1
|
Ito-Harashima S, Sano E, Takada E, Nakashima M, Kawanishi M, Yagi T. Development of a New Reporter Gene Assay for Detecting Juvenile Hormone Agonists Using Yeast Expressing Methoprene-Tolerant of the Freshwater Cladoceran Daphnia magna. J Appl Toxicol 2025. [PMID: 40223157 DOI: 10.1002/jat.4784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/15/2025]
Abstract
Juvenile hormones (JHs) play crucial roles in regulating growth, metamorphosis, and reproduction in arthropods. Synthetic JH agonists (JHAs), categorized as insect growth regulators, have been widely employed as insecticides. Natural JHs and synthetic JHAs both exert their physiological effects by binding to the JH receptor methoprene-tolerant (Met), forming a functional heterodimer complex with steroid receptor coactivators (SRCs). These juvenoids induce male offspring production in various daphnids, including Daphnia magna, highlighting the significance of the Met-mediated signaling in environmental sex determination. As a representative invertebrate model for assessing aquatic endocrine-disrupting chemicals, D. magna is incorporated in the test guidelines of the Organization for Economic Corporation and Development. We herein introduced a newly developed yeast-based reporter gene assay (RGA) for easy and rapid screening of JH-like ligands for D. magna Met (Dapma-Met). Dapma-Met was expressed alongside the SRC of D. magna (Dapma-SRC) in yeast cells carrying the lacZ reporter plasmid with a JH-responsive element derived from the Bombyx mori Krüppel homolog 1 gene. The yeast RGA system for Dapma-Met revealed a dose-dependent response to various juvenoids. The rank order of the ligand potencies of natural JHs and synthetic JHAs examined in yeast RGA strongly correlated with those previously observed in RGAs for Daphnia Met proteins established in Chinese hamster ovary cells and positively correlated with the male neonate-inducing activity in vivo. Our novel yeast RGA offers a rapid, easy-to-handle, and cost-effective solution that will be valuable for discriminating Dapma-Met ligands among chemicals with male offspring-inducing activity.
Collapse
Affiliation(s)
- Sayoko Ito-Harashima
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan
| | - Erika Sano
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Eiji Takada
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Mayuko Nakashima
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka, Japan
| | - Masanobu Kawanishi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka, Japan
| | - Takashi Yagi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka, Japan
| |
Collapse
|
2
|
Ito-Harashima S, Tsubouchi Y, Takada E, Kawanishi M, Yagi T. Development of a yeast reporter gene assay to detect ligands of freshwater cladoceran Daphnia magna ultraspiracle, a homolog of vertebrate retinoid X receptors. J Appl Toxicol 2023; 43:1447-1461. [PMID: 37078133 DOI: 10.1002/jat.4476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/21/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) often affect homeostatic regulation in living organisms by directly acting on nuclear receptors (NRs). Retinoid X receptors (RXRs), the most highly conserved members of the NR superfamily during evolution, function as partners to form heterodimers with other NRs, such as retinoic acid, thyroid hormone, and vitamin D3 receptors. RXRs also homodimerize and induce the expression of target genes upon binding with their natural ligand, 9-cis-retinoic acid (9cRA), and typical EDCs organotin compounds, such as tributyltin and triphenyltin. In the present study, we established a new yeast reporter gene assay (RGA) to detect the ligands of freshwater cladoceran Daphnia magna ultraspiracle (Dapma-USP), a homolog of vertebrate RXRs. D. magna has been used as a representative crustacean species for aquatic EDC assessments in the Organization for Economic Corporation and Development test guidelines. Dapma-USP was expressed along with the Drosophila melanogaster steroid receptor coactivator Taiman in yeast cells carrying the lacZ reporter plasmid. The RGA for detecting agonist activity of organotins and o-butylphenol was improved by use of mutant yeast strains lacking genes encoding cell wall mannoproteins and/or plasma membrane drug efflux pumps as hosts. We also showed that a number of other human RXR ligands, phenol and bisphenol A derivatives, and terpenoid compounds such as 9c-RA exhibited antagonist activity on Dapma-USP. Our newly established yeast-based RGA system is valuable as the first screening tool to detect ligand substances for Dapma-USP and for evaluating the evolutionary divergence of the ligand responses of RXR homologs between humans and D. magna.
Collapse
Affiliation(s)
- Sayoko Ito-Harashima
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Japan
| | - Yumiko Tsubouchi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
| | - Eiji Takada
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
| | - Masanobu Kawanishi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Japan
| | - Takashi Yagi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Japan
| |
Collapse
|
3
|
Su M, Zhu Z, Li T, Jin J, Hu J. Levels, profiles and potential human health risks of brominated and parent polycyclic aromatic hydrocarbons in soils around three different types of industrial areas in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157506. [PMID: 35868385 DOI: 10.1016/j.scitotenv.2022.157506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/25/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Brominated polycyclic aromatic hydrocarbons (Br-PAHs) are an emerging class of persistent organic pollutants with toxicity similar to dioxins. Industrial thermal processes have been identified as major sources of Br-PAHs in the current environment. However, studies on soil contaminations with Br-PAHs around industrial areas were scarce. In this study, 18 Br-PAHs and 16 PAHs were analyzed in soils around an electronic waste dismantling area (EDA), an industrial area that mainly performed steel smelting (SSP), and an industrial area mainly performed secondary copper smelting (SCS). The mean concentrations of Br-PAHs and PAHs were 1362 pg/g and 1034 ng/g, 582 pg/g and 13,938 ng/g, and 307 pg/g and 2211 ng/g in the soil around EDA, SSP, and SCS, respectively. The order of Br-PAH concentrations among three industrial areas was inconsistent with that of PAHs, suggesting that there may be some differences in contamination characteristics of Br-PAHs in three types of industrial areas. The significant correlation between Br-PAHs and parent PAHs indicated that direct bromination may be the main formation pathway of Br-PAHs in soils in EDA. The result of principal component analysis further revealed that the congener pattern of Br-PAHs in soils around EDA is different from that of SSP and SCS. It was found that the ratio of 1-BrPyr and 3-BrFlu can be applied to identify environmental contamination with Br-PAHs from e-waste dismantling. The health risk assessment results showed that there were some soil samples with carcinogenic risks above the risk threshold in each industrial area, and deserve our concern.
Collapse
Affiliation(s)
- Mai Su
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, China
| | - Zhenlei Zhu
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, China
| | - Tianwei Li
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, China
| | - Jun Jin
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, China; Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing 100081, China
| | - Jicheng Hu
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, China; Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
4
|
Wang P, Qi A, Huang Q, Wang Y, Tuo X, Zhao T, Duan S, Gao H, Zhang W, Xu P, Zhang T, Zhang X, Wang W, Yang L. Spatial and temporal variation, source identification, and toxicity evaluation of brominated/chlorinated/nitrated/oxygenated-PAHs at a heavily industrialized area in eastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153542. [PMID: 35101518 DOI: 10.1016/j.scitotenv.2022.153542] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Some derivatives of polycyclic aromatic hydrocarbons (PAHs) such as chlorinated and brominated PAHs (Cl/BrPAHs), nitrated and oxygenated PAHs (N/OPAHs) have attracted significant concern due to their high toxicity. Knowledge of the profiles, formation mechanisms, and potential sources of these toxic chemicals near the industrial complexes is essential for their pollution control and management. In this study, we monitored Cl/BrPAHs, N/OPAHs, and PAHs at 24 sampling sites near a heavily industrialized area (steel, chemical, and rubber plants) using passive air samplers during the heating period (7 December 2019 to 15 April 2020) and the non-heating period (2 June 2020 to 4 October 2020). The total average concentrations of 16 BrPAHs, 8 ClPAHs, 17 NPAHs, 6 OPAHs, and 18 PAHs during both sampling periods were 471 pg/m3, 229 pg/m3, 312 pg/m3, 2120 pg/m3, and 63.1 ng/m3, respectively. Except for NPAHs, BrPAHs, ClPAHs, OPAHs, and PAHs all showed higher levels during the heating period. The spatial distributions of Cl/BrPAHs, N/OPAHs, and PAHs exhibited a similar pattern, with the highest concentrations detected in the vicinity of the steel industry. Congener profiles of PAH derivatives indicated that mono-substituted low molecular weight compounds (2-3 rings) were dominant. The major formation mechanisms of halogenated PAHs were discussed by correlation analysis and relative Gibbs free energies, and direct bromination of parent PAHs could be the major formation mechanism of BrPAHs in this study. Diagnostic ratios showed that NPAHs were mainly derived from primary emissions, but the contribution of secondary formation was increased at heavily contaminated sites. The positive matrix factorization model extracted four Cl/BrPAHs, three N/OPAHs, and four PAHs factors, and the result showed that PAHs and their derivatives mainly derived from industrial and combustion sources, photochemical reactions, vehicle emissions, and crude oil volatilization, etc.
Collapse
Affiliation(s)
- Pengcheng Wang
- Environment Research Institute, Shandong University, Qingdao, Shandong, 266237, China
| | - Anan Qi
- Environment Research Institute, Shandong University, Qingdao, Shandong, 266237, China
| | - Qi Huang
- Environment Research Institute, Shandong University, Qingdao, Shandong, 266237, China
| | - Yiming Wang
- Environment Research Institute, Shandong University, Qingdao, Shandong, 266237, China
| | - Xiong Tuo
- Environment Research Institute, Shandong University, Qingdao, Shandong, 266237, China
| | - Tong Zhao
- Environment Research Institute, Shandong University, Qingdao, Shandong, 266237, China
| | - Shengfei Duan
- Environment Research Institute, Shandong University, Qingdao, Shandong, 266237, China
| | - Hongliang Gao
- Environment Research Institute, Shandong University, Qingdao, Shandong, 266237, China
| | - Wan Zhang
- Environment Research Institute, Shandong University, Qingdao, Shandong, 266237, China
| | - Peng Xu
- Environment Research Institute, Shandong University, Qingdao, Shandong, 266237, China
| | - Tianqi Zhang
- Environment Research Institute, Shandong University, Qingdao, Shandong, 266237, China
| | - Xiongfei Zhang
- Environment Research Institute, Shandong University, Qingdao, Shandong, 266237, China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao, Shandong, 266237, China
| | - Lingxiao Yang
- Environment Research Institute, Shandong University, Qingdao, Shandong, 266237, China; Jiangsu Collaborative Innovation Center for Climate Change, Nanjing, Jiangsu 210093, China.
| |
Collapse
|
5
|
Du Y, Xu X, Liu Q, Lin L, Bai L, Wang D. Contribution of atmospheric deposition to halogenated polycyclic aromatic hydrocarbons in surface sediments: A validation study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152889. [PMID: 34998763 DOI: 10.1016/j.scitotenv.2021.152889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Surface sediments are both sinks and sources of chlorinated and brominated polycyclic aromatic hydrocarbons (Cl/Br-PAHs) in the environment. It is important to study the source of Cl/Br-PAHs in the surface sediment for controlling the ecological risk of Cl/Br-PAHs. Clues from the previous research suggested that atmospheric deposition may be one of the main sources of Cl/Br-PAHs in sediment. However, due to the lack of matched sediment and atmospheric Cl/Br-PAHs data, the contribution of atmospheric deposition to Cl/Br-PAHs in sediment has not been confirmed. This study investigated the characteristics of 37 Cl/Br-PAHs and validated the contribution of atmospheric sedimentation to Cl/Br-PAHs in sediment by a case study in the surface sediments of the Chaobai River, China. To the best of our knowledge, four Cl-PAHs and eleven Br-PAHs were found in the sediments for the first time. The total concentrations of 18 Cl-PAH species were 76-2301 pg/g, while those of Br-PAHs were 6-238 pg/g. The toxic equivalent quantities (TEQ) of the Cl-PAHs in surface sediments in the water conservation area and in the urban comparison area were 0.73 pg TEQ/g and 2.21 pg TEQ/g, respectively. The TEQ of the Br-PAHs in surface sediments in the water conservation area and in the urban comparison area were 2.85 × 10-2 pg TEQ/g and 6.6 × 10-2 pg TEQ/g, respectively. Based on the characteristics comparison and correlation analysis of Cl/Br-PAHs in both sediment and ambient air, it was initially confirmed the contribution of atmospheric deposition to Cl-PAHs in sediments. However, there was no conclusion of Br-PAHs in sediment similar to Cl-PAHs in sediment. It was inferred that the sources of Br-PAHs in sediment were different from Cl-PAHs in sediment.
