1
|
Singh A, Rajput V, Singh AK, Sengar RS, Singh RK, Minkina T. Transformation Techniques and Their Role in Crop Improvements: A Global Scenario of GM Crops. POLICY ISSUES IN GENETICALLY MODIFIED CROPS 2021:515-542. [DOI: 10.1016/b978-0-12-820780-2.00023-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Lacroix B, Citovsky V. Pathways of DNA Transfer to Plants from Agrobacterium tumefaciens and Related Bacterial Species. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:231-251. [PMID: 31226020 PMCID: PMC6717549 DOI: 10.1146/annurev-phyto-082718-100101] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Genetic transformation of host plants by Agrobacterium tumefaciens and related species represents a unique model for natural horizontal gene transfer. Almost five decades of studying the molecular interactions between Agrobacterium and its host cells have yielded countless fundamental insights into bacterial and plant biology, even though several steps of the DNA transfer process remain poorly understood. Agrobacterium spp. may utilize different pathways for transferring DNA, which likely reflects the very wide host range of Agrobacterium. Furthermore, closely related bacterial species, such as rhizobia, are able to transfer DNA to host plant cells when they are provided with Agrobacterium DNA transfer machinery and T-DNA. Homologs of Agrobacterium virulence genes are found in many bacterial genomes, but only one non-Agrobacterium bacterial strain, Rhizobium etli CFN42, harbors a complete set of virulence genes and can mediate plant genetic transformation when carrying a T-DNA-containing plasmid.
Collapse
Affiliation(s)
- Benoît Lacroix
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York 11794-5215, USA;
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York 11794-5215, USA;
| |
Collapse
|
3
|
Li YG, Christie PJ. The Agrobacterium VirB/VirD4 T4SS: Mechanism and Architecture Defined Through In Vivo Mutagenesis and Chimeric Systems. Curr Top Microbiol Immunol 2018; 418:233-260. [PMID: 29808338 DOI: 10.1007/82_2018_94] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The Agrobacterium tumefaciens VirB/VirD4 translocation machine is a member of a superfamily of translocators designated as type IV secretion systems (T4SSs) that function in many species of gram-negative and gram-positive bacteria. T4SSs evolved from ancestral conjugation systems for specialized purposes relating to bacterial colonization or infection. A. tumefaciens employs the VirB/VirD4 T4SS to deliver oncogenic DNA (T-DNA) and effector proteins to plant cells, causing the tumorous disease called crown gall. This T4SS elaborates both a cell-envelope-spanning channel and an extracellular pilus for establishing target cell contacts. Recent mechanistic and structural studies of the VirB/VirD4 T4SS and related conjugation systems in Escherichia coli have defined T4SS architectures, bases for substrate recruitment, the translocation route for DNA substrates, and steps in the pilus biogenesis pathway. In this review, we provide a brief history of A. tumefaciens VirB/VirD4 T4SS from its discovery in the 1980s to its current status as a paradigm for the T4SS superfamily. We discuss key advancements in defining VirB/VirD4 T4SS function and structure, and we highlight the power of in vivo mutational analyses and chimeric systems for identifying mechanistic themes and specialized adaptations of this fascinating nanomachine.
Collapse
Affiliation(s)
- Yang Grace Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Peter J Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Abstract
Historically, the members of the Agrobacterium genus have been considered the only bacterial species naturally able to transfer and integrate DNA into the genomes of their eukaryotic hosts. Yet, increasing evidence suggests that this ability to genetically transform eukaryotic host cells might be more widespread in the bacterial world. Indeed, analyses of accumulating genomic data reveal cases of horizontal gene transfer from bacteria to eukaryotes and suggest that it represents a significant force in adaptive evolution of eukaryotic species. Specifically, recent reports indicate that bacteria other than Agrobacterium, such as Bartonella henselae (a zoonotic pathogen), Rhizobium etli (a plant-symbiotic bacterium related to Agrobacterium), or even Escherichia coli, have the ability to genetically transform their host cells under laboratory conditions. This DNA transfer relies on type IV secretion systems (T4SSs), the molecular machines that transport macromolecules during conjugative plasmid transfer and also during transport of proteins and/or DNA to the eukaryotic recipient cells. In this review article, we explore the extent of possible transfer of genetic information from bacteria to eukaryotic cells as well as the evolutionary implications and potential applications of this transfer.
