1
|
Han L, Liu Y, Li C, Zhao D. Cloning, expression, characterization and mutational analysis of the tfdA gene from Cupriavidus campinensis BJ71. World J Microbiol Biotechnol 2015; 31:1021-30. [PMID: 25850533 DOI: 10.1007/s11274-015-1852-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/03/2015] [Indexed: 10/23/2022]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D)/α-ketoglutarate (α-KG) dioxygenase (TfdA) is an Fe(II)-dependent enzyme that catalyzes the first step in degradation of the herbicide 2,4-D. Previous studies focused on the tfdA gene in Ralstonia eutropha JMP134 isolated in Australia. In this study, a new tfdA gene was cloned from Cupriavidus campinensis BJ71, an effective degrading bacteria from China, based on the iCOnsensus-DEgenerate Hybrid Oligonucleotide Primers (iCODEHOPs) protocol, combined with high-efficiency Thermal Asymmetric Interlaced PCR (hiTAIL-PCR). The open reading frame of 861 bp encoded a putative 287 amino acid protein with a theoretical molecular mass of 32.32 kDa. The gene was overexpressed in Escherichia coli BL21 (DE3) and the purified TfdA showed optimal activity at pH 6.75 and 30 °C. This enzyme was more thermostable and it could use 3-hydrocinnamic acid as substrate, with a similar enzyme activity compared with 2,4-D. TfdA and its variants were created as maltose-binding protein (MBP) tagged fusion proteins to examine the roles of putative substrate-binding residues. The MBP-N110A, MBP-V198A and MBP-R207K proteins showed decreased k cat and increased Km, and MBP-R278A was inactive, suggesting these residues may affect 2,4-D binding or catalysis.
Collapse
Affiliation(s)
- Lizhen Han
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guiyang, 550025, China,
| | | | | | | |
Collapse
|
2
|
Kumar A, Trefault N, Olaniran AO. Microbial degradation of 2,4-dichlorophenoxyacetic acid: Insight into the enzymes and catabolic genes involved, their regulation and biotechnological implications. Crit Rev Microbiol 2014; 42:194-208. [DOI: 10.3109/1040841x.2014.917068] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
3
|
Griffin SL, Godbey JA, Oman TJ, Embrey SK, Karnoup A, Kuppannan K, Barnett BW, Lin G, Harpham NVJ, Juba AN, Schafer BW, Cicchillo RM. Characterization of aryloxyalkanoate dioxygenase-12, a nonheme Fe(II)/α-ketoglutarate-dependent dioxygenase, expressed in transgenic soybean and Pseudomonas fluorescens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:6589-96. [PMID: 23742120 DOI: 10.1021/jf4003076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Aryloxyalkanoate dioxygenase-12 (AAD-12) was discovered from the soil bacterium Delftia acidovorans MC1 and is a nonheme Fe(II)/α-ketoglutarate-dependent dioxygenase, which can impart herbicide tolerance to transgenic plants by catalyzing the degradation of certain phenoxyacetate, pyridyloxyacetate, and aryloxyphenoxypropionate herbicides. (1) The development of commercial herbicide-tolerant crops, in particular AAD-12-containing soybean, has prompted the need for large quantities of the enzyme for safety testing. To accomplish this, the enzyme was produced in Pseudomonas fluorescens (Pf) and purified to near homogeneity. A small amount of AAD-12 was partially purified from transgenic soybean and through various analytical, biochemical, and in vitro activity analyses demonstrated to be equivalent to the Pf-generated enzyme. Furthermore, results from in vitro kinetic analyses using a variety of plant endogenous compounds revealed activity with trans-cinnamate and indole-3-acetic acid (IAA). The catalytic efficiencies (kcat/Km) of AAD-12 using trans-cinnamate (51.5 M(-1) s(-1)) and IAA (8.2 M(-1) s(-1)) as substrates were very poor when compared to the efficiencies of plant endogenous enzymes. The results suggest that the presence of AAD-12 in transgenic soybean would not likely have an impact on major plant metabolic pathways.
