1
|
Zhan X, Zhang F, Li N, Xu K, Wang X, Gao S, Yin Y, Yuan W, Chen W, Ren Z, Yao M, Wang F. CRISPR/Cas: An Emerging Toolbox for Engineering Virus Resistance in Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:3313. [PMID: 39683106 DOI: 10.3390/plants13233313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas have been recognized as powerful genome-editing tools in diverse eukaryotic species, including plants, and thus hold great promise for engineering virus resistance in plants. Nevertheless, further attention is required regarding various issues associated with applying new powerful technologies in the field. This mini-review focuses on the recent advances in using CRISPR/Cas9 and CRISPR/Cas13 systems to combat DNA and RNA viruses in plants. We explored the utility of CRISPR/Cas for targeting the viral genome and editing host susceptibility genes in plants. We also provide insights into the limitations and challenges of using CRISPR/Cas for plant virus interference and propose individual combinatorial solutions. In conclusion, CRISPR/Cas technology has the potential to offer innovative and highly efficient approaches for controlling viruses in important crops in the near future.
Collapse
Affiliation(s)
- Xiaohui Zhan
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
| | - Fengjuan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ning Li
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
| | - Kai Xu
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xiaodi Wang
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
| | - Shenghua Gao
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yanxu Yin
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
| | - Weiling Yuan
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
| | - Weifang Chen
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
| | - Zhiyong Ren
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
| | - Minghua Yao
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Fei Wang
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
2
|
He M, Li Z, Xie X. The Roles of N6-Methyladenosine Modification in Plant-RNA Virus Interactions. Int J Mol Sci 2023; 24:15608. [PMID: 37958594 PMCID: PMC10649972 DOI: 10.3390/ijms242115608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/06/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
N6-methyladenosine (m6A) is a dynamic post-transcriptional RNA modification. Recently, its role in viruses has led to the study of viral epitranscriptomics. m6A has been observed in viral genomes and alters the transcriptomes of both the host cell and virus during infection. The effects of m6A modifications on host plant mRNA can either increase the likelihood of viral infection or enhance the resistance of the host to the virus. However, to date, the regulatory mechanisms of m6A in viral infection and host immune responses have not been fully elucidated. With the development of sequencing-based biotechnologies, the study of m6A in plant viruses has received increasing attention. In this mini review, we summarize the positive and negative consequences of m6A modification in different RNA viral infections. Given its increasingly important roles in multiple viruses, m6A represents a new potential target for antiviral defense.
Collapse
Affiliation(s)
- Min He
- Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, China;
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Zhiqiang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Xin Xie
- Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, China;
| |
Collapse
|
3
|
Kwon MJ, Kwon SJ, Kim MH, Choi B, Byun HS, Kwak HR, Seo JK. Visual tracking of viral infection dynamics reveals the synergistic interactions between cucumber mosaic virus and broad bean wilt virus 2. Sci Rep 2023; 13:7261. [PMID: 37142679 PMCID: PMC10160061 DOI: 10.1038/s41598-023-34553-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/03/2023] [Indexed: 05/06/2023] Open
Abstract
Cucumber mosaic virus (CMV) is one of the most prevalent plant viruses in the world, and causes severe damage to various crops. CMV has been studied as a model RNA virus to better understand viral replication, gene functions, evolution, virion structure, and pathogenicity. However, CMV infection and movement dynamics remain unexplored due to the lack of a stable recombinant virus tagged with a reporter gene. In this study, we generated a CMV infectious cDNA construct tagged with a variant of the flavin-binding LOV photoreceptor (iLOV). The iLOV gene was stably maintained in the CMV genome after more than four weeks of three serial passages between plants. Using the iLOV-tagged recombinant CMV, we visualized CMV infection and movement dynamics in living plants in a time course manner. We also examined whether CMV infection dynamics is influenced by co-infection with broad bean wilt virus 2 (BBWV2). Our results revealed that no spatial interference occurred between CMV and BBWV2. Specifically, BBWV2 facilitated the cell-to-cell movement of CMV in the upper young leaves. In addition, the BBWV2 accumulation level increased after co-infection with CMV.
Collapse
Affiliation(s)
- Min-Jun Kwon
- Department of International Agricultural Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Sun-Jung Kwon
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Myung-Hwi Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Boram Choi
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Hee-Seong Byun
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Hae-Ryun Kwak
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Jang-Kyun Seo
- Department of International Agricultural Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea.
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea.
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
4
|
Robertson G, Burger J, Campa M. CRISPR/Cas-based tools for the targeted control of plant viruses. MOLECULAR PLANT PATHOLOGY 2022; 23:1701-1718. [PMID: 35920132 PMCID: PMC9562834 DOI: 10.1111/mpp.13252] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/09/2022] [Accepted: 07/01/2022] [Indexed: 05/15/2023]
Abstract
Plant viruses are known to infect most economically important crops and pose a major threat to global food security. Currently, few resistant host phenotypes have been delineated, and while chemicals are used for crop protection against insect pests and bacterial or fungal diseases, these are inefficient against viral diseases. Genetic engineering emerged as a way of modifying the plant genome by introducing functional genes in plants to improve crop productivity under adverse environmental conditions. Recently, new breeding technologies, and in particular the exciting CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins) technology, was shown to be a powerful alternative to engineer resistance against plant viruses, thus has great potential for reducing crop losses and improving plant productivity to directly contribute to food security. Indeed, it could circumvent the "Genetic modification" issues because it allows for genome editing without the integration of foreign DNA or RNA into the genome of the host plant, and it is simpler and more versatile than other new breeding technologies. In this review, we describe the predominant features of the major CRISPR/Cas systems and outline strategies for the delivery of CRISPR/Cas reagents to plant cells. We also provide an overview of recent advances that have engineered CRISPR/Cas-based resistance against DNA and RNA viruses in plants through the targeted manipulation of either the viral genome or susceptibility factors of the host plant genome. Finally, we provide insight into the limitations and challenges that CRISPR/Cas technology currently faces and discuss a few alternative applications of the technology in virus research.
Collapse
Affiliation(s)
- Gaëlle Robertson
- Department of GeneticsStellenbosch UniversityMatielandSouth Africa
- Department of Experimental and Health SciencesUniversitat Pompeu FabraBarcelonaSpain
| | - Johan Burger
- Department of GeneticsStellenbosch UniversityMatielandSouth Africa
| | - Manuela Campa
- Department of GeneticsStellenbosch UniversityMatielandSouth Africa
| |
Collapse
|
5
|
Wada N, Osakabe K, Osakabe Y. Expanding the plant genome editing toolbox with recently developed CRISPR-Cas systems. PLANT PHYSIOLOGY 2022; 188:1825-1837. [PMID: 35099553 PMCID: PMC8968252 DOI: 10.1093/plphys/kiac027] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/13/2022] [Indexed: 05/15/2023]
Abstract
Since its first appearance, CRISPR-Cas9 has been developed extensively as a programmable genome-editing tool, opening a new era in plant genome engineering. However, CRISPR-Cas9 still has some drawbacks, such as limitations of the protospacer-adjacent motif (PAM) sequence, target specificity, and the large size of the cas9 gene. To combat invading bacterial phages and plasmid DNAs, bacteria and archaea have diverse and unexplored CRISPR-Cas systems, which have the potential to be developed as a useful genome editing tools. Recently, discovery and characterization of additional CRISPR-Cas systems have been reported. Among them, several CRISPR-Cas systems have been applied successfully to plant and human genome editing. For example, several groups have achieved genome editing using CRISPR-Cas type I-D and type I-E systems, which had never been applied for genome editing previously. In addition to higher specificity and recognition of different PAM sequences, recently developed CRISPR-Cas systems often provide unique characteristics that differ from well-known Cas proteins such as Cas9 and Cas12a. For example, type I CRISPR-Cas10 induces small indels and bi-directional long-range deletions ranging up to 7.2 kb in tomatoes (Solanum lycopersicum L.). Type IV CRISPR-Cas13 targets RNA, not double-strand DNA, enabling highly specific knockdown of target genes. In this article, we review the development of CRISPR-Cas systems, focusing especially on their application to plant genome engineering. Recent CRISPR-Cas tools are helping expand our plant genome engineering toolbox.
Collapse
Affiliation(s)
- Naoki Wada
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Keishi Osakabe
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | | |
Collapse
|
6
|
Oberemok VV, Puzanova YV, Kubyshkin AV, Kamenetsky-Goldstein R. Top Three Strategies of ss(+)RNA Plant Viruses: Great Opportunists and Ecosystem Tuners with a Small Genome. Viruses 2021; 13:v13112304. [PMID: 34835110 PMCID: PMC8620770 DOI: 10.3390/v13112304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
ss(+)RNA viruses represent the dominant group of plant viruses. They owe their evolutionary superiority to the large number of mutations that occur during replication, courtesy of RNA-dependent RNA polymerase. Natural selection rewards successful viral subtypes, whose effective tuning of the ecosystem regulates the interactions between its participants. Thus, ss(+)RNA viruses act as shuttles for the functionally important genes of the participants in symbiotic relationships within the ecosystem, of which the most common ecological triad is “plant–virus–insect”. Due to their short life cycle and large number of offspring, RNA viruses act as skillful tuners of the ecosystem, which benefits both viruses and the system as a whole. A fundamental understanding of this aspect of the role played by viruses in the ecosystem makes it possible to apply this knowledge to the creation of DNA insecticides. In fact, since the genes that viruses are involved in transferring are functionally important for both insects and plants, silencing these genes (for example, in insects) can be used to regulate the pest population. RNA viruses are increasingly treated not as micropathogens but as necessary regulators of ecosystem balance.
Collapse
Affiliation(s)
- Volodymyr V. Oberemok
- Molecular Genetics and Biotechnologies Lab, V.I. Vernadsky Crimean Federal University, Simferopol 295007, Russia;
- Laboratory of Entomology and Phytopathology, Nikitsky Botanical Garden, National Scientific Centre, Russian Academy of Sciences, Yalta 298648, Russia
| | - Yelizaveta V. Puzanova
- Molecular Genetics and Biotechnologies Lab, V.I. Vernadsky Crimean Federal University, Simferopol 295007, Russia;
- Correspondence: ; Tel.: +7-(978)-500-67-58
| | - Anatoly V. Kubyshkin
- Department of General and Clinical Pathophysiology, V.I. Vernadsky Crimean Federal University, Simferopol 295006, Russia;
| | - Rina Kamenetsky-Goldstein
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7505101, Israel;
| |
Collapse
|
7
|
Khanal V, Ali A. High Mutation Frequency and Significant Population Differentiation in Papaya Ringspot Virus-W Isolates. Pathogens 2021; 10:pathogens10101278. [PMID: 34684227 PMCID: PMC8537659 DOI: 10.3390/pathogens10101278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/18/2022] Open
Abstract
A total of 101 papaya ringspot virus-W (PRSV-W) isolates were collected from five different cucurbit hosts in six counties of Oklahoma during the 2016–2018 growing seasons. The coat protein (CP) coding region of these isolates was amplified by reverse transcription-polymerase chain reaction, and 370 clones (3–5 clones/isolate) were sequenced. Phylogenetic analysis revealed three phylogroups while host, location, and collection time of isolates had minimal impact on grouping pattern. When CP gene sequences of these isolates were compared with sequences of published PRSV isolates (both P and W strains), they clustered into four phylogroups based on geographical location. Oklahoman PRSV-W isolates formed one of the four distinct major phylogroups. The permutation-based tests, including Ks, Ks *, Z *, Snn, and neutrality tests, indicated significant genetic differentiation and polymorphisms among PRSV-W populations in Oklahoma. The selection analysis confirmed that the CP gene is undergoing purifying selection. The mutation frequencies among all PRSV-W isolates were within the range of 1 × 10−3. The substitution mutations in 370 clones of PRSV-W isolates showed a high proportion of transition mutations, which gave rise to higher GC content. The N-terminal region of the CP gene mostly contained the variable sites with numerous mutational hotspots, while the core region was highly conserved.
