1
|
Song J, Wang Y, Xie Z, Wei J, Wang J. Review of the mechanism of infection induced cerebral small vessel disease. Front Immunol 2025; 16:1594891. [PMID: 40491910 PMCID: PMC12146171 DOI: 10.3389/fimmu.2025.1594891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 05/06/2025] [Indexed: 06/11/2025] Open
Abstract
Cerebral small vessel disease (CSVD) refers to a group of pathological syndromes that affect the brain's microcirculation. These conditions involve damage to small arteries, arterioles, capillaries, venules, and small veins. Cerebrovascular risk factors, immunosenescence, and inflammatory responses contribute to the pathogenesis of cerebral small vessel disease. The global impact of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has drawn significant attention to chronic inflammation caused by infections. Research into the mechanisms by which infections induce CSVD has made continual advancements. It is imperative to reassess the importance of managing infections and the chronic inflammatory phase that follows, highlighting their critical role in the pathogenesis. Our focus encompasses SARS-CoV-2, Human Immunodeficiency Virus (HIV), Hepatitis C Virus (HCV), Zika Virus(ZIKV), Treponema pallidum, as well as the microbial communities within the gut and oral cavity. These pathogen infections and chronic inflammation can contribute to CSVD through mechanisms such as neuroinflammation, blood-brain barrier disruption, microthrombosis, and endothelial cell damage, thereby promoting the occurrence and progression of the disease. This highlights the need for detailed mechanistic research on CSVD associated with these pathogens. Furthermore, we hope that in the future, we will be able to devise targeted prevention and treatment strategies for CSVD based on the unique characteristics of the pathogenic mechanisms associated with various infections.
Collapse
Affiliation(s)
- Jiamei Song
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yiqin Wang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Zhaoxia Xie
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiayi Wei
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Jue Wang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Abdullah MAF, McWhirter SM, Suo Z. Modulation of Kinase Activities In Vitro by Hepatitis C Virus Protease NS3/NS4A Mediated-Cleavage of Key Immune Modulator Kinases. Cells 2023; 12:406. [PMID: 36766748 PMCID: PMC9913602 DOI: 10.3390/cells12030406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/09/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
Hepatitis C Virus NS3/NS4A, a serine protease complex, has been found to interact with many host proteins and cause various adverse effects on cellular function and immune response. For example, the cleavage of important immune factors by NS3/NS4A has been suggested as a mechanism for the hepatitis C virus to evade innate immunity. The spectrum of susceptible substrates for NS3/NS4A cleavage certainly includes important immune modulator kinases such as IKKα, IKKβ, IKKε, and TBK1, as demonstrated in this paper. We show that the kinase activities of these four host kinases were transformed in unexpected ways by NS3/NS4A. Treatment with NS3/NS4A caused a significant reduction in the kinase activities of both IKKα and IKKβ, suggesting that HCV might use its NS3/NS4A protease activity to deactivate the NF-κB-associated innate immune responses. In contrast, the kinase activities of both IKKε and TBK1 were enhanced after NS3/NS4A treatment, and more strikingly, the enhancement was more than 10-fold within 20 min of treatment. Our mass spectroscopic results suggested that the cleavage after Cys89 in the kinase domain of IKKε by NS3/NS4A led to their higher kinase activities, and three potential mechanisms were discussed. The observed kinase activity enhancement might facilitate the activation of both IKKε- and TBK1-dependent cellular antiviral pathways, likely contributing to spontaneous clearance of the virus and observed acute HCV infection. After longer than 20 min cleavage, both IKKε- and TBK1 gradually lost their kinase activities and the relevant antiviral pathways were expected to be inactivated, facilitating the establishment of chronic HCV infection.
Collapse
Affiliation(s)
| | - Sarah M. McWhirter
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Zucai Suo
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| |
Collapse
|
3
|
Awadh AA. The Role of Cytosolic Lipid Droplets in Hepatitis C Virus Replication, Assembly, and Release. BIOMED RESEARCH INTERNATIONAL 2023; 2023:5156601. [PMID: 37090186 PMCID: PMC10121354 DOI: 10.1155/2023/5156601] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 04/25/2023]
Abstract
The hepatitis C virus (HCV) causes chronic hepatitis by establishing a persistent infection. Patients with chronic hepatitis frequently develop hepatic cirrhosis, which can lead to liver cancer-the progressive liver damage results from the host's immune response to the unresolved infection. The HCV replication process, including the entry, replication, assembly, and release stages, while the virus circulates in the bloodstream, it is intricately linked to the host's lipid metabolism, including the dynamic of the cytosolic lipid droplets (cLDs). This review article depicts how this interaction regulates viral cell tropism and aids immune evasion by coining viral particle characteristics. cLDs are intracellular organelles that store most of the cytoplasmic components of neutral lipids and are assumed to play an increasingly important role in the pathophysiology of lipid metabolism and host-virus interactions. cLDs are involved in the replication of several clinically significant viruses, where viruses alter the lipidomic profiles of host cells to improve viral life cycles. cLDs are involved in almost every phase of the HCV life cycle. Indeed, pharmacological modulators of cholesterol synthesis and intracellular trafficking, lipoprotein maturation, and lipid signaling molecules inhibit the assembly of HCV virions. Likewise, small-molecule inhibitors of cLD-regulating proteins inhibit HCV replication. Thus, addressing the molecular architecture of HCV replication will aid in elucidating its pathogenesis and devising preventive interventions that impede persistent infection and prevent disease progression. This is possible via repurposing the available therapeutic agents that alter cLDs metabolism. This review highlights the role of cLD in HCV replication.
Collapse
Affiliation(s)
- Abdullah A. Awadh
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah 21423, Saudi Arabia
| |
Collapse
|
4
|
Devi P, Punga T, Bergqvist A. Activation of the Ca2+/NFAT Pathway by Assembly of Hepatitis C Virus Core Protein into Nucleocapsid-like Particles. Viruses 2022; 14:v14040761. [PMID: 35458491 PMCID: PMC9031069 DOI: 10.3390/v14040761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 02/05/2023] Open
Abstract
Hepatitis C virus (HCV) is the primary pathogen responsible for liver cirrhosis and hepatocellular carcinoma. The main virion component, the core (C) protein, has been linked to several aspects of HCV pathology, including oncogenesis, immune evasion and stress responses. We and others have previously shown that C expression in various cell lines activates Ca2+ signaling and alters Ca2+ homeostasis. In this study, we identified two distinct C protein regions that are required for the activation of Ca2+/NFAT signaling. In the basic N-terminal domain, which has been implicated in self-association of C, amino acids 1–68 were critical for NFAT activation. Sedimentation analysis of four mutants in this domain revealed that association of the C protein into nucleocapsid-like particles correlated with NFAT-activated transcription. The internal, lipid droplet-targeting domain was not required for NFAT-activated transcription. Finally, the C-terminal ER-targeting domain was required in extenso for the C protein to function. Our results indicate that targeting of HCV C to the ER is necessary but not sufficient for inducing Ca2+/NFAT signaling. Taken together, our data are consistent with a model whereby proteolytic intermediates of C with an intact transmembrane ER-anchor assemble into pore-like structures in the ER membrane.
Collapse
Affiliation(s)
- Priya Devi
- Department of Medical Sciences, Uppsala University, SE 75185 Uppsala, Sweden;
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE 75123 Uppsala, Sweden;
| | - Anders Bergqvist
- Department of Medical Sciences, Uppsala University, SE 75185 Uppsala, Sweden;
- Clinical Microbiology and Hospital Infection Control, Uppsala University Hospital, SE 75185 Uppsala, Sweden
- Correspondence: ; Tel.: +46-186113937
| |
Collapse
|
5
|
Dzobo K. The Role of Viruses in Carcinogenesis and Molecular Targeting: From Infection to Being a Component of the Tumor Microenvironment. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:358-371. [PMID: 34037476 DOI: 10.1089/omi.2021.0052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
About a tenth of all cancers are caused by viruses or associated with viral infection. Recent global events including the coronavirus disease-2019 (COVID-19) pandemic means that human encounter with viruses is increased. Cancer development in individuals with viral infection can take many years after infection, demonstrating that the involvement of viruses in cancer development is a long and complex process. This complexity emanates from individual genetic heterogeneity and the many steps involved in cancer development owing to viruses. The process of tumorigenesis is driven by the complex interaction between several viral factors and host factors leading to the creation of a tumor microenvironment (TME) that is ideal and promotes tumor formation. Viruses associated with human cancers ensure their survival and proliferation through activation of several cellular processes including inflammation, migration, and invasion, resistance to apoptosis and growth suppressors. In addition, most human oncoviruses evade immune detection and can activate signaling cascades including the PI3K-Akt-mTOR, Notch and Wnt pathways associated with enhanced proliferation and angiogenesis. This expert review examines and synthesizes the multiple biological factors related to oncoviruses, and the signaling cascades activated by these viruses contributing to viral oncogenesis. In particular, I examine and review the Epstein-Barr virus, human papillomaviruses, and Kaposi's sarcoma herpes virus in a context of cancer pathogenesis. I conclude with a future outlook on therapeutic targeting of the viruses and their associated oncogenic pathways within the TME. These anticancer strategies can be in the form of, but not limited to, antibodies and inhibitors.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa.,Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
6
|
Alkhatib M, Di Maio VC, De Murtas V, Polilli E, Milana M, Teti E, Fiorentino G, Calvaruso V, Barbaliscia S, Bertoli A, Scutari R, Carioti L, Cento V, Santoro MM, Orro A, Maida I, Lenci I, Sarmati L, Craxì A, Pasquazzi C, Parruti G, Babudieri S, Milanesi L, Andreoni M, Angelico M, Perno CF, Ceccherini-Silberstein F, Svicher V, Salpini R, on behalf of HIRMA (Hepatocarcinoma Innovative Research MArkers) and Fondazione Vironet C (HCV Virology Italian Resistance Network). Genetic Determinants in a Critical Domain of NS5A Correlate with Hepatocellular Carcinoma in Cirrhotic Patients Infected with HCV Genotype 1b. Viruses 2021; 13:v13050743. [PMID: 33922732 PMCID: PMC8146897 DOI: 10.3390/v13050743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 12/05/2022] Open
Abstract
HCV is an important cause of hepatocellular carcinoma (HCC). HCV NS5A domain-1 interacts with cellular proteins inducing pro-oncogenic pathways. Thus, we explore genetic variations in NS5A domain-1 and their association with HCC, by analyzing 188 NS5A sequences from HCV genotype-1b infected DAA-naïve cirrhotic patients: 34 with HCC and 154 without HCC. Specific NS5A mutations significantly correlate with HCC: S3T (8.8% vs. 1.3%, p = 0.01), T122M (8.8% vs. 0.0%, p < 0.001), M133I (20.6% vs. 3.9%, p < 0.001), and Q181E (11.8% vs. 0.6%, p < 0.001). By multivariable analysis, the presence of ≥1 of them independently correlates with HCC (OR (95%CI): 21.8 (5.7–82.3); p < 0.001). Focusing on HCC-group, the presence of these mutations correlates with higher viremia (median (IQR): 5.7 (5.4–6.2) log IU/mL vs. 5.3 (4.4–5.6) log IU/mL, p = 0.02) and lower ALT (35 (30–71) vs. 83 (48–108) U/L, p = 0.004), suggesting a role in enhancing viral fitness without affecting necroinflammation. Notably, these mutations reside in NS5A regions known to interact with cellular proteins crucial for cell-cycle regulation (p53, p85-PIK3, and β-catenin), and introduce additional phosphorylation sites, a phenomenon known to ameliorate NS5A interaction with cellular proteins. Overall, these results provide a focus for further investigations on molecular bases of HCV-mediated oncogenesis. The role of these NS5A domain-1 mutations in triggering pro-oncogenic stimuli that can persist also despite achievement of sustained virological response deserves further investigation.