Collapse
Affiliation(s)
- Yanjun Du
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China; National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 100021 Beijing, China
| | - Xiong Xu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| | - Quanzhen Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Lihua Lin
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| | - Lu Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Donghong Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China.
| |
Collapse
|
6
|
Vazquez-Rivera E, Rojas BL, Carney PR, Marrero-Valentin JL, Bradfield CA. Enhanced sensitivity of an Ah-receptor system in yeast through condition modification and use of mammalian modifiers. Toxicol Rep 2022; 9:513-520. [PMID: 35356645 PMCID: PMC8958262 DOI: 10.1016/j.toxrep.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/25/2022] Open
Abstract
Proteins, such as the Ah receptor (AHR), hold potential as sensors to detect ligands in environmental and biological samples, and may also serve as tools to regulate biosynthetic and industrial processes. The AHR is also a prototype system for the PAS superfamily that can sense and mediate adaptation to signals as diverse as light, voltage, oxygen and an array of small molecules. The yeast, S. cerevisiae, has proven to be an important model to study the signal transduction of sensors like the AHR because of its ease of use, numerous available strategies for genetic manipulation, and capacity for heterologous expression. To better understand the utility of sensor proteins as components of yeast detection systems, we characterized a chimeric AHR-LexA system that drives expression from a Lex operator (LexO) driven, beta-galactosidase (β-Gal) reporter. In this report, we demonstrate that improvements in assays sensitivity and pharmacology can arise from the careful optimization of yeast growth phase and the duration of ligand exposure. We also report that the coexpression of heterotypic modifiers from mammalian cells (e.g., the ARA9 and ARA3 proteins), can improve yeast assay performance. We propose that complementing these assay improvements with previously reported yeast mutations described by others will expand the utility of the AHR for biotechnology applications.
Collapse
Affiliation(s)
- Emmanuel Vazquez-Rivera
- Molecular and Environmental Toxicology Center, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Brenda L. Rojas
- Molecular and Environmental Toxicology Center, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Patrick R. Carney
- Molecular and Environmental Toxicology Center, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Jose L. Marrero-Valentin
- Molecular and Environmental Toxicology Center, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Christopher A. Bradfield
- Molecular and Environmental Toxicology Center, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| |
Collapse
|
7
|
Du Y, Xu X, Liu Q, Bai L, Hang K, Wang D. Identification of organic pollutants with potential ecological and health risks in aquatic environments: Progress and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150691. [PMID: 34600995 DOI: 10.1016/j.scitotenv.2021.150691] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Thousands of organic pollutants are intentionally and unintentionally discharged into water bodies, adversely affecting the ecological environment and human health. Screening for organic pollutants that pose a potential risk in aquatic environments is essential for risk management. This review evaluates the processes, methods, and technologies used to screen such pollutants in the aquatic environment and discuss their advantages and disadvantages, in addition to the challenges and knowledge gaps in this field. Combining non-target screening, target screening, and suspect screening is often effective for compiling a list of potential risk compounds and enables the quantitative analysis of these compounds. Sample preparation technologies and pollutant detection technologies considerably affect the results of pollutant screening. The limited amount of chemical and toxicological information contained in databases hinders the screening of organic pollutants with potential risk. Machine learning, high-throughput methods, and other technologies will increase the accuracy and convenience of screening for high-risk pollutants. This review provides an important reference for screening these compounds in aquatic environments and can be used in future pollutant screening and risk management.
Collapse
Affiliation(s)
- Yanjun Du
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China; National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 100021 Beijing, China
| | - Xiong Xu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| | - Quanzhen Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Lu Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Kexin Hang
- Experimental High School Attached to Beijing Normal University, 100052 Beijing, China
| | - Donghong Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China.
| |
Collapse
|
8
|
Liu X, Yang L, Wang M, Zheng M, Li C, Qin L, Liu G. Insights into the Formation and Profile of Chlorinated Polycyclic Aromatic Hydrocarbons during Chlorobenzene and Chloroethylene Manufacturing Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15929-15939. [PMID: 34812043 DOI: 10.1021/acs.est.1c05688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chlorinated polycyclic aromatic hydrocarbons including chlorinated naphthalenes and congeners with three to five rings are ubiquitous atmospheric pollutants. Congener profiles and formation mechanisms from typical chemical manufacturing have not been researched extensively. We measured the concentrations of 75 chlorinated naphthalenes and 18 chlorinated polycyclic aromatic hydrocarbons in raw materials, intermediates, products, and bottom residues from chemical plants producing monochlorobenzene and chloroethylene by different techniques. The findings confirmed that these chemical manufacturing processes are newly identified sources of atmospheric emissions of these compounds. More-chlorinated naphthalenes were formed from chloroethylene production than from monochlorobenzene production, which could be explained by the higher temperatures in the former process. Successive chlorination appeared to be an important formation pathway of polychlorinated naphthalenes according to their congener profiles and was supported by quantum chemical calculations of electrophilic chlorination on various positions of naphthalene. Chlorinated polycyclic aromatic hydrocarbons were more likely to be formed during the production of monochlorobenzene than chloroethylene. Moreover, we suggested that ring rearrangement and ring coupling are important transformation reactions between polychlorinated naphthalenes and chlorinated polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Xiaoyun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minxiang Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of the Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, China
| | - Cui Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linjun Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of the Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
9
|
Xie J, Tao L, Wu Q, Lei S, Lin T. Environmental profile, distributions and potential sources of halogenated polycyclic aromatic hydrocarbons. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126164. [PMID: 34323730 DOI: 10.1016/j.jhazmat.2021.126164] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/04/2021] [Accepted: 05/16/2021] [Indexed: 05/04/2023]
Abstract
Halogenated polycyclic aromatic hydrocarbons (HPAHs) are high lipophilic and degradation-resistant, which have been detected in the air, water, sediment and biota. HPAHs tend to have strong adverse effects on animals and humans. Although we have realized HPAHs are emerging contaminants which needs to be paid attention, there is still a lack of their individual commercial standards. This makes it difficult for understanding HPAHs comprehensively. This review is devoted to collect all the results have reported, and give a systemic look of their global distributions, influence factors and sources. Compared with air, studies on other environmental matrices (water and sediment) are more limited. The researches on organisms are fewest. Comparing the studied congeners, there are more studies on ClPAHs than BrPAHs. Human activities contribute mostly to their occurrence. Further, we then also introduce the toxicity and analytical methods to better understand HPAHs. The future research directions are also provided. Through this review, we can conclude there is an urgent need to develop analysis methods and ecologic risk assessment for better exploring HPAHs. Effective methods should be done to control HPAHs. Therefore, this review can provide a good basis for researchers to understand and control global pollution.
Collapse
Affiliation(s)
- Jingqian Xie
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Skate Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Ling Tao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Qiang Wu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Shiming Lei
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
10
|
Ito-Harashima S, Matsuura M, Takada E, Kawanishi M, Nakagawa Y, Yagi T. Detection of juvenile hormone agonists by a new reporter gene assay using yeast expressing Drosophila methoprene-tolerant. FEBS Open Bio 2021; 11:2774-2783. [PMID: 34407562 PMCID: PMC8487040 DOI: 10.1002/2211-5463.13277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/18/2021] [Accepted: 08/18/2021] [Indexed: 12/26/2022] Open
Abstract
Juvenile hormones (JHs) are sesquiterpenoids that play important roles in the regulation of growth, metamorphosis, and reproduction in insects. Synthetic JH agonists (JHAs) have been used as insecticides and are categorized as a class of insect growth regulators (IGRs). Natural JHs and synthetic JHAs bind to the JH receptor methoprene‐tolerant (Met), which forms a functional JH‐receptor complex with steroid receptor coactivators, such as Drosophila melanogaster Taiman (Tai). The ligand‐bound Met–Tai complex induces the transcription of JH response genes by binding to specific DNA elements referred to as JH response elements (JHREs). In the present study, we established a reporter gene assay (RGA) for detecting natural JHs and synthetic JHAs in a yeast strain expressing D. melanogaster Met and Tai. The yeast RGA system detected various juvenoid ligands in a dose‐dependent manner. The rank order of the ligand potencies of the juvenoids examined in the yeast RGA linearly correlated with those of RGAs for Met–Tai established in mammalian and insect cells. Our new yeast RGA is rapid, easy to handle, cost‐effective, and valuable for screening novel JHAs.
Collapse
Affiliation(s)
- Sayoko Ito-Harashima
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
| | - Mai Matsuura
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
| | - Eiji Takada
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
| | - Masanobu Kawanishi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
| | - Yoshiaki Nakagawa
- Division of Applied Science, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Japan
| | - Takashi Yagi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
| |
Collapse
|
11
|
Ito-Harashima S, Matano M, Onishi K, Nomura T, Nakajima S, Ebata S, Shiizaki K, Kawanishi M, Yagi T. Construction of reporter gene assays using CWP and PDR mutant yeasts for enhanced detection of various sex steroids. Genes Environ 2020; 42:20. [PMID: 32514322 PMCID: PMC7251871 DOI: 10.1186/s41021-020-00159-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/16/2020] [Indexed: 12/21/2022] Open
Abstract
Background Sex steroid hormone receptors are classified into three classes of receptors: estrogen receptors (ER) α and β, androgen receptor (AR), and progesterone receptor (PR). They belong to the nuclear receptor superfamily and activate their downstream genes in a ligand-dependent manner. Since sex steroid hormones are involved in a wide variety of physiological processes and cancer development, synthetic chemical substances that exhibit sex steroid hormone activities have been applied as pharmaceuticals and consumed in large amounts worldwide. They are potentially hazardous contaminants as endocrine disruptors in the environment because they may induce inappropriate gene expression mediated by sex steroid hormone receptors in vivo. Results To develop simple reporter gene assays with enhanced sensitivity for the detection of sex steroid hormones, we newly established mutant yeast strains lacking the CWP and PDR genes encoding cell wall mannoproteins and plasma membrane drug efflux pumps, respectively, and expressing human ERα, ERβ, AR, and PR. Reporter gene assays with mutant yeast strains responded to endogenous and synthetic ligands more strongly than those with wild-type strains. Sex steroid hormone activities in some pharmaceutical oral tablets and human urine were also detectable in these yeast assays. Conclusions Yeast reporter gene assay systems for all six steroid hormone receptors, including previously established glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) assay yeasts, are now available. Environmental endocrine disrupters with steroid hormone activity will be qualitatively detectable by simple and easy procedures. The yeast-based reporter gene assay will be valuable as a primary screening tool to detect and evaluate steroid hormone activities in various test samples. Our assay system will strongly support the detection of agonists, antagonists, and inverse agonists of steroid hormone receptors in the field of novel drug discovery and assessments of environmental pollutants.
