1
|
Pepey E, Pulliat G, Hoai TD, Bruckert M, Conéjéro G, Boggio D, Perrin C, Valette M, Pouil S. Genotoxic Potential of Anthropized Water Bodies in the Hanoi Region of Vietnam Assessed with the Comet Assay on Erythrocytes of Nile Tilapia (Oreochromis niloticus). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2025; 114:47. [PMID: 40082288 PMCID: PMC11906502 DOI: 10.1007/s00128-025-04023-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/21/2025] [Indexed: 03/16/2025]
Abstract
The Black and Nhue-Day River sub-basins near Hanoi, Vietnam, are crucial aquatic ecosystems that are suffering from severe pollution stemming from industrial, domestic, and agricultural sources, which pose risks to environmental and public health. We assessed water genotoxicity at four locations along a gradient of urbanization in Hanoi and its peripheral regions: a fish farm at Hoa Binh reservoir (HB), a peri-urban fish farm in Phu Xuyen district (PX), and urban lakes Truc Bach (TB) and Thien Quang (TQ). Using the comet assay on Nile tilapia erythrocytes, DNA damage (% tail DNA), reflecting fragmented DNA that migrates out of the nucleus during electrophoresis, demonstrated significant differences between sites (p < 0.001). Urban lakes exhibited lower damage (TB: 16 ± 10%, TQ: 33 ± 17%), while the highest damage levels were observed in the hydropower reservoir (HB: 70 ± 15%). Trace elements (i.e., As, Cd, Cr, Ni, and Pb) analyzed in water did not exhibit a significant correlation with DNA damage, suggesting the presence of other unexamined contaminants, such as pesticides, that may explain these findings. These genotoxicity results emphasize the need for further research to identify the specific origins of the observed DNA damage, such as potential contributions from agricultural runoff, untreated wastewater, or other unexamined contaminants. Understanding these sources is essential for developing targeted water management practices to mitigate environmental risks and ensure the safety of aquaculture products, particularly in areas like the HB reservoir, where fish farming supports food security.
Collapse
Affiliation(s)
- Elodie Pepey
- ISEM, Univ Montpellier, CNRS, IRD, CIRAD, Montpellier, France.
- CIRAD, UMR AGAP Institut, Montpellier, F-34398, France.
- UMR AGAP Institut, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France.
| | - Gwenn Pulliat
- CNRS, UMR ART-Dev, University of Montpellier, CNRS, Université Paul Valéry Montpellier 3, Université de Perpignan Via Domitia, CIRAD, Montpellier, France
| | - Truong Dinh Hoai
- Faculty of Fisheries, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Michaël Bruckert
- CIRAD, UMR INNOVATION, Hanoi, Vietnam
- INNOVATION, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier, France
| | - Geneviève Conéjéro
- IPSiM, Univ Montpellier, CNRS, Institut Agro Montpellier, INRAE, Montpellier, France
| | - David Boggio
- Department of Information Technologies, CIRAD, Montpellier, France
| | | | - Mathilde Valette
- CIRAD, US 49 Analyses, Montpellier, France
- Univ Montpellier, CIRAD, Analyses, Montpellier, France
| | - Simon Pouil
- Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, GABI, France
| |
Collapse
|
2
|
Kokotović I, Kolar V, Rožman M, Bočkor L, Vitecek S, Previšić A. Wastewater and warming effects on aquatic invertebrates: Experimental insights into multi-level biodiversity consequences. WATER RESEARCH 2024; 267:122496. [PMID: 39340863 DOI: 10.1016/j.watres.2024.122496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Wastewater effluents and global warming affect freshwater ecosystems and impact their crucial biodiversity. Our study aimed at characterizing individual and combined impacts of wastewater effluent and increased water temperature (as one aspect of climate change) on model freshwater communities. We tested the effect of experimental treatments on genetic diversity, survival, body weight, total lipid content, lipidome and metabolome of individual species as well as community composition and phylogenetic diversity. In a 21-day mesocosm experiment we assessed the responses of a simplified freshwater food web comprising of moss and seven species of benthic macroinvertebrate shredders and grazers (mayflies, stoneflies, caddisflies and amphipods) to four treatments in a full factorial design: control, increased water temperature, wastewater and a multiple stressor treatment combining increased temperature and wastewater. Physiological responses varied among taxa, with species-specific sensitivities observed in survival and lipid content. The lowest total lipid content was observed in caddisflies and a mayfly subjected to multiple stressor treatment. The effects of stressors were reflected in the altered metabolic pathways and lipid metabolism of the individual taxa, with differential treatment effects also observed between taxa. A notable decrease in phylogenetic diversity was observed across all experimental communities. Gammarus fossarum demonstrated a high susceptibility to environmental stressors at the genetic level. Hence, while commonly used indicators of ecosystem health (e.g. community composition) remained stable, molecular indicators (e.g. phylogenetic diversity, metabolome and lipidome) responded readily to experimental treatments. These findings underscore the vulnerability of macroinvertebrates to environmental stressors, even over relatively short exposure periods. They highlight the importance of molecular indicators in detecting immediate ecological impacts, offering valuable information for conservation strategies and understanding the ecological consequences in freshwater ecosystems.
Collapse
Affiliation(s)
- Iva Kokotović
- Department of Biology, Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| | - Vojtech Kolar
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic; Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic; WasserCluster Lunz - Biologische Station, Lunz am See, Austria.
| | | | - Luka Bočkor
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia.
| | - Simon Vitecek
- WasserCluster Lunz - Biologische Station, Lunz am See, Austria; University of Natural Resources and Life Sciences, Vienna, Austria.
| | - Ana Previšić
- Department of Biology, Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
3
|
Mussali-Galante P, Gómez-Arroyo S, Rodríguez-Solís A, Valencia-Cuevas L, Flores-Márquez AR, Castrejón-Godínez ML, Murillo-Herrera AI, Tovar-Sánchez E. Multi-biomarker approach reveals the effects of heavy metal bioaccumulation in the foundation species Prosopis laevigata (Fabaceae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47116-47131. [PMID: 38985418 DOI: 10.1007/s11356-024-34239-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
Mining is a major economic activity in many developing countries. However, it disturbs the environment, producing enormous quantities of waste, known as mine tailings, which can have deleterious environmental impact, due to their high heavy metals (HM) content. Often, foundation species that establish on mine tailings are good candidates to study the effects of HM bioaccumulation at different levels of biological organization. Prosopis laevigata is considered a HM hyperaccumulator which presents attributes of a foundation species (FS) and establishes naturally on mine tailings. We evaluated the bioaccumulation of Cu, Pb, and Zn in P. laevigata foliar tissue, the leaf micro- and macro-morphological characters, DNA damage, and population genetic effects. In total, 80 P. laevigata individuals (20/site) belonging to four populations: The individuals from both sites (exposed and reference) bioaccumulated HMs (Pb > Cu > Zn). However, in the exposed individuals, Pb and Cu bioaccumulation was significantly higher. Also, a significant effect of macro- and micro-morphological characters was registered, showing significantly lower values in individuals from the exposed sites. In addition, we found significant differences in genotoxic damage in P. laevigata individuals, between the exposed and reference sites. In contrast, for the micro-morphological characters, none of the analyzed metals had any influence. P. laevigata did not show significant differences in the genetic structure and diversity between exposed and reference populations. However, four haplotypes and four private alleles were found in the exposed populations. Since P. laevigata is a species that establishes naturally in polluted sites and bioaccumulates HM in its foliar tissues, the resulting genetic, individual and population effects have not been severe enough to show detrimental effects; hence, P. laevigata can be a useful tool in phytoremediation strategies for soils polluted with Pb and Cu, maintaining its important ecological functions.
Collapse
Affiliation(s)
- Patricia Mussali-Galante
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209, Cuernavaca, Morelos, Mexico
| | - Sandra Gómez-Arroyo
- Laboratorio de Genotoxicología Ambiental, Instituto de Ciencias de La Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Alexis Rodríguez-Solís
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209, Cuernavaca, Morelos, Mexico
| | - Leticia Valencia-Cuevas
- Escuela de Estudios Superiores del Jicarero, Universidad Autónoma del Estado de Morelos, Carretera Galeana-Tequesquitengo S/N, Comunidad El Jicarero, Jojutla, Morelos, Mexico
| | - Ana Rosa Flores-Márquez
- Laboratorio de Genotoxicología Ambiental, Instituto de Ciencias de La Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - María Luisa Castrejón-Godínez
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209, Cuernavaca, Morelos, Mexico
| | - Aída Isabel Murillo-Herrera
- Laboratorio de Genotoxicología Ambiental, Instituto de Ciencias de La Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
4
|
Car C, Quevarec L, Gilles A, Réale D, Bonzom JM. Evolutionary approach for pollution study: The case of ionizing radiation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123692. [PMID: 38462194 DOI: 10.1016/j.envpol.2024.123692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024]
Abstract
Estimating the consequences of environmental changes, specifically in a global change context, is essential for conservation issues. In the case of pollutants, the interest in using an evolutionary approach to investigate their consequences has been emphasized since the 2000s, but these studies remain rare compared to the characterization of direct effects on individual features. We focused on the study case of anthropogenic ionizing radiation because, despite its potential strong impact on evolution, the scarcity of evolutionary approaches to study the biological consequences of this stressor is particularly true. In this study, by investigating some particular features of the biological effects of this stressor, and by reviewing existing studies on evolution under ionizing radiation, we suggest that evolutionary approach may help provide an integrative view on the biological consequences of ionizing radiation. We focused on three topics: (i) the mutagenic properties of ionizing radiation and its disruption of evolutionary processes, (ii) exposures at different time scales, leading to an interaction between past and contemporary evolution, and (iii) the special features of contaminated areas called exclusion zones and how evolution could match field and laboratory observed effects. This approach can contribute to answering several key issues in radioecology: to explain species differences in the sensitivity to ionizing radiation, to improve our estimation of the impacts of ionizing radiation on populations, and to help identify the environmental features impacting organisms (e.g., interaction with other pollution, migration of populations, anthropogenic environmental changes). Evolutionary approach would benefit from being integrated to the ecological risk assessment process.