Collapse
Affiliation(s)
- Mohammad Alkhatib
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (V.C.D.M.); (S.B.); (A.B.); (R.S.); (L.C.); (M.M.S.); (F.C.-S.); (R.S.)
| | - Velia Chiara Di Maio
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (V.C.D.M.); (S.B.); (A.B.); (R.S.); (L.C.); (M.M.S.); (F.C.-S.); (R.S.)
| | - Valentina De Murtas
- Department of Clinical and Experimental Medicine, University of Sassari, 07100 Sassari, Italy; (V.D.M.); (I.M.); (S.B.)
| | - Ennio Polilli
- Infectious Diseases Unit, Pescara General Hospital, 65124 Pescara, Italy; (E.P.); (G.P.)
| | - Martina Milana
- Hepatology Unit, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy; (M.M.); (I.L.); (M.A.)
| | - Elisabetta Teti
- Infectious Diseases Unit, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy; (E.T.); (L.S.); (M.A.)
| | - Gianluca Fiorentino
- Infectious Diseases Unit, Sant’Andrea Hospital—“Sapienza” University, 00189 Rome, Italy; (G.F.); (C.P.)
| | - Vincenza Calvaruso
- Gastroenterology, “P. Giaccone” University Hospital, 90127 Palermo, Italy; (V.C.); (A.C.)
| | - Silvia Barbaliscia
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (V.C.D.M.); (S.B.); (A.B.); (R.S.); (L.C.); (M.M.S.); (F.C.-S.); (R.S.)
| | - Ada Bertoli
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (V.C.D.M.); (S.B.); (A.B.); (R.S.); (L.C.); (M.M.S.); (F.C.-S.); (R.S.)
- Laboratory of Clinical Microbiology and Virology, Polyclinic Tor Vergata Foundation, 00133 Rome, Italy
| | - Rossana Scutari
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (V.C.D.M.); (S.B.); (A.B.); (R.S.); (L.C.); (M.M.S.); (F.C.-S.); (R.S.)
| | - Luca Carioti
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (V.C.D.M.); (S.B.); (A.B.); (R.S.); (L.C.); (M.M.S.); (F.C.-S.); (R.S.)
| | - Valeria Cento
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy;
| | - Maria Mercedes Santoro
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (V.C.D.M.); (S.B.); (A.B.); (R.S.); (L.C.); (M.M.S.); (F.C.-S.); (R.S.)
| | - Alessandro Orro
- ITB-CNR, Institute of Biomedical Technologies, National Research Council of Italy, 20090 Milan, Italy; (A.O.); (L.M.)
| | - Ivana Maida
- Department of Clinical and Experimental Medicine, University of Sassari, 07100 Sassari, Italy; (V.D.M.); (I.M.); (S.B.)
| | - Ilaria Lenci
- Hepatology Unit, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy; (M.M.); (I.L.); (M.A.)
| | - Loredana Sarmati
- Infectious Diseases Unit, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy; (E.T.); (L.S.); (M.A.)
| | - Antonio Craxì
- Gastroenterology, “P. Giaccone” University Hospital, 90127 Palermo, Italy; (V.C.); (A.C.)
| | - Caterina Pasquazzi
- Infectious Diseases Unit, Sant’Andrea Hospital—“Sapienza” University, 00189 Rome, Italy; (G.F.); (C.P.)
| | - Giustino Parruti
- Infectious Diseases Unit, Pescara General Hospital, 65124 Pescara, Italy; (E.P.); (G.P.)
| | - Sergio Babudieri
- Department of Clinical and Experimental Medicine, University of Sassari, 07100 Sassari, Italy; (V.D.M.); (I.M.); (S.B.)
| | - Luciano Milanesi
- ITB-CNR, Institute of Biomedical Technologies, National Research Council of Italy, 20090 Milan, Italy; (A.O.); (L.M.)
| | - Massimo Andreoni
- Infectious Diseases Unit, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy; (E.T.); (L.S.); (M.A.)
| | - Mario Angelico
- Hepatology Unit, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy; (M.M.); (I.L.); (M.A.)
| | - Carlo Federico Perno
- Department of Diagnostic and Laboratory Medicine, IRCCS Bambino Gesu’, Pediatric Hospital, 60165 Rome, Italy;
| | - Francesca Ceccherini-Silberstein
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (V.C.D.M.); (S.B.); (A.B.); (R.S.); (L.C.); (M.M.S.); (F.C.-S.); (R.S.)
| | - Valentina Svicher
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (V.C.D.M.); (S.B.); (A.B.); (R.S.); (L.C.); (M.M.S.); (F.C.-S.); (R.S.)
- Correspondence: ; Tel.: +39-06-72596564
| | - Romina Salpini
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (V.C.D.M.); (S.B.); (A.B.); (R.S.); (L.C.); (M.M.S.); (F.C.-S.); (R.S.)
| | | |
Collapse
|
7
|
Bhatia M, Gupta E. Emerging resistance to directly-acting antiviral therapy in treatment of chronic Hepatitis C infection-A brief review of literature. J Family Med Prim Care 2020; 9:531-538. [PMID: 32318377 PMCID: PMC7113931 DOI: 10.4103/jfmpc.jfmpc_943_19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/16/2019] [Accepted: 12/24/2019] [Indexed: 12/13/2022] Open
Abstract
Hepatitis caused by Hepatitis C virus (HCV) is a major cause of chronic liver disease. HCV is transmitted by injection drug use, blood transfusion, hemodialysis, organ transplantation and less frequently sexual intercourse. It has been recognized as a global health problem because of the progression to cirrhosis and hepatocellular carcinoma. Globally, about 170 million people are infected with HCV. Since the discovery of this virus in 1989, the clinical management of chronic hepatitis C infection has undergone a paradigm shift from alpha interferon to direct-acting antiviral (DAA) therapy. However, resistance to many of these antiviral agents has been reported increasingly from all over the globe. This review article focuses on the emerging HCV resistance to DAAs and the relevance of in vitro DAA resistance testing in clinical practice.
Collapse
Affiliation(s)
- Mohit Bhatia
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Ekta Gupta
- Department of Virology, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
8
|
Cho K, Ro SW, Seo SH, Jeon Y, Moon H, Kim DY, Kim SU. Genetically Engineered Mouse Models for Liver Cancer. Cancers (Basel) 2019; 12:14. [PMID: 31861541 PMCID: PMC7016809 DOI: 10.3390/cancers12010014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the fourth leading cause of cancer-related death globally, accounting for approximately 800,000 deaths annually. Hepatocellular carcinoma (HCC) is the most common type of liver cancer, comprising approximately 80% of cases. Murine models of HCC, such as chemically-induced models, xenograft models, and genetically engineered mouse (GEM) models, are valuable tools to reproduce human HCC biopathology and biochemistry. These models can be used to identify potential biomarkers, evaluate potential novel therapeutic drugs in pre-clinical trials, and develop molecular target therapies. Considering molecular target therapies, a novel approach has been developed to create genetically engineered murine models for HCC, employing hydrodynamics-based transfection (HT). The HT method, coupled with the Sleeping Beauty transposon system or the CRISPR/Cas9 genome editing tool, has been used to rapidly and cost-effectively produce a variety of HCC models containing diverse oncogenes or inactivated tumor suppressor genes. The versatility of these models is expected to broaden our knowledge of the genetic mechanisms underlying human hepatocarcinogenesis, allowing the study of premalignant and malignant liver lesions and the evaluation of new therapeutic strategies. Here, we review recent advances in GEM models of HCC with an emphasis on new technologies.
Collapse
Affiliation(s)
- Kyungjoo Cho
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul 03722, Korea; (K.C.); (S.W.R.); (S.H.S.); (H.M.)
- Brain Korea 21 PLUS Project for Medical Science College of Medicine, Yonsei University, Seoul 03722, Korea
| | - Simon Weonsang Ro
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul 03722, Korea; (K.C.); (S.W.R.); (S.H.S.); (H.M.)
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Sang Hyun Seo
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul 03722, Korea; (K.C.); (S.W.R.); (S.H.S.); (H.M.)
| | - Youjin Jeon
- Department of Life Science, Sahmyook University, Seoul 03722, Korea;
| | - Hyuk Moon
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul 03722, Korea; (K.C.); (S.W.R.); (S.H.S.); (H.M.)
- Brain Korea 21 PLUS Project for Medical Science College of Medicine, Yonsei University, Seoul 03722, Korea
| | - Do Young Kim
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul 03722, Korea; (K.C.); (S.W.R.); (S.H.S.); (H.M.)
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Seung Up Kim
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul 03722, Korea; (K.C.); (S.W.R.); (S.H.S.); (H.M.)
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
9
|
Sofia MJ. The Discovery and Development of Daclatasvir: An Inhibitor of the Hepatitis C Virus NS5A Replication Complex. ACTA ACUST UNITED AC 2019. [PMCID: PMC7122418 DOI: 10.1007/7355_2018_47] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
10
|
Mahmoudvand S, Shokri S, Taherkhani R, Farshadpour F. Hepatitis C virus core protein modulates several signaling pathways involved in hepatocellular carcinoma. World J Gastroenterol 2019; 25:42-58. [PMID: 30643357 PMCID: PMC6328967 DOI: 10.3748/wjg.v25.i1.42] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/07/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer, and hepatitis C virus (HCV) infection plays a major role in HCC development. The molecular mechanisms by which HCV infection leads to HCC are varied. HCV core protein is an important risk factor in HCV-associated liver pathogenesis and can modulate several signaling pathways involved in cell cycle regulation, cell growth promotion, cell proliferation, apoptosis, oxidative stress and lipid metabolism. The dysregulation of signaling pathways such as transforming growth factor β (TGF-β), vascular endothelial growth factor (VEGF), Wnt/β-catenin (WNT), cyclooxygenase-2 (COX-2) and peroxisome proliferator-activated receptor α (PPARα) by HCV core protein is implicated in the development of HCC. Therefore, it has been suggested that this protein be considered a favorable target for further studies in the development of HCC. In addition, considering the axial role of these signaling pathways in HCC, they are considered druggable targets for cancer therapy. Therefore, using strategies to limit the dysregulation effects of core protein on these signaling pathways seems necessary to prevent HCV-related HCC.
Collapse
Affiliation(s)
- Shahab Mahmoudvand
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
- Department of Medical Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran
| | - Somayeh Shokri
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
- Department of Medical Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran
| | - Reza Taherkhani
- The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr 7514633341, Iran
| | - Fatemeh Farshadpour
- The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr 7514633341, Iran
| |
Collapse
|
11
|
Lobaina Y, Perera Y. Implication of B23/NPM1 in Viral Infections, Potential Uses of B23/NPM1 Inhibitors as Antiviral Therapy. Infect Disord Drug Targets 2019; 19:2-16. [PMID: 29589547 DOI: 10.2174/1871526518666180327124412] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/08/2018] [Accepted: 02/12/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND B23/nucleophosmin (B23/NPM1) is an abundant multifunctional protein mainly located in the nucleolus but constantly shuttling between the nucleus and cytosol. As a consequence of its constitutive expression, intracellular dynamics and binding capacities, B23/NPM1 interacts with multiple cellular factors in different cellular compartments, but also with viral proteins from both DNA and RNA viruses. B23/NPM1 influences overall viral replication of viruses like HIV, HBV, HCV, HDV and HPV by playing functional roles in different stages of viral replication including nuclear import, viral genome transcription and assembly, as well as final particle formation. Of note, some virus modify the subcellular localization, stability and/or increases B23/NPM1 expression levels on target cells, probably to foster B23/NPM1 functions in their own replicative cycle. RESULTS This review summarizes current knowledge concerning the interaction of B23/NPM1 with several viral proteins during relevant human infections. The opportunities and challenges of targeting this well-conserved host protein as a potentially new broad antiviral treatment are discussed in detail. Importantly, although initially conceived to treat cancer, a handful of B23/NPM1 inhibitors are currently available to test on viral infection models. CONCLUSION As B23/NPM1 partakes in key steps of viral replication and some viral infections remain as unsolved medical needs, an appealing idea may be the expedite evaluation of B23/NPM1 inhibitors in viral infections. Furthermore, worth to be addressed is if the up-regulation of B23/NPM1 protein levels that follows persistent viral infections may be instrumental to the malignant transformation induced by virus like HBV and HCV.