Collapse
|
5
|
Ramsey ME, Woodhams KL, Dillard JP. The Gonococcal Genetic Island and Type IV Secretion in the Pathogenic Neisseria. Front Microbiol 2011; 2:61. [PMID: 21833316 PMCID: PMC3153036 DOI: 10.3389/fmicb.2011.00061] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 03/21/2011] [Indexed: 01/10/2023] Open
Abstract
Eighty percent of Neisseria gonorrhoeae strains and some Neisseria meningitidis strains encode a 57-kb gonococcal genetic island (GGI). The GGI was horizontally acquired and is inserted in the chromosome at the replication terminus. The GGI is flanked by direct repeats, and site-specific recombination at these sites results in excision of the GGI and may be responsible for its original acquisition. Although the role of the GGI in N. meningitidis is unclear, the GGI in N. gonorrhoeae encodes a type IV secretion system (T4SS). T4SS are versatile multi-protein complexes and include both conjugation systems as well as effector systems that translocate either proteins or DNA-protein complexes. In N. gonorrhoeae, the T4SS secretes single-stranded chromosomal DNA into the extracellular milieu in a contact-independent manner. Importantly, the DNA secreted through the T4SS is effective in natural transformation and therefore contributes to the spread of genetic information through Neisseria populations. Mutagenesis experiments have identified genes for DNA secretion including those encoding putative structural components of the apparatus, peptidoglycanases which may act in assembly, and relaxosome components for processing the DNA and delivering it to the apparatus. The T4SS may also play a role in infection by N. gonorrhoeae. During intracellular infection, N. gonorrhoeae requires the Ton complex for iron acquisition and survival. However, N. gonorrhoeae strains that do not express the Ton complex can survive intracellularly if they express structural components of the T4SS. These data provide evidence that the T4SS is expressed during intracellular infection and suggest that the T4SS may provide an advantage for intracellular survival. Here we review our current understanding of how the GGI and type IV secretion affect natural transformation and pathogenesis in N. gonorrhoeae and N. meningitidis.
Collapse
Affiliation(s)
- Meghan E. Ramsey
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadison, WI, USA
| | - Katelynn L. Woodhams
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadison, WI, USA
| | - Joseph P. Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadison, WI, USA
| |
Collapse
|
6
|
Silverman PM, Clarke MB. New insights into F-pilus structure, dynamics, and function. Integr Biol (Camb) 2009; 2:25-31. [PMID: 20473409 DOI: 10.1039/b917761b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
F-pili are thin, flexible filaments elaborated by F(+) cells of Escherichia coli. They belong to the class of Gram-negative pili that function in horizontal gene transfer. F-pili are initially required to establish contacts between DNA donor and recipient cells. Beyond that, F-pilus function, and that of other conjugative pili, has remained obscure and controversial. The idea that F-pili are dynamic structures was proposed 40 years ago. Initially, F-pili were thought to remain extended until another cell bound to the filament tip, whereupon the filament retracted to bring the contacted cell to the donor cell surface. Thereafter, secure surface-surface contacts would allow efficient DNA transfer. A later variant of this hypothesis was that F-pili are inherently dynamic, elongating and retracting even in the absence of exogenous signals. A very different hypothesis, also proposed first about 40 years ago, was that F-pili are conduits, presumably passive, for the transfer of DNA from donor to recipient. In this hypothesis, DNA transfer is not obligatorily coupled to F-pilus retraction. Here, we review recent data obtained by integrating long-established facts about the biology of F-pili with modern tools of fluorescence and electron microscopy. These data suggest that one function for F-pili is to search a large volume around donor cells in liquid culture for the presence of other cells. However, this may not be the only function. We show that F-pilin is also required at a second, largely undefined step occurring after cells have been brought into direct contact by F-pilus retraction.
Collapse
|
7
|
Kado CI. Horizontal gene transfer: sustaining pathogenicity and optimizing host-pathogen interactions. MOLECULAR PLANT PATHOLOGY 2009; 10:143-50. [PMID: 19161360 PMCID: PMC6640513 DOI: 10.1111/j.1364-3703.2008.00518.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Successful host-pathogen interactions require the presence, maintenance and expression of gene cassettes called 'pathogenicity islands' (PAIs) and 'metabolic islands' (MAIs) in the respective pathogen. The products of these genes confer on the pathogen the means to recognize their host(s) and to efficiently evade host defences in order to colonize, propagate within the host and eventually disseminate from the host. Virulence effectors secreted by type III and type IV secretion systems, among others, play vital roles in sustaining pathogenicity and optimizing host-pathogen interactions. Complete genome sequences of plant pathogenic bacteria have revealed the presence of PAIs and MAIs. The genes of these islands possess mosaic structures with regions displaying differences in nucleotide composition and codon usage in relation to adjacent genome structures, features that are highly suggestive of their acquisition from a foreign donor. These donors can be other bacteria, as well as lower members of the Archaea and Eukarya. Genes that have moved from the domains Archaea and Eukarya to the domain Bacteria are true cases of horizontal gene transfer. They represent interdomain genetic transfer. Genetic exchange between distinct members of the domain Bacteria, however, represents lateral gene transfer, an intradomain event. Both horizontal and lateral gene transfer events have been used to facilitate survival fitness of the pathogen.