Collapse
|
8
|
Heo KJ, Kwon SJ, Kim MK, Kwak HR, Han SJ, Kwon MJ, Rao ALN, Seo JK. Newly emerged resistance-breaking variants of cucumber mosaic virus represent ongoing host-interactive evolution of an RNA virus. Virus Evol 2020; 6:veaa070. [PMID: 33240527 PMCID: PMC7673075 DOI: 10.1093/ve/veaa070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Understanding the evolutionary history of a virus and the mechanisms influencing the direction of its evolution is essential for the development of more durable strategies to control the virus in crop fields. While the deployment of host resistance in crops is the most efficient means to control various viruses, host resistance itself can act as strong selective pressure and thus play a critical role in the evolution of virus virulence. Cucumber mosaic virus (CMV), a plant RNA virus with high evolutionary capacity, has caused endemic disease in various crops worldwide, including pepper (Capsicum annuum L.), because of frequent emergence of resistance-breaking variants. In this study, we examined the molecular and evolutionary characteristics of recently emerged, resistance-breaking CMV variants infecting pepper. Our population genetics analysis revealed that the high divergence capacity of CMV RNA1 might have played an essential role in the host-interactive evolution of CMV and in shaping the CMV population structure in pepper. We also demonstrated that nonsynonymous mutations in RNA1 encoding the 1a protein enabled CMV to overcome the deployed resistance in pepper. Our findings suggest that resistance-driven selective pressures on RNA1 might have contributed in shaping the unique evolutionary pattern of CMV in pepper. Therefore, deployment of a single resistance gene may reduce resistance durability against CMV and more integrated approaches are warranted for successful control of CMV in pepper.
Collapse
Affiliation(s)
| | - Sun-Jung Kwon
- Institutes of Green Bio Science and Technology, Seoul National University, 1447 Pyeongchang-ro, Pyeongchang 25354, Republic of Korea
| | - Mi-Kyeong Kim
- Department of Plant Medicine, Chungbuk National University, 1 Chungdae-ro, Cheongju 28644, Republic of Korea
| | - Hae-Ryun Kwak
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, 300 Nongsaengmyeong-ro, Wanju 55365, Republic of Korea
| | - Soo-Jung Han
- Department of International Agricultural Technology
| | - Min-Jun Kwon
- Department of International Agricultural Technology
| | - A L N Rao
- Department of Microbiology and Plant Pathology, University of California, Boyce Hall 1463, 900 University Ave, Riverside, CA 92521, USA
| | | |
Collapse
|
9
|
Nigam D, LaTourrette K, Garcia-Ruiz H. Mutations in virus-derived small RNAs. Sci Rep 2020; 10:9540. [PMID: 32533016 PMCID: PMC7293216 DOI: 10.1038/s41598-020-66374-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/18/2020] [Indexed: 02/03/2023] Open
Abstract
RNA viruses exist as populations of genome variants. Virus-infected plants accumulate 21–24 nucleotide small interfering RNAs (siRNAs) derived from viral RNA (virus-derived siRNAs) through gene silencing. This paper describes the profile of mutations in virus-derived siRNAs for three members of the family Potyviridae: Turnip mosaic virus (TuMV), Papaya ringspot virus (PRSV) and Wheat streak mosaic virus (WSMV). For TuMV in Arabidopsis thaliana, profiles were obtained for mechanically inoculated rosette leaves and systemically infected cauline leaves and inflorescence. Results are consistent with selection pressure on the viral genome imposed by local and systemic movement. By genetically removing gene silencing in the plant and silencing suppression in the virus, our results showed that antiviral gene silencing imposes selection in viral populations. Mutations in siRNAs derived from a PRSV coat protein transgene in the absence of virus replication showed the contribution of cellular RNA-dependent RNA polymerases to the generation of mutations in virus-derived siRNAs. Collectively, results are consistent with two sources of mutations in virus-derived siRNAs: viral RNA-dependent RNA polymerases responsible for virus replication and cellular RNA-dependent RNA polymerases responsible for gene silencing amplification.
Collapse
Affiliation(s)
- Deepti Nigam
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Nebraska, United States of America
| | - Katherine LaTourrette
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Nebraska, United States of America
| | - Hernan Garcia-Ruiz
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Nebraska, United States of America.
| |
Collapse
|
10
|
Kovalev N, Pogany J, Nagy PD. Interviral Recombination between Plant, Insect, and Fungal RNA Viruses: Role of the Intracellular Ca 2+/Mn 2+ Pump. J Virol 2019; 94:e01015-19. [PMID: 31597780 PMCID: PMC6912095 DOI: 10.1128/jvi.01015-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/07/2019] [Indexed: 01/18/2023] Open
Abstract
Recombination is one of the driving forces of viral evolution. RNA recombination events among similar RNA viruses are frequent, although RNA recombination could also take place among unrelated viruses. In this paper, we have established efficient interviral recombination systems based on yeast and plants. We show that diverse RNA viruses, including the plant viruses tomato bushy stunt virus, carnation Italian ringspot virus, and turnip crinkle virus-associated RNA; the insect plus-strand RNA [(+)RNA] viruses Flock House virus and Nodamura virus; and the double-stranded L-A virus of yeast, are involved in interviral recombination events. Most interviral recombinants are minus-strand recombinant RNAs, and the junction sites are not randomly distributed, but there are certain hot spot regions. Formation of interviral recombinants in yeast and plants is accelerated by depletion of the cellular SERCA-like Pmr1 ATPase-driven Ca2+/Mn2+ pump, regulating intracellular Ca2+ and Mn2+ influx into the Golgi apparatus from the cytosol. The interviral recombinants are generated by a template-switching mechanism during RNA replication by the viral replicase. Replication studies revealed that a group of interviral recombinants is replication competent in cell-free extracts, in yeast, and in the plant Nicotiana benthamiana We propose that there are major differences among the viral replicases to generate and maintain interviral recombinants. Altogether, the obtained data promote the model that host factors greatly contribute to the formation of recombinants among related and unrelated viruses. This is the first time that a host factor's role in affecting interviral recombination is established.IMPORTANCE Viruses with RNA genomes are abundant, and their genomic sequences show astonishing variation. Genetic recombination in RNA viruses is a major force behind their rapid evolution, enhanced pathogenesis, and adaptation to their hosts. We utilized a previously identified intracellular Ca2+/Mn2+ pump-deficient yeast to search for interviral recombinants. Noninfectious viral replication systems were used to avoid generating unwanted infectious interviral recombinants. Altogether, interviral RNA recombinants were observed between plant and insect viruses, and between a fungal double-stranded RNA (dsRNA) virus and an insect virus, in the yeast host. In addition, interviral recombinants between two plant virus replicon RNAs were identified in N. benthamiana plants, in which the intracellular Ca2+/Mn2+ pump was depleted. These findings underline the crucial role of the host in promoting RNA recombination among unrelated viruses.
Collapse
Affiliation(s)
- Nikolay Kovalev
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Judit Pogany
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
11
|
García-Arenal F, Zerbini FM. Life on the Edge: Geminiviruses at the Interface Between Crops and Wild Plant Hosts. Annu Rev Virol 2019; 6:411-433. [PMID: 31180812 DOI: 10.1146/annurev-virology-092818-015536] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viruses constitute the largest group of emerging pathogens, and geminiviruses (plant viruses with circular, single-stranded DNA genomes) are the major group of emerging plant viruses. With their high potential for genetic variation due to mutation and recombination, their efficient spread by vectors, and their wide host range as a group, including both wild and cultivated hosts, geminiviruses are attractive models for the study of the evolutionary and ecological factors driving virus emergence. Studies on the epidemiological features of geminivirus diseases have traditionally focused primarily on crop plants. Nevertheless, knowledge of geminivirus infection in wild plants, and especially at the interface between wild and cultivated plants, is necessary to provide a complete view of their ecology, evolution, and emergence. In this review, we address the most relevant aspects of geminivirus variability and evolution in wild and crop plants and geminiviruses' potential to emerge in crops.
Collapse
Affiliation(s)
- Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain;
| | - Francisco Murilo Zerbini
- Departamento de Fitopatologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), and National Research Institute for Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil;
| |
Collapse
|
12
|
Ouedraogo RS, Pita JS, Somda IP, Traore O, Roossinck MJ. Impact of Cultivated Hosts on the Recombination of Cucumber Mosaic Virus. J Virol 2019; 93:e01770-18. [PMID: 30787159 PMCID: PMC6430555 DOI: 10.1128/jvi.01770-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/16/2019] [Indexed: 01/30/2023] Open
Abstract
Cucumber mosaic virus (CMV) is one of the most successful viruses known, infecting over 1,200 species of plants. Like other single-stranded RNA viruses, CMV is known to have a high potential for population diversity due to error-prone replication and short generation times. Recombination is also a mechanism that allows viruses to adapt to new hosts. Host genes have been identified that impact the recombination of RNA viruses by using single-cell yeast systems. To determine the impact that the natural plant host has on virus recombination, we used a high-recombination-frequency strain of CMV, LS-CMV, which belongs to subgroup II, in three different cultivated hosts: Capsicum annuum cv. Marengo (pepper), Nicotiana tabacum cv. Xanthi nc (tobacco), and Cucurbita pepo cv. Black Beauty (zucchini). The recombination frequency was calculated by using an RNA 3 reporter carrying restriction enzyme sites created by introducing silent mutations. Our results show that the recombination frequency of LS-CMV is correlated with the infected host. The recombination events in pepper were 1.8-fold higher than those in tobacco and 5-fold higher than those in zucchini. Furthermore, we observed the generation of defective RNAs in inoculated pepper plants, but not in tobacco or zucchini. These results indicate that the host is involved in both intra- and intermolecular recombination events and that hosts like pepper could foster more rapid evolution of the virus. In addition, we report for the first time the production of defective RNAs in a CMV subgroup II isolate.IMPORTANCE Recombination is an important mechanism used by viruses for their diversification and to adapt to diverse hosts. Understanding the host role in the mechanisms of evolution is important for virus disease management and controlling the emergence of new strains. This study shows the impact that cultivated hosts are playing in the evolution of CMV. Furthermore, our results and previous studies show how some specific hosts could be an ideal environment for the emergence of new viral strains.