Collapse
Affiliation(s)
- Yadira Lobaina
- Therapeutic Hepatitis B Vaccine Group, Vaccine Division, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, CP 10600, Cuba
| | - Yasser Perera
- Molecular Oncology Group, Pharmaceuticals Division, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, CP 10600, Cuba
| |
Collapse
|
12
|
Non-Coding RNAs and Hepatitis C Virus-Induced Hepatocellular Carcinoma. Viruses 2018; 10:v10110591. [PMID: 30380697 PMCID: PMC6265700 DOI: 10.3390/v10110591] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection is a worldwide health problem and is one of the main causes of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma (HCC). Despite recent improvements, effective treatments for HCC are still missing and new tools for early detection are needed. Non-coding RNAs (ncRNAs) have emerged as important regulators of gene expression and key players in human carcinogenesis, including HCC. Aberrant expression of ncRNAs is associated with HCC metastasis, invasion, dissemination, and recurrence. This review will focus on the recent advances in ncRNA expression profiles, their dysregulation in HCV-related HCC, and the clinical perspective of ncRNA signatures for the early detection of HCC.
Collapse
|
13
|
Badillo A, Receveur-Brechot V, Sarrazin S, Cantrelle FX, Delolme F, Fogeron ML, Molle J, Montserret R, Bockmann A, Bartenschlager R, Lohmann V, Lippens G, Ricard-Blum S, Hanoulle X, Penin F. Overall Structural Model of NS5A Protein from Hepatitis C Virus and Modulation by Mutations Confering Resistance of Virus Replication to Cyclosporin A. Biochemistry 2017; 56:3029-3048. [PMID: 28535337 DOI: 10.1021/acs.biochem.7b00212] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is a RNA-binding phosphoprotein composed of a N-terminal membrane anchor (AH), a structured domain 1 (D1), and two intrinsically disordered domains (D2 and D3). The knowledge of the functional architecture of this multifunctional protein remains limited. We report here that NS5A-D1D2D3 produced in a wheat germ cell-free system is obtained under a highly phosphorylated state. Its NMR analysis revealed that these phosphorylations do not change the disordered nature of D2 and D3 domains but increase the number of conformers due to partial phosphorylations. By combining NMR and small angle X-ray scattering, we performed a comparative structural characterization of unphosphorylated recombinant D2 domains of JFH1 (genotype 2a) and the Con1 (genotype 1b) strains produced in Escherichia coli. These analyses highlighted a higher intrinsic folding of the latter, revealing the variability of intrinsic conformations in HCV genotypes. We also investigated the effect of D2 mutations conferring resistance of HCV replication to cyclophilin A (CypA) inhibitors on the structure of the recombinant D2 Con1 mutants and their binding to CypA. Although resistance mutations D320E and R318W could induce some local and/or global folding perturbation, which could thus affect the kinetics of conformer interconversions, they do not significantly affect the kinetics of CypA/D2 interaction measured by surface plasmon resonance (SPR). The combination of all our data led us to build a model of the overall structure of NS5A, which provides a useful template for further investigations of the structural and functional features of this enigmatic protein.
Collapse
Affiliation(s)
- Aurelie Badillo
- Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Labex Ecofect, Université de Lyon, 69367 Lyon, France
| | | | - Stéphane Sarrazin
- Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Labex Ecofect, Université de Lyon, 69367 Lyon, France
| | - François-Xavier Cantrelle
- University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F 59 000 Lille, France
| | - Frédéric Delolme
- Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Labex Ecofect, Université de Lyon, 69367 Lyon, France
| | - Marie-Laure Fogeron
- Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Labex Ecofect, Université de Lyon, 69367 Lyon, France
| | - Jennifer Molle
- Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Labex Ecofect, Université de Lyon, 69367 Lyon, France
| | - Roland Montserret
- Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Labex Ecofect, Université de Lyon, 69367 Lyon, France
| | - Anja Bockmann
- Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Labex Ecofect, Université de Lyon, 69367 Lyon, France
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg , Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg , Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Guy Lippens
- University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F 59 000 Lille, France
| | - Sylvie Ricard-Blum
- Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Labex Ecofect, Université de Lyon, 69367 Lyon, France
| | - Xavier Hanoulle
- University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F 59 000 Lille, France
| | - François Penin
- Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Labex Ecofect, Université de Lyon, 69367 Lyon, France
| |
Collapse
|
14
|
Khanizadeh S, Ravanshad M, Hosseini SY, Davoodian P, Almasian M, Khanlari Z. The effect of the hepatitis C virus (HCV) NS3 protein on the expression of miR-150, miR-199a, miR-335, miR-194 and miR-27a. Microb Pathog 2017; 110:688-693. [PMID: 28286290 DOI: 10.1016/j.micpath.2017.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/01/2017] [Accepted: 03/06/2017] [Indexed: 01/28/2023]
Abstract
Hepatitis C virus (HCV) infection is considered one of the most important causes of chronic liver diseases. Many reports have shown that the proteins of the HCV via interactions with gene expression regulatory networks such as cellular pathways and microRNAs can contribute to the development of chronic liver diseases. The present study aimed to investigate the effects of the HCV NS3 protein on the expression of miR-150 miR-199a, miR-335, miR-194, miR-27a in a cell culture model. Plasmids expressing the full length of the HCV NS3 protein were transfected into the LX-2 cell line, while at the same time a plasmid expressing empty GFP (green fluorescent protein) was used as a negative control group. Subsequently, total RNA was extracted and real-time PCR was performed to measure microRNA expression levels. Additionally, the trypan blue exclusion test was performed to examine the effect of the expressing NS3 protein plasmid on cellular viability. The analysis of microRNA gene expression in LX-2 cells indicated that the NS3 protein, which is endogenous to HCV, can significantly upregulate the expression of miR-27a and downregulate the expression of miR-335 and miR-150 in comparison with the control plasmid expressing GFP and normal cells (p < 0.01). These results suggest that the HCV NS3 protein may play a role in the pathogenesis of chronic hepatic diseases such as liver fibrosis via interaction with cellular microRNAs and modulation of microRNA gene expressions.
Collapse
Affiliation(s)
- Sayyad Khanizadeh
- Hepatitis Research Center and Department of Microbiology and Virology, Lorestan University of Medical Sciences, Khorramabad, Iran; School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Mehrdad Ravanshad
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Younes Hosseini
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parivash Davoodian
- Infectious & Tropical Diseases Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mohammad Almasian
- Department of the English Language, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Zahra Khanlari
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
15
|
Ganesan A, Barakat K. Applications of computer-aided approaches in the development of hepatitis C antiviral agents. Expert Opin Drug Discov 2017; 12:407-425. [PMID: 28164720 DOI: 10.1080/17460441.2017.1291628] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Hepatitis C virus (HCV) is a global health problem that causes several chronic life-threatening liver diseases. The numbers of people affected by HCV are rising annually. Since 2011, the FDA has approved several anti-HCV drugs; while many other promising HCV drugs are currently in late clinical trials. Areas covered: This review discusses the applications of different computational approaches in HCV drug design. Expert opinion: Molecular docking and virtual screening approaches have emerged as a low-cost tool to screen large databases and identify potential small-molecule hits against HCV targets. Ligand-based approaches are useful for filtering-out compounds with rich physicochemical properties to inhibit HCV targets. Molecular dynamics (MD) remains a useful tool in optimizing the ligand-protein complexes and understand the ligand binding modes and drug resistance mechanisms in HCV. Despite their varied roles, the application of in-silico approaches in HCV drug design is still in its infancy. A more mature application should aim at modelling the whole HCV replicon in its active form and help to identify new effective druggable sites within the replicon system. With more technological advancements, the roles of computer-aided methods are only going to increase several folds in the development of next-generation HCV drugs.
Collapse
Affiliation(s)
- Aravindhan Ganesan
- a Faculty of Pharmacy and Pharmaceutical Sciences , University of Alberta , Edmonton , Canada
| | - Khaled Barakat
- a Faculty of Pharmacy and Pharmaceutical Sciences , University of Alberta , Edmonton , Canada
| |
Collapse
|
16
|
Vallianou I, Dafou D, Vassilaki N, Mavromara P, Hadzopoulou-Cladaras M. Hepatitis C virus suppresses Hepatocyte Nuclear Factor 4 alpha, a key regulator of hepatocellular carcinoma. Int J Biochem Cell Biol 2016; 78:315-326. [PMID: 27477312 DOI: 10.1016/j.biocel.2016.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/20/2016] [Accepted: 07/26/2016] [Indexed: 12/18/2022]
Abstract
Hepatitis C Virus (HCV) infection presents with a disturbed lipid profile and can evolve to hepatic steatosis and hepatocellular carcinoma (HCC). Hepatocyte Nuclear Factor 4 alpha (HNF4α) is the most abundant transcription factor in the liver, a key regulator of hepatic lipid metabolism and a critical determinant of Epithelial to Mesenchymal Transition and hepatic development. We have previously shown that transient inhibition of HNF4α initiates transformation of immortalized hepatocytes through a feedback loop consisting of miR-24, IL6 receptor (IL6R), STAT3, miR-124 and miR-629, suggesting a central role of HNF4α in HCC. However, the role of HNF4α in Hepatitis C Virus (HCV)-related hepatocarcinoma has not been evaluated and remains controversial. In this study, we provide strong evidence suggesting that HCV downregulates HNF4α expression at both transcriptional and translational levels. The observed decrease of HNF4α expression correlated with the downregulation of its downstream targets, HNF1α and MTP. Ectopic overexpression of HCV proteins also exhibited an inhibitory effect on HNF4α levels. The inhibition of HNF4α expression by HCV appeared to be mediated at transcriptional level as HCV proteins suppressed HNF4α gene promoter activity. HCV also up-regulated IL6R, activated STAT3 protein phosphorylation and altered the expression of acute phase genes. Furthermore, as HCV triggered the loss of HNF4α a consequent change of miR-24, miR-629 or miR-124 was observed. Our findings demonstrated that HCV-related HCC could be mediated through HNF4α-microRNA deregulation implying a possible role of HNF4α in HCV hepatocarcinogenesis. HCV inhibition of HNF4α could be sustained to promote HCC.
Collapse
Affiliation(s)
- Ioanna Vallianou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra Dafou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Niki Vassilaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Penelope Mavromara
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Margarita Hadzopoulou-Cladaras
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
17
|
Fast hepatitis C virus RNA elimination and NS5A redistribution by NS5A inhibitors studied by a multiplex assay approach. Antimicrob Agents Chemother 2015; 59:3482-92. [PMID: 25845863 DOI: 10.1128/aac.00223-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/27/2015] [Indexed: 12/18/2022] Open
Abstract
While earlier therapeutic strategies for the treatment of hepatitis C virus (HCV) infection relied exclusively on interferon (IFN) and ribavirin (RBV), four direct-acting antiviral agents (DAAs) have now been approved, aiming for an interferon-free strategy with a short treatment duration and fewer side effects. To facilitate studies on the mechanism of action (MOA) and efficacy of DAAs, we established a multiplex assay approach, which employs flow cytometry, a Gaussia luciferase reporter system, Western blot analysis, reverse transcription-quantitative PCR (RT-qPCR), a limited dilution assay (50% tissue culture infectious dose [TCID50]), and an image profiling assay that follows the NS5A redistribution in response to drug treatment. We used this approach to compare the relative potency of various DAAs and the kinetics of their antiviral effects as a potential preclinical measure of their potential clinical utility. We evaluated the NS5A inhibitors ledipasvir (LDV) and daclatasvir (DCV), the NS3/4A inhibitor danoprevir (DNV), and the NS5B inhibitor sofosbuvir (SOF). In terms of kinetics, our data demonstrate that the NS5A inhibitor LDV, followed closely by DCV, has the fastest effect on suppression of viral proteins and RNA and on redistribution of NS5A. In terms of MOA, LDV has a more pronounced effect than DCV on the viral replication, assembly, and infectivity of released virus. Our approach can be used to facilitate the study of the biological processes involved in HCV replication and help identify optimal drug combinations.
