1
|
Bhuyan S, Dutta L, Begum S, Giri SJ, Jain M, Mandal M, Ray SK. A study on twitching motility dynamics in Ralstonia solanacearum microcolonies by live imaging. J Basic Microbiol 2024; 64:42-49. [PMID: 37612794 DOI: 10.1002/jobm.202300272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/15/2023] [Accepted: 08/13/2023] [Indexed: 08/25/2023]
Abstract
Ralstonia solanacearum is a rod-shaped phytopathogenic bacterium that causes lethal wilt disease in many plants. On solid agar growth medium, in the early hour of the growth of the bacterial colony, the type IV pili-mediated twitching motility, which is important for its virulence and biofilm formation, is prominently observed under the microscope. In this study, we have done a detailed observation of twitching motility in R. solanacearum colony. In the beginning, twitching motility in the microcolonies was observed as a density-dependent phenomenon that influences the shape of the microcolonies. No such phenomenon was observed in Escherichia coli, where twitching motility is absent. In the early phase of colony growth, twitching motility exhibited by the cells at the peripheral region of the colony was more prominent than the cells toward the center of the colony. Using time-lapse photography and merging the obtained photomicrographs into a video, twitching motility was observed as an intermittent phenomenon that progresses in layers in all directions as finger-like projections at the peripheral region of a bacterial colony. Each layer of bacteria twitches on top of the other and produces a multilayered film-like appearance. We found that the duration between the emergence of each layer diminishes progressively as the colony becomes older. This study on twitching motility demonstrates distinctly heterogeneity among the cells within a colony regarding their dynamics and the influence of microcolonies on each other regarding their morphology.
Collapse
Affiliation(s)
- Shuvam Bhuyan
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Lukapriya Dutta
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Shuhada Begum
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Shubhra J Giri
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Monika Jain
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Suvendra K Ray
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| |
Collapse
|
2
|
Molecular Mechanisms of Signaling in Myxococcus xanthus Development. J Mol Biol 2016; 428:3805-30. [DOI: 10.1016/j.jmb.2016.07.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/30/2016] [Accepted: 07/08/2016] [Indexed: 11/19/2022]
|
3
|
Growth of Myxococcus xanthus in continuous-flow-cell bioreactors as a method for studying development. Appl Environ Microbiol 2014; 80:2461-7. [PMID: 24509931 DOI: 10.1128/aem.03369-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nutrient sensors and developmental timers are two classes of genes vital to the establishment of early development in the social soil bacterium Myxococcus xanthus. The products of these genes trigger and regulate the earliest events that drive the colony from a vegetative state to aggregates, which ultimately leads to the formation of fruiting bodies and the cellular differentiation of the individual cells. In order to more accurately identify the genes and pathways involved in the initiation of this multicellular developmental program in M. xanthus, we adapted a method of growing vegetative populations within a constant controllable environment by using flow cell bioreactors, or flow cells. By establishing an M. xanthus community within a flow cell, we are able to test developmental responses to changes in the environment with fewer concerns for effects due to nutrient depletion or bacterial waste production. This approach allows for greater sensitivity in investigating communal environmental responses, such as nutrient sensing. To demonstrate the versatility of our growth environment, we carried out time-lapse confocal laser scanning microscopy to visualize M. xanthus biofilm growth and fruiting body development, as well as fluorescence staining of exopolysaccharides deposited by biofilms. We also employed the flow cells in a nutrient titration to determine the minimum concentration required to sustain vegetative growth. Our data show that by using a flow cell, M. xanthus can be held in a vegetative growth state at low nutrient concentrations for long periods, and then, by slightly decreasing the nutrient concentration, cells can be allowed to initiate the developmental program.
Collapse
|
4
|
Solovev AA, Sanchez S, Schmidt OG. Collective behaviour of self-propelled catalytic micromotors. NANOSCALE 2013; 5:1284-93. [PMID: 23299631 DOI: 10.1039/c2nr33207h] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Biology widely employs catalytic reactions to power biomotors and cells. These dynamic entities can self-organize into swarms or self-assemble into functional micro- or nanostructures. Synthetic micro-/nanojet engines and nanomotors, driven by catalytic reactions, can move with high power and perform multiple tasks. Collective behavior of these microengines has recently been observed which includes swarming activities and the formation of multiconstituent entities. This feature article discusses recent developments, presents new discoveries on collective motion of self-propelled microjet engines and suggests next steps to undertake in the field of collective micromachines.
Collapse
Affiliation(s)
- Alexander A Solovev
- Non-Equilibrium Chemical Physics, Physics Department, TU Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | | | | |
Collapse
|
5
|
Two isoforms of Geobacter sulfurreducens PilA have distinct roles in pilus biogenesis, cytochrome localization, extracellular electron transfer, and biofilm formation. J Bacteriol 2012; 194:2551-63. [PMID: 22408162 DOI: 10.1128/jb.06366-11] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type IV pili of Geobacter sulfurreducens are composed of PilA monomers and are essential for long-range extracellular electron transfer to insoluble Fe(III) oxides and graphite anodes. A previous analysis of pilA expression indicated that transcription was initiated at two positions, with two predicted ribosome-binding sites and translation start codons, potentially producing two PilA preprotein isoforms. The present study supports the existence of two functional translation start codons for pilA and identifies two isoforms (short and long) of the PilA preprotein. The short PilA isoform is found predominantly in an intracellular fraction. It seems to stabilize the long isoform and to influence the secretion of several outer-surface c-type cytochromes. The long PilA isoform is required for secretion of PilA to the outer cell surface, a process that requires coexpression of pilA with nine downstream genes. The long isoform was determined to be essential for biofilm formation on certain surfaces, for optimum current production in microbial fuel cells, and for growth on insoluble Fe(III) oxides.