Collapse
Affiliation(s)
- Rimnoma S Ouedraogo
- Department of Plant Pathology and Environmental Microbiology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania, USA
- Laboratoire de Virologie et de Biotechnologie Végétale (LVBV), Institut de l'Environnement et de Recherches Agricoles (INERA), Ouagadougou, Burkina Faso
- Université Nazi Boni (UNB), Institut du Développement Rural (IDR), Unité Santé des Plantes du Laboratoire Systèmes Naturels, Agrosystèmes et Ingénierie de l'Environnement (Sy.N.A.I.E.), Bobo-Dioulasso, Burkina Faso
| | - Justin S Pita
- Université Félix Houphouët-Boigny, Laboratoire de Virologie Végétale, Pôle Scientifique et d'Innovation, Bingerville, Côte d'Ivoire
| | - Irenée P Somda
- Université Nazi Boni (UNB), Institut du Développement Rural (IDR), Unité Santé des Plantes du Laboratoire Systèmes Naturels, Agrosystèmes et Ingénierie de l'Environnement (Sy.N.A.I.E.), Bobo-Dioulasso, Burkina Faso
| | - Oumar Traore
- Laboratoire de Virologie et de Biotechnologie Végétale (LVBV), Institut de l'Environnement et de Recherches Agricoles (INERA), Ouagadougou, Burkina Faso
| | - Marilyn J Roossinck
- Department of Plant Pathology and Environmental Microbiology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
13
|
Wainaina JM, Kubatko L, Harvey J, Ateka E, Makori T, Karanja D, Boykin LM, Kehoe MA. Evolutionary insights of Bean common mosaic necrosis virus and Cowpea aphid-borne mosaic virus. PeerJ 2019; 7:e6297. [PMID: 30783563 PMCID: PMC6377593 DOI: 10.7717/peerj.6297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 12/18/2018] [Indexed: 11/20/2022] Open
Abstract
Plant viral diseases are one of the major limitations in legume production within sub-Saharan Africa (SSA), as they account for up to 100% in production losses within smallholder farms. In this study, field surveys were conducted in the western highlands of Kenya with viral symptomatic leaf samples collected. Subsequently, next-generation sequencing was carried out to gain insights into the molecular evolution and evolutionary relationships of Bean common mosaic necrosis virus (BCMNV) and Cowpea aphid-borne mosaic virus (CABMV) present within symptomatic common bean and cowpea. Eleven near-complete genomes of BCMNV and two for CABMV were obtained from western Kenya. Bayesian phylogenomic analysis and tests for differential selection pressure within sites and across tree branches of the viral genomes were carried out. Three well-supported clades in BCMNV and one supported clade for CABMNV were resolved and in agreement with individual gene trees. Selection pressure analysis within sites and across phylogenetic branches suggested both viruses were evolving independently, but under strong purifying selection, with a slow evolutionary rate. These findings provide valuable insights on the evolution of BCMNV and CABMV genomes and their relationship to other viral genomes globally. The results will contribute greatly to the knowledge gap involving the phylogenomic relationship of these viruses, particularly for CABMV, for which there are few genome sequences available, and inform the current breeding efforts towards resistance for BCMNV and CABMV.
Collapse
Affiliation(s)
- James M Wainaina
- School of Molecular Sciences and Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Laura Kubatko
- Ohio State University, Columbus, OH, United States of America
| | - Jagger Harvey
- Feed the Future Innovation Lab for the Reduction of Post-Harvest Loss, Kansas State University, Manhattan, KS, United States of America
| | - Elijah Ateka
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Timothy Makori
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - David Karanja
- Kenya Agricultural and Livestock Research Organization (KARLO), Machakos, Kenya
| | - Laura M Boykin
- School of Molecular Sciences and Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Monica A Kehoe
- Plant Pathology, Department of Primary Industries and Regional Development Diagnostic Laboratory Service, South Perth, Australia
| |
Collapse
|
14
|
Nigam D, LaTourrette K, Souza PFN, Garcia-Ruiz H. Genome-Wide Variation in Potyviruses. FRONTIERS IN PLANT SCIENCE 2019; 10:1439. [PMID: 31798606 PMCID: PMC6863122 DOI: 10.3389/fpls.2019.01439] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/16/2019] [Indexed: 05/07/2023]
Abstract
Potyviruses (family Potyviridae, genus Potyvirus) are the result of an initial radiation event that occurred 6,600 years ago. The genus currently consists of 167 species that infect monocots or dicots, including domesticated and wild plants. Potyviruses are transmitted in a non-persistent way by more than 200 species of aphids. As indicated by their wide host range, worldwide distribution, and diversity of their vectors, potyviruses have an outstanding capacity to adapt to new hosts and environments. However, factors that confer adaptability are poorly understood. Viral RNA-dependent RNA polymerases introduce nucleotide substitutions that generate genetic diversity. We hypothesized that selection imposed by hosts and vectors creates a footprint in areas of the genome involved in host adaptation. Here, we profiled genomic and polyprotein variation in all species in the genus Potyvirus. Results showed that the potyviral genome is under strong negative selection. Accordingly, the genome and polyprotein sequence are remarkably stable. However, nucleotide and amino acid substitutions across the potyviral genome are not randomly distributed and are not determined by codon usage. Instead, substitutions preferentially accumulate in hypervariable areas at homologous locations across potyviruses. At a frequency that is higher than that of the rest of the genome, hypervariable areas accumulate non-synonymous nucleotide substitutions and sites under positive selection. Our results show, for the first time, that there is correlation between host range and the frequency of sites under positive selection. Hypervariable areas map to the N terminal part of protein P1, N and C terminal parts of helper component proteinase (HC-Pro), the C terminal part of protein P3, VPg, the C terminal part of NIb (RNA-dependent RNA polymerase), and the N terminal part of the coat protein (CP). Additionally, a hypervariable area at the NIb-CP junction showed that there is variability in the sequence of the NIa protease cleavage sites. Structural alignment showed that the hypervariable area in the CP maps to the N terminal flexible loop and includes the motif required for aphid transmission. Collectively, results described here show that potyviruses contain fixed hypervariable areas in key parts of the genome which provide mutational robustness and are potentially involved in host adaptation.
Collapse
|
15
|
Kim J, Kwak HR, Kim M, Seo JK, Yang JW, Chung MN, Kil EJ, Choi HS, Lee S. Phylogeographic analysis of the full genome of Sweepovirus to trace virus dispersal and introduction to Korea. PLoS One 2018; 13:e0202174. [PMID: 30102735 PMCID: PMC6089449 DOI: 10.1371/journal.pone.0202174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 07/26/2018] [Indexed: 01/04/2023] Open
Abstract
Sweet potato is a vegetatively propagated crop that is produced for both growth in Korean fields and for export out of the country. The viruses that are present in introduced sweet potatoes can spread both domestically and to foreign countries. Determining the time and path of virus movement could help curtail its spread and prevent future dispersal of related viruses. Determining the consequences of past virus and sweet potato dispersal could provide insight into the ecological and economic risks associated with other sweet potato-infecting viral invasions. We therefore applied Bayesian phylogeographic inferences and recombination analyses of the available Sweepovirus sequences (including 25 Korean Sweepovirus genomes) and reconstructed a plausible history of Sweepovirus diversification and movement across the globe. The Mediterranean basin and Central America were found to be the launchpad of global Sweepovirus dispersal. Currently, China and Brazil are acting as convergence regions for Sweepoviruses. Recently reported Korean Sweepovirus isolates were introduced from China in a recent phase and the regions around China and Brazil continue to act as centers of Sweepovirus diversity and sites of ongoing Sweepovirus evolution. The evidence indicates that the region is an epidemiological hotspot, which suggests that novel Sweepovirus variants might be found.
Collapse
Affiliation(s)
- Jaedeok Kim
- Crop Protection Division, National Institute of Agricultural Science, Wanju, Korea
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Hae-Ryun Kwak
- Crop Protection Division, National Institute of Agricultural Science, Wanju, Korea
| | - Mikyeong Kim
- Crop Protection Division, National Institute of Agricultural Science, Wanju, Korea
| | - Jang-Kyun Seo
- Graduate school of International Agricultural Technology, Seoul National University, Pyeongchang, Korea
| | - Jung Wook Yang
- Bioenergy Crop Research Institute, National Institute of Crop Science, Muan, Korea
| | - Mi-Nam Chung
- Research Policy Bureau, Rural Development Administration, Jeonju, Korea
| | - Eui-Joon Kil
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Hong-Soo Choi
- Crop Protection Division, National Institute of Agricultural Science, Wanju, Korea
| | - Sukchan Lee
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
16
|
Wolter F, Puchta H. The CRISPR/Cas revolution reaches the RNA world: Cas13, a new Swiss Army knife for plant biologists. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:767-775. [PMID: 29575326 DOI: 10.1111/tpj.13899] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/27/2018] [Accepted: 03/02/2018] [Indexed: 06/08/2023]
Abstract
Application of the bacterial CRISPR/Cas systems to eukaryotes is revolutionizing biology. Cas9 and Cas12 (previously called Cpf1) are widely used as DNA nucleases for inducing site-specific DNA breaks for different kinds of genome engineering applications, and in their mutated forms as DNA-binding proteins to modify gene expression. Moreover, histone modifications, as well as cytosine methylation or base editing, were achieved with these systems in plants. Recently, with the discovery of the nuclease Cas13a (previously called C2c2), molecular biologists have obtained a system that enables sequence-specific cleavage of single-stranded RNA molecules. The latest experiments with this and also the alternative Cas13b system demonstrate that these proteins can be used in a similar manner in eukaryotes for RNA manipulation as Cas9 and Cas12 for DNA manipulations. The first application of Cas13a for post-transcriptional regulation of gene expression in plants has been reported. Recent results show that the system is also applicable for combating viral infection in plants. As single-stranded RNA viruses are by far the most abundant class of viruses in plants, the application of this system is of special promise for crops. More interesting applications are imminent for plant biologists, with nuclease dead versions of Cas13 enabling the ability to visualize RNA molecules in vivo, as well as to edit different kinds of RNA molecules at specific bases by deamination or to modify them by conjugation. Moreover, by combining DNA- and RNA-directed systems, the most complex of changes in plant metabolism might be achievable.
Collapse
Affiliation(s)
- Felix Wolter
- Botanical Institute, Karlsruhe Institute of Technology, POB 6980, 76049, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, POB 6980, 76049, Karlsruhe, Germany
| |
Collapse
|
17
|
Structures of Qβ virions, virus-like particles, and the Qβ-MurA complex reveal internal coat proteins and the mechanism of host lysis. Proc Natl Acad Sci U S A 2017; 114:11697-11702. [PMID: 29078304 DOI: 10.1073/pnas.1707102114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In single-stranded RNA bacteriophages (ssRNA phages) a single copy of the maturation protein binds the genomic RNA (gRNA) and is required for attachment of the phage to the host pilus. For the canonical Allolevivirus Qβ the maturation protein, A2, has an additional role as the lysis protein, by its ability to bind and inhibit MurA, which is involved in peptidoglycan biosynthesis. Here, we determined structures of Qβ virions, virus-like particles, and the Qβ-MurA complex using single-particle cryoelectron microscopy, at 4.7-Å, 3.3-Å, and 6.1-Å resolutions, respectively. We identified the outer surface of the β-region in A2 as the MurA-binding interface. Moreover, the pattern of MurA mutations that block Qβ lysis and the conformational changes of MurA that facilitate A2 binding were found to be due to the intimate fit between A2 and the region encompassing the closed catalytic cleft of substrate-liganded MurA. Additionally, by comparing the Qβ virion with Qβ virus-like particles that lack a maturation protein, we observed a structural rearrangement in the capsid coat proteins that is required to package the viral gRNA in its dominant conformation. Unexpectedly, we found a coat protein dimer sequestered in the interior of the virion. This coat protein dimer binds to the gRNA and interacts with the buried α-region of A2, suggesting that it is sequestered during the early stage of capsid formation to promote the gRNA condensation required for genome packaging. These internalized coat proteins are the most asymmetrically arranged major capsid proteins yet observed in virus structures.