Collapse
|
18
|
Tornesello ML, Buonaguro L, Buonaguro FM. An overview of new biomolecular pathways in pathogen-related cancers. Future Oncol 2015; 11:1625-1639. [PMID: 26043216 DOI: 10.2217/fon.15.87] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer molecular pathways are combinations of metabolic processes deregulated in neoplastic cells. Besides pathways specific to tissues from which cancers originate, common neoplastic traits are present among most tumors. Hanahan and Weinberg have described the most critical 'hallmarks' shared by many cancer types. In recent years, cancer stem cell specific properties and pathways have also been identified. Other altered pathways are peculiar of cancer type and cancer stage, even in different cancer stem cell types. In pathogen-related tumors, the alteration of inflammatory and immunologic response along with impairment of cell cycle control represents key molecular events of tumor progression. This article summarizes the recent discoveries of new altered pathways in cancer and their importance in cancer diagnosis and tailored therapies.
Collapse
|
19
|
Yao Z, Song X, Cao S, Liang W, Lu W, Yang L, Zhang Z, Wei L. Role of the exogenous HCV core protein in the interaction of human hepatocyte proliferation and macrophage sub-populations. PLoS One 2014; 9:e108278. [PMID: 25265479 PMCID: PMC4180735 DOI: 10.1371/journal.pone.0108278] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/19/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The core protein of hepatitis C virus (HCV) is found in the cytoplasm and nuclei of infected cells, including hepatocytes and other cells in the liver. The core protein could be secreted as well. Resident liver macrophages are dependent on the tissue micro-environment and external stimuli to differentiate M1 and M2 hypotypes with distinct functions, and increased expression of the nuclear transcription factor STAT3 was seen in M2-polarized macrophages. In contrast to proinflammatory M1 macrophages, M2 macrophages serve beneficial roles in chronic inflammation, immunosuppression, and tumorigenesis. METHODS Monocyte-derived human macrophage line (mTHP-1) was treated with the exogenous HCV core protein. Next, the mTHP-1 culture supernatant or cell pellets were added to culture media of normal human liver cell line (L02). RESULTS Only the culture supernatant stimulated L02 cells proliferation, which was associated with phosphorylated ERK expression. Core protein activated mTHP-1 cells showed enhanced pro- and anti-inflammatory cytokines secretion, which was accompanied by high expression of phosphorylated NF-κB105 and NF-κB65. However, phosphorylated STAT1, and STAT3, which are normally associated with M1 and M2 macrophage polarization, and cell surface expression of CD206, CD14, CD16, and CD86, were unaltered. A transwell co-culture system showed that only in mTHP-1 co-cultured with L02 in the presence of exogenous core protein, were higher levels of phosphorylated STAT3 and CD206 seen. CONCLUSIONS We showed L02 cells proliferation was accelerated by the culture supernatant of mTHP-1 cells treated with the exogenous HCV core protein. The exogenous core protein mediated the interaction between macrophages and hepatocytes in co-culture, which enhanced the expression of phosphorylated STAT3 and CD206 in macrophages.
Collapse
Affiliation(s)
- Zhiyan Yao
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Xiaotian Song
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Shiru Cao
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Wenzhang Liang
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Wenran Lu
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Lijuan Yang
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Zhengzheng Zhang
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Lin Wei
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| |
Collapse
|
20
|
Seed sequence-matched controls reveal limitations of small interfering RNA knockdown in functional and structural studies of hepatitis C virus NS5A-MOBKL1B interaction. J Virol 2014; 88:11022-33. [PMID: 25031347 DOI: 10.1128/jvi.01582-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED Hepatitis C virus (HCV) is a widespread human pathogen causing liver cirrhosis and cancer. Similar to the case for other viruses, HCV depends on host and viral factors to complete its life cycle. We used proteomic and yeast two-hybrid approaches to elucidate host factors involved in HCV nonstructural protein NS5A function and found that MOBKL1B interacts with NS5A. Initial experiments with small interfering RNA (siRNA) knockdown suggesting a role in HCV replication led us to examine the interaction using biochemical and structural approaches. As revealed by a cocrystal structure of a core MOBKL1B-NS5A peptide complex at 1.95 Å, NS5A binds to a hydrophobic patch on the MOBKL1B surface. Biosensor binding assays identified a highly conserved, 18-amino-acid binding site in domain II of NS5A, which encompasses residues implicated in cyclophilin A (CypA)-dependent HCV RNA replication. However, a CypA-independent HCV variant had reduced replication in MOBKL1B knockdown cells, even though its NS5A does not interact with MOBKL1B. These discordant results prompted more extensive studies of MOBKL1B gene knockdowns, which included additional siRNAs and specifically matched seed sequence siRNA controls. We found that reduced virus replication after treating cells with MOBKL1B siRNA was actually due to off-target inhibition, which indicated that the initial finding of virus replication dependence on the MOBKL1B-NS5A interaction was incorrect. Ultimately, using several approaches, we found no relationship of the MOBKL1B-NS5A interaction to virus replication. These findings collectively serve as a reminder to investigators and scientific reviewers of the pervasive impact of siRNA off-target effects on interpretation of biological data. IMPORTANCE Our study illustrates an underappreciated shortcoming of siRNA gene knockdown technology. We initially identified a cellular protein, MOBKL1B, as a binding partner with the NS5A protein of hepatitis C virus (HCV). MOBKL1B siRNA, but not irrelevant RNA, treatment was associated with both reduced virus replication and the absence of MOBKL1B. Believing that HCV replication depended on the MOBKL1B-NS5A interaction, we carried out structural and biochemical analyses. Unexpectedly, an HCV variant lacking the MOBKL1B-NS5A interaction could not replicate after cells were treated with MOBKL1B siRNA. By repeating the MOBKL1B siRNA knockdowns and including seed sequence-matched siRNA instead of irrelevant siRNA as a control, we found that the MOBKL1B siRNAs utilized had off-target inhibitory effects on virus replication. Collectively, our results suggest that stricter controls must be utilized in all RNA interference (RNAi)-mediated gene knockdown experiments to ensure sound conclusions and a reliable scientific knowledge database.
Collapse
|
21
|
Fernandez-Ponce C, Dominguez-Villar M, Aguado E, Garcia-Cozar F. CD4+ primary T cells expressing HCV-core protein upregulate Foxp3 and IL-10, suppressing CD4 and CD8 T cells. PLoS One 2014; 9:e85191. [PMID: 24465502 PMCID: PMC3896374 DOI: 10.1371/journal.pone.0085191] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 11/30/2013] [Indexed: 12/11/2022] Open
Abstract
Adaptive T cell responses are critical for controlling HCV infection. While there is clinical evidence of a relevant role for regulatory T cells in chronic HCV-infected patients, based on their increased number and function; mechanisms underlying such a phenomena are still poorly understood. Accumulating evidence suggests that proteins from Hepatitis C virus can suppress host immune responses. We and others have shown that HCV is present in CD4+ lymphocytes from chronically infected patients and that HCV-core protein induces a state of unresponsiveness in the CD4+ tumor cell line Jurkat. Here we show that CD4+ primary T cells lentivirally transduced with HCV-core, not only acquire an anergic phenotype but also inhibit IL-2 production and proliferation of bystander CD4+ or CD8+ T cells in response to anti-CD3 plus anti-CD28 stimulation. Core-transduced CD4+ T cells show a phenotype characterized by an increased basal secretion of the regulatory cytokine IL-10, a decreased IFN-γ production upon stimulation, as well as expression of regulatory T cell markers, CTLA-4, and Foxp3. A significant induction of CD4+CD25+CD127(low)PD-1(high)TIM-3(high) regulatory T cells with an exhausted phenotype was also observed. Moreover, CCR7 expression decreased in HCV-core expressing CD4+ T cells explaining their sequestration in inflamed tissues such as the infected liver. This work provides a new perspective on de novo generation of regulatory CD4+ T cells in the periphery, induced by the expression of a single viral protein.
Collapse
Affiliation(s)
- Cecilia Fernandez-Ponce
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz and Puerto Real University Hospital Research Unit, School of Medicine, Cadiz, Spain
| | - Margarita Dominguez-Villar
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz and Puerto Real University Hospital Research Unit, School of Medicine, Cadiz, Spain
| | - Enrique Aguado
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz and Puerto Real University Hospital Research Unit, School of Medicine, Cadiz, Spain
| | - Francisco Garcia-Cozar
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz and Puerto Real University Hospital Research Unit, School of Medicine, Cadiz, Spain
| |
Collapse
|
22
|
Fan B, Lu KY, Reymond Sutandy FX, Chen YW, Konan K, Zhu H, Kao CC, Chen CS. A human proteome microarray identifies that the heterogeneous nuclear ribonucleoprotein K (hnRNP K) recognizes the 5' terminal sequence of the hepatitis C virus RNA. Mol Cell Proteomics 2013; 13:84-92. [PMID: 24113282 DOI: 10.1074/mcp.m113.031682] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Stem-loop I (SL1) located in the 5' untranslated region of the hepatitis C virus (HCV) genome initiates binding to miR-122, a microRNA required for hepatitis HCV replication. However, proteins that bind SL1 remain elusive. In this study, we employed a human proteome microarray, comprised of ∼17,000 individually purified human proteins in full-length, and identified 313 proteins that recognize HCV SL1. Eighty-three of the identified proteins were annotated as liver-expressing proteins, and twelve of which were known to be associated with hepatitis virus. siRNA-induced silencing of eight out of 12 candidate genes led to at least 25% decrease in HCV replication efficiency. In particular, knockdown of heterogeneous nuclear ribonucleoprotein K (hnRNP K) reduced HCV replication in a concentration-dependent manner. Ultra-violet-crosslinking assay also showed that hnRNP K, which functions in pre-mRNA processing and transport, showed the strongest binding to the HCV SL1. We observed that hnRNP K, a nuclear protein, is relocated in the cytoplasm in HCV-expressing cells. Immunoprecipitation of the hnRNP K from Huh7.5 cells stably expressing HCV replicon resulted in the co-immunoprecipitation of SL1. This work identifies a cellular protein that could have an important role in the regulation of HCV RNA gene expression and metabolism.
Collapse
Affiliation(s)
- Baochang Fan
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Doumba PP, Serti E, Boutsikou M, Konstadoulakis MM, Georgopoulou U, Koskinas J. Phenotypic and functional alterations of primary human PBMCs induced by HCV non-enveloped capsid-like particles uptake. Cell Mol Life Sci 2013; 70:3463-74. [PMID: 23645326 PMCID: PMC11113332 DOI: 10.1007/s00018-013-1344-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/01/2013] [Accepted: 04/11/2013] [Indexed: 12/31/2022]
Abstract
Hepatitis C virus non-enveloped particles circulate in the serum of HCV-infected patients and are believed to be involved in viral persistence. It was previously demonstrated that recombinant HCVne particles can efficiently enter T cells. In this study we investigated the effect of this entry on the phenotype and function of PBMCs, focused on the CD4+ and CD8+ T-cells. We have generated recombinant HCVne in the absence of other viral proteins. PBMCs from healthy donors were sampled after incubation either with HCVne or the control at different time points. Levels of expression of CD107a, CD25, CTLA-4, and T regulatory cells were estimated and cytokine expression and secretion were also monitored. Peripheral T cells expressed elevated CD127. The intracellular expression of the inhibitory marker CTLA-4 (CD152) increased significantly on peripheral T cells at late hours post-treatment, compared to the respective non-treated group. Despite the fact that there was an initial immune response due to HCVne uptake, T cells were driven to a partial exhausted phenotype. A significant induction of CD4+CD25+(hi)CD127-regulatory T cells at late hours was observed. Consistently, Foxp3+CD4+ T cells were also increased. In parallel, a significant transcriptional activation and increased secretion of IL-2, IL-10, and IFN-γ, was recorded. Moreover, mRNA transcription of TGF-β was considerably elevated. HCVne particles have the potential to shape the immune response by modifying specific phenotypic and functional markers mainly on CD4+ T cells and driving them to partial exhaustion as well as to Treg expansion.
