collapse
|
37
|
Fukai E, Fujimoto R, Nishio T. Genomic organization of the S core region and the S flanking regions of a class-II S haplotype in Brassica rapa. Mol Genet Genomics 2003; 269:361-9. [PMID: 12684882 DOI: 10.1007/s00438-003-0844-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2002] [Accepted: 03/19/2003] [Indexed: 10/26/2022]
Abstract
The nucleotide sequence of an 86.4-kb region that includes the SP11, SRK, and SLG genes of Brassica rapa S-60 (a class-II S haplotype) was determined. In the sequenced region, 13 putative genes were found besides SP11-60, SRK-60, and SLG-60. Five of these sequences were isolated as cDNAs, five were homologues of known genes, cDNAs, or ORFs, and three are hypothetical ORFs. Based on their nucleotide sequences, however, some of them are thought to be non-functional. Two regions of colinearity between the class-II S-60 and Brassica class-I S haplotypes were identified, i.e., S flanking region 1 which shows partial colinearity of non-genic sequences and S flanking region 2 which shows a high level of colinearity. The observed colinearity made it possible to compare the order of SP-11, SRK, and SLG genes in the S locus between the five sequenced S haplotypes. It emerged that the order of SRK and SLG in class-II S-60 is the reverse of that in the four class-I S haplotypes reported so far, and the order of SP11, SRK and SLG is the opposite of that in the class-I haplotype S-910. The possible gene designated as SAN1 (S locus Anther-expressed Non-coding RNA like-1), which is located in the region between SP11-60 and SRK-60, has features reminiscent of genes for non-coding RNAs (ncRNAs), but no homologous sequences were found in the databases. This sequence is transcribed in anthers but not in stigmas or leaves. These features of the genomic structure of S-60 are discussed with special reference to the characteristics of class-II S haplotypes.
Collapse
Affiliation(s)
- E Fukai
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, 981-8555, Sendai, Japan
| | | | | |
Collapse
|
38
|
Abstract
Many hermaphroditic plants avoid self-fertilization by rejecting pollen that express genetically determined specificities in common with the pistil. The S-locus, comprising the determinants of pistil and pollen specificity, typically shows extremely high polymorphism, with dozens to hundreds of specificities maintained within species. This article explores a conjecture, motivated by empirical findings, that the expression of recessive deleterious factors at sites closely linked to the S-locus may cause greater declines in the viability of zygotes constituted from more closely related S-alleles. Diffusion approximation models incorporating variation in viability among S-locus genotypes and antagonistic interactions between a new specificity and its immediate parent specificity are constructed and analyzed. Results indicate that variation in viability tends to reduce the number of specificities maintained in a population at stochastic steady state, and that genealogy-based antagonism reduces the rate of bifurcation of S-allele lineages. These effects may account for some of the unusual features observed in empirical studies of S-allele genealogies.
Collapse
Affiliation(s)
- Marcy K Uyenoyama
- Department of Biology, Box 90338, 107 Bio Sci. Building, Duke University, Durham, NC 27708-0338, USA.
| |
Collapse
|
39
|
Mable BK, Schierup MH, Charlesworth D. Estimating the number, frequency, and dominance of S-alleles in a natural population of Arabidopsis lyrata(Brassicaceae) with sporophytic control of self-incompatibility. Heredity (Edinb) 2003; 90:422-31. [PMID: 12764417 DOI: 10.1038/sj.hdy.6800261] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In homomorphic plant self-incompatibility (SI) systems, large numbers of alleles may be maintained at a single Mendelian locus. Most estimators of the number of alleles present in natural populations are designed for gametophytic self-incompatibility systems (GSI) in which the recognition phenotype of the pollen is determined by its own haploid genotype. In sporophytic systems (SSI), the recognition phenotype of the pollen is determined by the diploid genotype of its parent, and dominance differs among alleles. We describe research aimed at estimates of S-allele numbers in a natural population of Arabidopsis lyrata (Brassicaceae), whose SSI system has recently been described. Using a combination of pollination studies and PCR-based identification of alleles at a locus equivalent to the Brassica SRK gene, we identified and sequenced 11 putative alleles in a sample of 20 individuals from different maternal seed sets. The pollination results indicate that we have not amplified all alleles that must be present. Extensive partial incompatibility, nonreciprocal compatibility differences, and evidence of weakened expression of SI in some genotypes, prevent us from determining the exact number of missing alleles based only on cross-pollination data. Although we show that none of the theoretical models currently proposed is completely appropriate for estimating the number of alleles in this system, we estimate that there are between 13 and 16 different S-alleles in our sample, probably between 16 and 25 alleles in the population, and discuss the relative frequency of alleles in relation to dominance.