Collapse
Affiliation(s)
- Clarence I Kado
- Department of Plant Pathology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
8
|
Cantu D, Vicente AR, Labavitch JM, Bennett AB, Powell ALT. Strangers in the matrix: plant cell walls and pathogen susceptibility. TRENDS IN PLANT SCIENCE 2008; 13:610-7. [PMID: 18824396 DOI: 10.1016/j.tplants.2008.09.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 08/29/2008] [Accepted: 09/03/2008] [Indexed: 05/04/2023]
Abstract
Early in infection, pathogens encounter the outer wall of plant cells. Because pathogen hydrolases targeting the plant cell wall are well-known components of virulence, it has been assumed that wall disassembly by the plant itself also contributes to susceptibility, and now this has been established experimentally. Understanding how plant morphological and developmental remodeling and pathogen cell wall targeted virulence influence infections provides new perspectives about plant-pathogen interactions. The plant cell wall can be an effective physical barrier to pathogens, but also it is a matrix where many proteins involved in pathogen perception are delivered. By breaching the wall, a pathogen potentially reveals itself to the plant and activates responses, setting off events that might halt or limit its advance.
Collapse
Affiliation(s)
- Dario Cantu
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
9
|
Citovsky V, Kozlovsky SV, Lacroix B, Zaltsman A, Dafny-Yelin M, Vyas S, Tovkach A, Tzfira T. Biological systems of the host cell involved in Agrobacterium infection. Cell Microbiol 2007; 9:9-20. [PMID: 17222189 DOI: 10.1111/j.1462-5822.2006.00830.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genetic transformation of plants by Agrobacterium, which in nature causes neoplastic growths, represents the only known case of trans-kingdom DNA transfer. Furthermore, under laboratory conditions, Agrobacterium can also transform a wide range of other eukaryotic species, from fungi to sea urchins to human cells. How can the Agrobacterium virulence machinery function in such a variety of evolutionarily distant and diverse species? The answer to this question lies in the ability of Agrobacterium to hijack fundamental cellular processes which are shared by most eukaryotic organisms. Our knowledge of these host cellular functions is critical for understanding the molecular mechanisms that underlie genetic transformation of eukaryotic cells. This review outlines the bacterial virulence machinery and provides a detailed discussion of seven major biological systems of the host cell-cell surface receptor arrays, cellular motors, nuclear import, chromatin targeting, targeted proteolysis, DNA repair, and plant immunity--thought to participate in the Agrobacterium-mediated genetic transformation.
Collapse
Affiliation(s)
- Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
McCullen CA, Binns AN. Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu Rev Cell Dev Biol 2006; 22:101-27. [PMID: 16709150 DOI: 10.1146/annurev.cellbio.22.011105.102022] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Host recognition and macromolecular transfer of virulence-mediating effectors represent critical steps in the successful transformation of plant cells by Agrobacterium tumefaciens. This review focuses on bacterial and plant-encoded components that interact to mediate these two processes. First, we examine the means by which Agrobacterium recognizes the host, via both diffusible plant-derived chemicals and cell-cell contact, with emphasis on the mechanisms by which multiple host signals are recognized and activate the virulence process. Second, we characterize the recognition and transfer of protein and protein-DNA complexes through the bacterial and plant cell membrane and wall barriers, emphasizing the central role of a type IV secretion system-the VirB complex-in this process.
Collapse
Affiliation(s)
- Colleen A McCullen
- Department of Biology and Plant Sciences Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018, USA
| | | |
Collapse
|
11
|
Van der Linden MG, Rêgo TG, Araújo DAM, Farias ST. Prediction of potential thermostable proteins in Xylella fastidiosa. J Theor Biol 2006; 242:421-5. [PMID: 16631209 DOI: 10.1016/j.jtbi.2006.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 03/07/2006] [Accepted: 03/17/2006] [Indexed: 11/20/2022]
Abstract
The average protein (E+K)/(Q+H) ratio in organisms has already been demonstrated to have a strong correlation with their optimal growth temperature. Employing the Thermo-Search web tool, we used this ratio as a basis to look for thermostable proteins in a mesophile, Xylella fastidiosa. Nine proteins were chosen to have their three-dimensional structures modeled by homology, using mainly proteins from mesophiles as templates. Resulting models featured a high number of hydrophobic interactions, a property that has been previously associated with thermostability. These results demonstrate the interesting possibility of using the (E+K)/(Q+H) ratio to find individual thermostable proteins in mesophilic organisms.