Collapse
|
6
|
Hu W, Hossain M, Lux R, Wang J, Yang Z, Li Y, Shi W. Exopolysaccharide-independent social motility of Myxococcus xanthus. PLoS One 2011; 6:e16102. [PMID: 21245931 PMCID: PMC3016331 DOI: 10.1371/journal.pone.0016102] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 12/13/2010] [Indexed: 11/19/2022] Open
Abstract
Social motility (S motility), the coordinated movement of large cell groups on agar surfaces, of Myxococcus xanthus requires type IV pili (TFP) and exopolysaccharides (EPS). Previous models proposed that this behavior, which only occurred within cell groups, requires cycles of TFP extension and retraction triggered by the close interaction of TFP with EPS. However, the curious observation that M. xanthus can perform TFP-dependent motility at a single-cell level when placed onto polystyrene surfaces in a highly viscous medium containing 1% methylcellulose indicated that "S motility" is not limited to group movements. In an apparent further challenge of the previous findings for S motility, mutants defective in EPS production were found to perform TFP-dependent motility on polystyrene surface in methylcellulose-containing medium. By exploring the interactions between pilin and surface materials, we found that the binding of TFP onto polystyrene surfaces eliminated the requirement for EPS in EPS(-) cells and thus enabled TFP-dependent motility on a single cell level. However, the presence of a general anchoring surface in a viscous environment could not substitute for the role of cell surface EPS in group movement. Furthermore, EPS was found to serve as a self-produced anchoring substrate that can be shed onto surfaces to enable cells to conduct TFP-dependent motility regardless of surface properties. These results suggested that in certain environments, such as in methylcellulose solution, the cells could bypass the need for EPS to anchor their TPF and conduct single-cell S motility to promote exploratory movement of colonies over new specific surfaces.
Collapse
Affiliation(s)
- Wei Hu
- School of Dentistry, University
of California Los Angeles, Los Angeles, California, United States of America
- State Key Laboratory of Microbial
Technology, School of Life Science, Shandong University, Jinan, China
| | - Muhaiminu Hossain
- Molecular Biology Institute, University
of California Los Angeles, Los Angeles, California, United States of America
| | - Renate Lux
- School of Dentistry, University
of California Los Angeles, Los Angeles, California, United States of America
| | - Jing Wang
- School of Dentistry, University
of California Los Angeles, Los Angeles, California, United States of America
- State Key Laboratory of Microbial
Technology, School of Life Science, Shandong University, Jinan, China
| | - Zhe Yang
- Molecular Biology Institute, University
of California Los Angeles, Los Angeles, California, United States of America
| | - Yuezhong Li
- State Key Laboratory of Microbial
Technology, School of Life Science, Shandong University, Jinan, China
| | - Wenyuan Shi
- School of Dentistry, University
of California Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University
of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
7
|
Black WP, Xu Q, Cadieux CL, Suh SJ, Shi W, Yang Z. Isolation and characterization of a suppressor mutation that restores Myxococcus xanthus exopolysaccharide production. MICROBIOLOGY (READING, ENGLAND) 2009; 155:3599-3610. [PMID: 19684067 PMCID: PMC2879065 DOI: 10.1099/mic.0.031070-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 07/27/2009] [Accepted: 08/05/2009] [Indexed: 11/18/2022]
Abstract
Myxococcus xanthus, a Gram-negative soil bacterium, undergoes multicellular development when nutrients become limiting. Aggregation, which is part of the developmental process, requires the surface motility of this organism. One component of M. xanthus motility, the social (S) gliding motility, enables the movement of cells in close physical proximity. Previous studies demonstrated that the cell surface-associated exopolysaccharide (EPS) is essential for S motility and that the Dif proteins form a chemotaxis-like pathway that regulates EPS production in M. xanthus. DifA, a homologue of methyl-accepting chemotaxis proteins (MCPs) in the Dif system, is required for EPS production, S motility and development. In this study, a spontaneous extragenic suppressor of a difA deletion was isolated in order to identify additional regulators of EPS production. The suppressor mutation was found to be a single base pair insertion in cheW7 at the che7 chemotaxis gene cluster. Further examination indicated that mutations in cheW7 may lead to the interaction of Mcp7 with DifC (CheW-like) and DifE (CheA-like) to reconstruct a functional pathway to regulate EPS production in the absence of DifA. In addition, the cheW7 mutation was found to partially suppress a pilA mutation in EPS production in a difA(+) background. Further deletion of difA from the pilA cheW7 double mutant resulted in a triple mutant that produced wild-type levels of EPS, implying that DifA (MCP-like) and Mcp7 compete for interactions with DifC and DifE in the modulation of EPS production.