Collapse
Affiliation(s)
- Sayoko Ito-Harashima
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan
| | - Mami Matano
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan
| | - Kana Onishi
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan
| | - Tomofumi Nomura
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan
| | - Saki Nakajima
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan
| | - Shingo Ebata
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan
| | - Kazuhiro Shiizaki
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan.,Present address: Department of Applied Biosciences, Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma 374-0193 Japan
| | - Masanobu Kawanishi
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan
| | - Takashi Yagi
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan
| |
Collapse
|
12
|
Kawanishi M, Mori K, Yamada R, Ito-Harashima S, Yagi T. Improvement of reporter gene assay for highly sensitive dioxin detection using protoplastic yeast with inactivation of CWP and PDR genes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9227-9235. [PMID: 31916168 DOI: 10.1007/s11356-019-07484-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
A yeast reporter gene assay system with improved performance for dioxin detection was established. Since yeast reporter gene assays are relatively simple, easy to handle, and inexpensive, they have been used for various assessments of environmental contaminants. We previously constructed a yeast assay strain expressing the aryl hydrocarbon receptor (AhR) and AhR nuclear translocator (Arnt) carrying the lacZ reporter gene, for detection of dioxins. In the present study, genes encoding cell wall mannoproteins and ATP-binding cassette transporters in the yeast assay strains were deleted in order to increase the substance influx and prevent its efflux. We also established an assay procedure for protoplasts of these yeasts. These modifications improved the detection limit 40-fold and reduced the duration of the assay by 40%. By combining the yeast protoplast and a rapid sample preparation technique using disposal multilayer solid-phase extraction columns to remove unintended aryl hydrocarbons, this yeast reporter gene assay system detected the ligand activities of dioxins and related compounds in 1 g of forest soil containing dioxins at a concentration 10 times lower than the Japanese environmental standard for dioxins in soil.
Collapse
Affiliation(s)
- Masanobu Kawanishi
- Graduate School of Science and Radiation Research Center, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570, Japan.
| | - Kentaro Mori
- Graduate School of Science and Radiation Research Center, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570, Japan
| | - Rina Yamada
- Graduate School of Science and Radiation Research Center, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570, Japan
| | - Sayoko Ito-Harashima
- Graduate School of Science and Radiation Research Center, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570, Japan
| | - Takashi Yagi
- Graduate School of Science and Radiation Research Center, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570, Japan
| |
Collapse
|
13
|
Modulation of glioma-inflammation crosstalk profiles in human glioblastoma cells by indirubin-3'-(2,3 dihydroxypropyl)-oximether (E804) and 7-bromoindirubin-3'-oxime (7BIO). Chem Biol Interact 2019; 312:108816. [PMID: 31505164 DOI: 10.1016/j.cbi.2019.108816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/05/2019] [Indexed: 11/23/2022]
Abstract
Indirubins E804 (indirubin-3'-(2,3 dihydroxypropyl)-oximether) and 7BIO (7-Bromoindirubin-3'-oxime) are synthetic derivatives of natural indirubin, the active compound in Danggui Longhui Wan, a traditional Chinese remedy for cancer and inflammation. Herein, we explore E804 and 7BIO for their potential to modulate key pro-inflammatory genes and cytokines in LN-18 and T98G glioblastoma cells. High grade gliomas typically secrete large amounts of inflammatory cytokines and growth factors that promote tumor growth in an autocrine fashion. Inflammation is emerging as a key concern in the success of new treatment modalities for glioblastomas. Studies indicate that select indirubin derivatives bind and activate signaling of the AHR pathway, as well as inhibit cyclin-dependent kinases and STAT3 signaling. AHR signaling is involved in hematopoiesis, immune function, cell cycling, and inflammation, and thus may be a possible target for glioma treatment. To determine the significance of the AHR pathway in LN-18 and T98G glioma inflammatory profiles, and on the effects of E804 and 7BIO on these profiles, we used 6,2',4'-trimethoxyflavone (TMF), a putative selective AHR antagonist. It was confirmed that E804 and 7BIO activates the AHR leading to cyp1b1 expression, and that TMF antagonizes expression. We then employed a commercial cancer inflammation and immunity crosstalk qRT-PCR array to screen for anti-inflammatory related properties. TMF alone inhibited expression of ifng, ptsg2, il12b, tnfa, il10, il13, the balance between pd1 and pdl1, and even expression of mhc1a/b. E804 was very potent in suppressing many pro-inflammatory genes, including il1a, il1b, il12a, ptgs2, tlr4, and others. E804 also affected expression of il6, vegfa, and stat3. Conversely, 7BIO induced cox2, but suppressed a different selection of pro-inflammatory genes including nos2, tnfa, and igf1. Secretion of IL-6 protein, an iconic inflammatory cytokine, was decreased by E804. VEGF (vascular endothelial growth factor) protein secretion was upregulated by 7BIO, yet downregulated by E804 and E804 plus TMF. Thus, E804 is both an AHR ligand and regulator of important pro-inflammatory cytokines such as IL-6 and oncogene STAT3, among others. Our results point to the use of E804 and TMF in combination as a promising new treatment for glioblastoma.
Collapse
|
14
|
Zhao Y, Li D, Zhang Z, Pan L. In vitro recombinant yeast assay reveals the binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and aryl hydrocarbon receptor (AhR) from scallop Chlamys farreri. Toxicol In Vitro 2019; 59:64-69. [PMID: 30954654 DOI: 10.1016/j.tiv.2019.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 10/27/2022]
|
15
|
Chen XB, Xiong SL, Xie ZX, Wang YC, Liu W. Three-Component One-Pot Synthesis of Highly Functionalized Bis-Indole Derivatives. ACS OMEGA 2019; 4:11832-11837. [PMID: 31460292 PMCID: PMC6682060 DOI: 10.1021/acsomega.9b01159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/25/2019] [Indexed: 05/10/2023]
Abstract
In this study, we detail the development of a concise and efficient three-component protocol for the regioselective synthesis of highly functionalized bis-indoles through a one-pot, two-step sequential process starting from enaminones 1, indoles 2, and acenaphthylene-1,2-dione 3 that is catalyzed by piperidine and p-methyl benzenesulfonic acid. This protocol has several advantages including simplicity of experimental operation, high efficiency of bond formation, ready availability and low cost of starting materials, environmentally benign conditions, and target molecular diversity.
Collapse
Affiliation(s)
- Xue-Bing Chen
- School
of Science, Honghe University, Mengzi, 661100 Yunnan, P. R. China
| | - Sheng-Li Xiong
- School
of Science, Honghe University, Mengzi, 661100 Yunnan, P. R. China
| | - Zhi-Xu Xie
- School
of Science, Honghe University, Mengzi, 661100 Yunnan, P. R. China
| | - Yong-Chao Wang
- School
of Vocational and Technical Education, Yunnan
Normal University, Kunming 650092, P. R. China
| | - Wei Liu
- School
of Science, Honghe University, Mengzi, 661100 Yunnan, P. R. China
| |
Collapse
|
16
|
Ohura T, Horii Y, Yamashita N. Spatial distribution and exposure risks of ambient chlorinated polycyclic aromatic hydrocarbons in Tokyo Bay area and network approach to source impacts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 232:367-374. [PMID: 28993023 DOI: 10.1016/j.envpol.2017.09.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
Chlorinated polycyclic aromatic hydrocarbons (ClPAHs) receive increasing attention as hazardous pollutants in terms of the high environmental persistence and toxicities. Ambient concentrations of 24 ClPAHs and 24 PAHs were investigated at 14 sites in the Tokyo Bay area of Japan. Twelve of 18 ClPAH species were detected in air samples, in spite of small sampling volumes. Mean concentrations of total PAHs in gas and particle phases were 5400 and 1400 pg/m3, and mean concentrations of total ClPAHs in gas and particle phases were 40 and 14 pg/m3, respectively. The spatial distributions of both total ClPAH and PAH concentrations indicated heavy pollution at sites in industrial activity areas. Principal component analysis suggested that the dominant sources of gaseous and particulate ClPAHs differed substantially from each other. In particular, gaseous ClPAHs could be produced by specific sources different from those of particulate ClPAHs. However, the dominant sources of particulate ClPAHs could be the same as those of particulate PAHs, including industrial activities such as steel and gas-production plants and natural gas-fired power plants. The influences of spatial relationships among sampling sites were represented using a network analysis. The constructed network showed that ambient ClPAHs and PAHs were dominated by local rather than regional pollution, because there were weaker relationships among nearby sites. Finally, exposure risks for ClPAHs were dominated by 7-chlorobenz[a]anthracene, followed by 9-chlorophenanthrene and 6-chlorobenzo[a]pyrene, and total risk was ∼1/200 that of PAHs.
Collapse
Affiliation(s)
- Takeshi Ohura
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Nagoya 468-8502, Japan.
| | - Yuichi Horii
- Center for Environmental Science in Saitama, 914 Kamitanadare, Kazo, Saitama 347-0115, Japan
| | - Nobuyoshi Yamashita
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| |
Collapse
|
17
|
Otarola G, Castillo H, Marcellini S. Aryl hydrocarbon receptor-based bioassays for dioxin detection: Thinking outside the box. J Appl Toxicol 2017; 38:437-449. [DOI: 10.1002/jat.3575] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/26/2017] [Accepted: 11/09/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Gaston Otarola
- Department of Cell Biology, Faculty of Biological Sciences; University of Concepcion; Chile
| | - Hector Castillo
- Department of Cell Biology, Faculty of Biological Sciences; University of Concepcion; Chile
| | - Sylvain Marcellini
- Department of Cell Biology, Faculty of Biological Sciences; University of Concepcion; Chile
| |
Collapse
|
18
|
Wang YJ, Liao RQ, Liu WL, Kannan K, Ohura T, Wu MH, Ma J. Chlorinated polycyclic aromatic hydrocarbons in surface sediment from Maowei Sea, Guangxi, China: occurrence, distribution, and source apportionment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:16241-16252. [PMID: 28540547 DOI: 10.1007/s11356-017-9193-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
Chlorinated polycyclic aromatic hydrocarbons (ClPAHs) with three to five aromatic rings have been documented to ubiquitously occur in environmental matrices. In this study, residual concentrations and profiles of 20 individual ClPAHs were determined in 35 surface sediment samples from Maowei Sea, a semi-enclosed shallow inland bay located in the northwestern part of South China Sea. The concentrations of ΣClPAHs in sediment ranged from 313 to 9650 pg/g dw with a detection rate of 43-100%. Of the individual ClPAH congeners, 9-ClPhe was the most abundant in Maowei Sea with the concentrations that ranged from 99.9 to 3610 pg/g dw (mean 1120 pg/g dw). High-molecular-weight ClPAH congeners (four to five rings) were predominant in sediments from sampling locations near a petrochemical industrial complex, whereas low-molecular-weight ClPAH congeners (three rings) were predominant in sediments from estuarine and mangrove locations. A positive matrix factorization (PMF) model in combination with dioxin-like toxic equivalency quotient (TEQ) results was used to apportion sources of ClPAHs. Vehicular emission, combustion/chemical industrial processes, and two other unknown sources accounted for 40.1, 25.5, 20.8, and 13.6%, respectively, of ClPAH sources in sediment; their contribution to TEQs in sediments were 24.2, 40.5, 19.3, and 16.0%, respectively. Further investigations are needed to elucidate potential sources and ecological risks of ClPAHs in sediments.