Collapse
Affiliation(s)
- Polyxeni P. Doumba
- Department of Internal Medicine, Medical School of Athens, Hippokration Hospital, Athens, Greece
- Laboratory of Surgical Research, 1st Department of Propaedeutic Surgery, Medical School of Athens, Hippokration Hospital, Athens, Greece
| | - Elisavet Serti
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Maria Boutsikou
- Department of Internal Medicine, Medical School of Athens, Hippokration Hospital, Athens, Greece
| | - Manousos M. Konstadoulakis
- Laboratory of Surgical Research, 1st Department of Propaedeutic Surgery, Medical School of Athens, Hippokration Hospital, Athens, Greece
| | | | - John Koskinas
- Department of Internal Medicine, Medical School of Athens, Hippokration Hospital, Athens, Greece
| |
Collapse
|
24
|
O'Boyle Ii DR, Sun JH, Nower PT, Lemm JA, Fridell RA, Wang C, Romine JL, Belema M, Nguyen VN, Laurent DRS, Serrano-Wu M, Snyder LB, Meanwell NA, Langley DR, Gao M. Characterizations of HCV NS5A replication complex inhibitors. Virology 2013; 444:343-54. [PMID: 23896639 DOI: 10.1016/j.virol.2013.06.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/02/2013] [Accepted: 06/28/2013] [Indexed: 01/28/2023]
Abstract
The hepatitis C virus NS5A protein is an established and clinically validated target for antiviral intervention by small molecules. Characterizations are presented of compounds identified as potent inhibitors of HCV replication to provide insight into structural elements that interact with the NS5A protein. UV-activated cross linking and affinity isolation was performed with one series to probe the physical interaction between the inhibitors and the NS5A protein expressed in HCV replicon cells. Resistance mapping with the second series was used to determine the functional impact of specific inhibitor subdomains on the interaction with NS5A. The data provide evidence for a direct high-affinity interaction between these inhibitors and the NS5A protein, with the interaction dependent on inhibitor stereochemistry. The functional data supports a model of inhibition that implicates inhibitor binding by covalently combining distinct pharmacophores across an NS5A dimer interface to achieve maximal inhibition of HCV replication.
Collapse
Affiliation(s)
- Donald R O'Boyle Ii
- Bristol-Myers Squibb Research and Development, Department of Virology Discovery, 5 Research Parkway, Wallingford, CT 06492, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Blum HE. Hepatitis C and Hepatocellular Carcinoma. VIRAL HEPATITIS 2013:353-361. [DOI: 10.1002/9781118637272.ch24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
26
|
Pauvolid-Corrêa A, Kenney JL, Couto-Lima D, Campos ZMS, Schatzmayr HG, Nogueira RMR, Brault AC, Komar N. Ilheus virus isolation in the Pantanal, west-central Brazil. PLoS Negl Trop Dis 2013; 7:e2318. [PMID: 23875051 PMCID: PMC3715421 DOI: 10.1371/journal.pntd.0002318] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/04/2013] [Indexed: 11/19/2022] Open
Abstract
The wetlands of the Brazilian Pantanal host large concentrations of diverse wildlife species and hematophagous arthropods, conditions that favor the circulation of zoonotic arboviruses. A recent study from the Nhecolândia sub-region of Pantanal reported serological evidence of various flaviviruses, including West Nile virus and Ilheus virus (ILHV). According to the age of seropositive horses, at least three flaviviruses, including ILHV, circulated in the Brazilian Pantanal between 2005 and 2009. To extend this study, we collected 3,234 adult mosquitoes of 16 species during 2009 and 2010 in the same sub-region. Mosquito pool homogenates were assayed for infectious virus on C6/36 and Vero cell monolayers and also tested for flaviviral RNA by a group-specific real-time RT-PCR. One pool containing 50 non-engorged female specimens of Aedes scapularis tested positive for ILHV by culture and for ILHV RNA by real-time RT-PCR, indicating a minimum infection rate of 2.5 per 1000. Full-length genomic sequence exhibited 95% identity to the only full genome sequence available for ILHV. The present data confirm the circulation of ILHV in the Brazilian Pantanal.
Collapse
Affiliation(s)
- Alex Pauvolid-Corrêa
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Ministério da Saúde, Rio de Janeiro, Rio de Janeiro, Brasil
- Arbovirus Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
- Fulbright Visiting Researcher in Doctorate Sandwich Program at CDC, Fort Collins, Colorado, United States of America
| | - Joan L. Kenney
- Arbovirus Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Dinair Couto-Lima
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Ministério da Saúde, Rio de Janeiro, Rio de Janeiro, Brasil
| | | | - Hermann G. Schatzmayr
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Ministério da Saúde, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Rita M. R. Nogueira
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Ministério da Saúde, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Aaron C. Brault
- Arbovirus Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Nicholas Komar
- Arbovirus Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| |
Collapse
|
27
|
Jiang J, Wu X, Tang H, Luo G. Apolipoprotein E mediates attachment of clinical hepatitis C virus to hepatocytes by binding to cell surface heparan sulfate proteoglycan receptors. PLoS One 2013; 8:e67982. [PMID: 23844141 PMCID: PMC3699494 DOI: 10.1371/journal.pone.0067982] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/23/2013] [Indexed: 01/27/2023] Open
Abstract
Our previous studies demonstrated that the cell culture-grown hepatitis C virus of genotype 2a (HCVcc) uses apolipoprotein E (apoE) to mediate its attachment to the surface of human hepatoma Huh-7.5 cells. ApoE mediates HCV attachment by binding to the cell surface heparan sulfate (HS) which is covalently attached to the core proteins of proteoglycans (HSPGs). In the present study, we further determined the physiological importance of apoE and HSPGs in the HCV attachment using a clinical HCV of genotype 1b (HCV1b) obtained from hepatitis C patients and human embryonic stem cell-differentiated hepatocyte-like cells (DHHs). DHHs were found to resemble primary human hepatocytes. Similar to HCVcc, HCV1b was found to attach to the surface of DHHs by the apoE-mediated binding to the cell surface HSPGs. The apoE-specific monoclonal antibody, purified HSPGs, and heparin were all able to efficiently block HCV1b attachment to DHHs. Similarly, the removal of heparan sulfate from cell surface by treatment with heparinase suppressed HCV1b attachment to DHHs. More significantly, HCV1b attachment was potently inhibited by a synthetic peptide derived from the apoE receptor-binding region as well as by an HSPG-binding peptide. Likewise, the HSPG-binding peptide prevented apoE from binding to heparin in a dose-dependent manner, as determined by an in vitro heparin pull-down assay. Collectively, these findings demonstrate that HSPGs serve as major HCV attachment receptors on the surface of human hepatocytes to which the apoE protein ligand on the HCV envelope binds.
Collapse
Affiliation(s)
- Jieyun Jiang
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Xianfang Wu
- Department of Biological Science, The Florida State University, Tallahassee, Florida, United States of America
| | - Hengli Tang
- Department of Biological Science, The Florida State University, Tallahassee, Florida, United States of America
| | - Guangxiang Luo
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- Department of Microbiology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
- Department of Microbiology, Peking University College of Basic Medical Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
28
|
Ansari MA, Irshad M, Agarwal SK, Chosdol K. Expression of the full-length HCV core subgenome from HCV gentoype-1a and genotype-3a and evaluation of the antigenicity of translational products. Eur J Gastroenterol Hepatol 2013; 25:806-813. [PMID: 23442416 DOI: 10.1097/meg.0b013e32835eb9b9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Hepatitis C virus (HCV) infection is a major public health problem in India. Detection of HCV and its genotypes by simple and economic assays is a prime requirement in the planning of antiviral treatments for patients infected with this virus. Although commercial assays are available for the detection of both HCV RNA and genotypes, efforts aimed at the development of simple and economical systems for these measurements are still going on. AIM The present study was designed to clone and express the HCV CORE gene from HCV genotype-1a and genotype-3a and use the peptides to develop immunoassays for the detection of genotype-specific antibodies in sera samples. METHODS One hundred and thirty-five serum samples from patients with liver and renal diseases were screened for HCV RNA by real-time PCR, followed by HCV genotyping in RNA-positive sera by restriction fragment length polymorphism, sequencing, and phylogenetic analysis. The HCV CORE gene was amplified from sera carrying HCV genotype-1a and genotype-3a and cloned and expressed in the pET19b vector. The translational products were used to develop a western blot assay for the detection of genotype-specific anti-HCV antibodies. RESULTS The HCV CORE gene, from both genotypes, was cloned and expressed successfully, with production of a 26 kDa recombinant protein in either case. Using peptides in a western blot assay, 101 sera samples were tested for the anti-HCV CORE antibody. Each peptide showed a reaction with anti-HCV total antibody without showing any genotype-specific binding. This indicates that individual peptides obtained from different genotypes do not have a genotype-specific epitope to bind with antibodies. CONCLUSION Cloning and expression of the HCV CORE gene from genotype-1a and genotype-3a was successful. However, the peptides formed did not show genotype-specific binding with anti-HCV.
Collapse
Affiliation(s)
- Mohammad A Ansari
- Department of Laboratory Medicine, Clinical Biochemistry Division, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | |
Collapse
|
29
|
Li D, Dong H, Li S, Munir M, Chen J, Luo Y, Sun Y, Liu L, Qiu HJ. Hemoglobin subunit beta interacts with the capsid protein and antagonizes the growth of classical swine fever virus. J Virol 2013; 87:5707-17. [PMID: 23487454 PMCID: PMC3648164 DOI: 10.1128/jvi.03130-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 03/01/2013] [Indexed: 11/20/2022] Open
Abstract
The capsid (C) protein of the Flaviviridae family members is involved in nucleocapsid formation and virion assembly. However, the influence of C protein-interacting partners on the outcome of pestivirus infections is poorly defined. In this study, hemoglobin subunit beta (HB) was identified as a C protein-binding protein by glutathione S-transferase pulldown and subsequent mass spectrometry analysis of PK-15 cells, which are permissive cells for classical swine fever virus (CSFV). Coimmunoprecipitation and confocal microscopy confirmed that HB interacts and colocalizes with the C protein in the cytoplasm. Silencing of HB with small interfering RNAs promoted CSFV growth and replication, whereas overexpression of HB suppressed CSFV replication and growth. Interestingly, HB was found to interact with retinoic acid-inducible gene I and increase its expression, resulting in increased production of type I interferon (IFN). However, HB was unable to suppress CSFV growth when the RIG-I pathway was blocked. Overall, our results suggest that cellular HB antagonizes CSFV growth and replication by triggering IFN signaling, and might represent a novel antiviral restriction factor. This study reports for the first time the novel role of HB in innate immunity.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hong Dong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Su Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Muhammad Munir
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jianing Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuzi Luo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lihong Liu
- Department of Virology, Immunobiology and Parasitology, National Veterinary Institute, Uppsala, Sweden
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
30
|
Hamed O, Kimchi ET, Sehmbey M, Gusani NJ, Kaifi JT, Staveley-O'Carroll K. Impact of genetic targets on cancer therapy: hepatocellular cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 779:67-90. [PMID: 23288636 DOI: 10.1007/978-1-4614-6176-0_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Understanding cancer at the genetic level had gained significant attention over the last decade since the human genome was first sequenced in 2001. For hepatocellular carcinoma (HCC) a number of genome-wide profiling studies have been published. These studies have provided us with gene sets, based on which we can now classify tumors and have an idea about the likely clinical outcomes. In addition to that, genomic profiling for HCC has provided us a better understanding of the carcinogenesis process and identifies key steps at multiple levels (i.e. Genetics, molecular pathways) that can be potential targets for treatment and prevention. Although still an incurable disease, unresectable HCC has one proven systemic therapy, sorafenib, and many under active investigation. With advancement in technology and understanding of hepatocarcinogenesis, scientists hope to provide true personalized treatment for this disease in the near future. In this review article we discuss advances in understanding genetics and pathogenesis of HCC and the currently available and ongoing trials for targeted therapies. These emerging therapies may guide the development of more effective treatments or possibly a cure for HCC.