Collapse
Affiliation(s)
- B K Mable
- Institute of Cell, Animal and Population Biology, University of Edinburgh, Ashworth Laboratories, King's Buildings, Edinburgh EH9 3JT, UK.
| | | | | |
Collapse
|
40
|
Affiliation(s)
- Willie J. Swanson
- Department of Biology, University of California, Riverside, California 92521;
- Department of Genome Sciences, University of Washington, Box 357730, Seattle, Washington 98195-7730
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093;
| | - Victor D. Vacquier
- Department of Biology, University of California, Riverside, California 92521;
- Department of Genome Sciences, University of Washington, Box 357730, Seattle, Washington 98195-7730
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093;
| |
Collapse
|
41
|
Sarkar S, Iyer G, Wu J, Glass N. Nonself recognition is mediated by HET-C heterocomplex formation during vegetative incompatibility. EMBO J 2002; 21:4841-50. [PMID: 12234924 PMCID: PMC126278 DOI: 10.1093/emboj/cdf479] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nonself recognition during vegetative growth in filamentous fungi is mediated by heterokaryon incompatibility (het) loci. In Neurospora crassa, het-c is one of 11 het loci. Three allelic specificity groups, termed het-c(OR), het-c(PA) and het-c(GR), exist in natural populations. Heterokaryons or partial diploids that contain het-c alleles of alternative specificity show severe growth inhibition, repression of conidiation and hyphal compartmentation and death (HCD). Using epitope-tagged HET-C, we show that nonself recognition is mediated by the presence of a heterocomplex composed of polypeptides encoded by het-c alleles of alternative specificity. The HET-C heterocomplex localized to the plasma membrane (PM); PM-bound HET-C heterocomplexes occurred in all three het-c incompatible allelic interactions. Strains containing het-c constructs deleted for a predicted signal peptide sequence formed HET-C heterocomplexes in the cytoplasm and showed a growth arrest phenotype. Our finding is a step towards understanding nonself recognition mechanisms that operate during vegetative growth in filamentous fungi, and provides a model for investigating relationships between recognition mechanisms and cell death.