Collapse
Affiliation(s)
- Clément Car
- Laboratoire de Recherche sur Les Effets des Radionucléides sur L'écosystème (LECO), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Saint-Paul Lèz Durance, France
| | - Loïc Quevarec
- Laboratoire de Recherche sur Les Effets des Radionucléides sur L'écosystème (LECO), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Saint-Paul Lèz Durance, France.
| | - André Gilles
- UMR Risques, ECOsystèmes, Vulnérabilité, Environnement, Résilience (RECOVER), Aix-Marseille Université (AMU), Marseille, France
| | - Denis Réale
- Département des Sciences Biologiques, Université Du Québec à Montréal, (UQAM), Montréal, Canada
| | - Jean-Marc Bonzom
- Laboratoire de Recherche sur Les Effets des Radionucléides sur L'écosystème (LECO), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Saint-Paul Lèz Durance, France
| |
Collapse
|
5
|
Ayanda IO, Popoola JO, Inyang S. Heavy metal and genetic diversity studies in three populations of Snail (Achatina achatina Linnaeus, 1758) from Southwest, Nigeria. BRAZ J BIOL 2024; 84:e248946. [DOI: 10.1590/1519-6984.248946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 07/17/2021] [Indexed: 11/22/2022] Open
Abstract
Abstract Environmental pollutants may often alter the genetic components of natural populations. In this study, heavy metals and genetic diversity in land snail (Achatina achatina) from three populations of south-western Nigeria were investigated, using the Atomic Absorption Spectrometry and DNA Sequencing technology respectively. Metal analysis revealed that the snails accumulated lead (Pb) and nickel (Ni) in high concentrations in two of the three states, while cadmium (Cd) was the least detected. Editing and alignment of the sequences of all snail accessions generated a range of 384bp to 419 bp. Analysis of Molecular Variance (AMOVA) in all 18 accessions was low at only 16%. The query coverage (QC) ranged between 96% and 100%, with 14 (77.8%) of the 18 accessions showing 100% identity. Pairwise comparison of the accessions studied also showed a high genetic similarity. The unweighted pair group method with arithmetic mean (UPGMA) generated two main clusters. Cluster I was unique and contain one sample (AaOy06) while the other cluster are very closely related and can be further sub-divided into sub-clusters. The similarity index of between the clusters is 0.5357. The close similarity among the accessions may be due to the geographical proximity of the three states. The uniqueness of accession AaOy06 in comparison to other accessions might be due to the negative influence of heavy metal, particularly lead. The determination of evolutionary relationships among snail populations may be useful towards the breeding efforts of the species in Nigeria.
Collapse
|
6
|
Wagner-Deyriès M, Varignier L, Revel M, Delhaye T, Rondeau D, Coutellec MA, McCairns RJS. Variation of Tolerance to Isothiazolinones Among Daphnia pulex Clones. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:805-814. [PMID: 36661281 DOI: 10.1002/etc.5564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/12/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Isothiazolinones are a family of broad-spectrum biocides widely used in industry and consumer products. Chloro- and methyl-isothiazolinones (CMIT and MIT) are documented as strong irritants, yet they are still used in a wide variety of applications, including cosmetics, cleansers, hygienic products, and various industrial applications. The subsequent substantial release of these molecules from urban sources into freshwater environments, and their potential impacts on aquatic species, have nevertheless received little attention so far, with few studies reporting on the toxicity of either CMIT or MIT to nontarget organisms. The present study addresses this current knowledge gap by evaluating the acute toxicity to Daphnia pulex (Cladocera) of CMIT/MIT (3:1) and MIT, the two formulations most commonly used by manufacturers. In addition, genetic diversity is known to be a major component of variability in phenotypic responses, although it is largely overlooked in typical toxicity tests. Thus the potential range of responses inherent to genetic diversity is rarely considered. Therefore, to account for intraspecific variations in sensitivity, our design involved eight clonal lines of D. pulex stemming from distinct natural populations or commercial strains. Clones exhibited strong variation in their responses, with median lethal concentration (LC50) values ranging from 0.10 to 1.84 mg/L for the mixture CMIT/MIT, and from 0.68 to 2.84 mg/L for MIT alone. These intraspecific ranges of LC50 values challenge the use of single clones of daphnids in standard ecotoxicological tests and the predictions based on their results. The present study brings new evidence that assessing ecological risk of chemicals while ignoring genotype diversity is neither ecologically relevant, nor a representative evaluation of the diversity of potential adverse outcomes. Environ Toxicol Chem 2023;42:805-814. © 2023 SETAC.
Collapse
Affiliation(s)
- Margot Wagner-Deyriès
- DECOD, Institut National de la Recherche Agronomique, Institut Agro, Institut Francais de Recherche pour l'Exploitation de la Mer, Rennes, France
| | - Léa Varignier
- DECOD, Institut National de la Recherche Agronomique, Institut Agro, Institut Francais de Recherche pour l'Exploitation de la Mer, Rennes, France
| | - Marion Revel
- DECOD, Institut National de la Recherche Agronomique, Institut Agro, Institut Francais de Recherche pour l'Exploitation de la Mer, Rennes, France
| | - Thomas Delhaye
- Institut d'Électronique et des Technologies du numéRique, UMR Centre National de la Recherche Scientifique 6164, University of Rennes 1, Rennes, France
| | - David Rondeau
- Institut d'Électronique et des Technologies du numéRique, UMR Centre National de la Recherche Scientifique 6164, University of Rennes 1, Rennes, France
| | - Marie-Agnès Coutellec
- DECOD, Institut National de la Recherche Agronomique, Institut Agro, Institut Francais de Recherche pour l'Exploitation de la Mer, Rennes, France
| | - R J Scott McCairns
- DECOD, Institut National de la Recherche Agronomique, Institut Agro, Institut Francais de Recherche pour l'Exploitation de la Mer, Rennes, France
| |
Collapse
|
7
|
Shuliakevich A, Schröder K, Nagengast L, Muz M, Pipal M, Brückner I, Hilscherova K, Brack W, Schiwy S, Hollert H. Morphological and behavioral alterations in zebrafish larvae after exposure to contaminated river sediments collected in different weather conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:157922. [PMID: 35961394 DOI: 10.1016/j.scitotenv.2022.157922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Wastewater treatment plants (WWTPs) are the primary source of micropollutants in aquatic ecosystems. Many micropollutants tend to bind to sediments and persist until remobilizion by bioturbation or flood events. Advanced effluent treatment by ozonation has been proven to eliminate most micropollutants. The present study characterizes sediments' toxic potential regarding zebrafish embryo development, which highly complex nervous system is vulnerable to exposure to neurotoxic substances. Furthermore, behavioral changes can be induced even at low pollutant concentrations and do not cause acute toxicity. The study area includes stretches of the main waterbody, the Wurm River (sampling sites W1-W5), and its tributary the Haarbach River (sampling sites H1, and H2) in North-Rhine Westphalia, Germany. Both waterbodies serve as recipients of WWTPs' effluents. The effluent entering the Haarbach River is conventionally treated, while the Wurm River receives ozonated effluent from the Aachen-Soers WWTP. Seven sampling sites up- and downstream of the WWTPs were investigated in June of two subsequent years. The first sampling campaign in 2017 was characterized by prolonged dry weather. The second sampling campaign in 2018 occurred after prolonged rain events and the release of the rainwater overflow basin. Direct exposure of zebrafish embryos to native sediments using the sediment contact test represented an ecologically realistic scenario and showed no acute sublethal effects. Exposure of the zebrafish embryo to freeze-dried sediments representing the ecotoxicological status of sediments during flood events unfolded acute sublethal toxicity. Behavioral studies with zebrafish larvae were an essential part of environmental neurotoxicity testing. Zebrafish larvae exposed to sediments' concentrations causing no acute effects led to behavioral changes signalizing neurotoxic substances in sediments. Polyaromatic hydrocarbons, polychlorinated biphenyls, and nitroaromatic compounds were identified as potential toxicity drivers, whereby the rainwater overflow basin served as a possible source of pollution. Mixture toxicity, effect-directed analysis, and further sediment monitoring are needed.