Collapse
Affiliation(s)
- Yu-Jie Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Shanghai, 200433, China
| | - Ri-Quan Liao
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Qinzhou University, Qinzhou, Guangxi, 535000, China
| | - Wen-Long Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY, 12201-0509, USA.
| | - Takeshi Ohura
- Faculty of Agriculture, Meijo University, 1-501 Tempaku, Nagoya, 468-8502, Japan
| | - Ming-Hong Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jing Ma
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Shanghai, 200433, China.
| |
Collapse
|
19
|
Ito-Harashima S, Matsuura M, Kawanishi M, Nakagawa Y, Yagi T. New reporter gene assays for detecting natural and synthetic molting hormone agonists using yeasts expressing ecdysone receptors of various insects. FEBS Open Bio 2017; 7:995-1008. [PMID: 28680812 PMCID: PMC5494300 DOI: 10.1002/2211-5463.12239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/18/2017] [Accepted: 05/02/2017] [Indexed: 01/14/2023] Open
Abstract
Synthetic nonsteroidal ecdysone agonists, a class of insect growth regulators (IGRs), target the ecdysone receptor (EcR), which forms a heterodimer with ultraspiracle (USP) to transactivate ecdysone response genes. These compounds have high binding affinities to the EcR–USP complexes of certain insects and their toxicity is selective for certain taxonomic orders. In the present study, we developed reporter gene assay (RGA) systems to detect molting hormone (ecdysone) activity by introducing EcR–USP cDNA and a bacterial lacZ reporter gene into yeast. EcR and USP were derived from the insect species of three different taxonomic orders: Drosophila melanogaster (Diptera), Chilo suppressalis (Lepidoptera), and Leptinotarsa decemlineata (Coleoptera). Transcriptional coactivator taiman (Tai) cDNA cloned from D. melanogaster was also used in this RGA system. This yeast RGA system responded to various EcR ligands in a dose‐dependent and ecdysteroid‐specific manner. Furthermore, the insect order‐selective ligand activities of synthetic nonsteroidal ecdysone agonists were linearly related to their binding activities, which were measured against in vitro translated EcR–USP complexes. Our newly established yeast RGA is useful for screening new molting hormone agonists that work selectively on target insects.
Collapse
Affiliation(s)
- Sayoko Ito-Harashima
- Department of Biology Graduate School of Science Osaka Prefecture University Sakai Osaka Japan
| | - Mai Matsuura
- Department of Biology Graduate School of Science Osaka Prefecture University Sakai Osaka Japan
| | - Masanobu Kawanishi
- Department of Biology Graduate School of Science Osaka Prefecture University Sakai Osaka Japan
| | - Yoshiaki Nakagawa
- Division of Applied Life Sciences Graduate School of Agriculture Kyoto University Sakyo-ku Kyoto Japan
| | - Takashi Yagi
- Department of Biology Graduate School of Science Osaka Prefecture University Sakai Osaka Japan.,Department of Life Science Dongguk University Biomedical Campus Goyang Gyeonggi-do South Korea
| |
Collapse
|
20
|
Nishimura C, Horii Y, Tanaka S, Asante KA, Ballesteros F, Viet PH, Itai T, Takigami H, Tanabe S, Fujimori T. Occurrence, profiles, and toxic equivalents of chlorinated and brominated polycyclic aromatic hydrocarbons in E-waste open burning soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:252-260. [PMID: 28343715 DOI: 10.1016/j.envpol.2016.10.088] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/27/2016] [Accepted: 10/29/2016] [Indexed: 05/24/2023]
Abstract
We conducted this study to assess the occurrence, profiles, and toxicity of chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs) and brominated polycyclic aromatic hydrocarbons (Br-PAHs) in e-waste open burning soils (EOBS). In this study, concentrations of 15 PAHs, 26 Cl-PAHs and 14 Br-PAHs were analyzed in EOBS samples. We found that e-waste open burning is an important emission source of Cl-PAHs and Br-PAHs as well as PAHs. Concentrations of total Cl-PAHs and Br-PAHs in e-waste open burning soil samples ranged from 21 to 2800 ng/g and from 5.8 to 520 ng/g, respectively. Compared with previous studies, the mean of total Cl-PAH concentrations of the EOBS samples in this study was higher than that of electronic shredder waste, that of bottom ash, and comparable to fly ash from waste incinerators in Korea and Japan. The mean of total Br-PAH concentrations of the EOBS samples was generally three to four orders of magnitude higher than those in incinerator bottom ash and comparable to incinerator fly ash, although the number of Br-PAH congeners measured differed among studies. We also found that the Cl-PAH and Br-PAH profiles were similar among all e-waste open burning soil samples but differed from those in waste incinerator fly ash. The profiles and principal component analysis results suggested a unique mechanism of Cl-PAH and Br-PAH formation in EOBS. In addition, the Cl-PAHs and Br-PAHs showed high toxicities equivalent to PCDD/Fs measured in same EOBS samples when calculated based on their relative potencies to benzo[a]pyrene. Along with chlorinated and brominated dioxins and PAHs, Cl-PAHs and Br-PAHs are important environmental pollutants to investigate in EOBS.
Collapse
Affiliation(s)
- Chiya Nishimura
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, 615-8540, Kyoto, Japan
| | - Yuichi Horii
- Center for Environmental Science in Saitama, 347-0115, Saitama, Japan
| | - Shuhei Tanaka
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, 615-8540, Kyoto, Japan; Department of Technology and Ecology, Graduate School of Global Environmental Studies, Kyoto University, 606-8501, Kyoto, Japan
| | | | - Florencio Ballesteros
- Department of Chemical Engineering, University of the Philippines Diliman, Quezon City, 1101, Metro Manila, Philippines
| | - Pham Hung Viet
- Center for Environmental Technology and Sustainable Development, Hanoi University of Science, 334 Nguyen Trai, Hanoi, Viet Nam
| | - Takaaki Itai
- Center for Marine Environmental Studies, Ehime University, 790-8577, Matsuyama, Japan
| | - Hidetaka Takigami
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 305-8506, Tsukuba, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies, Ehime University, 790-8577, Matsuyama, Japan
| | - Takashi Fujimori
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, 615-8540, Kyoto, Japan; Department of Global Ecology, Graduate School of Global Environmental Studies, Kyoto University, 615-8540, Kyoto, Japan.
| |
Collapse
|
21
|
Development of yeast reporter assays for the enhanced detection of environmental ligands of thyroid hormone receptors α and β from Xenopus tropicalis. Toxicol In Vitro 2016; 37:15-24. [PMID: 27544454 DOI: 10.1016/j.tiv.2016.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 06/10/2016] [Accepted: 08/16/2016] [Indexed: 11/21/2022]
Abstract
Thyroid hormones (THs) are involved in the regulation of metabolic homeostasis during the development and differentiation of vertebrates, particularly amphibian metamorphosis, which is entirely controlled by internal TH levels. Some artificial chemicals have been shown to exhibit TH-disrupting activities. In order to detect TH disruptors for amphibians, we herein developed a reporter assay using yeast strains expressing the thyroid hormone receptors (TRs) α and β together with the transcriptional coactivator SRC-1, all of which were derived from the frog Xenopus tropicalis (XT). These yeast strains responded to endogenous THs (T2, T3, and T4) in a dose-dependent manner. They detected the TR ligand activities of some artificial chemicals suspected to exhibit TH-disrupting activities, as well as TR ligand activity in river water collected downstream of sewage plant discharges, which may have originated from human excrement. Moreover, the responses of XT TR strains to these endogenous and artificial ligands were stronger than those of yeast strains for human TRα and β assays, which had previously been established in our laboratory. These results indicate that the yeast reporter assay system for XT TRα and β is valuable for assessing TR ligand activities in environmental samples that may be particularly potent in amphibians.
Collapse
|
22
|
Faiad W, Hanano A, Kabakibi MM, Abbady AQ. Immuno-detection of dioxins using a recombinant protein of aryl hydrocarbon receptor (AhR) fused with sfGFP. BMC Biotechnol 2016; 16:51. [PMID: 27328714 PMCID: PMC4915173 DOI: 10.1186/s12896-016-0282-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/13/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dioxins are one of the most toxic groups of persistent organic pollutants. Their bioaccumulation through the food chain constitutes a potential risk for human health. Upon cell entry, dioxins bind specifically and firmly to the aryl hydrocarbon receptor (AhR), leading to the stimulation of several enzymes responsible for its detoxification. Dioxin/AhR interaction could be exploited as an affordable alternative to a variety of analytical methods for detecting dioxin contamination in the environment. RESULTS In this work, the ligand binding domain (LBD) of the AhR was cloned downstream a superfolder form of the green fluorescent protein (sfGFP), resulting in the construct pRSET-sfGFP-AhR. High level of expressed sfGFP-AhR fusion protein (50 kDa) was recovered from the inclusion bodies of E. coli by simple solubilization with the Arginine, and purified by affinity chromatography via its N-terminal 6 × His tag. Its purity was confirmed by SDS-PAGE analysis and immunoblotting with anti-His or anti-GFP antibodies. Indirect ELISA revealed the ability of the sfGFP-AhR, but not the sfGFP, to bind to the immobilized dioxin with the possibility to detect such interaction by both its 6 × His and GFP tags,Competitive ELISA showed that anti-dioxin antibody was more sensitive to low dioxin concentrations than sfGFP-AhR. Nevertheless,the detection range of sfGFP-AhR fusion was much wider and the detection limit was of about 10 ppt (parts per trillion) of free dioxin in the tested artificial samples. CONCLUSIONS this highly expressed and functional sfGFP-AhR fusion protein provides a promising molecular tool for detecting and quantifying different congeners of dioxins.
Collapse
Affiliation(s)
- Walaa Faiad
- Department of Animal Biology, Faculty of Sciences, Damascus University, Damascus, Syria
| | - Abdulsamie Hanano
- Division of Toxicology, Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| | | | - Abdul Qader Abbady
- Division of Microbiology and Immunology, Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria.
| |
Collapse
|
23
|
Shiizaki K, Kawanishi M, Yagi T. Microbial metabolites of omeprazole activate murine aryl hydrocarbon receptor in vitro and in vivo. Drug Metab Dispos 2014; 42:1690-7. [PMID: 25061160 DOI: 10.1124/dmd.114.058966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Omeprazole (OME), a proton pump inhibitor used to treat gastritis, is also an aryl hydrocarbon receptor (AhR) activator. OME activates AhR in human hepatocytes and hepatoma cells, but not in mice in vivo or in vitro. We recently discovered that this species-specific difference results from a difference in a few amino acids in the ligand-binding domain of AhR. However, OME activates both mouse and human AhRs in the yeast reporter assay system. Nevertheless, the cause of this discrepancy in OME responses remains unknown. Here, we report that CYP1A1 mRNA expression in mouse cecum was elevated after OME administration, although the mouse is regarded as an OME-unresponsive animal. Using the yeast reporter assay system with human and murine AhRs, we found AhR agonist-like activity in the cecal extracts of OME-treated mice. We speculated that OME metabolites produced by cecal bacteria might activate murine AhRs in vivo. In high-performance liquid chromatography (HPLC) analysis, AhR agonist-like activity of cecal bacterial culture and cecal extracts were detected at the same retention time. AhR agonist-like activity was also detected in the HPLC fractions of yeast culture media containing OME. This unknown substance could induce reporter gene expression via mouse and human AhRs. The agonist-like activity of the OME metabolite was reduced by concomitant α-naphthoflavone exposure. These results indicate that a yeast-generated OME metabolite elicited the response of mouse AhR to OME in the yeast system, and that bacterial OME metabolites may act as AhR ligands in human and mouse intestines.