Collapse
Affiliation(s)
- Samantha L Griffin
- Dow AgroSciences LLC , 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Ditterich F, Poll C, Pagel H, Babin D, Smalla K, Horn MA, Streck T, Kandeler E. Succession of bacterial and fungal 4-chloro-2-methylphenoxyacetic acid degraders at the soil-litter interface. FEMS Microbiol Ecol 2013; 86:85-100. [DOI: 10.1111/1574-6941.12131] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 03/20/2013] [Accepted: 04/03/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
- Franziska Ditterich
- Institute of Soil Science and Land Evaluation; Soil Biology Section; University of Hohenheim; Stuttgart; Germany
| | - Christian Poll
- Institute of Soil Science and Land Evaluation; Soil Biology Section; University of Hohenheim; Stuttgart; Germany
| | - Holger Pagel
- Institute of Soil Science and Land Evaluation; Biogeophysics Section; University of Hohenheim; Stuttgart; Germany
| | - Doreen Babin
- Julius Kühn-Institut; Federal Research Centre for Cultivated Plants; Institute for Epidemiology and Pathogen Diagnostics; Braunschweig; Germany
| | - Kornelia Smalla
- Julius Kühn-Institut; Federal Research Centre for Cultivated Plants; Institute for Epidemiology and Pathogen Diagnostics; Braunschweig; Germany
| | - Marcus A. Horn
- Department of Ecological Microbiology; University of Bayreuth; Bayreuth; Germany
| | - Thilo Streck
- Institute of Soil Science and Land Evaluation; Biogeophysics Section; University of Hohenheim; Stuttgart; Germany
| | - Ellen Kandeler
- Institute of Soil Science and Land Evaluation; Soil Biology Section; University of Hohenheim; Stuttgart; Germany
| |
Collapse
|
5
|
Batıoğlu-Pazarbaşı M, Milosevic N, Malaguerra F, Binning PJ, Albrechtsen HJ, Bjerg PL, Aamand J. Discharge of landfill leachate to streambed sediments impacts the mineralization potential of phenoxy acid herbicides depending on the initial abundance of tfdA gene classes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 176:275-83. [PMID: 23454590 DOI: 10.1016/j.envpol.2013.01.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 01/29/2013] [Accepted: 01/31/2013] [Indexed: 05/23/2023]
Abstract
To understand the role of abundance of tfdA gene classes belonging to β- and γ-proteobacteria on phenoxy acid herbicide degradation, streambed sediments were sampled around three seepage meters (SMs) installed in a landfill-impacted groundwater-surface water interface. Highest herbicide mass discharge to SM3, and lower herbicide mass discharges to SM1 and SM2 were determined due to groundwater discharge rates and herbicide concentrations. SM1-sediment with the lowest abundance of tfdA gene classes had the slowest mineralization, whereas SM2- and SM3-sediments with more abundant tfdA genes had faster mineralization. The observed difference in mineralization rates between discharge zones was simulated by a Monod-based kinetic model, which confirmed the role of abundance of tfdA gene classes. This study suggests presence of specific degraders adapted to slow growth rate and high yield strategy due to long-term herbicide exposure; and thus groundwater-surface water interface could act as a natural biological filter and protect stream water quality.
Collapse
Affiliation(s)
- Meriç Batıoğlu-Pazarbaşı
- Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, DK-1350 Copenhagen K, Denmark.