Collapse
Affiliation(s)
- M G Van der Linden
- Universidade Federal da Paraíba, Departamento de Biologia Molecular, João Pessoa, PB, Brazil
| | | | | | | |
Collapse
|
12
|
Monteiro-Vitorello CB, de Oliveira MC, Zerillo MM, Varani AM, Civerolo E, Van Sluys MA. Xylella and Xanthomonas Mobil'omics. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2005; 9:146-59. [PMID: 15969647 DOI: 10.1089/omi.2005.9.146] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The gamma-proteobacterium Xanthomonadales groups two closely related genera of plant pathogens, Xanthomonas and Xylella. Whole genome sequencing and comparative analyses disclosed a high degree of identity and co-linearity of the chromosome backbone between species and strains. Differences observed are usually clustered into genomic islands, most of which are delimited by genetic mobile elements. Focus is given in this paper to describe which groups of mobile elements are found and what is the relative contribution of these elements to Xanthomonas and Xylella genomes. Insertion sequence (IS) elements have invaded the Xanthomonas genome several times, whereas Xylella is rich in phage-related regions. Also, different plasmids are found inhabiting the bacterial cells studied here. Altogether, these results suggest that the integrative elements such as phages and transposable elements as well as the episomal plasmids are important drivers of the genome evolution of this important group of plant pathogens.
Collapse
|
13
|
Michielse CB, Hooykaas PJJ, van den Hondel CAMJJ, Ram AFJ. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet 2005; 48:1-17. [PMID: 15889258 DOI: 10.1007/s00294-005-0578-0] [Citation(s) in RCA: 339] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 03/10/2005] [Accepted: 03/26/2005] [Indexed: 11/27/2022]
Abstract
In the era of functional genomics, the need for tools to perform large-scale targeted and random mutagenesis is increasing. A potential tool is Agrobacterium-mediated fungal transformation. A. tumefaciens is able to transfer a part of its DNA (transferred DNA; T-DNA) to a wide variety of fungi and the number of fungi that can be transformed by Agrobacterium-mediated transformation (AMT) is still increasing. AMT has especially opened the field of molecular genetics for fungi that were difficult to transform with traditional methods or for which the traditional protocols failed to yield stable DNA integration. Because of the simplicity and efficiency of transformation via A. tumefaciens, it is relatively easy to generate a large number of stable transformants. In combination with the finding that the T-DNA integrates randomly and predominantly as a single copy, AMT is well suited to perform insertional mutagenesis in fungi. In addition, in various gene-targeting experiments, high homologous recombination frequencies were obtained, indicating that the T-DNA is also a useful substrate for targeted mutagenesis. In this review, we discuss the potential of the Agrobacterium DNA transfer system to be used as a tool for targeted and random mutagenesis in fungi.
Collapse
Affiliation(s)
- Caroline B Michielse
- Institute of Biology, Clusius Laboratory, Fungal Genetics Research Group, Leiden University, Wassenaarseweg 64, 2333 AL, Leiden, The Netherlands
| | | | | | | |
Collapse
|
14
|
Hwang HH, Gelvin SB. Plant proteins that interact with VirB2, the Agrobacterium tumefaciens pilin protein, mediate plant transformation. THE PLANT CELL 2004; 16:3148-67. [PMID: 15494553 PMCID: PMC527204 DOI: 10.1105/tpc.104.026476] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Accepted: 09/01/2004] [Indexed: 05/19/2023]
Abstract
Agrobacterium tumefaciens uses a type IV secretion system (T4SS) to transfer T-DNA and virulence proteins to plants. The T4SS is composed of two major structural components: the T-pilus and a membrane-associated complex that is responsible for translocating substrates across both bacterial membranes. VirB2 protein is the major component of the T-pilus. We used the C-terminal-processed portion of VirB2 protein as a bait to screen an Arabidopsis thaliana cDNA library for proteins that interact with VirB2 in yeast. We identified three related plant proteins, VirB2-interacting protein (BTI) 1 (BTI1), BTI2, and BTI3 with unknown functions, and a membrane-associated GTPase, AtRAB8. The three BTI proteins also interacted with VirB2 in vitro. Preincubation of Agrobacterium with GST-BTI1 protein decreased the transformation efficiency of Arabidopsis suspension cells by Agrobacterium. Transgenic BTI and AtRAB8 antisense and RNA interference Arabidopsis plants are less susceptible to transformation by Agrobacterium than are wild-type plants. The level of BTI1 protein is transiently increased immediately after Agrobacterium infection. In addition, overexpression of BTI1 protein in transgenic Arabidopsis results in plants that are hypersusceptible to Agrobacterium-mediated transformation. Confocal microscopic data indicate that GFP-BTI proteins preferentially localize to the periphery of root cells in transgenic Arabidopsis plants, suggesting that BTI proteins may contact the Agrobacterium T-pilus. We propose that the three BTI proteins and AtRAB8 are involved in the initial interaction of Agrobacterium with plant cells.