Collapse
Affiliation(s)
- Kazuhiro Shiizaki
- Division of Cancer Development System, National Cancer Center Research Institute, Tokyo, Japan (K.S.); Department of Biology, Graduate School of Science, Osaka Prefecture University, Osaka, Japan (M.K., T.Y.); and Department of Life Science, Dongguk University, Seoul, South Korea (T.Y.)
| | - Masanobu Kawanishi
- Division of Cancer Development System, National Cancer Center Research Institute, Tokyo, Japan (K.S.); Department of Biology, Graduate School of Science, Osaka Prefecture University, Osaka, Japan (M.K., T.Y.); and Department of Life Science, Dongguk University, Seoul, South Korea (T.Y.)
| | - Takashi Yagi
- Division of Cancer Development System, National Cancer Center Research Institute, Tokyo, Japan (K.S.); Department of Biology, Graduate School of Science, Osaka Prefecture University, Osaka, Japan (M.K., T.Y.); and Department of Life Science, Dongguk University, Seoul, South Korea (T.Y.)
| |
Collapse
|
24
|
Fernando S, Jobst KJ, Taguchi VY, Helm PA, Reiner EJ, McCarry BE. Identification of the halogenated compounds resulting from the 1997 Plastimet Inc. fire in Hamilton, Ontario, using comprehensive two-dimensional gas chromatography and (ultra)high resolution mass spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:10656-10663. [PMID: 25133985 DOI: 10.1021/es503428j] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Between July 9-12, 1997, at least 400 tonnes of polyvinyl chloride (PVC) were consumed in a fire at the Plastimet Inc. plastics recycling facility in Hamilton, Ontario, Canada. This led to the release of contaminants, including highly toxic polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofurans (PCDF). This study re-examines a composite soil sample collected shortly after the fire using state-of-the-art FT-ICR (Fourier transform ion cyclotron resonance) and GC × GC-TOF (comprehensive two-dimensional gas chromatography-time-of-flight) mass spectrometry. The FT-ICR experiments led to the identification of approximately 150 molecular formulas, corresponding to chlorinated and mixed chloro/bromo compounds. The majority of these are halogenated polycyclic aromatic hydrocarbons (halo-PAHs), including highly substituted (e.g., C14HCl9 and C16HCl9) and high molecular weight (e.g., C28H12Cl4) Cl-PAHs that have not been reported previously in environmental samples. Complementary GC × GC-TOF experiments resolved individual halo-PAHs, some of which were confirmed with available standards. The concentrations of the most abundant halo-PAH groups, C14H8Cl2 (22 μg/g) and C16H8Cl2 (20 μg/g) are much higher than reported dioxin values and comparable to the corresponding PAH groups C14H10 (12 μg/g) and C16H10 (19 μg/g). The high abundance of the halo-PAHs identified in this study highlights the need for further investigation into their environmental occurrence and risk.
Collapse
Affiliation(s)
- Sujan Fernando
- Department of Chemistry and Chemical Biology, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Terasaki M, Yasuda M, Shimoi K, Jozuka K, Makino M, Shiraishi F, Nakajima D. Evaluation of sensitizers found in wastewater from paper recycling areas, and their activation of the aryl hydrocarbon receptor in vitro. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 493:156-161. [PMID: 24950494 DOI: 10.1016/j.scitotenv.2014.05.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 06/03/2023]
Abstract
The in vitro potential of sensitizers and related compounds (SRCs) originating from impurities in waste paper in activating the human aryl hydrocarbon receptor (AhR) α was assessed using yeast reporter gene as well as cytochrome P450 (CYP)1A1 and ethoxyresorufin O-deethylase (EROD) assays. In the yeast assay, eight compounds exhibited agonist activity, and their activity relative to β-naphthoflavone (BNF) ranged from 1.4 × 10(-4) to 8.3 × 10(-2), with the highest activity observed for benzyl 2-naphthyl ether (BNE). In the EROD assay, six compounds caused a more significant induction of CYP1A-dependent activity than did the vehicle control at 50 μM (p<0.01), and their induction levels were 5.1- to 11-fold more potent; 1,2-bis(3-methylphenoxy)ethane (BME) was the most effective inducer. The water from the waste paper recycling area was fractioned using solid-phase extraction (SPE) combined with a C18 disk and florisil cartridge. In gas chromatography-mass spectrometry (GC-MS) analysis, SRCs were detected in the first fraction, at a total concentration of 5.5 μg/L. This fraction also activated AhR, and its activity, expressed as a BNF equivalent value, was 0.42 nM in the yeast assay. The contribution ratio of active compounds accounted for up to 34% and 4.4% observed activity of the fraction and total samples, respectively. To our knowledge, this is the first study to show that paper industry-related compounds, namely aromatic sensitizers, activate AhR by using a yeast assay and HepG2 cells.
Collapse
Affiliation(s)
- Masanori Terasaki
- Institute for Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Michiko Yasuda
- Institute for Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kayoko Shimoi
- Institute for Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kazuhiko Jozuka
- Institute for Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Masakazu Makino
- Institute for Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Fujio Shiraishi
- Research Center for Environmental Risk, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Daisuke Nakajima
- Research Center for Environmental Risk, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| |
Collapse
|
26
|
Kakimoto K, Nagayoshi H, Konishi Y, Kajimura K, Ohura T, Hayakawa K, Toriba A. Atmospheric chlorinated polycyclic aromatic hydrocarbons in East Asia. CHEMOSPHERE 2014; 111:40-46. [PMID: 24997898 DOI: 10.1016/j.chemosphere.2014.03.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/18/2014] [Accepted: 03/23/2014] [Indexed: 06/03/2023]
Abstract
This study estimates atmospheric concentrations of chlorinated polycyclic aromatic hydrocarbons (ClPAHs) and polycyclic aromatic hydrocarbons (PAHs) in East Asia using a Gas Chromatograph with High Resolution Mass Spectrometer (GC-HRMS). ClPAHs are ubiquitously generated from PAHs through substitution, and some ClPAHs show higher aryl hydrocarbon receptor (AhR)-mediated activities than their parent PAHs. Atmospheric particles were collected using a high-volume air sampler equipped with a quartz-fiber filter. We determined the ClPAH concentrations of atmospheric particles collected in Japan (Sapporo, Sagamihara, Kanazawa, and Kitakyushu), Korea (Busan), and China (Beijing). The concentrations of ClPAHs were highest in the winter Beijing sample, where the total mean concentration was approximately 15-70 times higher than in the winter samples from Japan and Korea. The concentrations of Σ19ClPAHs and Σ9PAHs were significantly correlated in the Kanazawa and the Busan samples. This indicates that within those cities ClPAHs and PAHs share the same origin, implying direct chlorination of parent PAHs. Toxic equivalent concentrations (TEQs) of the total ClPAHs and PAHs were lowest in Kanazawa in the summer, reaching 1.18 and 2610fg-TEQm(-3) respectively, and highest in Beijing in the winter, reaching 627 and 4240000fg-TEQm(-3) respectively.
Collapse
Affiliation(s)
- Kensaku Kakimoto
- Osaka Prefectural Institute of Public Health, 1-3-69, Nakamichi, Higashinari-ku, Osaka 537-0025, Japan; Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Haruna Nagayoshi
- Osaka Prefectural Institute of Public Health, 1-3-69, Nakamichi, Higashinari-ku, Osaka 537-0025, Japan
| | - Yoshimasa Konishi
- Osaka Prefectural Institute of Public Health, 1-3-69, Nakamichi, Higashinari-ku, Osaka 537-0025, Japan
| | - Keiji Kajimura
- Osaka Prefectural Institute of Public Health, 1-3-69, Nakamichi, Higashinari-ku, Osaka 537-0025, Japan
| | - Takeshi Ohura
- Department of Environmental Bioscience, Faculty of Agriculture, Meijo University, 1-501, Shiogamaguchi, Tenpaku-ku, Nagoya 468-8502, Japan
| | - Kazuichi Hayakawa
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Akira Toriba
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
27
|
Wilson SR, Joshi AD, Elferink CJ. The tumor suppressor Kruppel-like factor 6 is a novel aryl hydrocarbon receptor DNA binding partner. J Pharmacol Exp Ther 2013; 345:419-29. [PMID: 23512538 PMCID: PMC3657114 DOI: 10.1124/jpet.113.203786] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 03/18/2013] [Indexed: 01/17/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-mediated basic helix-loop-helix transcription factor of the Per/Arnt/Sim family that regulates adaptive and toxic responses to a variety of chemical pollutants, including polycyclic aromatic hydrocarbons and halogenated aromatic hydrocarbons, most notably 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Ligand activation leads to AhR nuclear translocation and binding to a xenobiotic response element (XRE) in association with the Arnt to regulate gene expression. Several recent genome-wide transcriptional studies identified numerous AhR target genes that lack the canonical XRE recognition site in the promoter regions. Characterization of one such target gene, the plasminogen activator inhibitor 1, identified a novel nonconsensus XRE (NC-XRE) that confers TCDD responsiveness independently of the Arnt protein. Studies reported here show that the NC-XRE is a recognition site for the AhR and a new binding partner, the Kruppel-like factor (KLF) family member KLF6. In vivo chromatin immunoprecipitations and in vitro DNA binding studies demonstrate that the AhR and KLF6 proteins form an obligatory heterodimer necessary for NC-XRE binding. Mutational analyses show that the protein-protein interactions involve the AhR C terminus and KLF6 N terminus, respectively. Moreover, NC-XRE binding depends on the 5' basic region in KLF6 rather than the previously characterized zinc finger DNA binding domain. Collectively, the results unmask a novel AhR signaling mechanism distinct from the canonical XRE-driven process that will enrich our future understanding of AhR biology.
Collapse
Affiliation(s)
- Shelly R Wilson
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, USA
| | | | | |
Collapse
|
28
|
Kawanishi M, Ohnisi K, Takigami H, Yagi T. Simple and rapid yeast reporter bioassay for dioxin screening: evaluation of the dioxin-like compounds in industrial and municipal waste incineration plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:2993-3002. [PMID: 23054780 DOI: 10.1007/s11356-012-1214-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/17/2012] [Indexed: 06/01/2023]
Abstract
The CROMIS AhR kit, a simple and rapid yeast bioassay kit, was developed and used to detect dioxins and dioxin-like compounds in 20 gas and solid samples collected from refuse incineration plants in Japan. The World Health Organization toxic equivalent (WHO-TEQ) values of the samples were also calculated using high-resolution gas chromatography/high--resolution mass spectrometry. The WHO-TEQ values of the samples varied greatly, ranging from 0.0021-6.3 ng/g to 0.00013-16 ng/m(3)N (normal cubic meter) in the solid and gas samples, respectively. 2,3,4,7,8-Pentachlorodibenzofuran (23478-PeCDF) and 1,2,3,7,8-pentachlorodibenzo-p-dioxin (12378-PeCDD) were the major contributors to the samples' WHO-TEQ values. The yeast in the bioassay responded to these congeners, and the EC50 values of 2,3,7,8-tetrachlorodibenzo-p-dioxin (2378-TeCDD), 12378-PeCDD, and 2,3,4,7,8-PeCDF were 490, 560, and 590 nM, respectively. The incinerator samples were subjected to the bioassay to obtain 2378-TeCDD equivalent values (CROMIS-TEQ values). The CROMIS-TEQ values of the solid and gas samples ranged from 0.0019 to 5.64 ng/g and from 0.14 to 20 ng/m(3)N, respectively. The CROMIS-TEQ and WHO-TEQ values displayed good correlations (r (2) = 0.94 and 0.95 in the solid and gas samples, respectively), except for those of the samples with low dioxin concentrations (below the Japanese emission standards). Therefore, the CROMIS AhR kit is a useful tool for the initial screening of samples containing dioxin-like compounds.