Collapse
Affiliation(s)
- Aliaksandra Shuliakevich
- Goethe University Frankfurt/Main, Department Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Strasse 13, 60438 Frankfurt/Main, Germany
| | - Katja Schröder
- RWTH Aachen University, Institute of Biology V, Worringerweg 1, 52074 Aachen, Germany
| | - Laura Nagengast
- RWTH Aachen University, Institute of Biology V, Worringerweg 1, 52074 Aachen, Germany
| | - Melis Muz
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Marek Pipal
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Ira Brückner
- Eifel-Rur Waterboard (WVER), Eisenbahnstr. 5, 52354 Düren, Germany
| | - Klara Hilscherova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Werner Brack
- Goethe University Frankfurt/Main, Department Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Strasse 13, 60438 Frankfurt/Main, Germany; Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Sabrina Schiwy
- Goethe University Frankfurt/Main, Department Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Strasse 13, 60438 Frankfurt/Main, Germany
| | - Henner Hollert
- Goethe University Frankfurt/Main, Department Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Strasse 13, 60438 Frankfurt/Main, Germany.
| |
Collapse
|
8
|
Major KM, Weston DP, Wellborn GA, Lydy MJ, Poynton HC. Predicting Resistance: Quantifying the Relationship between Urban Development, Agricultural Pesticide Use, and Pesticide Resistance in a Nontarget Amphipod. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14649-14659. [PMID: 36201633 DOI: 10.1021/acs.est.2c04245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Resistance alleles within the voltage-gated sodium channel (vgsc) have been correlated with pyrethroid resistance in wild populations of the nontarget amphipod, Hyalella azteca from California (CA), U.S.A. In the present study, we expand upon the relationship between land use and the evolution of pesticide resistance in H. azteca to develop a quantitative methodology to target and screen novel populations for resistance allele genotypes in a previously uninvestigated region of the U.S. (New England: NE). By incorporating urban land development and toxicity-normalized agricultural pesticide use indices into our site selection, we successfully identified three amino acid substitutions associated with pyrethroid resistance. One of the resistance mutations has been described in H. azteca from CA (L925I). We present the remaining two (vgsc I936F and I936V) as novel pyrethroid-resistance alleles in H. azteca based on previous work in insects and elevated cyfluthrin resistance in one NE population. Our results suggest that urban pesticide use is a strong driver in the evolution of resistance alleles in H. azteca. Furthermore, our method for resistance allele screening provides an applied framework for detecting ecosystem impairment on a nationwide scale that can be incorporated into ecological risk assessment decisions.
Collapse
Affiliation(s)
- Kaley M Major
- School for the Environment, University of Massachusetts Boston, Boston, Massachusetts 02125, United States
| | - Donald P Weston
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Gary A Wellborn
- Department of Biology, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Michael J Lydy
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Helen C Poynton
- School for the Environment, University of Massachusetts Boston, Boston, Massachusetts 02125, United States
| |
Collapse
|
9
|
Rautenberg GE, Bonifacio AF, Chiappero MB, Amé MV, Hued AC. Genetic Structure of a Native Neotropical Fish Species: New Insights about a South American Bioindicator. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 83:168-179. [PMID: 35963961 DOI: 10.1007/s00244-022-00952-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The biodiversity of Neotropical region is affected by anthropogenic disturbance. Throughout Brazil, Argentina and Uruguay, the native fish, Cnesterodon decemmaculatus, is well distributed and widely used as an excellent bioindicator of environmental quality. We investigated the diversity and genetic structure of its populations along a water pollution gradient to answer the following questions: 1- Does the genetic diversity decrease under the stressful conditions of a severe water quality gradient? and 2- Is there any relationship between the haplotypes registered along the studied basin and those recorded in other distant basins? Two mitochondrial DNA markers, Cytochrome b and D-loop, were analyzed and four haplotypes were registered for both markers along the basin. H1 was present throughout all the river sections in high frequencies leading to a low genetic diversity. We suggest that only a few haplotypes tolerate the stressful conditions of mountain rivers. On the other hand, the presence of H4 at the site located downstream suggests a history of recent colonization from the southeast to the northwest of the biome. These results, together with the abundance decrease along the pollution gradient, and the non-migratory characteristic of C. decemmaculatus suggest that its populations may be at risk of local extinction.
Collapse
Affiliation(s)
- Gisela E Rautenberg
- Instituto de Diversidad Y Ecología Animal (IDEA), CONICET (Consejo Nacional de Investigaciones Científicas Y Técnicas), Av. Vélez Sarsfield 299, 5000, Córdoba, CP, Argentina
- Facultad de Ciencias Exactas, Físicas Y Naturales, Cátedra de Diversidad Biológica IV, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 299, 5000, Córdoba, CP, Argentina
| | - Alejo F Bonifacio
- Instituto de Diversidad Y Ecología Animal (IDEA), CONICET (Consejo Nacional de Investigaciones Científicas Y Técnicas), Av. Vélez Sarsfield 299, 5000, Córdoba, CP, Argentina
- Facultad de Ciencias Exactas, Físicas Y Naturales, Cátedra de Diversidad Biológica IV, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 299, 5000, Córdoba, CP, Argentina
- Facultad de Ciencias Exactas, Físicas Y Naturales, Cátedra de Morfología Animal, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 299, 5000, Córdoba, Argentina
| | - Marina B Chiappero
- Facultad de Ciencias Exactas, Físicas Y Naturales, Cátedra de Diversidad Biológica IV, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 299, 5000, Córdoba, CP, Argentina
- Facultad de Ciencias Exactas, Físicas Y Naturales, Cátedra de Genética de Poblaciones Y Evolución, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 299, 5000, Córdoba, CP, Argentina
| | - María V Amé
- Facultad Ciencias Químicas, Dto. Bioquímica Clínica - CIBICI, Universidad Nacional de Córdoba - CONICET, Haya de La Torre Esq. Medina Allende, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Andrea C Hued
- Instituto de Diversidad Y Ecología Animal (IDEA), CONICET (Consejo Nacional de Investigaciones Científicas Y Técnicas), Av. Vélez Sarsfield 299, 5000, Córdoba, CP, Argentina.
- Facultad de Ciencias Exactas, Físicas Y Naturales, Cátedra de Diversidad Biológica IV, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 299, 5000, Córdoba, CP, Argentina.
| |
Collapse
|
10
|
Shuliakevich A, Muz M, Oehlmann J, Nagengast L, Schröder K, Wolf Y, Brückner I, Massei R, Brack W, Hollert H, Schiwy S. Assessing the genotoxic potential of freshwater sediments after extensive rain events - Lessons learned from a case study in an effluent-dominated river in Germany. WATER RESEARCH 2022; 209:117921. [PMID: 34923444 DOI: 10.1016/j.watres.2021.117921] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/17/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Wastewater treatment plant effluents and releases from rainwater overflow basins can contribute to the input of genotoxic micropollutants in aquatic ecosystems. Predominantly lipophilic genotoxic compounds tend to sorb to particulate matter, making sediment a source and a sink of pollution. Therefore, the present study aims to investigate the genotoxic potential of freshwater sediments (i) during the dry period and (ii) after extensive rain events by collecting sediment samples in one small anthropogenically impacted river in Germany up- and downstream of the local wastewater treatment plant. The Micronucleus and Ames fluctuation assays with Salmonella typhimurium strains TA98, TA100, YG1041, and YG1042 were used to assess the genotoxic potential of organic sediment extracts. For evaluation of possible genotoxicity drivers, target analysis for 168 chemical compounds was performed. No clastogenic effects were observed, while the genotoxic potential was observed at all sampling sites primarily driven by polycyclic aromatic hydrocarbons, nitroarenes, aromatic amines, and polycyclic heteroarenes. Freshwater sediments' genotoxic potential increased after extensive rain events due to sediment perturbation and the rainwater overflow basin release. In the present study, the rainwater overflow basin was a significant source for particle-bound pollutants from untreated wastewater, suggesting its role as a possible source of genotoxic potential. The present study showed high sensitivity and applicability of the bacterial Salmonella typhimurium strains YG1041 and YG1042 to organic sediment extracts to assess the different classes of genotoxic compounds. A combination of effect-based methods and a chemical analysis was shown as a suitable tool for a genotoxic assessment of freshwater sediments.