Collapse
Affiliation(s)
- Osama Hamed
- Department of Surgery, Milton S. Hershey Medical Center Program of Liver, Pancreas, and Foregut Tumors, Penn State College Of Medicine, Mail Code H070, 500 University Derive, 850, Hershey, PA 17033-0850, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Quezada EM, Kane CM. The Stimulatory Mechanism of Hepatitis C Virus NS5A Protein on the NS5B Catalyzed Replication Reaction In Vitro. Open Biochem J 2013; 7:11-4. [PMID: 23407362 PMCID: PMC3568871 DOI: 10.2174/1874091x01307010011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 04/18/2012] [Accepted: 04/24/2012] [Indexed: 11/22/2022] Open
Abstract
The Hepatitis C Virus RNA dependent RNA polymerase, NS5B, is stimulated by the NS5A protein in vitro. To explore this stimulatory mechanism, we compared the activity of a mutant of NS5B containing a deletion of the β-loop region with that of the full length NS5B in response to NS5A. While the NS5A protein does stimulate full length NS5B, NS5A does not stimulate the NS5B deletion mutant during either replication initiation or elongation. This result suggests that the activation mechanism might involve a NS5A-mediated conformational change of the β-loop of NS5B. Such a conformational change would be predicted to prevent steric clash of the RNA template and newly synthesized RNA product. Consistent with this hypothesis, RNA binding is enhanced when the full length NS5B and NS5A are incubated with RNA, but RNA binding is unchanged with incubation of NS5A and the NS5B β-loop deletion mutant.
Collapse
Affiliation(s)
- Elizabeth M Quezada
- Department of Molecular and Cell Biology, University of California, Berkeley CA 94720-3202, USA ; Stowers Research Institute 1000 East 50th Street Kansas City, MO 64110, USA
| | | |
Collapse
|
32
|
Protein tyrosine phosphatase 1B is a key regulator of IFNAR1 endocytosis and a target for antiviral therapies. Proc Natl Acad Sci U S A 2012; 109:19226-31. [PMID: 23129613 DOI: 10.1073/pnas.1211491109] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Type 1 interferons (IFN1) elicit antiviral defenses by activating the cognate receptor composed of IFN-α/β receptor chain 1 (IFNAR1) and IFNAR2. Down-regulation of this receptor occurs through IFN1-stimulated IFNAR1 ubiquitination, which exposes a Y466-based linear endocytic motif within IFNAR1 to recruitment of the adaptin protein-2 complex (AP2) and ensuing receptor endocytosis. Paradoxically, IFN1-induced Janus kinase-mediated phosphorylation of Y466 is expected to decrease its affinity for AP2 and to inhibit the endocytic rate. To explain how IFN1 promotes Y466 phosphorylation yet stimulates IFNAR1 internalization, we proposed that the activity of a protein tyrosine phosphatase (PTP) is required to enable both events by dephosphorylating Y466. An RNAi-based screen identified PTP1B as a specific regulator of IFNAR1 endocytosis stimulated by IFN1, but not by ligand-independent inducers of IFNAR1 ubiquitination. PTP1B is a promising target for treatment of obesity and diabetes; numerous research programs are aimed at identification and characterization of clinically relevant inhibitors of PTP1B. PTP1B is capable of binding and dephosphorylating IFNAR1. Genetic or pharmacologic modulation of PTP1B activity regulated IFN1 signaling in a manner dependent on the integrity of Y466 within IFNAR1 in human cells. These effects were less evident in mouse cells whose IFNAR1 lacks an analogous motif. PTP1B inhibitors robustly augmented the antiviral effects of IFN1 against vesicular stomatitis and hepatitis C viruses in human cells and proved beneficial in feline stomatitis patients. The clinical significance of these findings in the context of using PTP1B inhibitors to increase the therapeutic efficacy of IFN against viral infections is discussed.
Collapse
|
33
|
Different mechanisms of hepatitis C virus RNA polymerase activation by cyclophilin A and B in vitro. Biochim Biophys Acta Gen Subj 2012; 1820:1886-92. [PMID: 22954804 DOI: 10.1016/j.bbagen.2012.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 07/25/2012] [Accepted: 08/21/2012] [Indexed: 01/27/2023]
Abstract
BACKGROUND Cyclophilins (CyPs) are cellular proteins that are essential to hepatitis C virus (HCV) replication. Since cyclosporine A was discovered to inhibit HCV infection, the CyP pathway contributing to HCV replication is a potential attractive stratagem for controlling HCV infection. Among them, CyPA is accepted to interact with HCV nonstructural protein (NS) 5A, although interaction of CyPB and NS5B, an RNA-dependent RNA polymerase (RdRp), was proposed first. METHODS CyPA, CyPB, and HCV RdRp were expressed in bacteria and purified using combination column chromatography. HCV RdRp activity was analyzed in vitro with purified CyPA and CyPB. RESULTS CyPA at a high concentration (50× higher than that of RdRp) but not at low concentration activated HCV RdRp. CyPB had an allosteric effect on genotype 1b RdRp activation. CyPB showed genotype specificity and activated genotype 1b and J6CF (2a) RdRps but not genotype 1a or JFH1 (2a) RdRps. CyPA activated RdRps of genotypes 1a, 1b, and 2a. CyPB may also support HCV genotype 1b replication within the infected cells, although its knockdown effect on HCV 1b replicon activity was controversial in earlier reports. CONCLUSIONS CyPA activated HCV RdRp at the early stages of transcription, including template RNA binding. CyPB also activated genotype 1b RdRp. However, their activation mechanisms are different. GENERAL SIGNIFICANCE These data suggest that both CyPA and CyPB are excellent targets for the treatment of HCV 1b, which shows the greatest resistance to interferon and ribavirin combination therapy.
Collapse
|
34
|
Imran M, Waheed Y, Manzoor S, Bilal M, Ashraf W, Ali M, Ashraf M. Interaction of Hepatitis C virus proteins with pattern recognition receptors. Virol J 2012; 9:126. [PMID: 22726246 PMCID: PMC3538621 DOI: 10.1186/1743-422x-9-126] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 06/11/2012] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) is an important human pathogen that causes acute and chronic hepatitis, cirrhosis and hepatocellular carcinoma worldwide. This positive stranded RNA virus is extremely efficient in establishing persistent infection by escaping immune detection or hindering the host immune responses. Recent studies have discovered two important signaling pathways that activate the host innate immunity against viral infection. One of these pathways utilizes members of Toll-like receptor (TLR) family and the other uses the RNA helicase retinoic acid inducible gene I (RIG-I) as the receptors for intracellular viral double stranded RNA (dsRNA), and activation of transcription factors. In this review article, we summarize the interaction of HCV proteins with various host receptors/sensors through one of these two pathways or both, and how they exploit these interactions to escape from host defense mechanisms. For this purpose, we searched data from Pubmed and Google Scholar. We found that three HCV proteins; Core (C), non structural 3/4 A (NS3/4A) and non structural 5A (NS5A) have direct interactions with these two pathways. Core protein only in the monomeric form stimulates TLR2 pathway assisting the virus to evade from the innate immune system. NS3/4A disrupts TLR3 and RIG-1 signaling pathways by cleaving Toll/IL-1 receptor domain-containing adapter inducing IFN-beta (TRIF) and Cardif, the two important adapter proteins of these signaling cascades respectively, thus halting the defense against HCV. NS5A downmodulates the expressions of NKG2D on natural killer cells (NK cells) via TLR4 pathway and impairs the functional ability of these cells. TLRs and RIG-1 pathways have a central role in innate immunity and despite their opposing natures to HCV proteins, when exploited together, HCV as an ever developing virus against host immunity is able to accumulate these mechanisms for near unbeatable survival.
Collapse
Affiliation(s)
- Muhammad Imran
- Atta Ur Rahman school of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Yasir Waheed
- Atta Ur Rahman school of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Sobia Manzoor
- Atta Ur Rahman school of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Muhammad Bilal
- Atta Ur Rahman school of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Waseem Ashraf
- Atta Ur Rahman school of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Muhammad Ali
- Atta Ur Rahman school of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Muhammad Ashraf
- Atta Ur Rahman school of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| |
Collapse
|
35
|
Atta M, Cabral M, Santos G, Paraná R, Atta A. Inflammation biomarkers in chronic hepatitis C: association with liver histopathology, HCV genotype and cryoglobulinemia. Inflamm Res 2012; 61:1101-6. [PMID: 22718074 DOI: 10.1007/s00011-012-0502-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 03/13/2012] [Accepted: 05/29/2012] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE This work investigated the profile of inflammation biomarkers in patients with chronic hepatitis C and its association with liver fibrosis, hepatic necroinflammatory activity, viral genotypes and cryoglobulinemia. SUBJECTS AND METHODS Seventy-eight untreated patients were studied. Biomarker levels were determined by immunoassays, cryoglobulinemia by cryoprecipitation and liver histopathology investigated using METAVIR scores. RESULTS Decreased levels of α(1)-acid glycoprotein (AGP), C3 and haptoglobin (Hp) were observed in the patients (P < 0.0001). Increased α(1)-antitrypsin (P < 0.01) and ferritin (P < 0.0001) levels were found in this group, but C-reactive protein (CRP) and C4 levels were unaltered. Alanine aminotransferase inversely correlated with Hp (P < 0.01) and AGP (P = 0.01), whereas it was directly correlated with ferritin (P < 0.05) and AGP (P < 0.0001). The levels of CRP, C3 and C4 were lower in the patients with hepatic necroinflammatory activity (P < 0.05). Patients with advanced fibrosis had low levels of Hp and AGP (P < 0.05 and P < 0.01, respectively). Neither infection with different viral genotypes nor cryoglobulinemia caused an alteration in biomarker levels. CONCLUSION Chronic hepatitis C virus infection alters the levels of some biomarkers, which are mainly observed in patients with liver fibrosis and hepatic necroinflammatory activity.
Collapse
Affiliation(s)
- Maria Atta
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal da Bahia, Salvador, Brazil.
| | | | | | | | | |
Collapse
|
36
|
Benegiamo G, Vinciguerra M, Mazzoccoli G, Piepoli A, Andriulli A, Pazienza V. DNA methyltransferases 1 and 3b expression in Huh-7 cells expressing HCV core protein of different genotypes. Dig Dis Sci 2012; 57:1598-603. [PMID: 22526584 DOI: 10.1007/s10620-012-2160-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/28/2012] [Indexed: 01/01/2023]
Abstract
BACKGROUND Hepatitis C virus infects ~3% of the population and it is a risk factor for hepatocarcinogenesis. The epigenetic mechanisms of HCV-induced hepatocyte transformation towards malignancy in this context are unclear. AIMS The purpose of this study was to evaluate the effect of HCV core proteins of different genotypes on DNA methyltransferases (DNMTs) induction. MATERIALS/METHODS We investigated DNMT1, DNMT3b and E-Cadherin (CDH1) mRNA and protein expression levels in an in vitro model of Huh-7 cells expressing the HCV core protein of different genotypes: 1b, 2a, 3a, 4h and 5a. RESULTS We found that both mRNA and protein expression levels of DNMT1 and 3b were upregulated in genotype 1b HCV core expressing cells as compared to control cells. DNMT3b mRNA levels did not change in genotypes 2a, 3a, 4h and 5a, but were upregulated at the protein level by genotype 1b, 2a, 3a. CDH1 mRNA expression was downregulated only in genotype 1b, whereas its protein expression resulted in downregulation by the HCV core of genotypes 1b, 2a and 3a. Conversely, no significant changes were observed for DNMTs and CDH1 investigated in Huh-7 cells expressing the genotypes 4h and 5a. Furthermore, we present evidence that HCV core 1b protein expression induces DNMTs overexpression through STAT3 protein as demonstrated by NSC74859 treatment. Moreover, SIRT1 inhibition affected DNMT1 and 3b expression only in HCV core protein genotype 1b expressing cells as demonstrated by treatment with its inhibitor sirtinol. CONCLUSIONS Our findings suggest that HCV core protein could play a role in HCC development at least in part by altering DNMTs expression.