Collapse
Affiliation(s)
- Masanobu Kawanishi
- Graduate School of Science and Radiation Research Center, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-Ku, Sakai, Osaka 599-8570, Japan
| | | | | | | |
Collapse
|
29
|
Fu LP, Shi QQ, Shi Y, Jiang B, Tu SJ. Three-component domino reactions for regioselective formation of bis-indole derivatives. ACS COMBINATORIAL SCIENCE 2013; 15:135-40. [PMID: 23339825 DOI: 10.1021/co3001428] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A microwave-assisted regioselective reaction dealing with arylglyoxal monohydrate, diverse N-aryl enaminones, and indoles to achieve 3,2'- and 3,3'-bis-indoles by varying a substituted indole substrate is reported. The 2-unsubstituted indoles resulted in the 3,2'-bis-indole skeleton, whereas indoles bearing a methyl or phenyl group at C2 led to the 3,3'-bis-indoles with simultaneous formation of three sigma-bonds. The procedures feature excellent regioselectivity, short reaction times, convenient one-pot manner, and operational simplicity.
Collapse
Affiliation(s)
- Li-Ping Fu
- School of Chemistry and Chemical Engineering, Key Laboratory
of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P.R. China
| | - Qing-Qing Shi
- School of Chemistry and Chemical Engineering, Key Laboratory
of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P.R. China
| | - Yu Shi
- School of Chemistry and Chemical Engineering, Key Laboratory
of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P.R. China
| | - Bo Jiang
- School of Chemistry and Chemical Engineering, Key Laboratory
of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P.R. China
| | - Shu-Jiang Tu
- School of Chemistry and Chemical Engineering, Key Laboratory
of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P.R. China
| |
Collapse
|
30
|
Indirubin-3'-(2,3 dihydroxypropyl)-oximether (E804) is a potent modulator of LPS-stimulated macrophage functions. Toxicol Appl Pharmacol 2012; 266:157-66. [PMID: 23107598 DOI: 10.1016/j.taap.2012.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 10/12/2012] [Accepted: 10/19/2012] [Indexed: 12/11/2022]
Abstract
Indirubin is a deep-red bis-indole isomer of indigo blue, both of which are biologically active ingredients in Danggui Longhui Wan, an ancient Chinese herbal tea mixture used to treat neoplasia and chronic inflammation and to enhance detoxification of xenobiotics. Multiple indirubin derivatives have been synthesized and shown to inhibit cyclin-dependent kinases (CDKs) and glycogen-synthase kinase (GSK-3β) with varying degrees of potency. Several indirubins are also aryl hydrocarbon receptor (AhR) agonists, with AhR-associated activities covering a wide range of potencies, depending on molecular structure. This study examined the effects of indirubin-3'-(2,3 dihydroxypropyl)-oximether (E804), a novel indirubin with potent STAT3 inhibitory properties, on basal and LPS-inducible activities in murine RAW264.7 macrophages. Using a focused commercial qRT-PCR array platform (SuperArray®), the effects of E804 on expression of a suite of genes associated with stress and toxicity were determined. Most genes up-regulated by LPS treatment were suppressed by E804; including LPS-induced expression of pro-inflammatory cytokines and receptors, apoptosis control genes, and oxidative stress response genes. Using qRT-PCR as a follow up to the commercial arrays, E804 treatment suppressed LPS-induced COX-2, iNOS, IL-6 and IL-10 gene expression, though the effects on iNOS and COX-2 protein expression were less dramatic. E804 also inhibited LPS-induced secretion of IL-6 and IL-10. Functional endpoints, including iNOS and lysozyme enzymatic activity, phagocytosis of fluorescent latex beads, and intracellular killing of bacteria, were also examined, and in each experimental condition E804 suppressed activities. Collectively, these results indicate that E804 is a potent modulator of pro-inflammatory profiles in LPS-treated macrophages.
Collapse
|
31
|
Vlachos C, Schulte BM, Magiatis P, Adema GJ, Gaitanis G. Malassezia-derived indoles activate the aryl hydrocarbon receptor and inhibit Toll-like receptor-induced maturation in monocyte-derived dendritic cells. Br J Dermatol 2012; 167:496-505. [PMID: 22533375 DOI: 10.1111/j.1365-2133.2012.11014.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The aryl hydrocarbon receptor (AhR) is a nuclear receptor and transcriptional regulator with pleiotropic effects. The production of potent AhR ligands by Malassezia yeasts, such as indirubin, indolo[3,2-b]carbazole (ICZ), tryptanthrin and malassezin, has been associated with the pathogenesis of seborrhoeic dermatitis and pityriasis versicolor. Antigen-presenting cells in the skin can encounter microbes in the presence of these bioactive metabolites that could potentially modulate their function. OBJECTIVES To study the effects of the aforementioned naturally occurring ligands on AhR activation and Toll-like receptor (TLR)-induced maturation in human monocyte-derived dendritic cells (moDCs). METHODS These indoles were screened for AhR activation capacity in moDCs employing CYP1A1 and CYP1B1 induction as read out and for their effects on the function of moDCs after TLR-ligand stimulation. RESULTS Indirubin and ICZ were the most potent AhR ligands and were selected for subsequent experiments. Concurrent exposure of moDCs to indirubin or ICZ together with TLR agonists significantly augmented the AhR-mediated CYP1A1 and CYP1B1 gene expression. Additionally, mature DCs that were subsequently stimulated with AhR ligands showed increased AhR target gene expression. Moreover, these ligands limited TLR-induced phenotypic maturation (CD80, CD83, CD86, MHC II upregulation) of moDCs, reduced secretion of the inflammatory cytokines interleukin (IL)-6 and IL-12, and decreased their ability to induce alloreactive T-lymphocyte proliferation. CONCLUSIONS These results demonstrate that AhR agonists of yeast origin are able to inhibit moDC responses to TLR ligands and that moDCs can adapt through increased transcription of metabolizing enzymes such as CYP1A1 and CYP1B1.
Collapse
Affiliation(s)
- C Vlachos
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Po Box 9101, 6500 HB Nijmegen, the Netherlands
| | | | | | | | | |
Collapse
|
32
|
Kamata R, Itoh K, Nakajima D, Kageyama S, Sawabe A, Terasaki M, Shiraishi F. The feasibility of using mosquitofish (Gambusia affinis) for detecting endocrine-disrupting chemicals in the freshwater environment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:2778-2785. [PMID: 21882230 DOI: 10.1002/etc.669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/08/2011] [Accepted: 08/15/2011] [Indexed: 05/31/2023]
Abstract
We evaluated the utility of gene-transcriptional responses in the liver of mosquitofish (Gambusia affinis), a species introduced to many countries and therefore widely available, for detecting endocrine-disrupting activity in water. Exposure to β-naphthoflavone, an aryl hydrocarbon receptor (AhR) agonist, significantly increased the transcript of the cytochrome P4501A gene (cyp1a), peaking at 24 h, in both sexes at concentrations of 10 µg/L or more. 17β-Estradiol (E(2) ) at 500 ng/L increased the number of males showing gene transcription of precursors of yolk protein, vitellogenin (Vtga, Vtgb, and Vtgc), at 24, 48, and 72 h. Exposure for 48 h to bisphenol A (BPA), an estrogen mimic, also increased vtg-positive males at 1 mg/L or more. Leachate from a Japanese stable-type landfill significantly increased vtg-positive males after 48 h exposure, and the in vitro activity of the leachate against the estrogen receptor (ER) was estimated as an E(2) equivalent of 240 ng/L by yeast transfected with the ER. Chemical analysis showed that major contributors to the ER activation were BPA and 4-tert-octylphenol. This leachate and drainage water from a control-type landfill had AhR activities, estimated by yeast with the AhR, but had no significant effect on cyp1a transcription. These results showed that mosquitofish are suitable for detecting in vivo AhR and ER effects, but are insensitive to E(2).
Collapse
Affiliation(s)
- Ryo Kamata
- Research Center for Environmental Risk, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | |
Collapse
|
33
|
Sekimoto M. [Sex- and species-differences on xenobiotic-induced toxicity: differences in constitutive and xenobiotic-mediated expression of cytochrome P450 1A subfamily enzymes (CYP1As)]. YAKUGAKU ZASSHI 2011; 131:415-22. [PMID: 21372538 DOI: 10.1248/yakushi.131.415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytochrome P450 1A subfamily enzymes (CYP1As) are important molecules in the metabolic activation of carcinogens such as polycyclic aromatic hydrocarbons and heterocyclic amines and are induced by their substrate exposure. There are species, sex, and organ differences in the induction of CYP1As, and susceptibilities to carcinogens are closely related to the constitutive and carcinogen-induced levels of CYP1As in target organs of experimental rodents. In this study, we investigated the induction of CYP1As and their species or sex differences after treatment with various chemicals using experimental animals and cultured cell lines. We found that: 1) newly established reporter cell lines, HepG2-A10 and KanR2-XL8, can be used for determining of activation of the aryl hydrocarbon receptor (AhR), a key transcription factor in the expression of CYP1As; 2) monocyclic aromatic amine (2-methoxy-4-nitroaniline) induced hepatic CYP1As in rats but not in other rodents in an AhR-independent manner; 3) androgen suppressed the constitutive expression or heterocyclic aromatic amine (Trp-P-1)-dependent induction of these enzymes in pigs and mice; and 4) nicardipine, a dihydropyridine calcium channel blocker, increased hepatic CYP1A expression in rats and augmented 3-methylcholanthrene-mediated induction of CYP1As and DNA-adduct formation in HepG2 cells. These findings indicate that there are species or sex differences in the induction of hepatic CYP1As via AhR-independent and unexplained transcriptional mechanisms. The elucidation of these mechanisms will aid in finding new predictors or developing new prevention strategies for chemical-induced carcinogenesis.
Collapse
Affiliation(s)
- Masashi Sekimoto
- Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka.
| |
Collapse
|
34
|
|
35
|
Korzeniewski N, Wheeler S, Chatterjee P, Duensing A, Duensing S. A novel role of the aryl hydrocarbon receptor (AhR) in centrosome amplification - implications for chemoprevention. Mol Cancer 2010; 9:153. [PMID: 20565777 PMCID: PMC2898706 DOI: 10.1186/1476-4598-9-153] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 06/17/2010] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Centrosome aberrations can cause genomic instability and correlate with malignant progression in common human malignancies such as breast and prostate cancer. Deregulation of cyclin/cyclin-dependent kinase 2 (CDK2) activity has previously been shown to be critically involved in centrosome overduplication. We therefore test here whether small molecule CDK inhibitors derived from the bis-indole indirubin can be used to suppress centrosome aberrations as a novel approach to chemoprevention of malignant progression. RESULTS As expected, we found that the CDK inhibitor indirubin-3'-oxime (IO) suppresses centrosome amplification in breast cancer cells. However, we made the unexpected discovery that indirubin-derived compounds that have been chemically modified to be inactive as kinase inhibitors such as 1-methyl-indirubin-3'-oxime (MeIO) still significantly reduced centrosome amplification. All indirubins used in the present study are potent agonists of the aryl hydrocarbon receptor (AhR), which is known for its important role in the cellular metabolism of xenobiotics. To corroborate our results, we first show that the coincidence of nuclear AhR overexpression, reflecting a constitutive activation, and numerical centrosome aberrations correlates significantly with malignancy in mammary tissue specimens. Remarkably, a considerable proportion (72.7%) of benign mammary tissue samples scored also positive for nuclear AhR overexpression. We furthermore provide evidence that continued expression of endogenous AhR is critical to promote centriole overduplication induced by cyclin E and that AhR and cyclin E may function in the same pathway. Overexpression of the AhR in the absence of exogenous ligands was found to rapidly disrupt centriole duplication control. Nonetheless, the AhR agonists IO and MeIO were still found to significantly reduce centriole overduplication stimulated by ectopic AhR expression. CONCLUSIONS Our results indicate that continued expression of endogenous AhR promotes centrosome amplification in breast cancer cells in a pathway that involves cyclin E. AhR agonists such as indirubins inhibit centrosome amplification even when stimulated by ectopic expression of the AhR suggesting that these compounds are potentially useful for the chemoprevention of centrosome-mediated cell division errors and malignant progression in neoplasms in which the AhR is overexpressed. Future studies are warranted to determine whether individuals in which nuclear AhR overexpression is detected in benign mammary tissue are at a higher risk for developing pre-cancerous or cancerous breast lesions.