Collapse
Affiliation(s)
- Sovan Sarkar
- Plant and Microbial Biology Department, 111 Koshland Hall, University of California, Berkeley, CA 94720, USA and The Biotechnology Laboratory and the Botany Department, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada Present address: Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA Corresponding author e-mail: S.Sarkar and G.Iyer contributed equally to this work
| | - Gopal Iyer
- Plant and Microbial Biology Department, 111 Koshland Hall, University of California, Berkeley, CA 94720, USA and The Biotechnology Laboratory and the Botany Department, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada Present address: Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA Corresponding author e-mail: S.Sarkar and G.Iyer contributed equally to this work
| | - Jennifer Wu
- Plant and Microbial Biology Department, 111 Koshland Hall, University of California, Berkeley, CA 94720, USA and The Biotechnology Laboratory and the Botany Department, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada Present address: Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA Corresponding author e-mail: S.Sarkar and G.Iyer contributed equally to this work
| | - N.Louise Glass
- Plant and Microbial Biology Department, 111 Koshland Hall, University of California, Berkeley, CA 94720, USA and The Biotechnology Laboratory and the Botany Department, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada Present address: Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA Corresponding author e-mail: S.Sarkar and G.Iyer contributed equally to this work
| |
Collapse
|
42
|
Nasrallah ME, Liu P, Nasrallah JB. Generation of self-incompatible Arabidopsis thaliana by transfer of two S locus genes from A. lyrata. Science 2002; 297:247-9. [PMID: 12114625 DOI: 10.1126/science.1072205] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Transitions from cross-fertilizing to self-fertilizing mating systems have occurred frequently in natural and domesticated plant populations, but the underlying genetic causes are unknown. We show that gene transfer of the stigma receptor kinase SRK and its pollen-borne ligand SCR from one S-locus haplotype of the self-incompatible and cross-fertilizing Arabidopsis lyrata is sufficient to impart self-incompatibility phenotype in self-fertile Arabidopsis thaliana, which lacks functional orthologs of these genes. This successful complementation demonstrates that the signaling cascade leading to inhibition of self-related pollen was maintained in A. thaliana. Analysis of self-incompatibility will be facilitated by the tools available in this species.
Collapse
|
43
|
Abstract
Plant self-incompatibility (SI) systems are unique among self/nonself recognition systems in being based on the recognition of self rather than nonself. SI in crucifer species is controlled by highly polymorphic and co-evolving genes linked in a complex. Self recognition is based on allele-specific interactions between stigma receptors and pollen ligands that result in the arrest of pollen tube development. Commonalities and differences between SI and other self/nonself discrimination systems are discussed.
Collapse
Affiliation(s)
- June B Nasrallah
- Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
44
|
Abstract
Many genes that mediate sexual reproduction, such as those involved in gamete recognition, diverge rapidly, often as a result of adaptive evolution. This widespread phenomenon might have important consequences, such as the establishment of barriers to fertilization that might lead to speciation. Sequence comparisons and functional studies are beginning to show the extent to which the rapid divergence of reproductive proteins is involved in the speciation process.
Collapse
Affiliation(s)
- Willie J Swanson
- Department of Biology, University of California-Riverside, Riverside, California 92521, USA.
| | | |
Collapse
|
45
|
Kusaba M, Tung CW, Nasrallah ME, Nasrallah JB. Monoallelic expression and dominance interactions in anthers of self-incompatible Arabidopsis lyrata. PLANT PHYSIOLOGY 2002; 128:17-20. [PMID: 11788748 DOI: 10.1104/pp.010790] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- Makoto Kusaba
- Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
46
|
Kimura R, Sato K, Fujimoto R, Nishio T. Recognition specificity of self-incompatibility maintained after the divergence of Brassica oleracea and Brassica rapa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 29:215-23. [PMID: 11851921 DOI: 10.1046/j.1365-313x.2002.01208.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The determinants of recognition specificity of self-incompatibility in Brassica are SRK in the stigma and SP11/SCR in the pollen, respectively. In the pair of S haplotypes BrS46 (S46 in B. rapa) and BoS7 (S7 in B. oleracea), which have highly similar SRK alleles, the SP11 alleles were found to be similar, with 96.1% identity in the deduced amino acid sequence. Two other pairs of S haplotypes, BrS47 and BoS12, and BrS8 and BoS32, having highly similar SRK and SP11 alleles between the two species were also found. The haplotypes in each pair are considered to have been derived from a single S haplotype in the ancestral species. The allotetraploid produced by interspecific hybridization between homozygotes of BrS46 and BoS15 showed incompatibility with a BoS7 homozygote and compatibility with other B. oleracea S haplotypes in reciprocal crossings. This result indicates that BrS46 and BoS7 have maintained the same recognition specificity after the divergence of the two species and that amino acid substitutions found in such cases in both SRK alleles and SP11 alleles do not alter the recognition specificity. DNA blot analysis of SRK, SP11, SLG and other S-locus genes showed different DNA fragment sizes between the interspecific pairs of S haplotypes. A much lower level of sequence similarity was observed outside the genes of SRK and SP11 between BrS46 and BoS7. These results suggest that the DNA sequences of the regions intervening between the S-locus genes were diversified after or at the time of speciation. This is the first report demonstrating the presence of common S haplotypes in different plant species and presenting definite evidence of the trans-specific evolution of self-incompatibility genes.