Collapse
Affiliation(s)
- Hau-Hsuan Hwang
- Department of Biolological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
15
|
Ge H, Chuang YYE, Zhao S, Temenak JJ, Ching WM. Genomic studies of Rickettsia prowazekii virulent and avirulent strains. Ann N Y Acad Sci 2003; 990:671-7. [PMID: 12860705 DOI: 10.1111/j.1749-6632.2003.tb07442.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- H Ge
- Naval Medical Research Center, Silver Spring, Maryland 20910-7500,USA
| | | | | | | | | |
Collapse
|
16
|
Abstract
Evidence for the involvement of type IV protein secretion systems in bacterial virulence is accumulating. Many of the substrate proteins secreted by type IV systems either hijack or interfere with specific host cell pathways. These substrates can be injected directly into host cells via the type IV apparatus or are secreted by the type IV machinery in a state that allows them to gain access to cellular targets without the further assistance of the type IV system. Arguably, the protein substrates of most type IV secretion systems remain undiscovered. Here, we review the activities of known type IV substrates and discuss the putative roles of unidentified substrates.
Collapse
Affiliation(s)
- Hiroki Nagai
- Section of Microbial Pathogenesis, Yale University School of Medicine, Boyer Center for Molecular Medicine, Room 354b, 295 Congress Avenue, New Haven, CT 06536, USA
| | | |
Collapse
|
17
|
Pantoja M, Chen L, Chen Y, Nester EW. Agrobacterium type IV secretion is a two-step process in which export substrates associate with the virulence protein VirJ in the periplasm. Mol Microbiol 2002; 45:1325-35. [PMID: 12207700 DOI: 10.1046/j.1365-2958.2002.03098.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Type IV secretion systems are virulence determinants in many bacteria and share extensive homology with many conjugal transfer systems. Although type IV systems and their homologues have been studied widely, the mechanism by which substrates are secreted remains unclear. In Agrobacterium, we show that type IV secretion substrates that lack signal peptides form a soluble complex in the periplasm with the virulence protein VirJ. Additionally, these proteins co-precipitate with constituents of the type IV transporter: the VirB pilus and the VirD4 protein. Our findings suggest that the substrate proteins localized to the periplasm may associate with the pilus in a manner that is mediated by VirJ, and suggest a two-step process for type IV secretion in Agrobacterium. Our analyses of protein-protein interactions in a variety of mutant backgrounds indicate that substrates are probably secreted independently of one another.
Collapse
Affiliation(s)
- Mario Pantoja
- Deparetment of Microbiology, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
18
|
Sullivan JT, Trzebiatowski JR, Cruickshank RW, Gouzy J, Brown SD, Elliot RM, Fleetwood DJ, McCallum NG, Rossbach U, Stuart GS, Weaver JE, Webby RJ, De Bruijn FJ, Ronson CW. Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A. J Bacteriol 2002; 184:3086-95. [PMID: 12003951 PMCID: PMC135072 DOI: 10.1128/jb.184.11.3086-3095.2002] [Citation(s) in RCA: 233] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Mesorhizobium loti strain R7A symbiosis island is a 502-kb chromosomally integrated element which transfers to nonsymbiotic mesorhizobia in the environment, converting them to Lotus symbionts. It integrates into a phenylalanine tRNA gene in a process mediated by a P4-type integrase encoded at the left end of the element. We have determined the nucleotide sequence of the island and compared its deduced genetic complement with that reported for the 611-kb putative symbiosis island of M. loti strain MAFF303099. The two islands share 248 kb of DNA, with multiple deletions and insertions of up to 168 kb interrupting highly conserved colinear DNA regions in the two strains. The shared DNA regions contain all the genes likely to be required for Nod factor synthesis, nitrogen fixation, and island transfer. Transfer genes include a trb operon and a cluster of potential tra genes which are also present on the strain MAFF303099 plasmid pMLb. The island lacks plasmid replication genes, suggesting that it is a site-specific conjugative transposon. The R7A island encodes a type IV secretion system with strong similarity to the vir pilus from Agrobacterium tumefaciens that is deleted from MAFF303099, which in turn encodes a type III secretion system not found on the R7A island. The 414 genes on the R7A island also include putative regulatory genes, transport genes, and an array of metabolic genes. Most of the unique hypothetical genes on the R7A island are strain-specific and clustered, suggesting that they may represent other acquired genetic elements rather than symbiotically relevant DNA.