Collapse
Affiliation(s)
- Nina Korzeniewski
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
36
|
Tochigi Y, Sato N, Sahara T, Wu C, Saito S, Irie T, Fujibuchi W, Goda T, Yamaji R, Ogawa M, Ohmiya Y, Ohgiya S. Sensitive and Convenient Yeast Reporter Assay for High-Throughput Analysis by Using a Secretory Luciferase from Cypridina noctiluca. Anal Chem 2010; 82:5768-76. [DOI: 10.1021/ac100832b] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuki Tochigi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba 305-8566, Japan, Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda 563-8577, Japan, ATTO Corporation, 1-5-32
| | - Natsuko Sato
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba 305-8566, Japan, Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda 563-8577, Japan, ATTO Corporation, 1-5-32
| | - Takehiko Sahara
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba 305-8566, Japan, Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda 563-8577, Japan, ATTO Corporation, 1-5-32
| | - Chun Wu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba 305-8566, Japan, Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda 563-8577, Japan, ATTO Corporation, 1-5-32
| | - Shinya Saito
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba 305-8566, Japan, Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda 563-8577, Japan, ATTO Corporation, 1-5-32
| | - Tsutomu Irie
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba 305-8566, Japan, Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda 563-8577, Japan, ATTO Corporation, 1-5-32
| | - Wataru Fujibuchi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba 305-8566, Japan, Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda 563-8577, Japan, ATTO Corporation, 1-5-32
| | - Takako Goda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba 305-8566, Japan, Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda 563-8577, Japan, ATTO Corporation, 1-5-32
| | - Ryoichi Yamaji
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba 305-8566, Japan, Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda 563-8577, Japan, ATTO Corporation, 1-5-32
| | - Masahiro Ogawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba 305-8566, Japan, Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda 563-8577, Japan, ATTO Corporation, 1-5-32
| | - Yoshihiro Ohmiya
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba 305-8566, Japan, Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda 563-8577, Japan, ATTO Corporation, 1-5-32
| | - Satoru Ohgiya
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba 305-8566, Japan, Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda 563-8577, Japan, ATTO Corporation, 1-5-32
| |
Collapse
|
37
|
Establishment of yeast reporter assay systems to detect ligands of thyroid hormone receptors α and β. Toxicol In Vitro 2010; 24:638-44. [DOI: 10.1016/j.tiv.2009.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 08/20/2009] [Accepted: 10/02/2009] [Indexed: 11/21/2022]
|
38
|
Kritsanida M, Magiatis P, Skaltsounis AL, Peng Y, Li P, Wennogle LP. Synthesis and antiproliferative activity of 7-azaindirubin-3'-oxime, a 7-aza isostere of the natural indirubin pharmacophore. JOURNAL OF NATURAL PRODUCTS 2009; 72:2199-202. [PMID: 19994845 DOI: 10.1021/np9003905] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The bis-indole alkaloid indirubin and its analogues bear a very interesting natural pharmacophore. They are recognized mainly as kinase inhibitors, but several other activities make them possible candidates for preclinical studies. Based on the previously reported activity of 7-bromoindirubin-3'-oxime and its derivatives, the synthesis of indirubins bearing a heterocyclic nitrogen atom at position 7 was carried out. Herein, we report the first synthesis of 7-azaindirubin-3'-oxime (12) as well as its antiproliferative activity against 57 cancer cell lines and its inhibitory activity against a series of kinases. 7-Azaindirubin (10) and its 3'-oxime derivative (12) showed reduced activity as kinase inhibitors in comparison with other known indirubin derivatives, but antiproliferative activity with a best GI(50) value of 0.77 microM.
Collapse
Affiliation(s)
- Marina Kritsanida
- Department of Pharmacognosy and Natural Products Chemistry, University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | | | | | | | | | | |
Collapse
|
39
|
Flaveny CA, Murray IA, Chiaro CR, Perdew GH. Ligand selectivity and gene regulation by the human aryl hydrocarbon receptor in transgenic mice. Mol Pharmacol 2009; 75:1412-20. [PMID: 19299563 PMCID: PMC2684888 DOI: 10.1124/mol.109.054825] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 03/19/2009] [Indexed: 11/22/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-inducible transcription factor that displays interspecies differences with the human and mouse AHR C-terminal region sequences sharing only 58% amino acid sequence identity. Compared with the mouse AHR (mAHR), the human AHR (hAHR) displays approximately 10-fold lower relative affinity for prototypical AHR ligands such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, which has been attributed to the amino acid residue valine 381 (alanine 375 in the mAHR) in the ligand binding domain of the hAHR. We investigated whether the 10-fold difference in ligand-binding affinity between the mAHR and hAHR would be observed with a diverse range of AHR ligands. To test this hypothesis, ligand binding assays were performed using the photo-affinity ligand 2-azido-3-[(125)I]iodo-7,8-dibromodibenzo-p-dioxin and liver cytosol isolated from hepatocyte-specific transgenic hAHR mice and C57BL/6J mice. It is noteworthy that competitive ligand-binding assays revealed that, compared with the mAHR, the hAHR has a higher relative affinity for certain compounds, including indirubin [(2Z)-2,3-biindole-2,3 (1'H,1'H)-dione and quercetin (2-(3,4dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one]. Electrophoretic mobility shift assays revealed that indirubin was more efficient at transforming the hAHR compared with the mAHR. Indirubin was also a more potent inducer of Cyp1a1 expression in transgenic hAHR mouse hepatocytes compared with C57BL/6J mouse hepatocytes. These observations suggest that indirubin is a potent hAHR ligand that is able to selectively bind to and activate the hAHR. These discoveries imply that there may be a significant degree of structural divergence between mAHR and hAHR ligands and highlights the importance of the hAHR transgenic mouse as a model to study the hAHR in vivo.
Collapse
Affiliation(s)
- Colin A Flaveny
- Center for Molecular Toxicology and Carcinogenesis and the Department of Veterinary and Biomedical Sciences, the Pennsylvania State University, 16802, USA
| | | | | | | |
Collapse
|
40
|
Mono-hydroxylated polychlorinated biphenyls are potent aryl hydrocarbon receptor ligands in recombinant yeast cells. Toxicol In Vitro 2009; 23:736-43. [DOI: 10.1016/j.tiv.2009.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 02/03/2009] [Accepted: 03/18/2009] [Indexed: 11/15/2022]
|
41
|
Ohura T, Sawada KI, Amagai T, Shinomiya M. Discovery of novel halogenated polycyclic aromatic hydrocarbons in urban particulate matters: occurrence, photostability, and AhR activity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:2269-2275. [PMID: 19452873 DOI: 10.1021/es803633d] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Halogenated aromatic compounds (HACs) in the environment have created great concern because of the associated adverse health implications. In this study we investigated the atmospheric behavior and exposure risk of brominated polycyclic aromatic hydrocarbons (BrPAHs) larger than three rings which were associated with particles in the urban air in Japan, and which were discovered as novel HACs in the air. Furthermore, the ambient levels of chlorinated polycyclic aromatic hydrocarbons (CIPAHs) and PAHs, in addition to BrPAHs, were also simultaneously investigated to emphasize the differences. Seven of 11 target BrPAHs were newly detected from the urban air samples in Japan between 2004 and 2005. Of the BrPAHs detected, 5,7-Br2BaA was most abundant (mean concentration, 8.7 pg m(-3)), followed by 7,12-Br2BaA (6.3 pg m(-3)) and 6-BrBaP (3.3 pg m(-3)). The mean concentrations of total BrPAHs, CIPAHs, and PAHs detected were 8.6 pg m(-3), 15.2 pg m(-3), and 1.2 ng m(-3), respectively, which showed that concentrations of such halogenated PAHs (Br-/Cl-PAHs) tended to be approximately 100-fold lower than PAHs. The BrPAHs had photolysis rates that were relatively faster than the corresponding CIPAHs. Comparing the ambient profiles among the PAH congeners suggested that ambient BrPAHs that came from the specific local emission sources differed from CIPAHs and PAHs, and/or could be driven by various seasonal factors, including photodecay processes. Most of the BrPAHs used showed inherent AhR-mediated activities. Toxic equivalents based on the relative potencies of each AhR activity and the ambient concentrations showed that either BrPAHs or CIPAHs accounted for a smaller proportion (approximately 1%) of the total.
Collapse
Affiliation(s)
- Takeshi Ohura
- Institute for Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan.
| | | | | | | |
Collapse
|
42
|
Ma J, Horii Y, Cheng J, Wang W, Wu Q, Ohura T, Kannan K. Chlorinated and parent polycyclic aromatic hydrocarbons in environmental samples from an electronic waste recycling facility and a chemical industrial complex in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:643-649. [PMID: 19244996 DOI: 10.1021/es802878w] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Chlorinated polycyclic aromatic hydrocarbons (CIPAHs) are a class of halogenated contaminants found in the urban atmosphere; they have toxic potential similar to that of dioxins. Information on the sources of CIPAHs is limited. In this study, concentrations of 20 CIPAHs and 16 parent PAHs were measured in electronic wastes, workshop-floor dust, vegetation, and surface soil collected from the vicinity of an electronic waste (e-waste) recycling facility and in surface soil from a chemical industrial complex (comprising a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant), and agricultural areas in central and eastern China. High concentrations of SigmaCIPAHs were found in floor dust (mean, 103 ng/g dry wt), followed in order of decreasing concentration by leaves (87.5 ng/g drywt), electronic shredder waste (59.1 ng/g dry wt), and soil (26.8 ng/g dry wt) from an e-waste recycling facility in Taizhou. The mean concentration of SigmaCIPAHs in soil from the chemical industrial complex (88 ng/g dry wt) was approximately 3-fold higher than the concentration in soil from e-waste recycling facilities. The soils from e-waste sites and industrial areas contained mean concentrations of SigmaCIPAHs 2 to 3 orders of magnitude higher than the concentrations in agricultural soils (ND-0.76 ng/g), suggesting that e-waste recycling and chlorine-chemical industries are potential emission sources of CIPAHs. The profiles of CIPAHs in soil and dust were similar to a profile that has been reported previously for fly ash from municipal solid waste incinerators (6-CIBaP was the predominant compound), but the profiles in vegetation and electronic shredder waste were different from those found in fly ash. Concentrations of 16 parent PAHs were high (150-49,700 ng/g) in samples collected from the e-waste recycling facility. Significant correlation between SigmaCIPAH and SigmaPAH concentrations suggests that direct chlorination of parent PAHs is the major pathway of formation of CIPAHs during e-waste recycling operations. Dioxin-like toxic equivalency quotients (TEQs) for CIPAHs and PAHs in samples were calculated on the basis of relative potencies reported for CIPAHs and PAHs. The highest mean TEQ concentrations of CIPAHs (518 pg-TEQ/g) were found for workshop-floor dust, followed by leaves (361 pg-TEQ/g), electronic shredder waste (308 pg-TEQ/g), soil from the chemical industrial complex (146 pg-TEQ/g), and soil from the sites of the e-waste recycling facility (92.3 pg-TEQ/g). With one exception, the floor dust samples, the TEQ concentrations of CIPAHs found in multiple environmental matrices in this study were higher than the TEQ concentrations of PCDD/Fs in the same samples reported in our earlier study.