Collapse
Affiliation(s)
- Wesley P. Black
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Qian Xu
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Christena Linn Cadieux
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Sang-Jin Suh
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Wenyuan Shi
- Molecular Biology Institute and School of Dentistry, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Zhaomin Yang
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
8
|
Zhao JY, Zhong L, Shen MJ, Xia ZJ, Cheng QX, Sun X, Zhao GP, Li YZ, Qin ZJ. Discovery of the autonomously replicating plasmid pMF1 from Myxococcus fulvus and development of a gene cloning system in Myxococcus xanthus. Appl Environ Microbiol 2008; 74:1980-7. [PMID: 18245244 PMCID: PMC2292591 DOI: 10.1128/aem.02143-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2007] [Accepted: 01/23/2008] [Indexed: 11/20/2022] Open
Abstract
Myxobacteria are very important due to their unique characteristics, such as multicellular social behavior and the production of diverse and novel bioactive secondary metabolites. However, the lack of autonomously replicating plasmids has hindered genetic manipulation of myxobacteria for decades. To determine whether indigenous plasmids are present, we screened about 150 myxobacterial strains, and a circular plasmid designated pMF1 was isolated from Myxococcus fulvus 124B02. Sequence analysis showed that this plasmid was 18,634 bp long and had a G+C content of 68.7%. Twenty-three open reading frames were found in the plasmid, and 14 of them were not homologous to any known sequence. Plasmids containing the gene designated pMF1.14, which encodes a large unknown protein, were shown to transform Myxococcus xanthus DZ1 and DK1622 at high frequencies ( approximately 10(5) CFU/microg DNA), suggesting that the locus is responsible for the autonomous replication of pMF1. Shuttle vectors were constructed for both M. xanthus and Escherichia coli. The pilA gene, which is essential for pilus formation and social motility in M. xanthus, was cloned into the shuttle vectors and introduced into the pilA-deficient mutant DK10410. The transformants subsequently exhibited the ability to form pili and social motility. Autonomously replicating plasmid pMF1 provides a new tool for genetic manipulation in Myxococcus.
Collapse
Affiliation(s)
- Jing-Yi Zhao
- State Key Laboratory of Microbial Technology, College of Life Science, Shandong University, Jinan 250100, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Xu Q, Black WP, Mauriello EMF, Zusman DR, Yang Z. Chemotaxis mediated by NarX-FrzCD chimeras and nonadapting repellent responses in Myxococcus xanthus. Mol Microbiol 2007; 66:1370-81. [PMID: 18028315 DOI: 10.1111/j.1365-2958.2007.05996.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Myxococcus xanthus requires gliding motility for swarming and fruiting body formation. It uses the Frz chemosensory pathway to regulate cell reversals. FrzCD is a cytoplasmic chemoreceptor required for sensing effectors for this pathway. NarX is a transmembrane sensor for nitrate from Escherichia coli. In this study, two NarX-FrzCD chimeras were constructed to investigate M. xanthus chemotaxis: NazD(F) contains the N-terminal sensory module of NarX fused to the C-terminal signalling domain of FrzCD; NazD(R) is similar except that it contains a G51R mutation in the NarX domain known to reverse the signalling output of a NarX-Tar chimera to nitrate. We report that while nitrate had no effect on the wild type, it decreased the reversal frequency of M. xanthus expressing NazD(F) and increased that of M. xanthus expressing NazD(R). These results show that directional motility in M. xanthus can be regulated independently of cellular metabolism and physiology. Surprisingly, the NazD(R) strain failed to adapt to nitrate in temporal assays as did the wild type to known repellents. The lack of temporal adaptation to negative stimuli appears to be a general feature in M. xanthus chemotaxis. Thus, the appearance of biased movements by M. xanthus in repellent gradients is likely due to the inhibition of net translocation by repellents.
Collapse
Affiliation(s)
- Qian Xu
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | | | | | | |
Collapse
|
10
|
|
11
|
Ng SYM, Chaban B, Jarrell KF. Archaeal flagella, bacterial flagella and type IV pili: a comparison of genes and posttranslational modifications. J Mol Microbiol Biotechnol 2006; 11:167-91. [PMID: 16983194 DOI: 10.1159/000094053] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The archaeal flagellum is a unique motility organelle. While superficially similar to the bacterial flagellum, several similarities have been reported between the archaeal flagellum and the bacterial type IV pilus system. These include the multiflagellin nature of the flagellar filament, N-terminal sequence similarities between archaeal flagellins and bacterial type IV pilins, as well as the presence of homologous proteins in the two systems. Recent advances in archaeal flagella research add to the growing list of similarities. First, the preflagellin peptidase that is responsible for processing the N-terminal signal peptide in preflagellins has been identified. The preflagellin peptidase is a membrane-bound enzyme topologically similar to its counterpart in the type IV pilus system (prepilin peptidase); the two enzymes are demonstrated to utilize the same catalytic mechanism. Second, it has been suggested that the archaeal flagellum and the bacterial type IV pilus share a similar mode of assembly. While bacterial flagellins and type IV pilins can be modified with O-linked glycans, N-linked glycans have recently been reported on archaeal flagellins. This mode of glycosylation, as well as the observation that the archaeal flagellum lacks a central channel, are both consistent with the proposed assembly model. On the other hand, the failure to identify other genes involved in archaeal flagellation by homology searches likely implies a novel aspect of the archaeal flagellar system. These interesting features remain to be deciphered through continued research. Such knowledge would be invaluable to motility and protein export studies in the Archaea.