Collapse
|
18
|
Genetic diversity of potato virus Y (PVY): sequence analyses reveal ten novel PVY recombinant structures. Arch Virol 2017; 163:23-32. [DOI: 10.1007/s00705-017-3568-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/16/2017] [Indexed: 01/27/2023]
|
19
|
Phylogenetic study of recombinant strains of Potato virus Y. Virology 2017; 507:40-52. [DOI: 10.1016/j.virol.2017.03.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 11/19/2022]
|
20
|
James D, Sanderson D, Varga A, Sheveleva A, Chirkov S. Genome Sequence Analysis of New Isolates of the Winona Strain of Plum pox virus and the First Definitive Evidence of Intrastrain Recombination Events. PHYTOPATHOLOGY 2016; 106:407-416. [PMID: 26667187 DOI: 10.1094/phyto-09-15-0211-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Plum pox virus (PPV) is genetically diverse with nine different strains identified. Mutations, indel events, and interstrain recombination events are known to contribute to the genetic diversity of PPV. This is the first report of intrastrain recombination events that contribute to PPV's genetic diversity. Fourteen isolates of the PPV strain Winona (W) were analyzed including nine new strain W isolates sequenced completely in this study. Isolates of other strains of PPV with more than one isolate with the complete genome sequence available in GenBank were included also in this study for comparison and analysis. Five intrastrain recombination events were detected among the PPV W isolates, one among PPV C strain isolates, and one among PPV M strain isolates. Four (29%) of the PPV W isolates analyzed are recombinants; one of which (P2-1) is a mosaic, with three recombination events identified. A new interstrain recombinant event was identified between a strain M isolate and a strain Rec isolate, a known recombinant. In silico recombination studies and pairwise distance analyses of PPV strain D isolates indicate that a threshold of genetic diversity exists for the detectability of recombination events, in the range of approximately 0.78×10(-2) to 1.33×10(-2) mean pairwise distance. RDP4 analyses indicate that in the case of PPV Rec isolates there may be a recombinant breakpoint distinct from the obvious transition point of strain sequences. Evidence was obtained that indicates that the frequency of PPV recombination is underestimated, which may be true for other RNA viruses where low genetic diversity exists.
Collapse
Affiliation(s)
- Delano James
- First, second, and third authors: Centre for Plant Health-Sidney Laboratory, Canadian Food Inspection Agency, 8801 East Saanich Road, North Saanich, British Columbia, V8L 1H3, Canada; and fourth and fifth authors: Department of Virology, Biology Faculty, Lomonosov Moscow State University, Leninskie Gory MSU 1/12, Moscow, 119991, Russia
| | - Dan Sanderson
- First, second, and third authors: Centre for Plant Health-Sidney Laboratory, Canadian Food Inspection Agency, 8801 East Saanich Road, North Saanich, British Columbia, V8L 1H3, Canada; and fourth and fifth authors: Department of Virology, Biology Faculty, Lomonosov Moscow State University, Leninskie Gory MSU 1/12, Moscow, 119991, Russia
| | - Aniko Varga
- First, second, and third authors: Centre for Plant Health-Sidney Laboratory, Canadian Food Inspection Agency, 8801 East Saanich Road, North Saanich, British Columbia, V8L 1H3, Canada; and fourth and fifth authors: Department of Virology, Biology Faculty, Lomonosov Moscow State University, Leninskie Gory MSU 1/12, Moscow, 119991, Russia
| | - Anna Sheveleva
- First, second, and third authors: Centre for Plant Health-Sidney Laboratory, Canadian Food Inspection Agency, 8801 East Saanich Road, North Saanich, British Columbia, V8L 1H3, Canada; and fourth and fifth authors: Department of Virology, Biology Faculty, Lomonosov Moscow State University, Leninskie Gory MSU 1/12, Moscow, 119991, Russia
| | - Sergei Chirkov
- First, second, and third authors: Centre for Plant Health-Sidney Laboratory, Canadian Food Inspection Agency, 8801 East Saanich Road, North Saanich, British Columbia, V8L 1H3, Canada; and fourth and fifth authors: Department of Virology, Biology Faculty, Lomonosov Moscow State University, Leninskie Gory MSU 1/12, Moscow, 119991, Russia
| |
Collapse
|
21
|
Feng X, Myers JR, Karasev AV. Bean common mosaic virus Isolate Exhibits a Novel Pathogenicity Profile in Common Bean, Overcoming the bc-3 Resistance Allele Coding for the Mutated eIF4E Translation Initiation Factor. PHYTOPATHOLOGY 2015; 105:1487-1495. [PMID: 26196181 DOI: 10.1094/phyto-04-15-0108-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Resistance against Bean common mosaic virus (BCMV) in Phaseolus vulgaris is governed by six recessive resistance alleles at four loci. One of these alleles, bc-3, is able to protect P. vulgaris against all BCMV strains and against other potyviruses; bc-3 was identified as the eIF4E allele carrying mutated eukaryotic translation initiation factor gene. Here, we characterized a novel BCMV isolate 1755a that was able to overcome bc-2 and bc-3 alleles in common bean. Thus, it displayed a novel pattern of interactions with resistance genes in P. vulgaris, and was assigned to a new pathogroup, PG-VIII. The IVT7214 cultivar supporting the replication of BCMV-1755a was found to have the intact homozygous bc-3 cleaved amplified polymorphic sequences marker and corresponding mutations in the eIF4E allele that confer resistance to BCMV isolates from all other pathogroups as well as to other potyviruses. The VPg protein of 1755a had seven amino acid substitutions relative to VPgs of other BCMV isolates unable to overcome bc-3. The 1755a genome was found to be a recombinant between NL1, US1 (both PG-I), and a yet unknown BCMV strain. Analysis of the recombination patterns in the genomes of NL1 and US1 (PG-I), NY15P (PG-V), US10 and RU1-OR (PG-VII), and 1755a (PG-VIII), indicated that P1/HC-Pro cistrons of BCMV strains may interact with most resistance genes. This is the first report of a BCMV isolate able to overcome the bc-3 resistance allele, suggesting that the virus has evolved mechanisms to overcome multiple resistance genes available in common bean.
Collapse
Affiliation(s)
- Xue Feng
- First and third authors: Department of PSES, University of Idaho, Moscow; second author: Department of Horticulture, Oregon State University, Corvallis; and third author: Bioinformatics and Computational Biology Program, University of Idaho, Moscow
| | - James R Myers
- First and third authors: Department of PSES, University of Idaho, Moscow; second author: Department of Horticulture, Oregon State University, Corvallis; and third author: Bioinformatics and Computational Biology Program, University of Idaho, Moscow
| | - Alexander V Karasev
- First and third authors: Department of PSES, University of Idaho, Moscow; second author: Department of Horticulture, Oregon State University, Corvallis; and third author: Bioinformatics and Computational Biology Program, University of Idaho, Moscow
| |
Collapse
|
22
|
Chuang C, Prasanth KR, Nagy PD. Coordinated function of cellular DEAD-box helicases in suppression of viral RNA recombination and maintenance of viral genome integrity. PLoS Pathog 2015; 11:e1004680. [PMID: 25693185 PMCID: PMC4333740 DOI: 10.1371/journal.ppat.1004680] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 01/12/2015] [Indexed: 12/16/2022] Open
Abstract
The intricate interactions between viruses and hosts include an evolutionary arms race and adaptation that is facilitated by the ability of RNA viruses to evolve rapidly due to high frequency mutations and genetic RNA recombination. In this paper, we show evidence that the co-opted cellular DDX3-like Ded1 DEAD-box helicase suppresses tombusviral RNA recombination in yeast model host, and the orthologous RH20 helicase functions in a similar way in plants. In vitro replication and recombination assays confirm the direct role of the ATPase function of Ded1p in suppression of viral recombination. We also present data supporting a role for Ded1 in facilitating the switch from minus- to plus-strand synthesis. Interestingly, another co-opted cellular helicase, the eIF4AIII-like AtRH2, enhances TBSV recombination in the absence of Ded1/RH20, suggesting that the coordinated actions of these helicases control viral RNA recombination events. Altogether, these helicases are the first co-opted cellular factors in the viral replicase complex that directly affect viral RNA recombination. Ded1 helicase seems to be a key factor maintaining viral genome integrity by promoting the replication of viral RNAs with correct termini, but inhibiting the replication of defective RNAs lacking correct 5' end sequences. Altogether, a co-opted cellular DEAD-box helicase facilitates the maintenance of full-length viral genome and suppresses viral recombination, thus limiting the appearance of defective viral RNAs during replication.
Collapse
Affiliation(s)
- Chingkai Chuang
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - K. Reddisiva Prasanth
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
23
|
The proteasomal Rpn11 metalloprotease suppresses tombusvirus RNA recombination and promotes viral replication via facilitating assembly of the viral replicase complex. J Virol 2014; 89:2750-63. [PMID: 25540361 DOI: 10.1128/jvi.02620-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED RNA viruses co-opt a large number of cellular proteins that affect virus replication and, in some cases, viral genetic recombination. RNA recombination helps viruses in an evolutionary arms race with the host's antiviral responses and adaptation of viruses to new hosts. Tombusviruses and a yeast model host are used to identify cellular factors affecting RNA virus replication and RNA recombination. In this study, we have examined the role of the conserved Rpn11p metalloprotease subunit of the proteasome, which couples deubiquitination and degradation of proteasome substrates, in tombusvirus replication and recombination in Saccharomyces cerevisiae and plants. Depletion or mutations of Rpn11p lead to the rapid formation of viral RNA recombinants in combination with reduced levels of viral RNA replication in yeast or in vitro based on cell extracts. Rpn11p interacts with the viral replication proteins and is recruited to the viral replicase complex (VRC). Analysis of the multifunctional Rpn11p has revealed that the primary role of Rpn11p is to act as a "matchmaker" that brings the viral p92(pol) replication protein and the DDX3-like Ded1p/RH20 DEAD box helicases into VRCs. Overexpression of Ded1p can complement the defect observed in rpn11 mutant yeast by reducing TBSV recombination. This suggests that Rpn11p can suppress tombusvirus recombination via facilitating the recruitment of the cellular Ded1p helicase, which is a strong suppressor of viral recombination, into VRCs. Overall, this work demonstrates that the co-opted Rpn11p, which is involved in the assembly of the functional proteasome, also functions in the proper assembly of the tombusvirus VRCs. IMPORTANCE RNA viruses evolve rapidly due to genetic changes based on mutations and RNA recombination. Viral genetic recombination helps viruses in an evolutionary arms race with the host's antiviral responses and facilitates adaptation of viruses to new hosts. Cellular factors affect viral RNA recombination, although the role of the host in virus evolution is still understudied. In this study, we used a plant RNA virus, tombusvirus, to examine the role of a cellular proteasomal protein, called Rpn11, in tombusvirus recombination in a yeast model host, in plants, and in vitro. We found that the cellular Rpn11 is subverted for tombusvirus replication and Rpn11 has a proteasome-independent function in facilitating viral replication. When the Rpn11 level is knocked down or a mutated Rpn11 is expressed, then tombusvirus RNA goes through rapid viral recombination and evolution. Taken together, the results show that the co-opted cellular Rpn11 is a critical host factor for tombusviruses by regulating viral replication and genetic recombination.