| | | | | | | | | | | | | |
Collapse
|
6
|
Paulin MM, Nicolaisen MH, Sørensen J. (R,S)-dichlorprop herbicide in agricultural soil induces proliferation and expression of multiple dioxygenase-encoding genes in the indigenous microbial community. Environ Microbiol 2011; 13:1513-23. [DOI: 10.1111/j.1462-2920.2011.02456.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Gazitúa MC, Slater AW, Melo F, González B. Novel α-ketoglutarate dioxygenase tfdA-related genes are found in soil DNA after exposure to phenoxyalkanoic herbicides. Environ Microbiol 2010; 12:2411-25. [DOI: 10.1111/j.1462-2920.2010.02215.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Abundance and expression of enantioselective rdpA and sdpA dioxygenase genes during degradation of the racemic herbicide (R,S)-2-(2,4-dichlorophenoxy)propionate in soil. Appl Environ Microbiol 2010; 76:2873-83. [PMID: 20305027 DOI: 10.1128/aem.02270-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rdpA and sdpA genes encode two enantioselective alpha-ketoglutarate-dependent dioxygenases catalyzing the initial step of microbial degradation of the chiral herbicide (R,S)-2-(2,4-dichlorophenoxy)propionate (R,S-dichlorprop). Primers were designed to assess abundance and transcription dynamics of rdpA and sdpA genes in a natural agricultural soil. No indigenous rdpA genes were detected, but sdpA genes were present at levels of approximately 10(3) copies g of soil(-1). Cloning and sequencing of partial sdpA genes revealed a high diversity within the natural sdpA gene pool that could be divided into four clusters by phylogenetic analysis. BLASTp analysis of deduced amino acids revealed that members of cluster I shared 68 to 69% identity, cluster II shared 78 to 85% identity, cluster III shared 58 to 64% identity, and cluster IV shared 55% identity to their closest SdpA relative in GenBank. Expression of rdpA and sdpA in Delftia acidovorans MC1 inoculated in soil was monitored by reverse transcription quantitative real-time PCR (qPCR) during in situ degradation of 2 and 50 mg kg(-1) of (R,S)-dichlorprop. (R,S)-Dichlorprop amendment created a clear upregulation of both rdpA and sdpA gene expression during the active phase of (14)C-labeled (R,S)-dichlorprop mineralization, particularly following the second dose of 50 mg kg(-1) herbicide. Expression of both genes was maintained at a low constitutive level in nonamended soil microcosms. This study is the first to report the presence of indigenous sdpA genes recovered directly from natural soil and also comprises the first investigation into the transcription dynamics of two enantioselective dioxygenase genes during the in situ degradation of the herbicide (R,S)-dichlorprop in soil.
Collapse
|
9
|
Zaprasis A, Liu YJ, Liu SJ, Drake HL, Horn MA. Abundance of novel and diverse tfdA-like genes, encoding putative phenoxyalkanoic acid herbicide-degrading dioxygenases, in soil. Appl Environ Microbiol 2010; 76:119-28. [PMID: 19880651 PMCID: PMC2798625 DOI: 10.1128/aem.01727-09] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 10/20/2009] [Indexed: 11/20/2022] Open
Abstract
Phenoxyalkanoic acid (PAA) herbicides are widely used in agriculture. Biotic degradation of such herbicides occurs in soils and is initiated by alpha-ketoglutarate- and Fe2+-dependent dioxygenases encoded by tfdA-like genes (i.e., tfdA and tfdAalpha). Novel primers and quantitative kinetic PCR (qPCR) assays were developed to analyze the diversity and abundance of tfdA-like genes in soil. Five primer sets targeting tfdA-like genes were designed and evaluated. Primer sets 3 to 5 specifically amplified tfdA-like genes from soil, and a total of 437 sequences were retrieved. Coverages of gene libraries were 62 to 100%, up to 122 genotypes were detected, and up to 389 genotypes were predicted to occur in the gene libraries as indicated by the richness estimator Chao1. Phylogenetic analysis of in silico-translated tfdA-like genes indicated that soil tfdA-like genes were related to those of group 2 and 3 Bradyrhizobium spp., Sphingomonas spp., and uncultured soil bacteria. Soil-derived tfdA-like genes were assigned to 11 clusters, 4 of which were composed of novel sequences from this study, indicating that soil harbors novel and diverse tfdA-like genes. Correlation analysis of 16S rRNA and tfdA-like gene similarity indicated that any two bacteria with D>20% of group 2 tfdA-like gene-derived protein sequences belong to different species. Thus, data indicate that the soil analyzed harbors at least 48 novel bacterial species containing group 2 tfdA-like genes. Novel qPCR assays were established to quantify such new tfdA-like genes. Copy numbers of tfdA-like genes were 1.0x10(6) to 65x10(6) per gram (dry weight) soil in four different soils, indicating that hitherto-unknown, diverse tfdA-like genes are abundant in soils.