Collapse
Affiliation(s)
- Sandy Y M Ng
- Department of Microbiology and Immunology, Queen's University, Kingston, Canada
| | | | | |
Collapse
|
12
|
Ueki T, Inouye S. A novel regulation on developmental gene expression of fruiting body formation in Myxobacteria. Appl Microbiol Biotechnol 2006; 72:21-29. [PMID: 16791590 DOI: 10.1007/s00253-006-0455-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 02/06/2006] [Accepted: 04/05/2006] [Indexed: 12/19/2022]
Abstract
Myxobacteria are Gram-negative soil microorganisms that prey on other microorganisms. Myxobacteria have significant potential for applications in biotechnology because of their extraordinary ability to produce natural products such as secondary metabolites. Myxobacteria also stand out as model organisms for the study of cell-cell interactions and multicellular development during their complex life cycle. Cellular morphogenesis during multicellular development in myxobacteria is very similar to that in the eukaryotic soil amoebae. Recent studies have started uncovering molecular mechanisms directing the myxobacterial life cycle. We describe recent studies on signal transduction and gene expression during multicellular development in the myxobacterium Myxococcus xanthus. We provide our current model for signal transduction pathways mediated by a two-component His-Asp phosphorelay system and a Ser/Thr kinase cascade.
Collapse
Affiliation(s)
- Toshiyuki Ueki
- Department of Biochemistry, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ, 08854, USA
| | - Sumiko Inouye
- Department of Biochemistry, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ, 08854, USA.
| |
Collapse
|
13
|
Abstract
The chemotaxis system, but not chemotaxis, is essential for swarming motility in Salmonella enterica serovar Typhimurium. Mutants in the chemotaxis pathway exhibit fewer and shorter flagella, downregulate class 3 or 'late' motility genes, and appear to be less hydrated when propagated on a surface. We show here that the output of the chemotaxis system, CheY approximately P, modulates motor bias during swarming as it does during chemotaxis, but for a distinctly different end. A constitutively active form of CheY was found to promote swarming in the absence of several upstream chemotaxis components. Two point mutations that suppressed the swarming defect of a cheY null mutation mapped to FliM, a protein in the motor switch complex with which CheY approximately P interacts. A common property of these suppressors was their increased frequency of motor reversal. These and other data suggest that the ability to switch motor direction is important for promoting optimal surface wetness. If the surface is sufficiently wet, exclusively clockwise or counterclockwise directions of motor rotation will support swarming, suggesting also that the bacteria can move on a surface with flagellar bundles of either handedness.
Collapse
Affiliation(s)
- Susana Mariconda
- Section of Molecular Genetics and Microbiology & Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
14
|
Astling DP, Lee JY, Zusman DR. Differential effects of chemoreceptor methylation-domain mutations on swarming and development in the social bacterium Myxococcus xanthus. Mol Microbiol 2006; 59:45-55. [PMID: 16359317 DOI: 10.1111/j.1365-2958.2005.04926.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The soil bacterium Myxococcus xanthus is a model organism for the study of multicellular behaviour and development in bacteria. M. xanthus cells move on solid surfaces by gliding motility, periodically reversing their direction of movement. Motility is co-ordinated to allow cells to effectively feed on macromolecules or prey bacteria when nutrients are plentiful and to form developmental fruiting bodies when nutrients are limiting. The Frz signal transduction pathway regulates cellular movements by modulating cell reversal frequency. Input to the Frz pathway is controlled by the cytoplasmic receptor, FrzCD, a methyl-accepting chemotaxis protein (MCP). FrzCD lacks the transmembrane and periplasmic domains common to MCPs but contains a unique N-terminal domain, the predicted ligand-binding domain. As deletion of the N-terminal domain of FrzCD only results in minor defects in motility, we investigated the possibility that the methylation of the conserved C-terminal domain of FrzCD plays a central role in regulating the pathway. For this study, each of the potential methylation sites of FrzCD were systematically modified by site-directed mutagenesis, substituting glutamine/glutamate pairs for alanines. Four of the seven mutations produced dramatic phenotypes; two of the mutations had a stimulatory effect on the pathway, as evidenced by cells hyper-reversing, whereas another two had an inhibitory effect, causing these cells to rarely reverse. These four mutants displayed defects in vegetative swarming and developmental aggregation. These results suggests a model in which the methylation domain can both activate and inhibit the Frz pathway depending on which residues are methylated. The diversity of phenotypes suggests that specific modifications of FrzCD act to differentially regulate motility and developmental aggregation in M. xanthus.
Collapse
Affiliation(s)
- David P Astling
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204, USA
| | | | | |
Collapse
|
15
|
Ueki T, Xu CY, Inouye S. SigF, a new sigma factor required for a motility system of Myxococcus xanthus. J Bacteriol 2006; 187:8537-41. [PMID: 16321963 PMCID: PMC1317018 DOI: 10.1128/jb.187.24.8537-8541.2005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new sigma factor, SigF, was identified from the social and developmental bacterium Myxococcus xanthus. SigF is required for fruiting body formation during development as well as social motility during vegetative growth. Analysis of gene expression indicates that it is possible that the sigF gene is involved in regulation of an unidentified gene for social motility.