Collapse
|
24
|
Balasubramanian V, Sukanya RS, Anuradha C, Selvarajan R. Population structure of Banana bract mosaic virus reveals recombination and negative selection in the helper component protease (HC-Pro) gene. Virusdisease 2014; 25:460-6. [PMID: 25674623 PMCID: PMC4262304 DOI: 10.1007/s13337-014-0241-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 11/11/2014] [Indexed: 11/25/2022] Open
Abstract
Banana bract mosaic virus (BBrMV) is a serious constraint in the production of banana and plantain in India. In this study, we have cloned, sequenced and analyzed the helper component proteinase (HC-Pro) gene of 22 isolates from India and compared with previously reported BBrMV isolates. Sequence identity of BBrMV isolates encoding HC-Pro gene, were 92-100 % both at the nucleotide (nt) and amino acid level. Phylogenetic analysis based on nt sequences of non recombinant isolates showed that TN15, TN9 and TN24 formed one cluster and all the remaining isolates formed into another cluster. Different functional motifs in the central region of HC-Pro gene of BBrMV isolates were found conserved. Four potential recombinants with a total of 15 breakpoints were mostly observed at the N and a few from C terminal regions. The codon based selection analysis revealed that most of the codons were under purifying or negative selection except a codon at position 74 which was under positive selection. It is likely that recombination identified in Indian BBrMV isolates, along with strong purifying selection, enhances the speed of elimination of deleterious mutations in the HC-Pro gene. This study suggested that negative selection and recombination were important evolutionary factors driving the genetic diversification and population structure of Indian BBrMV isolates. To the best of our knowledge, this is the first report on the diversity analysis and occurrence of recombination in the HC-Pro gene of BBrMV.
Collapse
Affiliation(s)
- V. Balasubramanian
- Molecular Virology Lab, Division of Crop Protection, National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirapalli, 620102 Tamil Nadu India
| | - R. S. Sukanya
- Molecular Virology Lab, Division of Crop Protection, National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirapalli, 620102 Tamil Nadu India
| | - C. Anuradha
- Molecular Virology Lab, Division of Crop Protection, National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirapalli, 620102 Tamil Nadu India
| | - R. Selvarajan
- Molecular Virology Lab, Division of Crop Protection, National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirapalli, 620102 Tamil Nadu India
| |
Collapse
|
25
|
Kehoe MA, Coutts BA, Buirchell BJ, Jones RAC. Split personality of a Potyvirus: to specialize or not to specialize? PLoS One 2014; 9:e105770. [PMID: 25148372 PMCID: PMC4141833 DOI: 10.1371/journal.pone.0105770] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 07/28/2014] [Indexed: 12/04/2022] Open
Abstract
Bean yellow mosaic virus (BYMV), genus Potyvirus, has an extensive natural host range encompassing both dicots and monocots. Its phylogenetic groups were considered to consist of an ancestral generalist group and six specialist groups derived from this generalist group during plant domestication. Recombination was suggested to be playing a role in BYMV's evolution towards host specialization. However, in subsequent phylogenetic analysis of whole genomes, group names based on the original hosts of isolates within each of them were no longer supported. Also, nine groups were found and designated I-IX. Recombination analysis was conducted on the complete coding regions of 33 BYMV genomes and two genomes of the related Clover yellow vein virus (CYVV). This analysis found evidence for 12 firm recombination events within BYMV phylogenetic groups I-VI, but none within groups VII-IX or CYVV. The greatest numbers of recombination events within a sequence (two or three each) occurred in four groups, three which formerly constituted the single ancestral generalist group (I, II and IV), and group VI. The individual sequences in groups III and V had one event each. These findings with whole genomes are consistent with recombination being associated with expanding host ranges, and call into question the proposed role of recombination in the evolution of BYMV, where it was previously suggested to play a role in host specialization. Instead, they (i) indicate that recombination explains the very broad natural host ranges of the three BYMV groups which infect both monocots and dicots (I, II, IV), and (ii) suggest that the three groups with narrow natural host ranges (III, V, VI) which also showed recombination now have the potential to reduce host specificity and broaden their natural host ranges.
Collapse
Affiliation(s)
- Monica A. Kehoe
- School of Plant Biology and Institute of Agriculture, Faculty of Science, University of Western Australia, Crawley, WA, Australia
- Crop Protection and Lupin Breeding Branches, Department of Agriculture and Food Western Australia, Bentley Delivery Centre, Perth, WA, Australia
| | - Brenda A. Coutts
- School of Plant Biology and Institute of Agriculture, Faculty of Science, University of Western Australia, Crawley, WA, Australia
- Crop Protection and Lupin Breeding Branches, Department of Agriculture and Food Western Australia, Bentley Delivery Centre, Perth, WA, Australia
| | - Bevan J. Buirchell
- School of Plant Biology and Institute of Agriculture, Faculty of Science, University of Western Australia, Crawley, WA, Australia
- Crop Protection and Lupin Breeding Branches, Department of Agriculture and Food Western Australia, Bentley Delivery Centre, Perth, WA, Australia
| | - Roger A. C. Jones
- School of Plant Biology and Institute of Agriculture, Faculty of Science, University of Western Australia, Crawley, WA, Australia
- Crop Protection and Lupin Breeding Branches, Department of Agriculture and Food Western Australia, Bentley Delivery Centre, Perth, WA, Australia
| |
Collapse
|
26
|
Nagy PD, Pogany J, Lin JY. How yeast can be used as a genetic platform to explore virus-host interactions: from 'omics' to functional studies. Trends Microbiol 2014; 22:309-16. [PMID: 24647076 DOI: 10.1016/j.tim.2014.02.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/05/2014] [Accepted: 02/10/2014] [Indexed: 01/07/2023]
Abstract
The yeast Saccharomyces cerevisiae is an advanced model organism that has emerged as an effective host to gain insights into the intricate interactions of viruses with host cells. RNA viruses have limited coding potential and need to coopt numerous host cellular factors to facilitate their replication. To identify the host factors subverted by viruses, high-throughput genomics and global proteomics approaches have been performed with plant viruses such as brome mosaic virus (BMV) and tomato bushy stunt virus (TBSV). Accordingly, several hundred susceptibility and restriction factors for BMV and TBSV have been identified using yeast as a model host. Amazingly, host factors affecting viral genetic recombination and evolution have also been identified in genome-wide screens in yeast. The roles of many yeast host factors involved in various steps of the viral replication process have been validated by exploiting the orthologous genes in plant hosts. This Opinion summarizes the advantages of using simple viruses and yeast model host to advance our general understanding of virus-host interactions. The knowledge gained on host factors could lead to novel specific or broad-range resistance and antiviral tools against viruses.
Collapse
Affiliation(s)
- Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA.
| | - Judit Pogany
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | - Jing-Yi Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
27
|
Rubio L, Guerri J, Moreno P. Genetic variability and evolutionary dynamics of viruses of the family Closteroviridae. Front Microbiol 2013; 4:151. [PMID: 23805130 PMCID: PMC3693128 DOI: 10.3389/fmicb.2013.00151] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/29/2013] [Indexed: 11/15/2022] Open
Abstract
RNA viruses have a great potential for genetic variation, rapid evolution and adaptation. Characterization of the genetic variation of viral populations provides relevant information on the processes involved in virus evolution and epidemiology and it is crucial for designing reliable diagnostic tools and developing efficient and durable disease control strategies. Here we performed an updated analysis of sequences available in Genbank and reviewed present knowledge on the genetic variability and evolutionary processes of viruses of the family Closteroviridae. Several factors have shaped the genetic structure and diversity of closteroviruses. (I) A strong negative selection seems to be responsible for the high genetic stability in space and time for some viruses. (2) Long distance migration, probably by human transport of infected propagative plant material, have caused that genetically similar virus isolates are found in distant geographical regions. (3) Recombination between divergent sequence variants have generated new genotypes and plays an important role for the evolution of some viruses of the family Closteroviridae. (4) Interaction between virus strains or between different viruses in mixed infections may alter accumulation of certain strains. (5) Host change or virus transmission by insect vectors induced changes in the viral population structure due to positive selection of sequence variants with higher fitness for host-virus or vector-virus interaction (adaptation) or by genetic drift due to random selection of sequence variants during the population bottleneck associated to the transmission process.
Collapse
Affiliation(s)
- Luis Rubio
- Instituto Valenciano de Investigaciones AgrariasMoncada, Valencia, Spain
| | | | | |
Collapse
|
28
|
Lima ATM, Sobrinho RR, González-Aguilera J, Rocha CS, Silva SJC, Xavier CAD, Silva FN, Duffy S, Zerbini FM. Synonymous site variation due to recombination explains higher genetic variability in begomovirus populations infecting non-cultivated hosts. J Gen Virol 2013; 94:418-431. [DOI: 10.1099/vir.0.047241-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Begomoviruses are ssDNA plant viruses that cause serious epidemics in economically important crops worldwide. Non-cultivated plants also harbour many begomoviruses, and it is believed that these hosts may act as reservoirs and as mixing vessels where recombination may occur. Begomoviruses are notoriously recombination-prone, and also display nucleotide substitution rates equivalent to those of RNA viruses. In Brazil, several indigenous begomoviruses have been described infecting tomatoes following the introduction of a novel biotype of the whitefly vector in the mid-1990s. More recently, a number of viruses from non-cultivated hosts have also been described. Previous work has suggested that viruses infecting non-cultivated hosts have a higher degree of genetic variability compared with crop-infecting viruses. We intensively sampled cultivated and non-cultivated plants in similarly sized geographical areas known to harbour either the weed-infecting Macroptilium yellow spot virus (MaYSV) or the crop-infecting Tomato severe rugose virus (ToSRV), and compared the molecular evolution and population genetics of these two distantly related begomoviruses. The results reinforce the assertion that infection of non-cultivated plant species leads to higher levels of standing genetic variability, and indicate that recombination, not adaptive selection, explains the higher begomovirus variability in non-cultivated hosts.