Collapse
Affiliation(s)
- Giorgia Benegiamo
- Gastroenterology Unit , I.R.C.C.S Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Foggia, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Darling JM, Lemon SM, Fried MW. Hepatitis C. SCHIFF'S DISEASES OF THE LIVER 2011:582-652. [DOI: 10.1002/9781119950509.ch25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
38
|
Cerutti A, Maillard P, Minisini R, Vidalain PO, Roohvand F, Pecheur EI, Pirisi M, Budkowska A. Identification of a functional, CRM-1-dependent nuclear export signal in hepatitis C virus core protein. PLoS One 2011; 6:e25854. [PMID: 22039426 PMCID: PMC3200325 DOI: 10.1371/journal.pone.0025854] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 09/12/2011] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection is a major cause of chronic liver disease worldwide. HCV core protein is involved in nucleocapsid formation, but it also interacts with multiple cytoplasmic and nuclear molecules and plays a crucial role in the development of liver disease and hepatocarcinogenesis. The core protein is found mostly in the cytoplasm during HCV infection, but also in the nucleus in patients with hepatocarcinoma and in core-transgenic mice. HCV core contains nuclear localization signals (NLS), but no nuclear export signal (NES) has yet been identified.We show here that the aa(109-133) region directs the translocation of core from the nucleus to the cytoplasm by the CRM-1-mediated nuclear export pathway. Mutagenesis of the three hydrophobic residues (L119, I123 and L126) in the identified NES or in the sequence encoding the mature core aa(1-173) significantly enhanced the nuclear localisation of the corresponding proteins in transfected Huh7 cells. Both the NES and the adjacent hydrophobic sequence in domain II of core were required to maintain the core protein or its fragments in the cytoplasmic compartment. Electron microscopy studies of the JFH1 replication model demonstrated that core was translocated into the nucleus a few minutes after the virus entered the cell. The blockade of nucleocytoplasmic export by leptomycin B treatment early in infection led to the detection of core protein in the nucleus by confocal microscopy and coincided with a decrease in virus replication.Our data suggest that the functional NLS and NES direct HCV core protein shuttling between the cytoplasmic and nuclear compartments, with at least some core protein transported to the nucleus. These new properties of HCV core may be essential for virus multiplication and interaction with nuclear molecules, influence cell signaling and the pathogenesis of HCV infection.
Collapse
Affiliation(s)
- Andrea Cerutti
- Unité Hépacivirus et Immunité Innée, Département de Virologie, Institut Pasteur, Paris, France
- CNRS, URA3015, Paris, France
- Dipartimento di Medicina Clinica e Sperimentale, Università del Piemonte Orientale “Amedeo Avogadro”, Novara, Italy
| | - Patrick Maillard
- Unité Hépacivirus et Immunité Innée, Département de Virologie, Institut Pasteur, Paris, France
- CNRS, URA3015, Paris, France
| | - Rosalba Minisini
- Dipartimento di Medicina Clinica e Sperimentale, Università del Piemonte Orientale “Amedeo Avogadro”, Novara, Italy
| | - Pierre-Olivier Vidalain
- CNRS, URA3015, Paris, France
- Unité de Génomique Virale et Vaccination, Département de Virologie, Institut Pasteur, Paris, France
| | - Farzin Roohvand
- Unité Hépacivirus et Immunité Innée, Département de Virologie, Institut Pasteur, Paris, France
- CNRS, URA3015, Paris, France
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Teheran, Iran
| | - Eve-Isabelle Pecheur
- Université Lyon 1, Lyon, France
- CNRS, UMR5086, Lyon, France
- IBCP, Bases Moléculaires et Structurales des Systèmes Infectieux, Lyon, France
| | - Mario Pirisi
- Dipartimento di Medicina Clinica e Sperimentale, Università del Piemonte Orientale “Amedeo Avogadro”, Novara, Italy
| | - Agata Budkowska
- Unité Hépacivirus et Immunité Innée, Département de Virologie, Institut Pasteur, Paris, France
- CNRS, URA3015, Paris, France
| |
Collapse
|
39
|
Marra M, Sordelli IM, Lombardi A, Lamberti M, Tarantino L, Giudice A, Stiuso P, Abbruzzese A, Sperlongano R, Accardo M, Agresti M, Caraglia M, Sperlongano P. Molecular targets and oxidative stress biomarkers in hepatocellular carcinoma: an overview. J Transl Med 2011; 9:171. [PMID: 21985599 PMCID: PMC3213217 DOI: 10.1186/1479-5876-9-171] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 10/10/2011] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a complex and heterogeneous tumor with multiple genetic aberrations. Several molecular pathways involved in the regulation of proliferation and cell death are implicated in the hepatocarcinogenesis. The major etiological factors for HCC are both hepatitis B virus (HBV) and hepatitis C virus infection (HCV). Continuous oxidative stress, which results from the generation of reactive oxygen species (ROS) by environmental factors or cellular mitochondrial dysfunction, has recently been associated with hepatocarcinogenesis. On the other hand, a distinctive pathological hallmark of HCC is a dramatic down-regulation of oxido-reductive enzymes that constitute the most important free radical scavenger systems represented by catalase, superoxide dismutase and glutathione peroxidase. The multikinase inhibitor sorafenib represents the most promising target agent that has undergone extensive investigation up to phase III clinical trials in patients with advanced HCC. The combination with other target-based agents could potentiate the clinical benefits obtained by sorafenib alone. In fact, a phase II multicenter study has demonstrated that the combination between sorafenib and octreotide LAR (So.LAR protocol) was active and well tolerated in advanced HCC patients. The detection of molecular factors predictive of response to anti-cancer agents such as sorafenib and the identification of mechanisms of resistance to anti-cancer agents may probably represent the direction to improve the treatment of HCC.
Collapse
Affiliation(s)
- Monica Marra
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - Ignazio M Sordelli
- Department of Anaesthesiology and Special Surgery, Second University of Naples, Naples, Italy
| | - Angela Lombardi
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - Monica Lamberti
- Departement of Experimental Medicine, Sezione di Medicina del lavoro, Igiene e Tossicologia Industriale, Second University of Naples, Naples, Italy
| | - Luciano Tarantino
- Interventional US Unit, Department of Medicine, S. Giovanni di Dio Hospital, 80059 Torre del Greco (Naples), Italy
| | - Aldo Giudice
- Animal Facility Unit, National Institute of Tumours "Fondazione G. Pascale" of Naples, Naples, Italy
| | - Paola Stiuso
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - Alberto Abbruzzese
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - Rossella Sperlongano
- Department of Anaesthesiology and Special Surgery, Second University of Naples, Naples, Italy
| | - Marina Accardo
- Department of Morphopathology, II University Naples, Napoli, Italy
| | - Massimo Agresti
- Department of Anaesthesiology and Special Surgery, Second University of Naples, Naples, Italy
| | - Michele Caraglia
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - Pasquale Sperlongano
- Department of Anaesthesiology and Special Surgery, Second University of Naples, Naples, Italy
| |
Collapse
|
40
|
Coenen M, Nischalke HD, Krämer B, Langhans B, Glässner A, Schulte D, Körner C, Sauerbruch T, Nattermann J, Spengler U. Hepatitis C virus core protein induces fibrogenic actions of hepatic stellate cells via toll-like receptor 2. J Transl Med 2011; 91:1375-82. [PMID: 21537327 DOI: 10.1038/labinvest.2011.78] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatic stellate cells (HSCs) represent the main fibrogenic cell type accumulating extracellular matrix in the liver. Recent data suggest that hepatitis C virus (HCV) core protein may directly activate HSCs. Therefore, we examined the influence of recombinant HCV core protein on human HSCs. Primary human HSCs and the human HSC line LX-2 were stimulated with recombinant HCV proteins core and envelope 2 protein. Expression of procollagen type I α-1, α-smooth muscle actin, cysteine- and glycine-rich protein 2, glial fibrillary acidic protein, tissue growth factor β1, matrix metalloproteinases 2 (MMP2) and 13, tissue inhibitor of metalloproteinases 1 and 2 was investigated by real-time PCR. Intracellular signaling pathways of ERK1/2, p38 and, jun-amino-terminal kinase (JNK) were analyzed by western blot analysis. Recombinant HCV core protein induced upregulation of procollagen type I α-1, α-smooth muscle actin, MMP 2 and 13, tissue inhibitor of metalloproteinases 1 and 2, tissue growth factor β1, cysteine- and glycine-rich protein 2, and glial fibrillary acidic protein mRNA expression, whereas HCV envelope 2 protein did not exert any significant effect. Blocking of toll-like receptor 2 (TLR2) with a neutralizing antibody prevented mRNA upregulation by HCV core protein confirming that the TLR2 pathway was involved. Furthermore, western blot analysis revealed HCV-induced phosphorylation of the TLR2-dependent signaling molecules ERK1/2, p38 and JNK mitogen-activated kinases. Our in vitro results demonstrate a direct effect of HCV core protein on activation of HSCs toward a profibrogenic state, which is mediated via the TLR2 pathway. Manipulating the TLR2 pathway may thus provide a new approach for antifibrotic therapies in HCV infection.
Collapse
Affiliation(s)
- Martin Coenen
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Butt S, Idrees M, Rehman IU, Ali L, Hussain A, Ali M, Ahmed N, Saleem S, Fayyaz M. Establishment of stable Huh-7 cell lines expressing various hepatitis C virus genotype 3a protein: an in-vitro testing system for novel anti-HCV drugs. GENETIC VACCINES AND THERAPY 2011; 9:12. [PMID: 21711509 PMCID: PMC3164222 DOI: 10.1186/1479-0556-9-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 06/28/2011] [Indexed: 02/08/2023]
Abstract
Background Hepatitis C virus (HCV) infection is the leading cause of chronic hepatitis which progresses to hepatocellular carcinoma (HCC) afflicting > 170 million people worldwide. HCV 3a is the most common genotype (about 70% of all genotypes) circulating in Pakistan. Expression of HCV individual gene of 3a would facilitate therapeutic and vaccines strategies against chronic HCV and liver Cirrhosis. The aim of the present study was the establishment of stable Huh-7 cell lines expressing structural and non structural proteins of HCV Genotype 3a Pakistani isolate obtained from chronic HCV patients. Methods Blood samples were obtained from chronic HCV-3a positive patients. HCV individual genes were amplified using PCR with gene specific primers having restriction sites. These gene amplicons were cloned in mammalian expression vector PcDNA3.1+. Huh-7 cell lines were transfected with these constructed plasmids having structural or non-structural HCV genes in confluent cells with lipofectamine. Positive clones were selected with G418 and then confirmed by genome PCR. Subsequently, transcription and expression of the integrated genes were demonstrated by RT-PCR, sequencing and Western blot analysis. Results We successfully cloned and express five HCV-3a genes in PcDNA3.1+ mammalian expression vector. Results of western blot and sequencing PCR confirmed the stable expression of these five genes. Conclusion The stable cell-lines expressing HCV-3a individual genes would be a useful tool to investigate the role of various HCV proteins on HCV disease outcome and testing of new therapeutic strategies against HCV.