Collapse
Affiliation(s)
- Toshiyuki Ueki
- Department of Biochemistry, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
16
|
Lancero HL, Castaneda S, Caberoy NB, Ma X, Garza AG, Shi W. Analysing protein-protein interactions of the Myxococcus xanthus Dif signalling pathway using the yeast two-hybrid system. MICROBIOLOGY-SGM 2005; 151:1535-1541. [PMID: 15870463 DOI: 10.1099/mic.0.27743-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The dif operon is essential for fruiting body formation, fibril (exopolysaccharide) production and social motility of Myxococcus xanthus. The dif locus contains a gene cluster homologous to chemotaxis genes such as mcp (difA), cheW (difC), cheY (difD), cheA (difE) and cheC (difF), as well as an unknown ORF called difB. This study used yeast two-hybrid analysis to investigate possible interactions between Dif proteins, and determined that DifA, C, D and E interact in a similar fashion to chemotaxis proteins of Escherichia coli and Bacillus subtilis. It also showed that DifF interacted with DifD, and that the novel protein DifB did not interact with Dif proteins. Furthermore, DifA-F proteins were used to determine other possible protein-protein interactions in the M. xanthus genomic library. The authors not only confirmed the specific interactions among known Dif proteins, but also discovered two novel interactions between DifE and Nla19, and DifB and YidC, providing some new information about the Dif signalling pathway. Based on these findings, a model for the Dif signalling pathway is proposed.
Collapse
Affiliation(s)
- Hope L Lancero
- School of Dentistry, University of California, Los Angeles, CA 90095-1668, USA
| | - Schryl Castaneda
- School of Dentistry, University of California, Los Angeles, CA 90095-1668, USA
| | - Nora B Caberoy
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - Xiaoyuan Ma
- School of Dentistry, University of California, Los Angeles, CA 90095-1668, USA
| | - Anthony G Garza
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - Wenyuan Shi
- School of Dentistry, University of California, Los Angeles, CA 90095-1668, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095-1668, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095-1668, USA
| |
Collapse
|
17
|
Vlamakis HC, Kirby JR, Zusman DR. The Che4 pathway of Myxococcus xanthus regulates type IV pilus-mediated motility. Mol Microbiol 2005; 52:1799-811. [PMID: 15186426 DOI: 10.1111/j.1365-2958.2004.04098.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Myxococcus xanthus co-ordinates cell movement during its complex life cycle using multiple chemotaxis-like signal transduction pathways. These pathways regulate both type IV pilus-mediated social (S) motility and adventurous (A) motility. During a search for new chemoreceptors, we identified the che4 operon, which encodes homologues to a MCP (methyl-accepting chemotaxis protein), two CheWs, a hybrid CheA-CheY, a response regulator and a CheR. Deletion of the che4 operon did not cause swarming or developmental defects in either the wild-type (A(+)S(+)) strain or in a strain sustaining only A motility (A(+)S(-)). However, in a strain displaying only S motility (A(-)S(+)), deletion of the che4 operon or the gene encoding the response regulator, cheY4, caused enhanced vegetative swarming and prevented aggregation and sporulation. In contrast, deletion of mcp4 caused reduced vegetative swarming and enhanced development compared with the parent strain. Single-cell analysis of the motility of the A(-)S(+) parent strain revealed a previously unknown inverse correlation between velocity and reversal frequency. Thus, cells that moved at higher velocities showed a reduced reversal frequency. This co-ordination of reversal frequency and velocity was lost in the mcp4 and cheY4 mutants. The structural components of the S motility apparatus were unaffected in the che4 mutants, suggesting that the Che4 system affects reversal frequency of cells by modulating the function of the type IV pilus.
Collapse
Affiliation(s)
- Hera C Vlamakis
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204, USA
| | | | | |
Collapse
|
18
|
Bustamante VH, Martínez-Flores I, Vlamakis HC, Zusman DR. Analysis of the Frz signal transduction system of Myxococcus xanthus shows the importance of the conserved C-terminal region of the cytoplasmic chemoreceptor FrzCD in sensing signals. Mol Microbiol 2005; 53:1501-13. [PMID: 15387825 DOI: 10.1111/j.1365-2958.2004.04221.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Frz chemosensory system controls directed motility in Myxococcus xanthus by regulating cellular reversal frequency. M. xanthus requires the Frz system for vegetative swarming on rich media and for cellular aggregation during fruiting body formation on starvation media. The Frz signal transduction pathway is formed by proteins that share homology with chemotaxis proteins from enteric bacteria, which are encoded in the frzA-F putative operon and the divergently transcribed frzZ gene. FrzCD, the Frz system chemoreceptor, contains a conserved C-terminal module present in methyl-accepting chemotaxis proteins (MCPs); but, in contrast to most MCPs, FrzCD is localized in the cytoplasm and the N-terminal region of FrzCD does not contain transmembrane or sensing domains, or even a linker region. Previous work on the Frz system was limited by the unavailability of deletion strains. To understand better how the Frz system functions, we generated a series of in-frame deletions in each of the frz genes as well as regions encoding the N-terminal portion of FrzCD. Analysis of mutants containing these deletions showed that FrzCD (MCP), FrzA (CheW) and FrzE (CheA-CheY) control vegetative swarming, responses to repellents and directed movement during development, thus constituting the core components of the Frz pathway. FrzB (CheW), FrzF (CheR), FrzG (CheB) and FrzZ (CheY-CheY) are required for some but not all responses. Furthermore, deletion of approximately 25 amino acids from either end of the conserved C-terminal region of FrzCD results in a constitutive signalling state of FrzCD, which induces hyper-reversals with no net cell movement. Surprisingly, deletion of the N-terminal region of FrzCD shows only minor defects in swarming. Thus, signal input to the Frz system must be sensed by the conserved C-terminal module of FrzCD and not the usual N-terminal region. These results indicate an alternative mechanism for signal sensing with this cytoplasmic MCP.