Collapse
Affiliation(s)
- John T Sullivan
- Department of Microbiology, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Van Sluys MA, Monteiro-Vitorello CB, Camargo LEA, Menck CFM, Da Silva ACR, Ferro JA, Oliveira MC, Setubal JC, Kitajima JP, Simpson AJ. Comparative genomic analysis of plant-associated bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 2002; 40:169-189. [PMID: 12147758 DOI: 10.1146/annurev.phyto.40.030402.090559] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This review deals with a comparative analysis of seven genome sequences from plant-associated bacteria. These are the genomes of Agrobacterium tumefaciens, Mesorhizobium loti, Sinorhizobium meliloti, Xanthomonas campestris pv campestris, Xanthomonas axonopodis pv citri, Xylella fastidiosa, and Ralstonia solanacearum. Genome structure and the metabolism pathways available highlight the compromise between the genome size and lifestyle. Despite the recognized importance of the type III secretion system in controlling host compatibility, its presence is not universal in all necrogenic pathogens. Hemolysins, hemagglutinins, and some adhesins, previously reported only for mammalian pathogens, are present in most organisms discussed. Different numbers and combinations of cell wall degrading enzymes and genes to overcome the oxidative burst generally induced by the plant host are characterized in these genomes. A total of 19 genes not involved in housekeeping functions were found common to all these bacteria.
Collapse
Affiliation(s)
- M A Van Sluys
- Depto de Botânica, Instituto de Biociências, Universidade de São Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kelly BA, Kado CI. Agrobacterium-mediated T-DNA transfer and integration into the chromosome of Streptomyces lividans. MOLECULAR PLANT PATHOLOGY 2002; 3:125-134. [PMID: 20569318 DOI: 10.1046/j.1364-3703.2002.00104.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Summary Agrobacterium tumefaciens is the prototype of a prokaryotic organism transmitting DNA across natural kingdom barriers into higher cells. In nature, a specific segment (T-DNA) of the resident Ti plasmid is transferred from this bacterium into plant cells and integrated into the plant cell genome. Expression of the integrated oncogenes contained in the T-DNA results in the tumour disease known as crown gall. Besides plants, the range of transformable recipients is broad and includes fungi and mammalian cells. We now show further extension of this host range, whereby the actinomycete Streptomyces lividans is also a recipient of the T-DNA. A. tumefaciens cells containing a binary vector system with a vir helper plasmid, pUCD2614, and a T-DNA donor plasmid, pUCD5801, were co-cultured with S. lividans hyphae. A. tumefaciens-S. lividans aggregate when the vir genes are induced with acetosyringone, resulting in the transfer of the T-DNA, as evidenced by the formation of transconjugants containing T-DNA genetic markers and the appearance of the T-DNA in these transconjugants. Close examination of the interacted cells revealed a presumably coiled thread-like interconnection with an average width of approximately 30 nm between A. tumefaciens and S. lividans. This interconnecting structure is dependent on virB genes and appears only under the same conditions as that required for T-pilus formation. Insertion of the T-DNA via A. tumefaciens into the S. lividans genome provides a useful genetic tool for generating novel mutants.
Collapse
Affiliation(s)
- Brian A Kelly
- Davis Crown Gall Group, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
21
|
Abstract
Many Gram-negative plant and animal pathogenic bacteria use a specialized type III secretion system (TTSS) as a molecular syringe to inject effector proteins directly into the host cell. Protein translocation across the eukaryotic host cell membrane is presumably mediated by a bacterial translocon. The structure of this predicted transmembrane complex and the mechanism of transport are far from being understood. In bacterial pathogens of animals, several putative type III secretion translocon proteins (TTPs) have been identified. Interestingly, TTP sequences are not conserved among different bacterial species, however, there are structural similarities such as transmembrane segments and coiled-coil regions. Accumulating evidence suggests that TTPs are components of oligomeric protein channels that are inserted into the host cell membrane by the TTSS.
Collapse
Affiliation(s)
- Daniela Büttner
- Institut für Genetik, Martin-Luther-Universität Halle-Wittenberg, D-06099 (Saale), Halle, Germany.
| | | |
Collapse
|
22
|
Abstract
A growing number of pathogens are being found to possess specialized secretion systems which they use in various ways to subvert host defenses. One class, called type IV, are defined as having homology to the conjugal transfer systems of naturally occurring plasmids. It has been proposed that pathogens with type IV secretion systems have acquired and adapted the conjugal transfer systems of plasmids and now use them to export toxins. Several well-characterized intracellular pathogens, including Legionella pneumophila, Coxiella burnetii, Brucella abortus, and Rickettsia prowazekii, contain type IV systems which are known or suspected to be of critical importance in their ability to cause disease. Specifically, these systems are believed to be the key factors determining intracellular fate, and thus the ability to replicate and cause disease.