Collapse
Affiliation(s)
- Sadia Butt
- Molecular Virology Laboratory, National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road ,Thokar Niaz Baig, Lahore-53700, University of the Punjab, Lahore, Pakistan
| | - Muhammad Idrees
- Molecular Virology Laboratory, National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road ,Thokar Niaz Baig, Lahore-53700, University of the Punjab, Lahore, Pakistan
| | - Irshad-Ur Rehman
- Molecular Virology Laboratory, National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road ,Thokar Niaz Baig, Lahore-53700, University of the Punjab, Lahore, Pakistan
| | - Liaqat Ali
- Molecular Virology Laboratory, National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road ,Thokar Niaz Baig, Lahore-53700, University of the Punjab, Lahore, Pakistan
| | - Abrar Hussain
- Molecular Virology Laboratory, National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road ,Thokar Niaz Baig, Lahore-53700, University of the Punjab, Lahore, Pakistan
| | - Muhammad Ali
- Molecular Virology Laboratory, National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road ,Thokar Niaz Baig, Lahore-53700, University of the Punjab, Lahore, Pakistan
| | - Naveed Ahmed
- Molecular Virology Laboratory, National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road ,Thokar Niaz Baig, Lahore-53700, University of the Punjab, Lahore, Pakistan
| | - Sana Saleem
- Molecular Virology Laboratory, National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road ,Thokar Niaz Baig, Lahore-53700, University of the Punjab, Lahore, Pakistan
| | - Madiha Fayyaz
- Molecular Virology Laboratory, National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road ,Thokar Niaz Baig, Lahore-53700, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
42
|
Ripoli M, Barbano R, Balsamo T, Piccoli C, Brunetti V, Coco M, Mazzoccoli G, Vinciguerra M, Pazienza V. Hypermethylated levels of E-cadherin promoter in Huh-7 cells expressing the HCV core protein. Virus Res 2011; 160:74-81. [PMID: 21640770 DOI: 10.1016/j.virusres.2011.05.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 05/16/2011] [Accepted: 05/16/2011] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM The mechanisms of hepatocarcinogenesis induced by hepatitis C virus remain unclear. Our aim was to investigate the effect of the HCV core protein on the promoter methylation status of selected genes potentially involved in the hepatocellular carcinoma (HCC). MATERIALS AND METHODS We evaluated the promoter methylation levels of the E-cadherin (CDH1), the glutathione S-transferase p1 (GSTP1), adenomatosis polyposis coli (APC), tissue inhibitor of metalloproteinase 3 (TIMP3), catenin (cadherin-associated protein) beta 1 (CNNTB1) genes by a quantitative methylation-specific polymerase chain reaction (QMSP) in the in vitro model of Huh-7 cells expressing the HCV core protein of genotype 1b. RESULTS We found that CDH1 promoter was hypermethylated in genotype 1b HCV core protein-positive cells as compared to control cells expressing the GFP protein alone (HCV core 1b vs GFP p=0.00; HCV core 1b vs Huh-7 p=0.03). This resulted in reduced levels of CDH1 protein as evaluated by immunoblot and by immunofluorescence. On the other hand no significant changes were observed for the other genes investigated. Furthermore, we present evidence that genotype 1b HCV core protein expression induces SIRT1 upregulation and that treatment with SIRT1 inhibitor sirtinol decreases the methylation levels of CDH1 promoter (1b+sirtinol vs 1b p=0.05; 1b+sirtinol vs GFP+sirtinol p=NS) resulting in 1.7-fold increased CDH1 mRNA expression (1b+sirtinol vs 1b p=0.05). CONCLUSIONS Our findings suggest that HCV core protein could play a role in HCC at least in part by altering the methylation status of CDH1 promoter. These findings could also suggest a novel therapeutic approach for HCC.
Collapse
Affiliation(s)
- Maria Ripoli
- Gastroenterology Unit, IRCCS Casa Sollievo della Sofferenza Hospital, viale dei Cappuccini n.1, 71013 San Giovanni Rotondo (FG), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hepatitis C virus co-opts Ras-GTPase-activating protein-binding protein 1 for its genome replication. J Virol 2011; 85:6996-7004. [PMID: 21561913 DOI: 10.1128/jvi.00013-11] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We recently reported that Ras-GTPase-activating protein-binding protein 1 (G3BP1) interacts with hepatitis C virus (HCV) nonstructural protein (NS)5B and the 5' end of the HCV minus-strand RNA. In the current study we confirmed these observations using immunoprecipitation and RNA pulldown assays, suggesting that G3BP1 might be an HCV replication complex (RC) component. In replicon cells, transfected G3BP1 interacts with multiple HCV nonstructural proteins. Using immunostaining and confocal microscopy, we demonstrate that G3BP1 is colocalized with HCV RCs in replicon cells. Small interfering RNA (siRNA)-mediated knockdown of G3BP1 moderately reduces established HCV RNA replication in HCV replicon cells and dramatically reduces HCV replication-dependent colony formation and cell-culture-produced HCV (HCVcc) infection. In contrast, knockdown of G3BP2 has no effect on HCVcc infection. Transient replication experiments show that G3BP1 is involved in HCV genome amplification. Thus, G3BP1 is associated with HCV RCs and may be co-opted as a functional RC component for viral replication. These findings may facilitate understanding of the molecular mechanisms of HCV genome replication.
Collapse
|
44
|
Regulation of the production of infectious genotype 1a hepatitis C virus by NS5A domain III. J Virol 2011; 85:6645-56. [PMID: 21525356 DOI: 10.1128/jvi.02156-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Although hepatitis C virus (HCV) assembly remains incompletely understood, recent studies with the genotype 2a JFH-1 strain suggest that it is dependent upon the phosphorylation of Ser residues near the C terminus of NS5A, a multifunctional nonstructural protein. Since genotype 1 viruses account for most HCV disease yet differ substantially in sequence from that of JFH-1, we studied the role of NS5A in the production of the H77S virus. While less efficient than JFH-1, genotype 1a H77S RNA produces infectious virus when transfected into permissive Huh-7 cells. The exchange of complete NS5A sequences between these viruses was highly detrimental to replication, while exchanges of the C-terminal domain III sequence (46% amino acid sequence identity) were well tolerated, with little effect on RNA synthesis. Surprisingly, the placement of the H77S domain III sequence into JFH-1 resulted in increased virus yields; conversely, H77S yields were reduced by the introduction of domain III from JFH-1. These changes in infectious virus yield correlated well with changes in the abundance of NS5A in RNA-transfected cells but not with RNA replication or core protein expression levels. Alanine replacement mutagenesis of selected Ser and Thr residues in the C-terminal domain III sequence revealed no single residue to be essential for infectious H77S virus production. However, virus production was eliminated by Ala substitutions at multiple residues and could be restored by phosphomimetic Asp substitutions at these sites. Thus, despite low overall sequence homology, the production of infectious virus is regulated similarly in JFH-1 and H77S viruses by a conserved function associated with a C-terminal Ser/Thr cluster in domain III of NS5A.
Collapse
|
45
|
Ashfaq UA, Javed T, Rehman S, Nawaz Z, Riazuddin S. An overview of HCV molecular biology, replication and immune responses. Virol J 2011; 8:161. [PMID: 21477382 PMCID: PMC3086852 DOI: 10.1186/1743-422x-8-161] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 04/11/2011] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) causes acute and chronic hepatitis which can eventually lead to permanent liver damage, hepatocellular carcinoma and death. Currently, there is no vaccine available for prevention of HCV infection due to high degree of strain variation. The current treatment of care, Pegylated interferon α in combination with ribavirin is costly, has significant side effects and fails to cure about half of all infections. In this review, we summarize molecular virology, replication and immune responses against HCV and discussed how HCV escape from adaptive and humoral immune responses. This advance knowledge will be helpful for development of vaccine against HCV and discovery of new medicines both from synthetic chemistry and natural sources.
Collapse
Affiliation(s)
- Usman A Ashfaq
- Division of Molecular Medicine, National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
| | | | | | | | | |
Collapse
|
46
|
Sequence variability of HCV Core region: Important predictors of HCV induced pathogenesis and viral production. INFECTION GENETICS AND EVOLUTION 2011; 11:543-56. [PMID: 21292033 DOI: 10.1016/j.meegid.2011.01.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Revised: 01/17/2011] [Accepted: 01/21/2011] [Indexed: 02/07/2023]
|
47
|
Gladue DP, Holinka LG, Fernandez-Sainz IJ, Prarat MV, O'Donnell V, Vepkhvadze NG, Lu Z, Risatti GR, Borca MV. Interaction between Core protein of classical swine fever virus with cellular IQGAP1 protein appears essential for virulence in swine. Virology 2011; 412:68-74. [PMID: 21262517 DOI: 10.1016/j.virol.2010.12.060] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 12/28/2010] [Accepted: 12/30/2010] [Indexed: 02/08/2023]
Abstract
Here we show that IQGAP1, a cellular protein that plays a pivotal role as a regulator of the cytoskeleton interacts with Classical Swine Fever Virus (CSFV) Core protein. Sequence analyses identified residues within CSFV Core protein (designated as areas I, II, III and IV) that maintain homology to regions within the matrix protein of Moloney Murine Leukemia Virus (MMLV) that mediate binding to IQGAP1 [EMBO J, 2006 25:2155]. Alanine-substitution within Core regions I, II, III and IV identified residues that specifically mediate the Core-IQGAP1 interaction. Recombinant CSFV viruses harboring alanine substitutions at residues (207)ATI(209) (I), (210)VVE(212) (II), (213)GVK(215) (III), or (232)GLYHN(236) (IV) have defective growth in primary swine macrophage cultures. In vivo, substitutions of residues in areas I and III yielded viruses that were completely attenuated in swine. These data shows that the interaction of Core with an integral component of cytoskeletal regulation plays a role in the CSFV cycle.
Collapse
Affiliation(s)
- D P Gladue
- Plum Island Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY 11944, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Synonymous mutations in the core gene are linked to unusual serological profile in hepatitis C virus infection. PLoS One 2011; 6:e15871. [PMID: 21283512 PMCID: PMC3017048 DOI: 10.1371/journal.pone.0015871] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 11/25/2010] [Indexed: 01/18/2023] Open
Abstract
The biological role of the protein encoded by the alternative open reading frame (core+1/ARF) of the Hepatitis C virus (HCV) genome remains elusive, as does the significance of the production of corresponding antibodies in HCV infection. We investigated the prevalence of anti-core and anti-core+1/ARFP antibodies in HCV-positive blood donors from Cambodia, using peptide and recombinant protein-based ELISAs. We detected unusual serological profiles in 3 out of 58 HCV positive plasma of genotype 1a. These patients were negative for anti-core antibodies by commercial and peptide-based assays using C-terminal fragments of core but reacted by Western Blot with full-length core protein. All three patients had high levels of anti-core+1/ARFP antibodies. Cloning of the cDNA that corresponds to the core-coding region from these sera resulted in the expression of both core and core+1/ARFP in mammalian cells. The core protein exhibited high amino-acid homology with a consensus HCV1a sequence. However, 10 identical synonymous mutations were found, and 7 were located in the aa(99–124) region of core. All mutations concerned the third base of a codon, and 5/10 represented a T>C mutation. Prediction analyses of the RNA secondary structure revealed conformational changes within the stem-loop region that contains the core+1/ARFP internal AUG initiator at position 85/87. Using the luciferase tagging approach, we showed that core+1/ARFP expression is more efficient from such a sequence than from the prototype HCV1a RNA. We provide additional evidence of the existence of core+1/ARFP in vivo and new data concerning expression of HCV core protein. We show that HCV patients who do not produce normal anti-core antibodies have unusually high levels of antit-core+1/ARFP and harbour several identical synonymous mutations in the core and core+1/ARFP coding region that result in major changes in predicted RNA structure. Such HCV variants may favour core+1/ARFP production during HCV infection.
Collapse
|
49
|
Affiliation(s)
- Kiminori KIMURA
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science
- Division of Hepatology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital
| | - Michinori KOHARA
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science
| |
Collapse
|
50
|
Bartenschlager R, Penin F, Lohmann V, André P. Assembly of infectious hepatitis C virus particles. Trends Microbiol 2010; 19:95-103. [PMID: 21146993 DOI: 10.1016/j.tim.2010.11.005] [Citation(s) in RCA: 336] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 11/08/2010] [Accepted: 11/12/2010] [Indexed: 02/07/2023]
Abstract
A hallmark of the hepatitis C virus (HCV) replication cycle is its tight link with host cell lipid synthesis. This is best illustrated by the peculiar pathway used for the assembly of infectious HCV particles. Research in the past few years has shown that formation of HC-virions is closely connected to lipid droplets that could serve as an assembly platform. Moreover, HCV particle production appears to be strictly linked to very-low-density lipoproteins. In this review, we focus on new insights into the molecular aspects of the architecture and assembly of this unique type of virus particle.
Collapse
Affiliation(s)
- Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Im Neuenheimer Feld 345, Heidelberg University, D-69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|