Collapse
Affiliation(s)
- Alison T. M. Lima
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil
| | - Roberto R. Sobrinho
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil
| | - Jorge González-Aguilera
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil
| | - Carolina S. Rocha
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil
| | - Sarah J. C. Silva
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil
| | - César A. D. Xavier
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil
| | - Fábio N. Silva
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - F. Murilo Zerbini
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil
| |
Collapse
|
29
|
Roossinck MJ. The big unknown: plant virus biodiversity. Curr Opin Virol 2011; 1:63-7. [PMID: 22440569 DOI: 10.1016/j.coviro.2011.05.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 05/26/2011] [Accepted: 05/31/2011] [Indexed: 12/22/2022]
Abstract
Studies on plant virus biodiversity are in their infancy, but with new technologies we can expect to see more information about novel plant viruses in the near future. The challenge for virus biodiversity work is that viruses do not have any universal coding sequence, such as ribosomal RNAs found in all cellular life. These obstacles are being overcome in clever ways. Understanding what exists in our natural environment will help us to tackle big issues in agriculture, such as disease emergence and the use of beneficial viruses and other microbes.
Collapse
Affiliation(s)
- Marilyn J Roossinck
- The Samuel Roberts Noble Foundation, Plant Biology Division, Ardmore, OK 73402, United States.
| |
Collapse
|
30
|
Chiba S, Kondo H, Tani A, Saisho D, Sakamoto W, Kanematsu S, Suzuki N. Widespread endogenization of genome sequences of non-retroviral RNA viruses into plant genomes. PLoS Pathog 2011; 7:e1002146. [PMID: 21779172 PMCID: PMC3136472 DOI: 10.1371/journal.ppat.1002146] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 05/17/2011] [Indexed: 02/06/2023] Open
Abstract
Non-retroviral RNA virus sequences (NRVSs) have been found in the chromosomes of vertebrates and fungi, but not plants. Here we report similarly endogenized NRVSs derived from plus-, negative-, and double-stranded RNA viruses in plant chromosomes. These sequences were found by searching public genomic sequence databases, and, importantly, most NRVSs were subsequently detected by direct molecular analyses of plant DNAs. The most widespread NRVSs were related to the coat protein (CP) genes of the family Partitiviridae which have bisegmented dsRNA genomes, and included plant- and fungus-infecting members. The CP of a novel fungal virus (Rosellinia necatrix partitivirus 2, RnPV2) had the greatest sequence similarity to Arabidopsis thaliana ILR2, which is thought to regulate the activities of the phytohormone auxin, indole-3-acetic acid (IAA). Furthermore, partitivirus CP-like sequences much more closely related to plant partitiviruses than to RnPV2 were identified in a wide range of plant species. In addition, the nucleocapsid protein genes of cytorhabdoviruses and varicosaviruses were found in species of over 9 plant families, including Brassicaceae and Solanaceae. A replicase-like sequence of a betaflexivirus was identified in the cucumber genome. The pattern of occurrence of NRVSs and the phylogenetic analyses of NRVSs and related viruses indicate that multiple independent integrations into many plant lineages may have occurred. For example, one of the NRVSs was retained in Ar. thaliana but not in Ar. lyrata or other related Camelina species, whereas another NRVS displayed the reverse pattern. Our study has shown that single- and double-stranded RNA viral sequences are widespread in plant genomes, and shows the potential of genome integrated NRVSs to contribute to resolve unclear phylogenetic relationships of plant species.
Collapse
Affiliation(s)
- Sotaro Chiba
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Akio Tani
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Daisuke Saisho
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Satoko Kanematsu
- National Institute of Fruit Tree Science, National Agricultural Research Organization (NARO), Morioka, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| |
Collapse
|
31
|
Karasev AV, Hu X, Brown CJ, Kerlan C, Nikolaeva OV, Crosslin JM, Gray SM. Genetic diversity of the ordinary strain of Potato virus Y (PVY) and origin of recombinant PVY strains. PHYTOPATHOLOGY 2011; 101:778-85. [PMID: 21675922 PMCID: PMC3251920 DOI: 10.1094/phyto-10-10-0284] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The ordinary strain of Potato virus Y (PVY), PVY(O), causes mild mosaic in tobacco and induces necrosis and severe stunting in potato cultivars carrying the Ny gene. A novel substrain of PVY(O) was recently reported, PVY(O)-O5, which is spreading in the United States and is distinguished from other PVY(O) isolates serologically (i.e., reacting to the otherwise PVY(N)-specific monoclonal antibody 1F5). To characterize this new PVY(O)-O5 subgroup and address possible reasons for its continued spread, we conducted a molecular study of PVY(O) and PVY(O)-O5 isolates from a North American collection of PVY through whole-genome sequencing and phylogenetic analysis. In all, 44 PVY(O) isolates were sequenced, including 31 from the previously defined PVY(O)-O5 group, and subjected to whole-genome analysis. PVY(O)-O5 isolates formed a separate lineage within the PVY(O) genome cluster in the whole-genome phylogenetic tree and represented a novel evolutionary lineage of PVY from potato. On the other hand, the PVY(O) sequences separated into at least two distinct lineages on the whole-genome phylogenetic tree. To shed light on the origin of the three most common PVY recombinants, a more detailed phylogenetic analysis of a sequence fragment, nucleotides 2,406 to 5,821, that is present in all recombinant and nonrecombinant PVY(O) genomes was conducted. The analysis revealed that PVY(N:O) and PVY(N-Wi) recombinants acquired their PVY(O) segments from two separate PVY(O) lineages, whereas the PVY(NTN) recombinant acquired its PVY(O) segment from the same lineage as PVY(N:O). These data suggest that PVY(N:O) and PVY(N-Wi) recombinants originated from two separate recombination events involving two different PVY(O) parental genomes, whereas the PVY(NTN) recombinants likely originated from the PVY(N:O) genome via additional recombination events.
Collapse
|
32
|
Lafforgue G, Sardanyés J, Elena SF. Differences in accumulation and virulence determine the outcome of competition during Tobacco etch virus coinfection. PLoS One 2011; 6:e17917. [PMID: 21423618 PMCID: PMC3057992 DOI: 10.1371/journal.pone.0017917] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 02/15/2011] [Indexed: 11/18/2022] Open
Abstract
Understanding the evolution of virulence for RNA viruses is essential for developing appropriate control strategies. Although it has been usually assumed that virulence is a consequence of within-host replication of the parasite, viral strains may be highly virulent without experiencing large accumulation as a consequence of immunopathological host responses. Using two strains of Tobacco etch potyvirus (TEV) that show a negative relationship between virulence and accumulation rate, we first explored the evolution of virulence and fitness traits during simple and mixed infections. Short-term evolution experiments initiated with each strain independently confirmed the genetic and evolutionary stability of virulence and viral load, although infectivity significantly increased for both strains. Second, competition experiments between hypo- and hypervirulent TEV strains have shown that the outcome of competition is driven by differences in replication rate. A simple mathematical model has been developed to analyze the dynamics of these two strains during coinfection. The model qualitatively reproduced the experimental results using biologically meaningful parameters. Further analyses of the model also revealed a wide parametric region in which a low-fitness but hypovirulent virus can still outcompete a high-fitness but hypervirulent one. These results provide additional support to the observation that virulence and within-host replication may not necessarily be strongly tied in plant RNA viruses.
Collapse
Affiliation(s)
- Guillaume Lafforgue
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas – UPV, València, Spain
| | - Josep Sardanyés
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas – UPV, València, Spain
| | - Santiago F. Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas – UPV, València, Spain
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| |
Collapse
|
33
|
Desbiez C, Moury B, Lecoq H. The hallmarks of "green" viruses: do plant viruses evolve differently from the others? INFECTION GENETICS AND EVOLUTION 2011; 11:812-24. [PMID: 21382520 DOI: 10.1016/j.meegid.2011.02.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/22/2011] [Accepted: 02/24/2011] [Indexed: 12/13/2022]
Abstract
All viruses are obligatory parasites that must develop tight interactions with their hosts to complete their infectious cycle. Viruses infecting plants share many structural and functional similarities with those infecting other organisms, particularly animals and fungi. Quantitative data regarding their evolutionary mechanisms--generation of variability by mutation and recombination, changes in populations by selection and genetic drift have been obtained only recently, and appear rather similar to those measured for animal viruses.This review presents an update of our knowledge of the phylogenetic and evolutionary characteristics of plant viruses and their relation to their plant hosts, in comparison with viruses infecting other organisms.
Collapse
Affiliation(s)
- C Desbiez
- INRA, Unité de Pathologie Végétale UR407, F-84140 Montfavet, France.
| | | | | |
Collapse
|
34
|
Rohozková J, Navrátil M. P1 peptidase--a mysterious protein of family Potyviridae. J Biosci 2011; 36:189-200. [PMID: 21451259 DOI: 10.1007/s12038-011-9020-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 02/10/2011] [Indexed: 10/18/2022]
Abstract
The Potyviridae family, named after its type member, Potato virus Y (PVY), is the largest of the 65 plant virus groups and families currently recognized. The coding region for P1 peptidase is located at the very beginning of the viral genome of the family Potyviridae. Until recently P1 was thought of as serine peptidase with RNA-binding activity and with possible influence in cell-to-cell viral spreading. This N-terminal protein, among all of the potyviruses, is the most divergent protein: varying in length and in its amino acid sequence. Nevertheless, P1 peptidase in many ways is still a mysterious viral protein. In this review, we would like to offer a comprehensive overview, discussing the proteomic, biochemical and phylogenetic views of the P1 protein.
Collapse
Affiliation(s)
- Jana Rohozková
- Faculty of Science, Palacký University in Olomouc, Slechtitelů 11, 783 71, Olomouc-Holice, Czech Republic.
| | | |
Collapse
|
35
|
Abstract
RNA viruses are the champions of evolution due to high frequency mutations and genetic recombination occurring during virus replication. These genetic events are due to the error-prone nature of viral RNA-dependent RNA polymerases (RdRp). Recently emerging models on viral RNA recombination, however, also include key roles for host and environmental factors. Accordingly, genome-wide screens and global proteomics approaches with Tomato bushy stunt virus (TBSV) and yeast (Saccharomyces cerevisiae) as a model host have identified 38 host proteins affecting viral RNA recombination. Follow-up studies have identified key host proteins and cellular pathways involved in TBSV RNA recombination. In addition, environmental factors, such as salt stress, have been shown to affect TBSV recombination via influencing key host or viral factors involved in the recombination process. These advances will help build more accurate models on viral recombination, evolution, and adaptation.
Collapse
|
36
|
Jaag HM, Lu Q, Schmitt ME, Nagy PD. Role of RNase MRP in viral RNA degradation and RNA recombination. J Virol 2011; 85:243-53. [PMID: 20962095 PMCID: PMC3014185 DOI: 10.1128/jvi.01749-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 10/06/2010] [Indexed: 12/29/2022] Open
Abstract
RNA degradation, together with RNA synthesis, controls the steady-state level of viral RNAs in infected cells. The endoribonucleolytic cleavage of viral RNA is important not only for viral RNA degradation but for RNA recombination as well, due to the participation of some RNA degradation products in the RNA recombination process. To identify host endoribonucleases involved in degradation of Tomato bushy stunt virus (TBSV) in a Saccharomyces cerevisiae model host, we tested eight known endoribonucleases. Here we report that downregulation of SNM1, encoding a component of the RNase MRP, and a temperature-sensitive mutation in the NME1 gene, coding for the RNA component of RNase MRP, lead to reduced production of the endoribonucleolytically cleaved TBSV RNA in yeast. We also show that the highly purified yeast RNase MRP cleaves the TBSV RNA in vitro, resulting in TBSV RNA degradation products similar in size to those observed in yeast cells. Knocking down the NME1 homolog in Nicotiana benthamiana also led to decreased production of the cleaved TBSV RNA, suggesting that in plants, RNase MRP is involved in TBSV RNA degradation. Altogether, this work suggests a role for the host endoribonuclease RNase MRP in viral RNA degradation and recombination.