Collapse
Affiliation(s)
- Víctor H Bustamante
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204, USA
| | | | | | | |
Collapse
|
19
|
Søgaard-Andersen L. Cell polarity, intercellular signalling and morphogenetic cell movements in Myxococcus xanthus. Curr Opin Microbiol 2004; 7:587-93. [PMID: 15556030 DOI: 10.1016/j.mib.2004.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In Myxococcus xanthus morphogenetic cell movements constitute the basis for the formation of spreading vegetative colonies and fruiting bodies in starving cells. M. xanthus cells move by gliding and gliding motility depends on two polarly localized engines, type IV pili pull cells forward, and slime extruding nozzle-like structures appear to push cells forward. The motility behaviour of cells provides evidence that the two engines are localized to opposite poles and that they undergo polarity switching. Several proteins involved in regulating polarity switching have been identified. The cell surface-associated C-signal induces the directed movement of cells into nascent fruiting bodies. Recently, the molecular nature of the C-signal molecule was elucidated and the motility parameters regulated by the C-signal were identified. From the effect of the C-signal on cell behaviour it appears that the C-signal inhibits polarity switching of the two motility engines. This establishes a connection between cell polarity, signalling by an intercellular signal and morphogenetic cell movements during fruiting body formation.
Collapse
Affiliation(s)
- Lotte Søgaard-Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark Odense, Campusevj 55, 5230 Odense M, Denmark.
| |
Collapse
|
20
|
Igoshin OA, Goldbeter A, Kaiser D, Oster G. A biochemical oscillator explains several aspects of Myxococcus xanthus behavior during development. Proc Natl Acad Sci U S A 2004; 101:15760-5. [PMID: 15496464 PMCID: PMC524859 DOI: 10.1073/pnas.0407111101] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During development, Myxococcus xanthus cells produce a series of spatial patterns by coordinating their motion through a contact-dependent signal, the C-signal. C-signaling modulates the frequency at which cells reverse their gliding direction. It does this by interacting with the Frz system (a homolog of the Escherichia coli chemosensory system) via a cascade of covalent modifications. Here we show that introducing a negative feedback into this cascade results in oscillatory behavior of the signaling circuit. The model explains several aspects of M. xanthus behavior during development, including the nonrandom distribution of reversal times, and the differences in response of the reversal frequency to both moderate and high levels of C-signaling at different developmental stages. We also propose experiments to test the model.
Collapse
Affiliation(s)
- Oleg A Igoshin
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
21
|
Whitchurch CB, Leech AJ, Young MD, Kennedy D, Sargent JL, Bertrand JJ, Semmler ABT, Mellick AS, Martin PR, Alm RA, Hobbs M, Beatson SA, Huang B, Nguyen L, Commolli JC, Engel JN, Darzins A, Mattick JS. Characterization of a complex chemosensory signal transduction system which controls twitching motility in Pseudomonas aeruginosa. Mol Microbiol 2004; 52:873-93. [PMID: 15101991 DOI: 10.1111/j.1365-2958.2004.04026.x] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Virulence of the opportunistic pathogen Pseudomonas aeruginosa involves the coordinate expression of a wide range of virulence factors including type IV pili which are required for colonization of host tissues and are associated with a form of surface translocation termed twitching motility. Twitching motility in P. aeruginosa is controlled by a complex signal transduction pathway which shares many modules in common with chemosensory systems controlling flagella rotation in bacteria and which is composed, in part, of the previously described proteins PilG, PilH, PilI, PilJ and PilK. Here we describe another three components of this pathway: ChpA, ChpB and ChpC, as well as two downstream genes, ChpD and ChpE, which may also be involved. The central component of the pathway, ChpA, possesses nine potential sites of phosphorylation: six histidine-containing phosphotransfer (HPt) domains, two novel serine- and threonine-containing phosphotransfer (SPt, TPt) domains and a CheY-like receiver domain at its C-terminus, and as such represents one of the most complex signalling proteins yet described in nature. We show that the Chp chemosensory system controls twitching motility and type IV pili biogenesis through control of pili assembly and/or retraction as well as expression of the pilin subunit gene pilA. The Chp system is also required for full virulence in a mouse model of acute pneumonia.
Collapse
Affiliation(s)
- Cynthia B Whitchurch
- ARC Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Flavobacterium johnsoniae, like many other members of the Cytophaga-Flavobacterium-Bacteroides group, displays rapid gliding motility. Cells of F. johnsoniae glide over surfaces at rates of up to 10 microm/s. Latex spheres added to F. johnsoniae bind to and are rapidly propelled along cells, suggesting that adhesive molecules move laterally along the cell surface during gliding. Genetic analyses have identified a number of gld genes that are required for gliding. Three Gld proteins are thought to be components of an ATP-binding-cassette transporter. Five other Gld proteins are lipoproteins that localize to the cytoplasmic membrane or outer membrane. Disruption of gld genes results not only in loss of motility, but also in resistance to bacteriophages that infect wild-type cells, and loss of the ability to digest the insoluble polysaccharide chitin. Two models that attempt to incorporate the available data to explain the mechanism of F. johnsoniae gliding are presented.
Collapse
Affiliation(s)
- Mark J McBride
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA.
| |
Collapse
|
23
|
Abstract
Bacteria use taxis-controlled movement to reach their optimum environment. Chemotaxis is probably the best understood behavioural system in biology, biasing the normal random movement of bacteria using a phospho-relay pathway from receptors to the motility organelles. The pathways are typified by signal recognition and receptor adaptation, enabling bacteria to sense and respond to changing environments. Models have been derived from the single chemosensory pathway of Escherichia coli but the sequencing of an increasing number of bacterial genomes is revealing genes that apparently encode multiple chemosensory pathways. Recently, data have accumulated suggesting that some of these pathways might not control motility, although the mechanisms by which this might happen remain unclear. Information from the soil bacterium Myxococcus xanthus could lead the way to an understanding of such mechanisms.