Collapse
Affiliation(s)
- Adrienne Zaprasis
- Department of Ecological Microbiology, University of Bayreuth, Dr.-Hans-Frisch-Straße 1-3, 95440 Bayreuth, Germany, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Ya-Jun Liu
- Department of Ecological Microbiology, University of Bayreuth, Dr.-Hans-Frisch-Straße 1-3, 95440 Bayreuth, Germany, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Shuang-Jiang Liu
- Department of Ecological Microbiology, University of Bayreuth, Dr.-Hans-Frisch-Straße 1-3, 95440 Bayreuth, Germany, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Harold L. Drake
- Department of Ecological Microbiology, University of Bayreuth, Dr.-Hans-Frisch-Straße 1-3, 95440 Bayreuth, Germany, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Marcus A. Horn
- Department of Ecological Microbiology, University of Bayreuth, Dr.-Hans-Frisch-Straße 1-3, 95440 Bayreuth, Germany, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| |
Collapse
|
10
|
Pérez-Pantoja D, De la Iglesia R, Pieper DH, González B. Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacteriumCupriavidus necatorJMP134. FEMS Microbiol Rev 2008; 32:736-94. [DOI: 10.1111/j.1574-6976.2008.00122.x] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
11
|
Degradation of 2,4-DB in Argentinean agricultural soils with high humic matter content. Appl Microbiol Biotechnol 2008; 77:1371-8. [DOI: 10.1007/s00253-007-1260-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 10/22/2007] [Accepted: 10/23/2007] [Indexed: 10/22/2022]
|
12
|
Shaw LJ, Morris P, Hooker JE. Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ Microbiol 2006; 8:1867-80. [PMID: 17014487 DOI: 10.1111/j.1462-2920.2006.01141.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Flavonoids are a diverse class of polyphenolic compounds that are produced as a result of plant secondary metabolism. They are known to play a multifunctional role in rhizospheric plant-microbe and plant-plant communication. Most familiar is their function as a signal in initiation of the legume-rhizobia symbiosis, but, flavonoids may also be signals in the establishment of arbuscular mycorrhizal symbiosis and are known agents in plant defence and in allelopathic interactions. Flavonoid perception by, and impact on, their microbial targets (e.g. rhizobia, plant pathogens) is relatively well characterized. However, potential impacts on 'non-target' rhizosphere inhabitants ('non-target' is used to distinguish those microorganisms not conventionally known as targets) have not been thoroughly investigated. Thus, this review first summarizes the conventional roles of flavonoids as nod gene inducers, phytoalexins and allelochemicals before exploring questions concerning 'non-target' impacts. We hypothesize that flavonoids act to shape rhizosphere microbial community structure because they represent a potential source of carbon and toxicity and that they impact on rhizosphere function, for example, by accelerating the biodegradation of xenobiotics. We also examine the reverse question, 'how do rhizosphere microbial communities impact on flavonoid signals?' The presence of microorganisms undoubtedly influences the quality and quantity of flavonoids present in the rhizosphere, both through modification of root exudation patterns and microbial catabolism of exudates. Microbial alteration and attenuation of flavonoid signals may have ecological consequences for below-ground plant-microbe and plant-plant interaction. We have a lack of knowledge concerning the composition, concentration and bioavailability of flavonoids actually experienced by microbes in an intact rhizosphere, but this may be addressed through advances in microspectroscopic and biosensor techniques. Through the use of plant mutants defective in flavonoid biosynthesis, we may also start to address the question of the significance of flavonoids in shaping rhizosphere community structure and function.
Collapse
Affiliation(s)
- Liz J Shaw
- Department of Environmental and Geographical Sciences, Manchester Metropolitan University, John Dalton Building, Chester Street, M1 5GD, UK.