Collapse
Affiliation(s)
- Jing Ma
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Beníšek M, Bláha L, Hilscherová K. Interference of PAHs and their N-heterocyclic analogs with signaling of retinoids in vitro. Toxicol In Vitro 2008; 22:1909-17. [DOI: 10.1016/j.tiv.2008.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 04/01/2008] [Accepted: 09/12/2008] [Indexed: 10/21/2022]
|
44
|
Kawanishi M, Kondo M, Shiizaki K, Chu WL, Terasoma Y, Yagi T. Construction of a reporter yeast strain to detect estrogen receptor signaling through aryl hydrocarbon receptor activation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:6897-6902. [PMID: 18853806 DOI: 10.1021/es801464z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The activation mechanism of estrogen receptor (ER) signaling by association with the aryl hydrocarbon receptor (AhR) was elucidated recently (Ohtake, et al., Nature 2003, 423, 545). In the present study, we established a reporter yeast strain to evaluate this ER signaling by association with the activated AhR. This yeast strain expresses human ER and AhR, and has a reporter plasmid with estrogen response elements. With this yeast strain we assayed ER activation by various AhR ligands, i.e., 2,3,7,8-tetrachlorodibenzo-p-dioxin, benzo[a]pyrene, 3-methylcholanthrene, beta-naphthoflavone, and indirubin. All these ligands induced ER activation dose-dependently and their EC50 values were 60, 180, 130, 26, and 0.5 nM, respectively. Then, we measured the activity in water collected at 5 localities in the Ishizu River system in Japan. The activities of water samples ranged from 4.8 pmol/L (1.3 ng/L) to 52 pmol/L (14 ng/ L) (17beta-estradiol (E2) equivalent). These values were higher than those measured with the yeast for ER activation through direct ligand binding to ER. The direct ER ligand binding activities of the water samples ranged from 2.5 to 5.3 pmol/L (E2 equivalent). We also measured AhR activation of the water samples using a reporter yeast for AhR ligand activity. The activities ranged from 102 to 472 pmol/L (beta-naphthoflavone equivalent). These results indicate that the water samples contain substances that bind to AhR, and these substances contribute to ER signaling through AhR activation in the yeast reporter strain. This yeast reporter strain should be a useful tool to evaluate direct and indirect ER activation by environmental samples.
Collapse
Affiliation(s)
- Masanobu Kawanishi
- Environmental Genetics Laboratory, Frontier Science Innovation Center, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-Ku, Sakai, Osaka 599-8570, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Horii Y, Ok G, Ohura T, Kannanct K. Occurrence and profiles of chlorinated and brominated polycyclic aromatic hydrocarbons in waste incinerators. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:1904-1909. [PMID: 18409611 DOI: 10.1021/es703001f] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Chlorinated polycyclic aromatic hydrocarbons (CIPAHs) have been reported to occur in urban air. Nevertheless, sources of CIPAHs in urban air have not been studied, due to the lack of appropriate analytical methods and standards. In this study, we measured concentrations of 20 CIPAHs and 11 brominated PAHs (BrPAHs) in fly ash and bottom ash from 11 municipal/hazardous/industrial waste incinerators, using analytical standards synthesized in our laboratory. Concentrations of total CIPAHs and BrPAHs in ash samples ranged from <0.06 to 6990 ng/g and from <0.14 to 1235 ng/g, respectively. The concentrations of CIPAHs were approximately 100-fold higher than the concentrations of BrPAHs. 6-CIBaP and 1-CIPyr were the dominant compounds in fly ash samples. The profiles of halogenated PAHs were similar to the profiles reported previously for urban air. 1-BrPyr was the predominant BrPAH in fly ash. Concentrations of 6-CIBaP, 9,10-Cl2Phe, 9-CIAnt, and 6-BrBaP in fly ash were significantly correlated with the corresponding parent PAH concentrations. Significant correlation between sigmaCIPAH and sigmaPAH concentrations suggests that direct chlorination of parent PAHs is the mechanism of formation of CIPAHs during incineration of wastes; nevertheless, a comparable correlation was not found for BrPAHs. There was no significant correlation between the capacity and temperature of an incinerator and the concentrations of sigmaCl-/BrPAHs in ash samples, although lower concentrations of all halogenated PAHs were found in stoker-type incinerators than in fixed grate-type incinerators. Toxicity equivalency quotients (TEQs) for CIPAHs in ash samples were calculated with CIPAH potencies. Average TEQ concentrations of CIPAHs in fly ash and bottom ash were15800 pg-TEQ/g and 67 pg-TEQ/g, respectively. Our results suggest that the extent of dioxin-like toxicity contributed by CIPAHs in ash generated during waste incineration is similar to that reported previously for dioxins. Waste incineration is an important source of Cl-/BrPAHs in the urban atmosphere.
Collapse
Affiliation(s)
- Yuichi Horii
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, New York 12201-0509, USA
| | | | | | | |
Collapse
|
46
|
Medjakovic S, Jungbauer A. Red clover isoflavones biochanin A and formononetin are potent ligands of the human aryl hydrocarbon receptor. J Steroid Biochem Mol Biol 2008; 108:171-7. [PMID: 18060767 DOI: 10.1016/j.jsbmb.2007.10.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 10/11/2007] [Accepted: 10/15/2007] [Indexed: 12/26/2022]
Abstract
Aryl hydrocarbon receptor (AhR) activation affects the cell cycle and drives cells to apoptosis. Thus, selective AhR modulators (SAhRMs) have previously been implicated in cancer therapy and prevention, particularly for hormone-dependent cancers. In the present study, isoflavones a remedy used to ameliorate menopausal complaints were tested for their potential in transactivating AhR in order to investigate the biological function of red clover isoflavones. The results were compared to the transactivation potentials of other flavonoids and plant-derived indole compounds. We found that the isoflavones biochanin A and formononetin were potent AhR agonists in vitro, with EC(50) values of 2.5 x 10(-7) and 1.3 x 10(-7)mol/l, respectively. These isoflavones are 10 times more potent compared to the indole compounds indole-3-carbinol and diindolylmethane, publicised as powerful AhR agonists with EC(50) values of 5.8 x 10(-6) and 1.1 x 10(-6)mol/l, respectively. Because activated AhR crosstalks with estrogen receptor alpha, future risk-benefit assessments of isoflavones should take into consideration their AhR transactivating potential.
Collapse
Affiliation(s)
- S Medjakovic
- Department of Biotechnology, University of Natural Resources and Applied Life Sciences Vienna, Muthgasse 18, Vienna, Austria
| | | |
Collapse
|
47
|
Ohura T, Morita M, Makino M, Amagai T, Shimoi K. Aryl Hydrocarbon Receptor-Mediated Effects of Chlorinated Polycyclic Aromatic Hydrocarbons. Chem Res Toxicol 2007; 20:1237-41. [PMID: 17708657 DOI: 10.1021/tx700148b] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chlorinated polycyclic aromatic hydrocarbons (ClPAHs) with 3-5 rings are ubiquitous environmental contaminants. However, toxicities of ClPAHs remain unclear. In this study, aryl hydrocarbon receptor (AhR)-mediated activities of ClPAHs were investigated by using a yeast assay system. All environmentally relevant 18 ClPAHs showed the AhR activities in the test; the activities were elevated with the number of chlorine atoms on the lower molecular weight PAH ( approximately three-ring and fluoranthene derivatives) but not for higher molecular weight ClPAHs (>four-ring). The similar trends were also observed in certain ClPAHs-induced cytochrome P450 1A1 expression in MCF-7 cells. The structure-activity relationship between the AhR activity and the corresponding solvent accessible surface area of ClPAHs revealed a parabolic relationship, with approximately 350 A (2)/molecule as the optimal dimensions as the ligand for binding to AhR. These findings indicate that the spatial dimensions of ClPAHs apparently influence their ability to activate the AhR. Finally, we discussed the toxicity of exposure to ClPAHs based on the AhR activities, estimated that it would be approximately 30-50 times higher than that of dioxins.
Collapse
Affiliation(s)
- Takeshi Ohura
- Institute for Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan.
| | | | | | | | | |
Collapse
|
48
|
Sekimoto M, Kawamagari H, Nakatani S, Nemoto K, Degawa M. Establishment of a Human Hepatoma Cell Line HepG2-A10 for a Reporter Gene Assay of Arylhydrocarbon Receptor Activators. Genes Environ 2007. [DOI: 10.3123/jemsge.29.11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
49
|
Petersen SL, Krishnan S, Hudgens ED. The aryl hydrocarbon receptor pathway and sexual differentiation of neuroendocrine functions. Endocrinology 2006; 147:S33-42. [PMID: 16690800 DOI: 10.1210/en.2005-1157] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Historically, much of the research on health effects of environmental pollutants focused on ascertaining whether compounds were carcinogenic. More recent findings show that environmental contaminants also exert insidious effects by disrupting hormone action. Of particular concern are findings that developmental exposure to dioxins, chemicals that act through the aryl hydrocarbon receptor pathway, permanently alters sexually differentiated neural functions in animal models. In this review, we focus on mechanisms through which dioxins disrupt neuroendocrine development as exemplified by effects on a brain region critical for ovulation in rodents. We also provide evidence that dysregulation of GABAergic neural development may be a general mechanism underlying a broad spectrum of effects seen after perinatal dioxin exposure.
Collapse
Affiliation(s)
- Sandra L Petersen
- Department of Biology, University of Massachusetts-Amherst, Amherst, Massachusetts 01003 USA.
| | | | | |
Collapse
|
50
|
Ribas J, Bettayeb K, Ferandin Y, Knockaert M, Garrofé-Ochoa X, Totzke F, Schächtele C, Mester J, Polychronopoulos P, Magiatis P, Skaltsounis AL, Boix J, Meijer L. 7-Bromoindirubin-3'-oxime induces caspase-independent cell death. Oncogene 2006; 25:6304-18. [PMID: 16702956 DOI: 10.1038/sj.onc.1209648] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Indirubin, an isomer of indigo, is a reported inhibitor of cyclin-dependent kinases (CDKs) and glycogen synthase kinase-3 (GSK-3) as well as an agonist of the aryl hydrocarbon receptor (AhR). Indirubin is the active ingredient of a traditional Chinese medicinal recipe used against chronic myelocytic leukemia. Numerous indirubin analogs have been synthesized to optimize this promising kinase inhibitor scaffold. We report here on the cellular effects of 7-bromoindirubin-3'-oxime (7BIO). In contrast to its 5-bromo- and 6-bromo- isomers, and to indirubin-3'-oxime, 7BIO has only a marginal inhibitory activity towards CDKs and GSK-3. Unexpectedly, 7BIO triggers a rapid cell death process distinct from apoptosis. 7-Bromoindirubin-3'-oxime induces the appearance of large pycnotic nuclei, without classical features of apoptosis such as chromatin condensation and nuclear fragmentation. 7-Bromoindirubin-3'-oxime-induced cell death is not accompanied by cytochrome c release neither by any measurable effector caspase activation. Furthermore, the death process is not altered either by the presence of Q-VD-OPh, a broad-spectrum caspase inhibitor, or the overexpression of Bcl-2 and Bcl-XL proteins. Neither AhR nor p53 is required during 7BIO-induced cell death. Thus, in contrast to previously described indirubins, 7BIO triggers the activation of non-apoptotic cell death, possibly through necroptosis or autophagy. Although their molecular targets remain to be identified, 7-substituted indirubins may constitute a new class of potential antitumor compounds that would retain their activity in cells refractory to apoptosis.
Collapse
Affiliation(s)
- J Ribas
- CNRS, Cell Cycle Group and UPS2682, Station Biologique, Bretagne, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|