Collapse
Affiliation(s)
- Jessica A Sexton
- Department of Molecular Microbiology, Washington University, St. Louis, MO 63110, USA
| | | |
Collapse
|
23
|
Tzfira T, Citovsky V. Partners-in-infection: host proteins involved in the transformation of plant cells by Agrobacterium. Trends Cell Biol 2002; 12:121-9. [PMID: 11859024 DOI: 10.1016/s0962-8924(01)02229-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Genetic modification of plant cells by Agrobacterium is the only known natural example of DNA transport between kingdoms. While the bacterial factors involved in Agrobacterium infection have been relatively well characterized, studies of their host cellular partners are just beginning. Here, we describe the plant cell factors that might participate in Agrobacterium-mediated genetic transformation and discuss their possible roles in this process. Because Agrobacterium probably adapts existing cellular processes for its life cycle, identifying the host factors participating in Agrobacterium infection might contribute to a better understanding of such basic biological processes as cell communication, intracellular transport and DNA repair and recombination as well as help expand the host range of Agrobacterium as a genetic engineering tool.
Collapse
Affiliation(s)
- Tzvi Tzfira
- Dept of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA.
| | | |
Collapse
|
24
|
Vedantam G, Hecht DW. Isolation and characterization of BTF-37: chromosomal DNA captured from Bacteroides fragilis that confers self-transferability and expresses a pilus-like structure in Bacteroides spp. and Escherichia coli. J Bacteriol 2002; 184:728-38. [PMID: 11790742 PMCID: PMC139536 DOI: 10.1128/jb.184.3.728-738.2002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We report the isolation and preliminary characterization of BTF-37, a new 52-kb transfer factor isolated from Bacteroides fragilis clinical isolate LV23. BTF-37 was obtained by the capture of new DNA in the nonmobilizable Bacteroides-Escherichia coli shuttle vector pGAT400DeltaBglII using a functional assay. BTF-37 is self-transferable within and from Bacteroides and also self-transfers in E. coli. Partial DNA sequencing, colony hybridization, and PCR revealed the presence of Tet element-specific sequences in BTF-37. In addition, Tn5520, a small mobilizable transposon that we described previously (G. Vedantam, T. J. Novicki, and D. W. Hecht, J. Bacteriol. 181:2564-2571, 1999), was also coisolated within BTF-37. Scanning and transmission electron microscopy of Tet element-containing Bacteroides spp. and BTF-37-harboring Bacteroides and E. coli strains revealed the presence of pilus-like cell surface structures. These structures were visualized in Bacteroides spp. only when BTF-37 and Tet element strains were induced with subinhibitory concentrations of tetracycline and resembled those encoded by E. coli broad-host-range plasmids. We conclude that we have captured a new, self-transferable transfer factor from B. fragilis LV23 and that this new factor encodes a tetracycline-inducible Bacteroides sp. conjugation apparatus.
Collapse
Affiliation(s)
- Gayatri Vedantam
- Departments of Medicine and Microbiology/Immunology and Program in Molecular Biology, Loyola University Medical Center, 2160 S. First Ave., Maywood, IL 60153, USA
| | | |
Collapse
|
25
|
Escobar MA, Civerolo EL, Summerfelt KR, Dandekar AM. RNAi-mediated oncogene silencing confers resistance to crown gall tumorigenesis. Proc Natl Acad Sci U S A 2001; 98:13437-42. [PMID: 11687652 PMCID: PMC60889 DOI: 10.1073/pnas.241276898] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Crown gall disease, caused by the soil bacterium Agrobacterium tumefaciens, results in significant economic losses in perennial crops worldwide. A. tumefaciens is one of the few organisms with a well characterized horizontal gene transfer system, possessing a suite of oncogenes that, when integrated into the plant genome, orchestrate de novo auxin and cytokinin biosynthesis to generate tumors. Specifically, the iaaM and ipt oncogenes, which show approximately 90% DNA sequence identity across studied A. tumefaciens strains, are required for tumor formation. By expressing two self-complementary RNA constructions designed to initiate RNA interference (RNAi) of iaaM and ipt, we generated transgenic Arabidopsis thaliana and Lycopersicon esculentum plants that are highly resistant to crown gall disease development. In in vitro root inoculation bioassays with two biovar I strains of A. tumefaciens, transgenic Arabidopsis lines averaged 0.0-1.5% tumorigenesis, whereas wild-type controls averaged 97.5% tumorigenesis. Similarly, several transformed tomato lines that were challenged by stem inoculation with three biovar I strains, one biovar II strain, and one biovar III strain of A. tumefaciens displayed between 0.0% and 24.2% tumorigenesis, whereas controls averaged 100% tumorigenesis. This mechanism of resistance, which is based on mRNA sequence homology rather than the highly specific receptor-ligand binding interactions characteristic of traditional plant resistance genes, should be highly durable. If successful and durable under field conditions, RNAi-mediated oncogene silencing may find broad applicability in the improvement of tree crop and ornamental rootstocks.