| | | | | |
Collapse
|
13
|
Shaw LJ, Burns RG. Rhizodeposition and the enhanced mineralization of 2,4-dichlorophenoxyacetic acid in soil from the Trifolium pratense rhizosphere. Environ Microbiol 2005; 7:191-202. [PMID: 15658986 DOI: 10.1111/j.1462-2920.2004.00688.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Enhanced biodegradation of organic xenobiotic compounds in the rhizosphere is frequently recorded although the specific mechanisms are poorly understood. We have shown that the mineralization of 2,4-dichlorophenoxyacetic acid (2,4-D) is enhanced in soil collected from the rhizosphere of Trifolium pratense[e.g. maximum mineralization rate=7.9 days-1 and time at maximum rate (t1)=16.7 days for 12-day-old T. pratense soil in comparison with 4.7 days-1 and 25.4 days, respectively, for non-planted controls). The purpose of this study was to gain a better understanding of the plant-microbe interactions involved in rhizosphere-enhanced biodegradation by narrowing down the identity of the T. pratense rhizodeposit responsible for stimulating the microbial mineralization of 2,4-D. Specifically, we investigated the distribution of the stimulatory component(s) among rhizodeposit fractions (exudates or root debris) and the influence of soil properties and plant species on its production. Production of the stimulatory rhizodeposit was dependent on soil pH (e.g. t1 for roots grown at pH 6.5 was significantly lower than for those grown at pH 4.4) but independent of soil inorganic N concentration. Most strikingly, the stimulatory rhizodeposit was only produced by T. pratense grown in non-sterile soil and was present in both exudates and root debris. Comparison of the effect of root debris from plant species (three each) from the classes monocotyledon, dicotyledon (non-legume) and dicotyledon (legume) revealed that legumes had by far the greatest positive impact on 2,4-D mineralization kinetics. We discuss the significance of these findings with respect to legume-rhizobia interactions in the rhizosphere.
Collapse
Affiliation(s)
- Liz J Shaw
- Research School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | | |
Collapse
|
14
|
Shaw LJ, Burns RG. Enhanced mineralization of [U-(14)C]2,4-dichlorophenoxyacetic acid in soil from the rhizosphere of Trifolium pratense. Appl Environ Microbiol 2004; 70:4766-74. [PMID: 15294813 PMCID: PMC492430 DOI: 10.1128/aem.70.8.4766-4774.2004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enhanced biodegradation in the rhizosphere has been reported for many organic xenobiotic compounds, although the mechanisms are not fully understood. The purpose of this study was to discover whether rhizosphere-enhanced biodegradation is due to selective enrichment of degraders through growth on compounds produced by rhizodeposition. We monitored the mineralization of [U-(14)C]2,4-dichlorophenoxyacetic acid (2,4-D) in rhizosphere soil with no history of herbicide application collected over a period of 0 to 116 days after sowing of Lolium perenne and Trifolium pratense. The relationships between the mineralization kinetics, the number of 2,4-D degraders, and the diversity of genes encoding 2,4-D/alpha-ketoglutarate dioxygenase (tfdA) were investigated. The rhizosphere effect on [(14)C]2,4-D mineralization (50 microg g(-1)) was shown to be plant species and plant age specific. In comparison with nonplanted soil, there were significant (P < 0.05) reductions in the lag phase and enhancements of the maximum mineralization rate for 25- and 60-day T. pratense soil but not for 116-day T. pratense rhizosphere soil or for L. perenne rhizosphere soil of any age. Numbers of 2,4-D degraders in planted and nonplanted soil were low (most probable number, <100 g(-1)) and were not related to plant species or age. Single-strand conformational polymorphism analysis showed that plant species had no impact on the diversity of alpha-Proteobacteria tfdA-like genes, although an impact of 2,4-D application was recorded. Our results indicate that enhanced mineralization in T. pratense rhizosphere soil is not due to enrichment of 2,4-D-degrading microorganisms by rhizodeposits. We suggest an alternative mechanism in which one or more components of the rhizodeposits induce the 2,4-D pathway.