Collapse
Affiliation(s)
- Aliaksandra Shuliakevich
- Department Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt/Main, Max-von-Laue-Strasse 13, 60438 Frankfurt/Main, Germany
| | - Melis Muz
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Jörg Oehlmann
- Department Aquatic Ecotoxicology, Goethe University Frankfurt/Main, Max-von-Laue-Strasse 13, 60438 Frankfurt/Main, Germany
| | - Laura Nagengast
- RWTH Aachen University, Institute of Biology V, Worringerweg 1, 52074 Aachen, Germany
| | - Katja Schröder
- RWTH Aachen University, Institute of Biology V, Worringerweg 1, 52074 Aachen, Germany
| | - Yvonne Wolf
- RWTH Aachen University, Institute of Biology V, Worringerweg 1, 52074 Aachen, Germany
| | - Ira Brückner
- Eifel-Rur Waterboard (WVER), Eisenbahnstr. 5, 52354 Düren, Germany
| | - Riccardo Massei
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Werner Brack
- Department Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt/Main, Max-von-Laue-Strasse 13, 60438 Frankfurt/Main, Germany; Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Henner Hollert
- Department Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt/Main, Max-von-Laue-Strasse 13, 60438 Frankfurt/Main, Germany.
| | - Sabrina Schiwy
- Department Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt/Main, Max-von-Laue-Strasse 13, 60438 Frankfurt/Main, Germany
| |
Collapse
|
11
|
Car C, Gilles A, Armant O, Burraco P, Beaugelin‐Seiller K, Gashchak S, Camilleri V, Cavalié I, Laloi P, Adam‐Guillermin C, Orizaola G, Bonzom J. Unusual evolution of tree frog populations in the Chernobyl exclusion zone. Evol Appl 2022; 15:203-219. [PMID: 35233243 PMCID: PMC8867709 DOI: 10.1111/eva.13282] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/03/2022] Open
Abstract
Despite the ubiquity of pollutants in the environment, their long-term ecological consequences are not always clear and still poorly studied. This is the case concerning the radioactive contamination of the environment following the major nuclear accident at the Chernobyl nuclear power plant. Notwithstanding the implications of evolutionary processes on the population status, few studies concern the evolution of organisms chronically exposed to ionizing radiation in the Chernobyl exclusion zone. Here, we examined genetic markers for 19 populations of Eastern tree frog (Hyla orientalis) sampled in the Chernobyl region about thirty years after the nuclear power plant accident to investigate microevolutionary processes ongoing in local populations. Genetic diversity estimated from nuclear and mitochondrial markers showed an absence of genetic erosion and higher mitochondrial diversity in tree frogs from the Chernobyl exclusion zone compared to other European populations. Moreover, the study of haplotype network permitted us to decipher the presence of an independent recent evolutionary history of Chernobyl exclusion zone's Eastern tree frogs caused by an elevated mutation rate compared to other European populations. By fitting to our data a model of haplotype network evolution, we suspected that Eastern tree frog populations in the Chernobyl exclusion zone have a high mitochondrial mutation rate and small effective population sizes. These data suggest that Eastern tree frog populations might offset the impact of deleterious mutations because of their large clutch size, but also question the long-term impact of ionizing radiation on the status of other species living in the Chernobyl exclusion zone.
Collapse
Affiliation(s)
- Clément Car
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN)PSE‐ENV/SRTE/LECOCadaracheFrance
| | - André Gilles
- UMR RECOVERINRAEAix‐Marseille Université, Centre Saint‐CharlesMarseilleFrance
| | - Olivier Armant
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN)PSE‐ENV/SRTE/LECOCadaracheFrance
| | - Pablo Burraco
- Animal EcologyDepartment of Ecology and GeneticsEvolutionary Biology CentreUppsala UniversityUppsalaSweden
- Institute of Biodiversity, Animal Health and Comparative MedicineCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | | | - Sergey Gashchak
- Chornobyl Center for Nuclear SafetyRadioactive Waste and RadioecologySlavutychUkraine
| | - Virginie Camilleri
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN)PSE‐ENV/SRTE/LECOCadaracheFrance
| | - Isabelle Cavalié
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN)PSE‐ENV/SRTE/LECOCadaracheFrance
| | - Patrick Laloi
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN)PSE‐ENV/SRTE/LECOCadaracheFrance
| | | | - Germán Orizaola
- IMIB‐Biodiversity Research Institute (Univ. Oviedo‐CSIC‐Princip. Asturias)Universidad de OviedoMieres‐AsturiasSpain
- Department Biology Organisms and SystemsZoology UnitUniversity of OviedoOviedo‐AsturiasSpain
| | - Jean‐Marc Bonzom
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN)PSE‐ENV/SRTE/LECOCadaracheFrance
| |
Collapse
|
12
|
Loria A, Cristescu ME, Gonzalez A. Genotype diversity promotes the persistence of Daphnia populations exposed to severe copper stress. J Evol Biol 2022; 35:265-277. [PMID: 35000231 DOI: 10.1111/jeb.13979] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022]
Abstract
When environmental stressors of high intensity are sustained for long periods of time, populations face high probabilities of being extirpated. However, depending on the intensity of the stressor, large populations with sufficient genetic diversity may persist. We report the results of an experiment that tracked the persistence of Daphnia populations exposed to copper contamination. We assessed whether genotypic diversity reduced the risk of extinction. We created monoclonal and multiclonal populations and monitored their population sizes during a 32-week experiment. Cu was applied at a sub-lethal concentration and then increased every week until the population sizes dropped to about 10% of the carrying capacity (Cu at 180 μg/L). The concentration was then increased up to 186 μg/L and held stable until the end of the experiment. A survival analysis showed that clonal diversity extended the persistence of Daphnia populations, but copper contamination caused a substantial genetic erosion followed by population extirpation. However, some Cu-treated populations, mostly multiclonal, showed U-shaped patterns of growth consistent with evolutionary rescue but these did not lead to lasting population recovery. These results highlight the importance of genetic variation for population persistence, but they also show how quickly it can be lost in contaminated environments.
Collapse
Affiliation(s)
| | | | - Andrew Gonzalez
- Department of Biology, McGill University, Montreal, QC, Canada
| |
Collapse
|
13
|
Le Du-Carrée J, Boukhari R, Cachot J, Cabon J, Louboutin L, Morin T, Danion M. Generational effects of a chronic exposure to a low environmentally relevant concentration of glyphosate on rainbow trout, Oncorhynchus mykiss. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149462. [PMID: 34411792 DOI: 10.1016/j.scitotenv.2021.149462] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/23/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
In the past few decades, glyphosate became the most used herbicide substance worldwide. As a result, the substance is ubiquitous in surface waters. Concerns have been raised about its ecotoxicological impact, but little is known about its generational toxicity. In this study, we investigate the impact of an environmentally relevant concentration of glyphosate and its co-formulants on an F2 generation issued from exposed generations F0 and F1. Trans, inter and multigenerational toxicity of 1 μgL-1 of the active substance was evaluated on early stages of development and juvenile rainbow trout (Oncorhynchus mykiss) using different molecular, biochemical, immuno-hematologic, and biometric parameters, behavior analysis, and a viral challenge. Reproductive parameters of generation F1 were not affected. However, developmental toxicity in generation F2 due to glyphosate alone or co-formulated was observed with head size changes (e.g. head surface up to +10%), and metabolic disruptions (e.g. 35% reduction in cytochrome-c-oxidase). Moreover, larvae exposed transgenerationally to Viaglif and intergenerationally to glyphosate and Roundup presented a reduced response to light, potentially indicating altered escape behavior. Overall methylation was, however, not altered and further experiments using gene-specific DNA metylation analyses are required. After several months, biochemical parameters measured in juvenile fish were no longer impacted, only intergenerational exposure to glyphosate drastically increased the susceptibility of rainbow trout to hematopoietic necrosis virus. This result might be due to a lower antibody response in exposed fish. In conclusion, our results show that generational exposure to glyphosate induces developmental toxicity and increases viral susceptibility. Co-formulants present in glyphosate-based herbicides can modulate the toxicity of the active substance. Further investigations are required to study the specific mechanisms of transmission but our results suggest that both non-genetic mechanisms and exposure during germinal stage could be involved.