Collapse
Affiliation(s)
- Hannah M. Jaag
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, Kentucky 40546, Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Qiasheng Lu
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, Kentucky 40546, Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Mark E. Schmitt
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, Kentucky 40546, Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, Kentucky 40546, Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| |
Collapse
|
37
|
Jaag HM, Nagy PD. The combined effect of environmental and host factors on the emergence of viral RNA recombinants. PLoS Pathog 2010; 6:e1001156. [PMID: 20975943 PMCID: PMC2958810 DOI: 10.1371/journal.ppat.1001156] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 09/20/2010] [Indexed: 12/31/2022] Open
Abstract
Viruses are masters of evolution due to high frequency mutations and genetic recombination. In spite of the significance of viral RNA recombination that promotes the emergence of drug-resistant virus strains, the role of host and environmental factors in RNA recombination is poorly understood. Here we report that the host Met22p/Hal2p bisphosphate-3'-nucleotidase regulates the frequency of viral RNA recombination and the efficiency of viral replication. Based on Tomato bushy stunt virus (TBSV) and yeast as a model host, we demonstrate that deletion of MET22 in yeast or knockdown of AHL, SAL1 and FRY1 nucleotidases/phosphatases in plants leads to increased TBSV recombination and replication. Using a cell-free TBSV recombination/replication assay, we show that the substrate of the above nucleotidases, namely 3'-phosphoadenosine-5'-phosphate pAp, inhibits the activity of the Xrn1p 5'-3' ribonuclease, a known suppressor of TBSV recombination. Inhibition of the activity of the nucleotidases by LiCl and NaCl also leads to increased TBSV recombination, demonstrating that environmental factors could also affect viral RNA recombination. Thus, host factors in combination with environmental factors likely affect virus evolution and adaptation.
Collapse
MESH Headings
- Environment
- Evolution, Molecular
- Host-Pathogen Interactions/genetics
- Host-Pathogen Interactions/physiology
- Models, Biological
- Nucleotidases/genetics
- Nucleotidases/metabolism
- Nucleotidases/physiology
- Organisms, Genetically Modified
- RNA/genetics
- RNA/metabolism
- RNA Splicing/physiology
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Recombination, Genetic/drug effects
- Recombination, Genetic/physiology
- Saccharomyces cerevisiae/drug effects
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae/virology
- Salts/pharmacology
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
- Stress, Physiological/physiology
- Nicotiana/drug effects
- Nicotiana/genetics
- Nicotiana/metabolism
- Tombusvirus/genetics
- Tombusvirus/physiology
- Virus Replication/genetics
Collapse
Affiliation(s)
- Hannah M. Jaag
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, Kentucky, United States of America
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, Kentucky, United States of America
| |
Collapse
|
38
|
Jaag HM, Pogany J, Nagy PD. A host Ca2+/Mn2+ ion pump is a factor in the emergence of viral RNA recombinants. Cell Host Microbe 2010; 7:74-81. [PMID: 20114029 DOI: 10.1016/j.chom.2009.12.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 10/16/2009] [Accepted: 12/21/2009] [Indexed: 10/19/2022]
Abstract
Viruses change rapidly due to genetic mutations, and viral RNA recombination in RNA viruses can lead to the emergence of drug-resistant or highly virulent strains. Here, we report that host Pmr1p, an ion pump that controls Ca2+/Mn2+ influx into the Golgi from the cytosol, affects the frequency of viral RNA recombination and the efficiency of replication. Inactivation of PMR1 leads to an approximately 160-fold increase in RNA recombination of Tomato bushy stunt virus (TBSV) in yeast, a model host. Expression of separation-of-function mutants of Pmr1p reveals that the ability of Pmr1p to control the Mn2+ concentration in the cytosol is a key factor in viral RNA recombination. Indeed, a high Mn2+ concentration in a cell-free TBSV replication system increases the recombination frequency, and knockdown of Ca2+/Mn2+ exporters in plants increases virus replication and RNA recombination. Thus, a conserved host protein could affect the adaptive evolution of RNA viruses.
Collapse
Affiliation(s)
- Hannah M Jaag
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY 40546, USA
| | | | | |
Collapse
|
39
|
de Miranda JR, Genersch E. Deformed wing virus. J Invertebr Pathol 2009; 103 Suppl 1:S48-61. [PMID: 19909976 DOI: 10.1016/j.jip.2009.06.012] [Citation(s) in RCA: 339] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 06/29/2009] [Indexed: 10/20/2022]
Abstract
Deformed wing virus (DWV; Iflaviridae) is one of many viruses infecting honeybees and one of the most heavily investigated due to its close association with honeybee colony collapse induced by Varroadestructor. In the absence of V.destructor DWV infection does not result in visible symptoms or any apparent negative impact on host fitness. However, for reasons that are still not fully understood, the transmission of DWV by V.destructor to the developing pupae causes clinical symptoms, including pupal death and adult bees emerging with deformed wings, a bloated, shortened abdomen and discolouration. These bees are not viable and die soon after emergence. In this review we will summarize the historical and recent data on DWV and its relatives, covering the genetics, pathobiology, and transmission of this important viral honeybee pathogen, and discuss these within the wider theoretical concepts relating to the genetic variability and population structure of RNA viruses, the evolution of virulence and the development of disease symptoms.
Collapse
Affiliation(s)
- Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07 Uppsala, Sweden
| | | |
Collapse
|
40
|
Defective Interfering RNAs: Foes of Viruses and Friends of Virologists. Viruses 2009; 1:895-919. [PMID: 21994575 PMCID: PMC3185524 DOI: 10.3390/v1030895] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 11/09/2009] [Accepted: 11/09/2009] [Indexed: 12/25/2022] Open
Abstract
Defective interfering (DI) RNAs are subviral RNAs produced during multiplication of RNA viruses by the error-prone viral replicase. DI-RNAs are parasitic RNAs that are derived from and associated with the parent virus, taking advantage of viral-coded protein factors for their multiplication. Recent advances in the field of DI RNA biology has led to a greater understanding about generation and evolution of DI-RNAs as well as the mechanism of symptom attenuation. Moreover, DI-RNAs are versatile tools in the hands of virologists and are used as less complex surrogate templates to understand the biology of their helper viruses. The ease of their genetic manipulation has resulted in rapid discoveries on cis-acting RNA replication elements required for replication and recombination. DI-RNAs have been further exploited to discover host factors that modulate Tomato bushy stunt virus replication, as well as viral RNA recombination. This review discusses the current models on generation and evolution of DI-RNAs, the roles of viral and host factors in DI-RNA replication, and the mechanisms of disease attenuation.
Collapse
|
41
|
Hu X, Karasev AV, Brown CJ, Lorenzen JH. Sequence characteristics of potato virus Y recombinants. J Gen Virol 2009; 90:3033-3041. [PMID: 19692546 DOI: 10.1099/vir.0.014142-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Potato virus Y (PVY) is one of the most economically important plant pathogens. The PVY genome has a high degree of genetic variability and is also subject to recombination. New recombinants have been reported in many countries since the 1980s, but the origin of these recombinant strains and the physical and evolutionary mechanisms driving their emergence are not clear at the moment. The replicase-mediated template-switching model is considered the most likely mechanism for forming new RNA virus recombinants. Two factors, RNA secondary structure (especially stem-loop structures) and AU-rich regions, have been reported to affect recombination in this model. In this study, we investigated the influence of these two factors on PVY recombination from two perspectives: their distribution along the whole genome and differences between regions flanking the recombination junctions (RJs). Based on their distributions, only a few identified RJs in PVY genomes were located in lower negative FORS-D, i.e. having greater secondary-structure potential and higher AU-content regions, but most RJs had more negative FORS-D values upstream and/or higher AU content downstream. Our whole-genome analyses showed that RNA secondary structures and/or AU-rich regions at some sites may have affected PVY recombination, but in general they were not the main forces driving PVY recombination.
Collapse
Affiliation(s)
- Xiaojun Hu
- Bioinformatics and Computational Biology Program, University of Idaho, Moscow, ID 83844, USA
- Department of Plant, Soil, and Entomological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Alexander V Karasev
- Bioinformatics and Computational Biology Program, University of Idaho, Moscow, ID 83844, USA
- Department of Plant, Soil, and Entomological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Celeste J Brown
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
- Bioinformatics and Computational Biology Program, University of Idaho, Moscow, ID 83844, USA
| | - Jim H Lorenzen
- International Institute of Tropical Agriculture, Kampala, Uganda
- Bioinformatics and Computational Biology Program, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
42
|
Lecoq H, Wipf-Scheibel C, Chandeysson C, Lê Van A, Fabre F, Desbiez C. Molecular epidemiology of Zucchini yellow mosaic virus in France: An historical overview. Virus Res 2009; 141:190-200. [DOI: 10.1016/j.virusres.2008.11.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2008] [Indexed: 10/21/2022]
|
43
|
Jaag HM, Nagy PD. Silencing of Nicotiana benthamiana Xrn4p exoribonuclease promotes tombusvirus RNA accumulation and recombination. Virology 2009; 386:344-52. [PMID: 19232421 DOI: 10.1016/j.virol.2009.01.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Revised: 11/08/2008] [Accepted: 01/15/2009] [Indexed: 10/21/2022]
Abstract
The cytosolic 5'-to-3' exoribonuclease Xrn1p plays a major role in recombination and degradation of Tomato bushy stunt tombusvirus (TBSV) replicon (rep)RNA in yeast, a model host (Serviene, E., Shapka, N., Cheng, C.P., Panavas, T., Phuangrat, B., Baker, J., and Nagy, P.D., 2005. Genome-wide screen identifies host genes affecting viral RNA recombination. Proc. Natl. Acad. Sci. U. S. A. 102(30), 10545-10550.). To test if the plant cytosolic 5'-to-3' exoribonuclease Xrn4p, similar to the yeast Xrn1p, could also affect TBSV recombination, in this paper, we silenced XRN4 in Nicotiana benthamiana, an experimental host. The accumulation of tombusvirus genomic RNA and repRNA increased by 50% and 220%, respectively, in XRN4-silenced N. benthamiana. We also observed up to 125-fold increase in the emergence of new recombinants and partly degraded viral RNAs in the silenced plants. Using a cell-free assay based on a yeast extract, which supports authentic replication and recombination of TBSV, we demonstrate that the purified recombinant Xrn1p efficiently inhibited the accumulation of recombinants and partly degraded viral RNAs. Altogether, the data from a plant host and cell-free system confirm a central role for the plant cytosolic 5'-to-3' exoribonuclease in TBSV replication, recombination and viral RNA degradation.