Collapse
Affiliation(s)
- Liz J Shaw
- Research School of Biosciences, University of Kent, Canterbury, Kent, UK
| | | |
Collapse
|
15
|
Itoh K, Tashiro Y, Uobe K, Kamagata Y, Suyama K, Yamamoto H. Root nodule Bradyrhizobium spp. harbor tfdAalpha and cadA, homologous with genes encoding 2,4-dichlorophenoxyacetic acid-degrading proteins. Appl Environ Microbiol 2004; 70:2110-8. [PMID: 15066803 PMCID: PMC383140 DOI: 10.1128/aem.70.4.2110-2118.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The distribution of tfdAalpha and cadA, genes encoding 2,4-dichlorophenoxyacetate (2,4-D)-degrading proteins which are characteristic of the 2,4-D-degrading Bradyrhizobium sp. isolated from pristine environments, was examined by PCR and Southern hybridization in several Bradyrhizobium strains including type strains of Bradyrhizobium japonicum USDA110 and Bradyrhizobium elkanii USDA94, in phylogenetically closely related Agromonas oligotrophica and Rhodopseudomonas palustris, and in 2,4-D-degrading Sphingomonas strains. All strains showed positive signals for tfdAalpha, and its phylogenetic tree was congruent with that of 16S rRNA genes in alpha-Proteobacteria, indicating evolution of tfdAalpha without horizontal gene transfer. The nucleotide sequence identities between tfdAalpha and canonical tfdA in beta- and gamma-Proteobacteria were 46 to 57%, and the deduced amino acid sequence of TfdAalpha revealed conserved residues characteristic of the active site of alpha-ketoglutarate-dependent dioxygenases. On the other hand, cadA showed limited distribution in 2,4-D-degrading Bradyrhizobium sp. and Sphingomonas sp. and some strains of non-2,4-D-degrading B. elkanii. The cadA genes were phylogenetically separated between 2,4-D-degrading and nondegrading strains, and the cadA genes of 2,4-D degrading strains were further separated between Bradyrhizobium sp. and Sphingomonas sp., indicating the incongruency of cadA with 16S rRNA genes. The nucleotide sequence identities between cadA and tftA of 2,4,5-trichlorophenoxyacetate-degrading Burkholderia cepacia AC1100 were 46 to 53%. Although all root nodule Bradyrhizobium strains were unable to degrade 2,4-D, three strains carrying cadA homologs degraded 4-chlorophenoxyacetate with the accumulation of 4-chlorophenol as an intermediate, suggesting the involvement of cadA homologs in the cleavage of the aryl ether linkage. Based on codon usage patterns and GC content, it was suggested that the cadA genes of 2,4-D-degrading and nondegrading Bradyrhizobium spp. have different origins and that the genes would be obtained in the former through horizontal gene transfer.
Collapse
Affiliation(s)
- Kazuhito Itoh
- Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan.
| | | | | | | | | | | |
Collapse
|
16
|
Dunning Hotopp JC, Auchtung TA, Hogan DA, Hausinger RP. Intrinsic tryptophan fluorescence as a probe of metal and alpha-ketoglutarate binding to TfdA, a mononuclear non-heme iron dioxygenase. J Inorg Biochem 2003; 93:66-70. [PMID: 12538054 DOI: 10.1016/s0162-0134(02)00436-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D)/alpha-ketoglutarate (alphaKG) dioxygenase, TfdA, couples the oxidative decarboxylation of alphaKG to the oxidation of the herbicide 2,4-D using a mononuclear non-heme Fe(II) active site. The intrinsic tryptophan fluorescence associated with the four Trp residues in TfdA allows for the use of fluorescence spectroscopy to monitor the binding of iron and alphaKG to the enzyme. The fluorescence spectrum of TfdA is quenched by 50-85% upon addition of Fe(II) or alphaKG, allowing determination of their binding affinities (K(d)=7.45+/-0.61 and 3.35+/-0.35 microM, respectively). Cu, Zn, Mn, Co, Mg, and Ca dictations also quench the TfdA fluorescence with affinities similar to that of Fe(II), whereas monovalent cations such as Na, K, and Li do not. H114A and D116A mutant forms of TfdA, lacking either a histidine or aspartate metallocenter ligand, exhibit weaker affinity for both Fe(II) and alphaKG based on the fluorescence changes. Trp256 is predicted to lie within 5 A of the metal and alphaKG binding sites; however, its substitution by Phe or Leu has negligible effects on the Fe(II)- and alphaKG-dependent fluorescence quenching. Because Trp195 is predicted to be quite distant ( approximately 15 A) from the active site, we conclude that some combination of Trp113 and Trp248 serves as the reporter that senses metal and cofactor binding to TfdA.