Collapse
Affiliation(s)
- Jessy Le Du-Carrée
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Fish Virology, Immunology and Ecotoxicology Unit, 29280 Plouzané, France; UBO University of Western Brittany, Brest, France.
| | - Rania Boukhari
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Fish Virology, Immunology and Ecotoxicology Unit, 29280 Plouzané, France
| | - Jérôme Cachot
- University of Bordeaux, UMR CNRS 5805 EPOC, Allée Geoffroy Saint Hilaire, 33 600 Pessac, France
| | - Joëlle Cabon
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Fish Virology, Immunology and Ecotoxicology Unit, 29280 Plouzané, France
| | - Lénaïg Louboutin
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Fish Virology, Immunology and Ecotoxicology Unit, 29280 Plouzané, France
| | - Thierry Morin
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Fish Virology, Immunology and Ecotoxicology Unit, 29280 Plouzané, France
| | - Morgane Danion
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Fish Virology, Immunology and Ecotoxicology Unit, 29280 Plouzané, France
| |
Collapse
|
14
|
Rafikov RR. The Fish Part of Community of the Vychegda River in a Pulp and Paper Mill-Treated Wastewater Discharge Area. CONTEMP PROBL ECOL+ 2021. [DOI: 10.1134/s199542552106010x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
De la Cruz-Guarneros N, Tovar-Sánchez E, Mussali-Galante P. Assessing effects of chronic heavy metal exposure through a multibiomarker approach: the case of Liomys irroratus (Rodentia: Heteromyidae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55373-55387. [PMID: 34132966 DOI: 10.1007/s11356-021-14855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
Wild animals that inhabit inside mine tailings which contain heavy metals are an excellent study model to conduct ecotoxicological studies that analyze chronic metal exposures at low doses (realistic exposures). This study was conducted in Huautla, Morelos, Mexico, in a mining district where 780,000 tons of wastes were deposited in open air. Liomys irroratus is a small mammal species that lives inside these mine tailings. A multibiomarker approach study was performed to analyze metal bioaccumulation levels (biomarker of exposure) by inductively coupled plasma mass spectrometry, DNA damage levels (biomarker of early effects) through the alkaline comet assay, and population genetic structure and diversity (biomarker of permanent effects), using seven microsatellite loci, in 75 L. irroratus individuals, from two mine tailings and one reference site. Concentrations of aluminum, copper, iron, nickel, lead, and zinc were statistically higher in the liver of exposed individuals. Significant DNA damage levels were registered in the mine tailings groups. Aluminum, lead, and nickel had the highest contribution to the genetic damage levels observed, while aluminum and nickel had the highest contribution to genetic diversity effects. A positive and significant relationship was detected between individual genetic diversity (internal relatedness) and genetic damage (DNA single-strand breaks). Genetic structure of L. irroratus populations revealed that the main source of genetic variation was located within populations. We consider that multibiomarker studies in environmental settings using sentinel species are valuable for environmental risk assessment and ecological responses in chronic exposed populations.
Collapse
Affiliation(s)
- Natalia De la Cruz-Guarneros
- Laboratorio de Investigaciones Ambientales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, 62209, Cuernavaca, Morelos, Mexico
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, 62209, Cuernavaca, Morelos, Mexico
| | - Patricia Mussali-Galante
- Laboratorio de Investigaciones Ambientales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, 62209, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
16
|
Gaber I, Ahmad Atallah A, Elghazaly M. Xenobiotics Result in Hormonal and Enzymatic Dysregulations in the Red Mussel Mytilus galloprovincialis (Lamarck, 1819) (Bivalvia, Mytilidae). Pak J Biol Sci 2021; 24:409-423. [PMID: 34486327 DOI: 10.3923/pjbs.2021.409.423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
<b>Background and Objective:</b> The contaminants in a marine ecosystem like mercury and synthetic hormones can disrupt the regulation of natural endocrine and reproductive systems of most organisms. This study aims to study the effect of organic and inorganic mercury on the viscera of <i>Mytilus galloprovincialis</i> after intracoelomic injection of 17α-ethinylestradiol, 17β-estradiol and Dichlorodiphenyltrichloroethane (DDT) and check the histological changes in the gonads. <b>Materials and Methods:</b> Mussels are collected during June-August, 2018 from Ras el tin beach of the Mediterranean Sea of Alexandria, Egypt. This study aims to: test the effect of 17α-ethinylestradiol, 17β-estradiol and DDT on vitellogenin (VTG) synthesis, enzymes dysfunction through intracoelomic injection of methyl mercury in a 0.75 μg/0.1 mL and mercury chloride to a 75 μg/0.1 mL. Gonads are studied histologically in control and treated mussels. Water-administered E2 and EE2 at 120 μL dose induced VTG expression in males 14 days exposure. <b>Results:</b> The relative concentration of VTG in the induced groups increases significantly as compared to the control. Alterations in the gonadal tissues and the maturation stages of the mussels are observed. The imposex mussels are characterized by concomitant secondary male sexual characteristics and the female gonad shows testicular structure. Superoxide Dismutase (SOD) activity in mussel digestive glands differed significantly (p = 0.002) after 72 hrs of MeHg exposure. <b>Conclusion:</b> Significant correlation can be observed between the activities of Glutathione S-Transferases (GST) and Glutathione Reductase (GR) in the digestive glands of mussels treated with MeHg, the enzyme activities of digestive glands treated with HgCl<sub>2</sub> and between Superoxide Dismutase<i>-</i>Catalase (SOD-CAT), SOD-GR and GST-GR.
Collapse
|
17
|
Dos Santos RL, de Sousa Correia JM, Dos Santos EM. Freshwater aquatic reptiles (Testudines and Crocodylia) as biomonitor models in assessing environmental contamination by inorganic elements and the main analytical techniques used: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:498. [PMID: 34287720 DOI: 10.1007/s10661-021-09212-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
Despite the general lack of studies that use reptiles as bioindicators, the value of freshwater turtles and crocodilians in ecotoxicology has been proven, due to their importance as sentinel species. The aim of this study was to compile information on the use of freshwater turtles and crocodilians as environmental biomonitors of inorganic element contamination. We searched for articles in databases using specific keywords. A total of 104 studies published between the years 1970 and 2020 were collected. We noted a general increase in the number of studies involving turtles and crocodilians during the study time period. The Order Testudines were the subjects of 46% of the analysed publications, and the Order Crocodylia accounted for 54%. Within these studies, we counted 39 species (turtles n = 29 and crocodilians n = 10). Forty chemical elements were evaluated in the analysed articles, of which the majority represented non-essential elements (Hg, Cd, Pb). Although internal organs constituted the main biological matrix chosen for each group (37%), we observed an increase in the use of non-destructive matrices in both groups (scale, blood, tail muscle, carapace). The majority of analysed studies used HNO3 for the sample decomposition, with the majority of analyses being performed using atomic absorption spectroscopy (53%). Mainly blank controls (19%), analyte recovery (18%) and replicates (18%) were used as methods of validating analytical procedures. Furthermore, the studies used certified reference materials, which measure the accuracy of the methods used. We conclude that the increase in the use of aquatic reptiles in environmental monitoring research is mainly due to their ability to reveal integrated changes in ecosystems, aiding in environmental public policy decision-making and effective management plans.
Collapse
Affiliation(s)
- Rayssa Lima Dos Santos
- Programa de Pós-Graduação em Biodiversidade e Conservação, Av. Gregório Ferraz Nogueira, Universidade Federal Rural de Pernambuco, Serra Talhada, PE, Brazil.
| | | | - Ednilza Maranhão Dos Santos
- Departamento de Biologia, Universidade Federal Rural de Pernambuco, Rua Manoel de Medeiros, Recife, PE, Brazil
| |
Collapse
|
18
|
Briñoccoli YF, Jardim de Queiroz L, Bogan S, Paracampo A, Posadas PE, Somoza GM, Montoya‐Burgos JI, Cardoso YP. Processes that drive the population structuring of Jenynsia lineata (Cyprinidontiformes, Anablepidae) in the La Plata Basin. Ecol Evol 2021; 11:6119-6132. [PMID: 34141207 PMCID: PMC8207347 DOI: 10.1002/ece3.7427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 11/09/2022] Open
Abstract
The distribution of genetic diversity across a species distribution range is rarely homogeneous, as the genetic structure among populations is related to the degree of isolation among them, such as isolation by distance, isolation by barrier, and isolation by environment. Jenynsia lineata is a small viviparous fish that inhabits a wide range of habitats in South America. To decipher the isolation processes that drive population structuring in J. lineata, we analyzed 221 sequences of the mitochondrial cytochrome c oxidase I gene (COI), from 19 localities. Then, we examined the influence of the three most common types of isolation in order to explain the genetic variation found in this species.Our results revealed a marked structuration, with three groups: (a) La Plata/Desaguadero Rivers (sampling sites across Argentina, Uruguay, and Southern Brazil), (b) Central Argentina, and (c) Northern Argentina. A distance-based redundancy analysis, including the explanatory variables geographical distances, altitude, latitude, and basin, was able to explain up to 65% of the genetic structure. A variance partitioning analysis showed that the two most important variables underlying the structuration in J. lineata were altitude (isolation by environment) and type of basin (isolation by barrier).Our results show that in this species, the processes of population diversification are complex and are not limited to a single mechanism. The processes that play a prominent role in this study could explain the high rate of diversity that characterizes freshwater fish species. And these processes in turn are the basis for possible speciation events.