Collapse
Affiliation(s)
- Judith P Armitage
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
24
|
Abstract
The concept of evolvability covers a broad spectrum of, often contradictory, ideas. At one end of the spectrum it is equivalent to the statement that evolution is possible, at the other end are untestable post hoc explanations, such as the suggestion that current evolutionary theory cannot explain the evolution of evolvability. We examine similarities and differences in eukaryote and prokaryote evolvability, and look for explanations that are compatible with a wide range of observations. Differences in genome organisation between eukaryotes and prokaryotes meets this criterion. The single origin of replication in prokaryote chromosomes (versus multiple origins in eukaryotes) accounts for many differences because the time to replicate a prokaryote genome limits its size (and the accumulation of junk DNA). Both prokaryotes and eukaryotes appear to switch from genetic stability to genetic change in response to stress. We examine a range of stress responses, and discuss how these impact on evolvability, particularly in unicellular organisms versus complex multicellular ones. Evolvability is also limited by environmental interactions (including competition) and we describe a model that places limits on potential evolvability. Examples are given of its application to predator competition and limits to lateral gene transfer. We suggest that unicellular organisms evolve largely through a process of metabolic change, resulting in biochemical diversity. Multicellular organisms evolve largely through morphological changes, not through extensive changes to cellular biochemistry.
Collapse
Affiliation(s)
- Anthony M Poole
- Allan Wilson Centre for Molecular Ecology and Evolution, Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | | | | |
Collapse
|
25
|
Affiliation(s)
- Lee Kroos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA.
| | | |
Collapse
|
26
|
Abstract
Twitching motility is a flagella-independent form of bacterial translocation over moist surfaces. It occurs by the extension, tethering, and then retraction of polar type IV pili, which operate in a manner similar to a grappling hook. Twitching motility is equivalent to social gliding motility in Myxococcus xanthus and is important in host colonization by a wide range of plant and animal pathogens, as well as in the formation of biofilms and fruiting bodies. The biogenesis and function of type IV pili is controlled by a large number of genes, almost 40 of which have been identified in Pseudomonas aeruginosa. A number of genes required for pili assembly are homologous to genes involved in type II protein secretion and competence for DNA uptake, suggesting that these systems share a common architecture. Twitching motility is also controlled by a range of signal transduction systems, including two-component sensor-regulators and a complex chemosensory system.
Collapse
Affiliation(s)
- John S Mattick
- ARC Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane Qld. 4072, Australia.
| |
Collapse
|
27
|
Bellenger K, Ma X, Shi W, Yang Z. A CheW homologue is required for Myxococcus xanthus fruiting body development, social gliding motility, and fibril biogenesis. J Bacteriol 2002; 184:5654-60. [PMID: 12270823 PMCID: PMC139594 DOI: 10.1128/jb.184.20.5654-5660.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In bacteria with multiple sets of chemotaxis genes, the deletion of homologous genes or even different genes in the same operon can result in disparate phenotypes. Myxococcus xanthus is a bacterium with multiple sets of chemotaxis genes and/or homologues. It was shown previously that difA and difE, encoding homologues of the methyl-accepting chemoreceptor protein (MCP) and the CheA kinase, respectively, are required for M. xanthus social gliding (S) motility and development. Both difA and difE mutants were also defective in the biogenesis of the cell surface appendages known as extracellular matrix fibrils. In this study, we investigated the roles of the CheW homologue encoded by difC, a gene at the same locus as difA and difE. We showed that difC mutations resulted in defects in M. xanthus developmental aggregation, sporulation, and S motility. We demonstrated that difC is indispensable for wild-type cellular cohesion and fibril biogenesis but not for pilus production. We further illustrated the ectopic complementation of a difC in-frame deletion by a wild-type difC. The identical phenotypes of difA, difC, and difE mutants are consistent and supportive of the hypothesis that the Dif chemotaxis homologues constitute a chemotaxis-like signal transduction pathway that regulates M. xanthus fibril biogenesis and S motility.
Collapse
Affiliation(s)
- Kristen Bellenger
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849-5407, USA
| | | | | | | |
Collapse
|
28
|
Affiliation(s)
- Stephen C Winans
- Department of Microbiology, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
29
|
Abstract
The mechanisms responsible for bacterial gliding motility have been a mystery for almost 200 years. Gliding bacteria move actively over surfaces by a process that does not involve flagella. Gliding bacteria are phylogenetically diverse and are abundant in many environments. Recent results indicate that more than one mechanism is needed to explain all forms of bacterial gliding motility. Myxococcus xanthus "social gliding motility" and Synechocystis gliding are similar to bacterial "twitching motility" and rely on type IV pilus extension and retraction for cell movement. In contrast, gliding of filamentous cyanobacteria, mycoplasmas, members of the Cytophaga-Flavobacterium group, and "adventurous gliding" of M. xanthus do not appear to involve pili. The mechanisms of movement employed by these bacteria are still a matter of speculation. Genetic, biochemical, ultrastructural, and behavioral studies are providing insight into the machineries employed by these diverse bacteria that enable them to glide over surfaces.