Collapse
Affiliation(s)
- Julie C Dunning Hotopp
- Department of Microbiology and Molecular Genetics, 160 Giltner Hall, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
17
|
Shaw LJ, Burns RG. Biodegradation of Organic Pollutants in the Rhizosphere. ADVANCES IN APPLIED MICROBIOLOGY 2003; 53:1-60. [PMID: 14696315 DOI: 10.1016/s0065-2164(03)53001-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Liz J Shaw
- Research School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| | | |
Collapse
|
18
|
Itoh K, Kanda R, Sumita Y, Kim H, Kamagata Y, Suyama K, Yamamoto H, Hausinger RP, Tiedje JM. tfdA-like genes in 2,4-dichlorophenoxyacetic acid-degrading bacteria belonging to the Bradyrhizobium-Agromonas-Nitrobacter-Afipia cluster in alpha-Proteobacteria. Appl Environ Microbiol 2002; 68:3449-54. [PMID: 12089027 PMCID: PMC126798 DOI: 10.1128/aem.68.7.3449-3454.2002] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2001] [Accepted: 04/03/2002] [Indexed: 11/20/2022] Open
Abstract
The 2,4-dichlorophenoxyacetate (2,4-D)/alpha-ketoglutarate dioxygenase gene (tfdA) homolog designated tfdAalpha was cloned and characterized from 2,4-D-degrading bacterial strain RD5-C2. This Japanese upland soil isolate belongs to the Bradyrhizobium-Agromonas-Nitrobacter-Afipia cluster in the alpha subdivision of the class Proteobacteria on the basis of its 16S ribosomal DNA sequence. Sequence analysis showed 56 to 60% identity of tfdAalpha to representative tfdA genes. A MalE-TfdAalpha fusion protein expressed in Escherichia coli exhibited about 10 times greater activity for phenoxyacetate than 2,4-D in an alpha-ketoglutarate- and Fe(II)-dependent reaction. The deduced amino acid sequence of TfdAalpha revealed a conserved His-X-Asp-X(146)-His-X(14)-Arg motif characteristic of the active site of group II alpha-ketoglutarate-dependent dioxygenases. The tfdAalpha genes were also detected in 2,4-D-degrading alpha-Proteobacteria previously isolated from pristine environments in Hawaii and in Saskatchewan, Canada (Y. Kamagata, R. R. Fulthorpe, K. Tamura, H. Takami, L. J. Forney, and J. M. Tiedje, Appl. Environ. Microbiol. 63:2266-2272, 1997). These findings indicate that the tfdA genes in beta- and gamma-Proteobacteria and the tfdAalpha genes in alpha-Proteobacteria arose by divergent evolution from a common ancestor.
Collapse
Affiliation(s)
- Kazuhito Itoh
- Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Elkins JM, Ryle MJ, Clifton IJ, Dunning Hotopp JC, Lloyd JS, Burzlaff NI, Baldwin JE, Hausinger RP, Roach PL. X-ray crystal structure of Escherichia coli taurine/alpha-ketoglutarate dioxygenase complexed to ferrous iron and substrates. Biochemistry 2002; 41:5185-92. [PMID: 11955067 DOI: 10.1021/bi016014e] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Taurine/alpha-ketoglutarate dioxygenase (TauD), a non-heme Fe(II) oxygenase, catalyses the conversion of taurine (2-aminoethanesulfonate) to sulfite and aminoacetaldehyde concurrent with the conversion of alpha-ketoglutarate (alphaKG) to succinate and CO(2). The enzyme allows Escherichia coli to use taurine, widely available in the environment, as an alternative sulfur source. Here we describe the X-ray crystal structure of TauD complexed to Fe(II) and both substrates, alphaKG and taurine. The tertiary structure and fold of TauD are similar to those observed in other enzymes from the broad family of Fe(II)/alphaKG-dependent oxygenases, with closest structural similarity to clavaminate synthase. Using the TauD coordinates, a model was determined for the closely related enzyme 2,4-dichlorophenoxyacetate/alphaKG dioxygenase (TfdA), supporting predictions derived from site-directed mutagenesis and other studies of that biodegradative protein. The TauD structure and TfdA model define the metal ligands and the positions of nearby aromatic residues that undergo post-translational modifications involving self-hydroxylation reactions. The substrate binding residues of TauD were identified and those of TfdA predicted. These results, along with sequence alignment information, reveal how TauD selects a tetrahedral substrate anion in preference to the planar carboxylate selected by TfdA, providing insight into the mechanism of enzyme catalysis.
Collapse
Affiliation(s)
- Jonathan M Elkins
- Dyson Perrins Laboratory, Oxford University, South Parks Road, Oxford, England, OX1 3QY, and Departments of Microbiology & Molecular Genetics and Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1011
| | | | | | | | | | | | | | | | | |
Collapse
|