Collapse
Affiliation(s)
- Yanina F. Briñoccoli
- Laboratorio de Ictiofisiología y AcuiculturaInstituto Tecnológico Chascomús (CONICET‐UNSAM)ChascomúsArgentina
| | | | - Sergio Bogan
- Fundación de Historia Natural “Félix de Azara”Departamento de Ciencias Naturales y AntropologíaUniversidad MaimónidesCiudad Autónoma de Buenos AiresArgentina
| | - Ariel Paracampo
- Instituto de Limnología Dr. Raúl A. RingueletCONICET‐CCT La Plata‐UNLPBuenos AiresArgentina
| | - Paula E. Posadas
- CONICETLaboratorio de Sistemática y Biología Evolutiva (LASBE)Facultad de Ciencias Naturales y MuseoUniversidad Nacional de La PlataBuenos AiresArgentina
| | - Gustavo M. Somoza
- Laboratorio de Ictiofisiología y AcuiculturaInstituto Tecnológico Chascomús (CONICET‐UNSAM)ChascomúsArgentina
| | | | - Yamila P. Cardoso
- CONICETLaboratorio de Sistemática y Biología Evolutiva (LASBE)Facultad de Ciencias Naturales y MuseoUniversidad Nacional de La PlataBuenos AiresArgentina
| |
Collapse
|
19
|
Rodríguez-Romero A, Viguri JR, Calosi P. Acquiring an evolutionary perspective in marine ecotoxicology to tackle emerging concerns in a rapidly changing ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142816. [PMID: 33092841 DOI: 10.1016/j.scitotenv.2020.142816] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Tens of thousands of anthropogenic chemicals and wastes enter the marine environment each year as a consequence of the ever-increasing anthropogenic activities and demographic growth of the human population, which is majorly concentrated along coastal areas. Marine ecotoxicology has had a crucial role in helping shed light on the fate of chemicals in the environment, and improving our understanding of how they can affect natural ecosystems. However, chemical contamination is not occurring in isolation, but rather against a rapidly changing environmental horizon. Most environmental studies have been focusing on short-term within-generation responses of single life stages of single species to single stressors. As a consequence, one-dimensional ecotoxicology cannot enable us to appreciate the degree and magnitude of future impacts of chemicals on marine ecosystems. Current approaches that lack an evolutionary perspective within the context of ongoing and future local and global stressors will likely lead us to under or over estimations of the impacts that chemicals will exert on marine organisms. It is therefore urgent to define whether marine organisms can acclimate, i.e. adjust their phenotypes through transgenerational plasticity, or rapidly adapt, i.e. realign the population phenotypic performances to maximize fitness, to the new chemical environment within a selective horizon defined by global changes. To foster a significant advancement in this research area, we review briefly the history of ecotoxicology, synthesis our current understanding of the fate and impact of contaminants under global changes, and critically discuss the benefits and challenges of integrative approaches toward developing an evolutionary perspective in marine ecotoxicology: particularly through a multigenerational approach. The inclusion of multigenerational studies in Ecological Risk Assessment framework (ERA) would provide significant and more accurately information to help predict the risks of pollution in a rapidly changing ocean.
Collapse
Affiliation(s)
- Araceli Rodríguez-Romero
- Departamento de Química Analítica, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus Río San Pedro, Puerto Real, 11510 Cádiz, Spain; Departamento de Ecología y Gestión Costera, Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Universitario Río San Pedro, 11519 Puerto Real, Spain.
| | - Javier R Viguri
- Green Engineering & Resources Research Group (GER), Departamento de Química e Ingeniería de Procesos y Recursos, ETSIIT, Universidad de Cantabria, Avda. de los Castros s/n, 39005 Santander, Cantabria, Spain
| | - Piero Calosi
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| |
Collapse
|
20
|
Abercrombie SA, de Perre C, Iacchetta M, Flynn RW, Sepúlveda MS, Lee LS, Hoverman JT. Sublethal Effects of Dermal Exposure to Poly- and Perfluoroalkyl Substances on Postmetamorphic Amphibians. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:717-726. [PMID: 32164037 DOI: 10.1002/etc.4711] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/11/2019] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
Abstract
Studies of the toxicity of poly- and perfluoroalkyl substances (PFAS) on amphibians, especially after metamorphosis, are limited. We examined effects of dermal PFAS exposure (30 d) on survival and growth of juvenile American toads (Anaxyrus americanus), eastern tiger salamanders (Ambystoma tigrinum), and northern leopard frogs (Rana pipiens). Chemicals included perfluorooctanoic acid, perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS), and 6:2 fluorotelomer sulfonate (6:2 FTS) at 0, 80, 800, or 8000 ppb on a moss dry weight basis. Exposure to PFAS influenced final snout-vent length (SVL) and scaled mass index (SMI), a measure of relative body condition. Observed effects depended on species and chemical, but not concentration. Anurans exposed to PFOS, PFHxS (frogs only), and 6:2 FTS demonstrated reduced SVL versus controls, whereas salamanders exposed to 6:2 FTS showed increased SVL. Frogs exposed to PFHxS and 6:2 FTS and toads exposed to PFOS had increased SMI compared to controls; salamanders did not demonstrate effects. Concentrations of 6:2 FTS in substrate decreased substantially by 30 d, likely driven by microbial action. Perfluorooctane sulfonate had notable biota-sediment accumulation factors, but was still <1. Although a no-observable-effect concentration could not generally be determined, the lowest-observable-effect concentration was 50 to 120 ppb. Survival was not affected. The present study demonstrates that PFAS bioaccumulation from dermal exposures and sublethal effects are dependent on species, chemical, and focal trait. Environ Toxicol Chem 2021;40:717-726. © 2020 SETAC.
Collapse
Affiliation(s)
- Sarah A Abercrombie
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | - Chloé de Perre
- Department of Agronomy, Purdue University, West Lafayette, Indiana, USA
| | - Michael Iacchetta
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | - R Wesley Flynn
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | - Maria S Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | - Linda S Lee
- Department of Agronomy, Purdue University, West Lafayette, Indiana, USA
| | - Jason T Hoverman
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
21
|
Polverino G, Martin JM, Bertram MG, Soman VR, Tan H, Brand JA, Mason RT, Wong BBM. Psychoactive pollution suppresses individual differences in fish behaviour. Proc Biol Sci 2021; 288:20202294. [PMID: 33563120 DOI: 10.1098/rspb.2020.2294] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Environmental contamination by pharmaceuticals is global, substantially altering crucial behaviours in animals and impacting on their reproduction and survival. A key question is whether the consequences of these pollutants extend beyond mean behavioural changes, restraining differences in behaviour between individuals. In a controlled, two-year, multigenerational experiment with independent mesocosm populations, we exposed guppies (Poecilia reticulata) to environmentally realistic levels of the ubiquitous pollutant fluoxetine (Prozac). Fish (unexposed: n = 59, low fluoxetine: n = 57, high fluoxetine: n = 58) were repeatedly assayed on four separate occasions for activity and risk-taking behaviour. Fluoxetine homogenized individuals' activity, with individual variation in populations exposed to even low concentrations falling to less than half that in unexposed populations. To understand the proximate mechanism underlying these changes, we tested the relative contribution of variation within and between individuals to the overall decline in individual variation. We found strong evidence that fluoxetine erodes variation in activity between but not within individuals, revealing the hidden consequences of a ubiquitous contaminant on phenotypic variation in fish-likely to impair adaptive potential to environmental change.
Collapse
Affiliation(s)
- Giovanni Polverino
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia (M092), 35 Stirling Highway, 6009 Perth, WA, Australia
| | - Jake M Martin
- School of Biological Sciences, Monash University, Australia
| | - Michael G Bertram
- School of Biological Sciences, Monash University, Australia.,Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Sweden
| | - Vrishin R Soman
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia (M092), 35 Stirling Highway, 6009 Perth, WA, Australia.,Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, USA
| | - Hung Tan
- School of Biological Sciences, Monash University, Australia
| | - Jack A Brand
- School of Biological Sciences, Monash University, Australia
| | - Rachel T Mason
- School of Biological Sciences, Monash University, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Australia
| |
Collapse
|
22
|
Oliveira VCS, Viana PF, Gross MC, Feldberg E, Da Silveira R, de Bello Cioffi M, Bertollo LAC, Schneider CH. Looking for genetic effects of polluted anthropized environments on Caiman crocodilus crocodilus (Reptilia, Crocodylia): A comparative genotoxic and chromosomal analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111835. [PMID: 33383344 DOI: 10.1016/j.ecoenv.2020.111835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
The Amazon aquatic ecosystems have been modified by the human population growth, going through changes in their water bodies and aquatic biota. The spectacled alligator (Caiman crocodilus crocodilus) has a wide distribution and adaptability to several environments, even those polluted ones. This study aimed to investigate if a Caiman species living in urban streams of Manaus city (Amazonas State, Brazil) is affected by environmental pollution. For that, it was used classical and molecular cytogenetic procedures, in addition to micronucleus and comet assays. Although the karyotype macrostructure remains unaltered (2 n = 42 chromosomes; 24 t + 18 m/sm; NF = 60), the genotoxic analysis and the cytogenetic mapping of repetitive DNA sequences demonstrated that polluted environments alter the genome of the specimens, affecting both the chromosomal organization and the genetic material.