Collapse
Affiliation(s)
- Hannah M Jaag
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY40546, USA
| | | |
Collapse
|
44
|
Nagy PD, Pogany J. Host Factors Promoting Viral RNA Replication. VIRAL GENOME REPLICATION 2009. [PMCID: PMC7120932 DOI: 10.1007/b135974_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plus-stranded RNA viruses, the largest group among eukaryotic viruses, are capable of reprogramming host cells by subverting host proteins and membranes, by co-opting and modulating protein and ribonucleoprotein complexes, and by altering cellular pathways during infection. To achieve robust replication, plus-stranded RNA viruses interact with numerous cellular molecules via protein–protein, RNA–protein, and protein–lipid interactions using molecular mimicry and other means. These interactions lead to the transformation of the host cells into viral “factories" that can produce 10,000–1,000,000 progeny RNAs per infected cell. This chapter presents the progress that was made largely in the last 15 years in understanding virus–host interactions during RNA virus replication. The most commonly employed approaches to identify host factors that affect plus-stranded RNA virus replication are described. In addition, we discuss many of the identified host factors and their proposed roles in RNA virus replication. Altogether, host factors are key determinants of the host range of a given virus and affect virus pathology, host–virus interactions, as well as virus evolution. Studies on host factors also contribute insights into their normal cellular functions, thus promoting understanding of the basic biology of the host cell. The knowledge obtained in this fast-progressing area will likely stimulate the development of new antiviral methods as well as novel strategies that could make plus-stranded RNA viruses useful in bio- and nanotechnology.
Collapse
|
45
|
Bilgin DD, Aldea M, O'Neill BF, Benitez M, Li M, Clough SJ, DeLucia EH. Elevated ozone alters soybean-virus interaction. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1297-308. [PMID: 18785825 DOI: 10.1094/mpmi-21-10-1297] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Increasing concentrations of ozone (O(3)) in the troposphere affect many organisms and their interactions with each other. To analyze the changes in a plant-pathogen interaction, soybean plants were infected with Soybean mosaic virus (SMV) while they were fumigated with O(3). In otherwise natural field conditions, elevated O(3) treatment slowed systemic infection and disease development by inducing a nonspecific resistance against SMV for a period of 3 weeks. During this period, the negative effect of virus infection on light-saturated carbon assimilation rate was prevented by elevated O(3) exposure. To identify the molecular basis of a soybean nonspecific defense response, high-throughput gene expression analysis was performed in a controlled environment. Transcripts of fungal, bacterial, and viral defense-related genes, including PR-1, PR-5, PR-10, and EDS1, as well as genes of the flavonoid biosynthesis pathways (and concentrations of their end products, quercetin and kaempherol derivatives) increased in response to elevated O(3). The drastic changes in soybean basal defense response under altered atmospheric conditions suggest that one of the elements of global change may alter the ecological consequences and, eventually, coevolutionary relationship of plant-pathogen interactions in the future.
Collapse
Affiliation(s)
- Damla D Bilgin
- Institute of Genomic Biolog, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Xi D, Li J, Han C, Li D, Yu J, Zhou X. Complete nucleotide sequence of a new strain of Tobacco necrosis virus A infecting soybean in China and infectivity of its full-length cDNA clone. Virus Genes 2008; 36:259-66. [PMID: 18071890 DOI: 10.1007/s11262-007-0185-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 11/28/2007] [Indexed: 10/22/2022]
Abstract
The complete nucleotide sequence of a virus isolated from soybean (Glycine max (L.) Merr.) in China, previously identified as a new strain of Tobacco necrosis virus A (TNV-A) based on its biological, serological properties, and coat protein (CP) sequence and named as TNV-A C, was determined and compared with that of TNV-A and other closely related Necroviruses and Carmoviruses. The viral RNA genome consists of 3,682 nucleotides and contains five open reading frames (ORFs). TNV-A C showed 86.4% overall nucleotide sequence identity to TNV-A. The CP and putative RNA-dependent RNA polymerase (RdRp) showed 88.8 and 95.9% amino acid identity, respectively, to that of TNV-A. The greatest difference between TNV-A C and TNV-A was in the 3' terminal region: the p7K ORF region present in TNV-A was absent in TNV-A C. Phylogenetic analysis of RdRp, CP, and small ORF regions of Necroviruses confirmed TNV-A C as a new strain of TNV-A. A full-length cDNA clone of TNV-A C was constructed and used as template for run-off transcription based on the obtained sequence. The results indicate that the in vitro-synthesized viral RNA faithfully represented the biological activity of wild-type TNV-A C.
Collapse
Affiliation(s)
- Dehui Xi
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100094, PR China
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
In the last 30 years, the study of virus evolution has undergone a transformation. Originally concerned with disease and its emergence, virus evolution had not been well integrated into the general study of evolution. This chapter reviews the developments that have brought us to this new appreciation for the general significance of virus evolution to all life. We now know that viruses numerically dominate all habitats of life, especially the oceans. Theoretical developments in the 1970s regarding quasispecies, error rates, and error thresholds have yielded many practical insights into virus–host dynamics. The human diseases of HIV-1 and hepatitis C virus cannot be understood without this evolutionary framework. Yet recent developments with poliovirus demonstrate that viral fitness can be the result of a consortia, not one fittest type, a basic Darwinian concept in evolutionary biology. Darwinian principles do apply to viruses, such as with Fisher population genetics, but other features, such as reticulated and quasispecies-based evolution distinguish virus evolution from classical studies. The available phylogenetic tools have greatly aided our analysis of virus evolution, but these methods struggle to characterize the role of virus populations. Missing from many of these considerations has been the major role played by persisting viruses in stable virus evolution and disease emergence. In many cases, extreme stability is seen with persisting RNA viruses. Indeed, examples are known in which it is the persistently infected host that has better survival. We have also recently come to appreciate the vast diversity of phage (DNA viruses) of prokaryotes as a system that evolves by genetic exchanges across vast populations (Chapter 10). This has been proposed to be the “big bang” of biological evolution. In the large DNA viruses of aquatic microbes we see surprisingly large, complex and diverse viruses. With both prokaryotic and eukaryotic DNA viruses, recombination is the main engine of virus evolution, and virus host co-evolution is common, although not uniform. Viral emergence appears to be an unending phenomenon and we can currently witness a selective sweep by retroviruses that infect and become endogenized in koala bears.
Collapse
|
48
|
Abstract
Identification of the roles of replication factors represents one of the major frontiers in current virus research. Among plant viruses, the positive-stranded (+) RNA viruses are the largest group and the most widespread. The central step in the infection cycles of (+) RNA viruses is RNA replication, which leads to rapid production of huge number of viral (+) RNA progeny in the infected plant cells. The RNA replication process is carried out by the virus-specific replicase complex consisting of viral RNA-dependent RNA polymerase, one or more auxiliary viral replication proteins, and host factors, which assemble in specialized membranous compartments in infected cells. Replication is followed by cell-to-cell and long-distance movement to invade the entire plant and/or encapsidation to facilitate transmission to new plants. This chapter provides an overview of our current understanding of the role of viral replication proteins during genome replication. The recent significant progress in this research area is based on development of powerful in vivo and in vitro approaches, including replicase assays, reverse genetic approaches, intracelular localization studies and the use of plant or yeast model hosts.
Collapse
|
49
|
Cheng CP, Jaag HM, Jonczyk M, Serviene E, Nagy PD. Expression of the Arabidopsis Xrn4p 5'-3' exoribonuclease facilitates degradation of tombusvirus RNA and promotes rapid emergence of viral variants in plants. Virology 2007; 368:238-48. [PMID: 17688902 DOI: 10.1016/j.virol.2007.07.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 06/29/2007] [Accepted: 07/02/2007] [Indexed: 02/05/2023]
Abstract
Rapid RNA virus evolution is a major problem due to the devastating diseases caused by human, animal and plant-pathogenic RNA viruses. A previous genome-wide screen for host factors affecting recombination in Tomato bushy stunt tombusvirus (TBSV), a small monopartite plant virus, identified Xrn1p 5'-3' exoribonuclease of yeast, a model host, whose absence led to increased appearance of recombinants [Serviene, E., Shapka, N., Cheng, C.P., Panavas, T., Phuangrat, B., Baker, J., Nagy, P.D., (2005). Genome-wide screen identifies host genes affecting viral RNA recombination. Proc. Natl. Acad. Sci. U. S. A. 102 (30), 10545-10550]. In this paper, we tested if over-expression of Xrn1p in yeast or expression of the analogous Xrn4p cytoplasmic 5'-3' exoribonuclease, which has similar function in RNA degradation in Arabidopsis as Xrn1p in yeast, in Nicotiana benthamiana could affect the accumulation of tombusvirus RNA. We show that over-expression of Xrn1p led to almost complete degradation of TBSV RNA replicons in yeast, suggesting that Xrn1p is involved in TBSV degradation. Infection of N. benthamiana expressing AtXrn4p with Cucumber necrosis tombusvirus (CNV) led to enhanced viral RNA degradation, suggesting that the yeast and the plant cytoplasmic 5'-3' exoribonuclease play similar roles. We also observed rapid emergence of novel CNV genomic RNA variants formed via deletions of 5' terminal sequences in N. benthamiana expressing AtXrn4p. Three of the newly emerging 5' truncated CNV variants were infectious in N. benthamiana protoplasts, whereas one CNV variant caused novel symptoms and moved systemically in N. benthamiana plants. Altogether, this paper establishes that a single plant gene can contribute to the emergence of novel viral variants.
Collapse
Affiliation(s)
- Chi-Ping Cheng
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY 40546, USA
| | | | | | | | | |
Collapse
|
50
|
Jaag HM, Stork J, Nagy PD. Host transcription factor Rpb11p affects tombusvirus replication and recombination via regulating the accumulation of viral replication proteins. Virology 2007; 368:388-404. [PMID: 17689583 DOI: 10.1016/j.virol.2007.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 06/07/2007] [Accepted: 07/02/2007] [Indexed: 10/23/2022]
Abstract
Previous genome-wide screens identified over 100 host genes whose deletion/down-regulation affected tombusvirus replication and 32 host genes that affected tombusvirus RNA recombination in yeast, a model host for replication of Tomato bushy stunt virus (TBSV). Down-regulation of several of the identified host genes affected the accumulation levels of p33 and p92(pol) replication proteins, raising the possibility that these host factors could be involved in the regulation of the amount of viral replication proteins and, thus, they are indirectly involved in TBSV replication and recombination. To test this model, we developed a tightly regulated expression system for recombinant p33 and p92(pol) replication proteins in yeast. We demonstrate that high accumulation level of p33 facilitated efficient viral RNA replication, while the effect of p33 level on RNA recombination was less pronounced. On the other hand, high level of p92(pol) accumulation promoted TBSV RNA recombination more efficiently than RNA replication. As predicted, Rpb11p, which is part of the polII complex, affected the accumulation levels of p33 and p92(pol) as well as altered RNA replication and recombination. An in vitro assay with the tombusvirus replicase further supported that Rpb11p affects TBSV replication and recombination only indirectly, via regulating p33 and p92(pol) levels. In contrast, the mechanism by which Rpt4p endopeptidase/ATPase and Mps1p threonine/tyrosine kinase affect TBSV recombination is different from that proposed for Rpb11p. We propose a model that the concentration (molecular crowding) of replication proteins within the viral replicase is a factor affecting viral replication and recombination.
Collapse
Affiliation(s)
- Hannah M Jaag
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY 40546, USA
| | | | | |
Collapse
|