Collapse
Affiliation(s)
- M J McBride
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, P. O. Box 413, Wisconsin 53201, USA.
| |
Collapse
|
30
|
Bhaya D, Takahashi A, Grossman AR. Light regulation of type IV pilus-dependent motility by chemosensor-like elements in Synechocystis PCC6803. Proc Natl Acad Sci U S A 2001; 98:7540-5. [PMID: 11404477 PMCID: PMC34704 DOI: 10.1073/pnas.131201098] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To optimize photosynthesis, cyanobacteria move toward or away from a light source by a process known as phototaxis. Phototactic movement of the cyanobacterium Synechocystis PCC6803 is a surface-dependent phenomenon that requires type IV pili, cellular appendages implicated in twitching and social motility in a range of bacteria. To elucidate regulation of cyanobacterial motility, we generated transposon-tagged mutants with aberrant phototaxis; mutants were either nonmotile or exhibited an "inverted motility response" (negative phototaxis) relative to wild-type cells. Several mutants contained transposons in genes similar to those involved in bacterial chemotaxis. Synechocystis PCC6803 has three loci with chemotaxis-like genes, of which two, Tax1 and Tax3, are involved in phototaxis. Transposons interrupting the Tax1 locus yielded mutants that exhibited an inverted motility response, suggesting that this locus is involved in controlling positive phototaxis. However, a strain null for taxAY1 was nonmotile and hyperpiliated. Interestingly, whereas the C-terminal region of the TaxD1 polypeptide is similar to the signaling domain of enteric methyl-accepting chemoreceptor proteins, the N terminus has two domains resembling chromophore-binding domains of phytochrome, a photoreceptor in plants. Hence, TaxD1 may play a role in perceiving the light stimulus. Mutants in the Tax3 locus are nonmotile and do not make type IV pili. These findings establish links between chemotaxis-like regulatory elements and type IV pilus-mediated phototaxis.
Collapse
Affiliation(s)
- D Bhaya
- Department of Plant Biology, The Carnegie Institution of Washington, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
31
|
Jelsbak L, Søgaard-Andersen L. Pattern formation: fruiting body morphogenesis in Myxococcus xanthus. Curr Opin Microbiol 2000; 3:637-42. [PMID: 11121786 DOI: 10.1016/s1369-5274(00)00153-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
When Myxococcus xanthus cells are exposed to starvation, they respond with dramatic behavioral changes. The expansive swarming behavior stops and the cells begin to aggregate into multicellular fruiting bodies. The cell-surface-associated C-signal has been identified as the signal that induces aggregation. Recently, several of the components in the C-signal transduction pathway have been identified and behavioral analyses are beginning to reveal how the C-signal modulates cell behavior. Together, these findings provide a framework for understanding how a cell-surface-associated morphogen induces pattern formation.
Collapse
Affiliation(s)
- L Jelsbak
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | | |
Collapse
|
32
|
Croft L, Beatson SA, Whitchurch CB, Huang B, Blakeley RL, Mattick JS. An interactive web-based Pseudomonas aeruginosa genome database: discovery of new genes, pathways and structures. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 10):2351-2364. [PMID: 11021912 DOI: 10.1099/00221287-146-10-2351] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Using the complete genome sequence of Pseudomonas: aeruginosa PAO1, sequenced by the Pseudomonas: Genome Project (ftp://ftp.pseudomonas. com/data/pacontigs.121599), a genome database (http://pseudomonas. bit.uq.edu.au/) has been developed containing information on more than 95% of all ORFs in Pseudomonas: aeruginosa. The database is searchable by a variety of means, including gene name, position, keyword, sequence similarity and Pfam domain. Automated and manual annotation, nucleotide and peptide sequences, Pfam and SMART domains (where available), Medline and GenBank links and a scrollable, graphical representation of the surrounding genomic landscape are available for each ORF. Using the database has revealed, among other things, that P. aeruginosa contains four chemotaxis systems, two novel general secretion pathways, at least three loci encoding F17-like thin fimbriae, six novel filamentous haemagglutinin-like genes, a number of unusual composite genetic loci related to vgr/RHS: elements in Escherichia coli, a number of fix-like genes encoding a micro-oxic respiration system, novel biosynthetic pathways and 38 genes containing domains of unknown function (DUF1/DUF2). It is anticipated that this database will be a useful bioinformatic tool for the Pseudomonas: community that will continue to evolve.
Collapse
Affiliation(s)
- Larry Croft
- Centre for Functional and Applied Genomics, Institute for Molecular Bioscience1 and Department of Biochemistry2, University of Queensland, Brisbane, QLD 4072, Australia
| | - Scott A Beatson
- Centre for Functional and Applied Genomics, Institute for Molecular Bioscience1 and Department of Biochemistry2, University of Queensland, Brisbane, QLD 4072, Australia
| | - Cynthia B Whitchurch
- Centre for Functional and Applied Genomics, Institute for Molecular Bioscience1 and Department of Biochemistry2, University of Queensland, Brisbane, QLD 4072, Australia
| | - Bixing Huang
- Centre for Functional and Applied Genomics, Institute for Molecular Bioscience1 and Department of Biochemistry2, University of Queensland, Brisbane, QLD 4072, Australia
| | - Robert L Blakeley
- Centre for Functional and Applied Genomics, Institute for Molecular Bioscience1 and Department of Biochemistry2, University of Queensland, Brisbane, QLD 4072, Australia
| | - John S Mattick
- Centre for Functional and Applied Genomics, Institute for Molecular Bioscience1 and Department of Biochemistry2, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|