Collapse
Affiliation(s)
- Ryo Kimura
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai 981-8555, Japan
| | | | | | | |
Collapse
|
47
|
Miege C, Ruffio-Châble V, Schierup MH, Cabrillac D, Dumas C, Gaude T, Cock JM. Intrahaplotype polymorphism at the Brassica S locus. Genetics 2001; 159:811-22. [PMID: 11606555 PMCID: PMC1461823 DOI: 10.1093/genetics/159.2.811] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The S locus receptor kinase and the S locus glycoproteins are encoded by genes located at the S locus, which controls the self-incompatibility response in Brassica. In class II self-incompatibility haplotypes, S locus glycoproteins can be encoded by two different genes, SLGA and SLGB. In this study, we analyzed the sequences of these genes in several independently isolated plants, all of which carry the same S haplotype (S(2)). Two groups of S(2) haplotypes could be distinguished depending on whether SRK was associated with SLGA or SLGB. Surprisingly, SRK alleles from the two groups could be distinguished at the sequence level, suggesting that recombination rarely occurs between haplotypes of the two groups. An analysis of the distribution of polymorphisms along the S domain of SRK showed that hypervariable domains I and II tend to be conserved within haplotypes but to be highly variable between haplotypes. This is consistent with these domains playing a role in the determination of haplotype specificity.
Collapse
Affiliation(s)
- C Miege
- Reproduction et Développement des Plantes, UMR 5667 CNRS-INRA-ENSL, Ecole Normale Supérieure de Lyon, 69364 Lyon, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Kachroo A, Schopfer CR, Nasrallah ME, Nasrallah JB. Allele-specific receptor-ligand interactions in Brassica self-incompatibility. Science 2001; 293:1824-6. [PMID: 11546871 DOI: 10.1126/science.1062509] [Citation(s) in RCA: 206] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Genetic self-incompatibility in Brassica is determined by alleles of the transmembrane serine-threonine kinase SRK, which functions in the stigma epidermis, and of the cysteine-rich peptide SCR, which functions in pollen. Using tagged versions of SRK and SCR as well as endogenous stigma and pollen proteins, we show that SCR binds the SRK ectodomain and that this binding is allele specific. Thus, SRK and SCR function as a receptor-ligand pair in the recognition of self pollen. Specificity in the self-incompatibility response derives from allele-specific formation of SRK-SCR complexes at the pollen-stigma interface.
Collapse
Affiliation(s)
- A Kachroo
- Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
49
|
Watanabe M, Hatakeyama K, Takada Y, Hinata K. Molecular aspects of self-incompatibility in Brassica species. PLANT & CELL PHYSIOLOGY 2001; 42:560-5. [PMID: 11427674 DOI: 10.1093/pcp/pce075] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Many flowering plants possess self-incompatibility (SI) systems to prevent inbreeding. SI in Brassica species is controlled by a single S locus with multiple alleles. In recent years, much progress has been made in determining the male and female S determinant in Brassica species. In the female, a gain-of-function experiment clearly demonstrated that SRK was the sole S determinant, and that SLG enhanced the SI recognition process. By contrast, the male S determinant (termed SP11/SCR) was identified in the course of genome analysis of S locus to be a small cysteine-rich protein, which was classified as a pollen coat protein. This SP11/SCR may function as a ligand for the S domain of SRK in the SI recognition reaction of Brassica species.
Collapse
Affiliation(s)
- M Watanabe
- Laboratory of Plant Breeding, Faculty of Agriculture, Iwate University, Morioka, 020-8550 Japan.
| | | | | | | |
Collapse
|