Collapse
Affiliation(s)
- Vanessa Cristina Sales Oliveira
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil; Laboratório de Citogenômica Animal, Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Patrik Ferreira Viana
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | - Maria Claudia Gross
- Parque Tecnológico Itaipu, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, Paraná, Brazil
| | - Eliana Feldberg
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | - Ronis Da Silveira
- Laboratório de Zoologia Aplicada à Conservação, Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Marcelo de Bello Cioffi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil.
| | - Luiz Antonio Carlos Bertollo
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Carlos Henrique Schneider
- Centro Universitário Dinâmica das Cataratas, Faculdade Anglo Americano, Foz do Iguaçu, Paraná, Brazil
| |
Collapse
|
23
|
Fulton CA, Huff Hartz KE, Fuller NW, Kent LN, Anzalone SE, Miller TM, Connon RE, Poynton HC, Lydy MJ. Fitness costs of pesticide resistance in Hyalella azteca under future climate change scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141945. [PMID: 32911165 DOI: 10.1016/j.scitotenv.2020.141945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
Global climate change continues to cause alterations in environmental conditions which can be detrimental to aquatic ecosystem health. The development of pesticide resistance in organisms such as Hyalella azteca can lead to increased susceptibility to environmental change. This research provides a robust assessment of the effects of alterations in salinity on the fitness of H. azteca. Full-life cycle bioassays were conducted with non-resistant and pyrethroid-resistant H. azteca cultured under two salinity conditions representing a rise from freshwater control (0.2 psu) to increased salinity due to salt-water intrusion, reduced snowpack and evaporative enrichment (6.0 psu). Additionally, the upper thermal tolerance was defined for each population at each salinity. Pyrethroid-resistant H. azteca exhibited reduced thermal tolerance; however, they produced more offspring per female than non-resistant animals. Compared to the low salinity water, both non-resistant and pyrethroid-resistant H. azteca produced more offspring, grew larger (based on dry mass), and produced larger offspring in elevated salinity, although pyrethroid-resistant animals had lower survival and lipid levels. This study provides fundamental information about the fitness potential of H. azteca in a changing climate, suggesting advantages for non-resistant animals under future climate scenarios. In addition, this research further supports the need to consider the effects of global climate change when conducting risk assessment of contaminants of concern, as well as the contribution of contaminants when investigating climate change impacts on populations, as exposure may contribute to niche contraction.
Collapse
Affiliation(s)
- Corie A Fulton
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Department of Zoology, Southern Illinois University, Carbondale, IL 62901, USA.
| | - Kara E Huff Hartz
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Department of Zoology, Southern Illinois University, Carbondale, IL 62901, USA.
| | - Neil W Fuller
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Department of Zoology, Southern Illinois University, Carbondale, IL 62901, USA.
| | - Logan N Kent
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Department of Zoology, Southern Illinois University, Carbondale, IL 62901, USA.
| | - Sara E Anzalone
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Department of Zoology, Southern Illinois University, Carbondale, IL 62901, USA.
| | - Tristin M Miller
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Department of Zoology, Southern Illinois University, Carbondale, IL 62901, USA.
| | - Richard E Connon
- School of Veterinary Medicine, Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, CA 95616, USA.
| | - Helen C Poynton
- School for the Environment, University of Massachusetts, Boston, MA 02125, USA.
| | - Michael J Lydy
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Department of Zoology, Southern Illinois University, Carbondale, IL 62901, USA.
| |
Collapse
|
24
|
D'Agostini F, La Maestra S. Micronuclei in Fish Erythrocytes as Genotoxic Biomarkers of Water Pollution: An Overview. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 258:195-240. [PMID: 34611757 DOI: 10.1007/398_2021_76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Freshwater and marine water bodies receive chemical contaminants from industrial, agricultural, urban, and domestic wastes. Eco-genotoxicity assays are useful tools to assess the cumulative genotoxicity of these pollutants. Fish are suitable indicators for biomonitoring of mutagenic and carcinogenic pollution.In this review, we present a complete overview of the studies performed so far using the micronucleus test in peripheral erythrocytes of fish exposed to polluted water. We have listed all the species of fish used and the geographical distribution of the investigations. We have analyzed and discussed all technical aspects of using this test in fish, as well as the advantages and disadvantages of the different experimental protocols. We have reported the results of all studies. This assay has become, for years, one of the simplest, fastest, and most cost-effective for assessing genotoxic risk in aquatic environments. However, there are still several factors influencing the variability of the results. Therefore, we have given indications and suggestions to achieve a standardization of experimental procedures and ensure uniformity of future investigations.
Collapse
|
25
|
Martínez-Valenzuela C, Huichapan J, Ortega LD, Irineo AB, Zenteno E, Ruiz-Ramos R. Nuclear abnormalities in umbilical cord blood lymphocytes of newborns from the Ahome and Guasave municipalities in Sinaloa, Mexico. J Obstet Gynaecol Res 2020; 47:968-977. [PMID: 33372370 DOI: 10.1111/jog.14624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 10/15/2020] [Accepted: 12/10/2020] [Indexed: 11/29/2022]
Abstract
AIM We measured the frequency of nuclear abnormalities of 210 blood samples from the umbilical cord, since human fetuses are exposed to environmental mixtures of pesticides that induce DNA damage. METHODS The determinations were made through the micronucleus assay test in lymphocytes from the umbilical cord blood of newborns whose mothers live in Ahome (n = 105) and Guasave (n = 105), Sinaloa, Mexico. RESULTS The average frequency of anomalies in 1000 cells were, respectively: micronucleus 0.4 vs. 2.9, pyknotic cells 18.3 vs. 109.2, chromatin condensation 7.7 vs. 150.1, karyolitic cells 1.8 vs. 24.4, and binucleated cells 4.9 vs. 74.6. The calculated Pearson correlation factors of nuclear abnormality frequencies between both municipalities were low and negative, suggesting that they did not correlate between the Ahome and Guasave newborns and indicating a higher number of mothers exposed in Guasave. CONCLUSION Our data suggest that monitoring nuclear abnormalities in umbilical cord blood samples could be a useful tool to identify transplacental mutagens perfusion that is being discharged into the local environment.
Collapse
Affiliation(s)
- Carmen Martínez-Valenzuela
- Institute for Research in Environment and Health, Autonomous University of Occident, Bulevar Macario Gaxiola y Carretera Internacional, Los Mochis, Sinaloa, Mexico
| | - José Huichapan
- Institute for Research in Environment and Health, Autonomous University of Occident, Bulevar Macario Gaxiola y Carretera Internacional, Los Mochis, Sinaloa, Mexico
| | - Luis Daniel Ortega
- Department of Biological Sciences, Popular Autonomous University of the State of Puebla, 13 Poniente 1927 Colonia Barrio de Santiago, Puebla, Mexico
| | - Ana Bertha Irineo
- Faculty of Medicine, Autonomous University of Occident, Bulevar Macario Gaxiola y Carretera Internacional, Los Mochis, Sinaloa, Mexico
| | - Edgar Zenteno
- Faculty of Medicine, National Autonomous University of Mexico, Ciudad Universitaria, Coyoacán, México City, Mexico
| | - Rubén Ruiz-Ramos
- Faculty of Medicine, Veracruz University, Agustín de Iturbide S/N, Zona Centro, Veracruz, Mexico
| |
Collapse
|
26
|
Blanco-Rayón E, Ivanina AV, Sokolova IM, Marigómez I, Izagirre U. Sex and sex-related differences in gamete development progression impinge on biomarker responsiveness in sentinel mussels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140178. [PMID: 32569916 DOI: 10.1016/j.scitotenv.2020.140178] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/17/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
In marine pollution monitoring, the biomarkers recorded in sentinel organisms are influenced by natural confounding factors that may jeopardise their interpretation. Among these confounding factors, little is known about the influence of sex along the annual reproductive cycle. The present investigation aims at contributing to understand how sex and sex-related differences in gamete development progression impinge on biomarker baseline values and on biomarker responsiveness to pollution in sentinel mussels. Mussels (Mytilus galloprovincialis) were collected from a relatively clean locality and from a chronically polluted site in the Basque Coast (Bay of Biscay) in January, April, August and November. Sex and gametogenesis stages were determined for each mussel. Tissue concentration of metals and PAHs was analysed. A battery of biomarkers was investigated: cytochrome c oxidase, pyruvate kinase and phosphoenolpyruvate carboxykinase enzyme activities; levels of protein carbonyls, malondialdehyde and 4-hydroxy-2-nonenal; lysosomal enlargement and membrane stability; intracellular neutral lipid accumulation; cell type composition and thinning of the digestive gland epithelium; and survival-in-air. Sex- and reproductive stage-related differences were found in bioaccumulation and in the values and responsiveness of most of the biomarkers. However, the patterns of sex-related differences were not consistent across all biomarkers. The differences in the biomarker responses between females and males also depended on the season, reflecting the progression of the gametogenesis cycle. Thus, selecting mussels of one specific sex does not seem to be a crucial requisite to carry out biomarker-based monitoring; yet, it is highly recommended to identify sex condition and gamete developmental stage of each mussel to test for the potentially confounding effects of sex, reproductive status and sex-related variability along the reproductive cycle.