Collapse
Affiliation(s)
- M A Escobar
- Department of Pomology, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
26
|
Sagulenko E, Sagulenko V, Chen J, Christie PJ. Role of Agrobacterium VirB11 ATPase in T-pilus assembly and substrate selection. J Bacteriol 2001; 183:5813-25. [PMID: 11566978 PMCID: PMC99657 DOI: 10.1128/jb.183.20.5813-5825.2001] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The VirB11 ATPase is a subunit of the Agrobacterium tumefaciens transfer DNA (T-DNA) transfer system, a type IV secretion pathway required for delivery of T-DNA and effector proteins to plant cells during infection. In this study, we examined the effects of virB11 mutations on VirB protein accumulation, T-pilus production, and substrate translocation. Strains synthesizing VirB11 derivatives with mutations in the nucleoside triphosphate binding site (Walker A motif) accumulated wild-type levels of VirB proteins but failed to produce the T-pilus or export substrates at detectable levels, establishing the importance of nucleoside triphosphate binding or hydrolysis for T-pilus biogenesis. Similar findings were obtained for VirB4, a second ATPase of this transfer system. Analyses of strains expressing virB11 dominant alleles in general showed that T-pilus production is correlated with substrate translocation. Notably, strains expressing dominant alleles previously designated class II (dominant and nonfunctional) neither transferred T-DNA nor elaborated detectable levels of the T-pilus. By contrast, strains expressing most dominant alleles designated class III (dominant and functional) efficiently translocated T-DNA and synthesized abundant levels of T pilus. We did, however, identify four types of virB11 mutations or strain genotypes that selectively disrupted substrate translocation or T-pilus production: (i) virB11/virB11* merodiploid strains expressing all class II and III dominant alleles were strongly suppressed for T-DNA translocation but efficiently mobilized an IncQ plasmid to agrobacterial recipients and also elaborated abundant levels of T pilus; (ii) strains synthesizing two class III mutant proteins, VirB11, V258G and VirB11.I265T, efficiently transferred both DNA substrates but produced low and undetectable levels of T pilus, respectively; (iii) a strain synthesizing the class II mutant protein VirB11.I103T/M301L efficiently exported VirE2 but produced undetectable levels of T pilus; (iv) strains synthesizing three VirB11 derivatives with a four-residue (HMVD) insertion (L75.i4, C168.i4, and L302.i4) neither transferred T-DNA nor produced detectable levels of T pilus but efficiently transferred VirE2 to plants and the IncQ plasmid to agrobacterial recipient cells. Together, our findings support a model in which the VirB11 ATPase contributes at two levels to type IV secretion, T-pilus morphogenesis, and substrate selection. Furthermore, the contributions of VirB11 to machine assembly and substrate transfer can be uncoupled by mutagenesis.
Collapse
Affiliation(s)
- E Sagulenko
- Department of Microbiology and Molecular Genetics, The University of Texas-Houston Medical School, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
27
|
Barnett MJ, Fisher RF, Jones T, Komp C, Abola AP, Barloy-Hubler F, Bowser L, Capela D, Galibert F, Gouzy J, Gurjal M, Hong A, Huizar L, Hyman RW, Kahn D, Kahn ML, Kalman S, Keating DH, Palm C, Peck MC, Surzycki R, Wells DH, Yeh KC, Davis RW, Federspiel NA, Long SR. Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid. Proc Natl Acad Sci U S A 2001; 98:9883-8. [PMID: 11481432 PMCID: PMC55547 DOI: 10.1073/pnas.161294798] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The symbiotic nitrogen-fixing soil bacterium Sinorhizobium meliloti contains three replicons: pSymA, pSymB, and the chromosome. We report here the complete 1,354,226-nt sequence of pSymA. In addition to a large fraction of the genes known to be specifically involved in symbiosis, pSymA contains genes likely to be involved in nitrogen and carbon metabolism, transport, stress, and resistance responses, and other functions that give S. meliloti an advantage in its specialized niche.
Collapse
Affiliation(s)
- M J Barnett
- Department of Biological Sciences, and Howard Hughes Medical Institute, Stanford University, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|