Collapse
Affiliation(s)
- E Blanco-Rayón
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology (ZTF/FCT), University of the Basque Country, Leioa-Bizkaia 48930, Basque Country, Spain; CBET Research Group, Research Centre of Experimental Marine Biology and Biotechnology (Plentzia Marine Station; PiE-UPV/EHU), University of the Basque Country, Plentzia-Bizkaia 48620, Basque Country, Spain
| | - A V Ivanina
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, United States
| | - I M Sokolova
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, United States; Department of Marine Biology, Institute for Biosciences & Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock 18055, Germany
| | - I Marigómez
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology (ZTF/FCT), University of the Basque Country, Leioa-Bizkaia 48930, Basque Country, Spain; CBET Research Group, Research Centre of Experimental Marine Biology and Biotechnology (Plentzia Marine Station; PiE-UPV/EHU), University of the Basque Country, Plentzia-Bizkaia 48620, Basque Country, Spain.
| | - U Izagirre
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology (ZTF/FCT), University of the Basque Country, Leioa-Bizkaia 48930, Basque Country, Spain; CBET Research Group, Research Centre of Experimental Marine Biology and Biotechnology (Plentzia Marine Station; PiE-UPV/EHU), University of the Basque Country, Plentzia-Bizkaia 48620, Basque Country, Spain
| |
Collapse
|
27
|
Yang W, Ding J, Wang S, Yang Y, Song G, Zhang Y. Variation in genetic diversity of tree sparrow (Passer montanus) population in long-term environmental heavy metal polluted areas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114396. [PMID: 32222667 DOI: 10.1016/j.envpol.2020.114396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
Genetic diversity is the bedrock of evolution. The "Genetic Erosion" hypothesis posits that environmental pollution could cause reduced genetic diversity. To explore the effects of heavy metal pollution on genetic diversity in natural populations, we selected an area with more than sixty years of heavy metal contamination (Baiyin, BY) and a relatively unpolluted one (Liujiaxia, LJX), and tree sparrow (Passer montanus) as study models. Five tree sparrow populations were sampled in BY at sites differing in heavy metal pollution level. Lower genetic diversity based on seven microsatellite loci was observed in the five tree sparrow populations from BY compared with those from LJX. Analysis of molecular variance indicated no significant genetic differentiation between BY and LJX. However, the observed heterozygosity and allelic richness were negatively correlated to the lead and cadmium concentrations in the primary feathers of tree sparrow. Our results indicated the genetic diversity might have a negative response to long-term environmental heavy metal pollution in tree sparrow, supporting the "Genetic Erosion" hypothesis. Therefore, the findings shed lights on the possible effects of heavy metal pollution on genetic diversity of wild bird populations.
Collapse
Affiliation(s)
- Wenzhi Yang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jian Ding
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shengnan Wang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Ying Yang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yingmei Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
28
|
Matthews B, Jokela J, Narwani A, Räsänen K, Pomati F, Altermatt F, Spaak P, Robinson CT, Vorburger C. On biological evolution and environmental solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138194. [PMID: 32251887 PMCID: PMC7118648 DOI: 10.1016/j.scitotenv.2020.138194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 05/22/2023]
Abstract
Drawing insights from multiple disciplines is essential for finding integrative solutions that are required to tackle complex environmental problems. Human activities are causing unprecedented influence on global ecosystems, culminating in the loss of species and fundamental changes in the selective environments of organisms across the tree of life. Our collective understanding about biological evolution can help identify and mitigate many of the environmental problems in the Anthropocene. To this end, we propose a stronger integration of environmental sciences with evolutionary biology.
Collapse
Affiliation(s)
- Blake Matthews
- EAWAG, Department of Fish Ecology and Evolution, Center for Ecology, Evolution, and Biogeochemistry, Seestrasse 79, 6047 Kastanienbaum, Switzerland; EAWAG, Department of Aquatic Ecology, Überlandstr. 133, 8600 Dübendorf, Switzerland; Institute of Integrative Biology, ETH-Zurich, Zurich, Switzerland.
| | - Jukka Jokela
- EAWAG, Department of Aquatic Ecology, Überlandstr. 133, 8600 Dübendorf, Switzerland; Institute of Integrative Biology, ETH-Zurich, Zurich, Switzerland
| | - Anita Narwani
- EAWAG, Department of Aquatic Ecology, Überlandstr. 133, 8600 Dübendorf, Switzerland; Institute of Integrative Biology, ETH-Zurich, Zurich, Switzerland
| | - Katja Räsänen
- EAWAG, Department of Aquatic Ecology, Überlandstr. 133, 8600 Dübendorf, Switzerland; Institute of Integrative Biology, ETH-Zurich, Zurich, Switzerland
| | - Francesco Pomati
- EAWAG, Department of Aquatic Ecology, Überlandstr. 133, 8600 Dübendorf, Switzerland; Institute of Integrative Biology, ETH-Zurich, Zurich, Switzerland
| | - Florian Altermatt
- EAWAG, Department of Aquatic Ecology, Überlandstr. 133, 8600 Dübendorf, Switzerland; Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Piet Spaak
- EAWAG, Department of Aquatic Ecology, Überlandstr. 133, 8600 Dübendorf, Switzerland; Institute of Integrative Biology, ETH-Zurich, Zurich, Switzerland
| | | | - Christoph Vorburger
- EAWAG, Department of Aquatic Ecology, Überlandstr. 133, 8600 Dübendorf, Switzerland; Institute of Integrative Biology, ETH-Zurich, Zurich, Switzerland.
| |
Collapse
|
29
|
Falcão CBR, Pinheiro MAA, Torres RA, Adam ML. Spatial-temporal genome damaging in the blue crab Cardisoma guanhumi as ecological indicators for monitoring tropical estuaries. MARINE POLLUTION BULLETIN 2020; 156:111232. [PMID: 32510378 DOI: 10.1016/j.marpolbul.2020.111232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 05/06/2023]
Abstract
In this study, to better our understanding of the current state of conservation of Cardisoma guanhumi and its habitats, we evaluated the potential spatio-temporal genomic damage of this species across five estuaries in Brazil. The experiment was performed over two consecutive years, and the sampling was performed in the winter and summer seasons. Two genetic tests - micronucleus test and comet assay - were used to quantify the DNA damage. Unlike in the summers and in the winter of 2013, in the winter of 2012 a significant increase was noted in the frequency of micronucleated cells and genomic damage index. The occurrence of genomic damage coincided with the arrival of the harsh winter of 2012 as the water sourced from the coastal rivers significantly affected the estuarine species under study. Our results confirmed that this species was resilient to the atypical climatic conditions, which facilitated the generation of excessive waste.
Collapse
Affiliation(s)
- C B R Falcão
- Laboratório de Genômica Evolutiva e Ambiental (LAGEA), Departamento de Zoologia, Universidade Federal de Pernambuco, Av. Professor Moraes Rêgo 1235, Cidade Universitária, Recife, Pernambuco 50670-901, Brazil; Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal de Pernambuco, Av. Professor Moraes Rêgo 1235, Cidade Universitária, Recife, Pernambuco 50670-901, Brazil
| | - M A A Pinheiro
- Laboratório de Biologia de Crustáceos (LBC), Universidade Estadual Paulista 'Julio Mesquita Filho'- Campus Litoral Paulista (UNESP - IB/CLP), Praça Infante Dom Henrique s/no, Parque Bitaru, São Vicente, São Paulo 11330-900, Brazil; Crusta - Grupo de Pesquisa em Biologia de Crustáceos, Brazil
| | - R A Torres
- Laboratório de Genômica Evolutiva e Ambiental (LAGEA), Departamento de Zoologia, Universidade Federal de Pernambuco, Av. Professor Moraes Rêgo 1235, Cidade Universitária, Recife, Pernambuco 50670-901, Brazil; Crusta - Grupo de Pesquisa em Biologia de Crustáceos, Brazil
| | - M L Adam
- Laboratório de Genômica Evolutiva e Ambiental (LAGEA), Departamento de Zoologia, Universidade Federal de Pernambuco, Av. Professor Moraes Rêgo 1235, Cidade Universitária, Recife, Pernambuco 50670-901, Brazil; Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Universidade Federal de Pernambuco, Av. Professor Moraes Rêgo 1235, Cidade Universitária, Recife, Pernambuco 50670-901, Brazil; Crusta - Grupo de Pesquisa em Biologia de Crustáceos, Brazil.
| |
Collapse
|
30
|
Johann S, Goßen M, Behnisch PA, Hollert H, Seiler TB. Combining Different In Vitro Bioassays to Evaluate Genotoxicity of Water-Accommodated Fractions from Petroleum Products. TOXICS 2020; 8:toxics8020045. [PMID: 32604793 PMCID: PMC7355774 DOI: 10.3390/toxics8020045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/08/2020] [Accepted: 06/20/2020] [Indexed: 12/18/2022]
Abstract
Genotoxicity assessment is of high relevance for crude and refined petroleum products, since oil compounds are known to cause DNA damage with severe consequences for aquatic biota as demonstrated in long-term monitoring studies. This study aimed at the optimization and evaluation of small-scale higher-throughput assays (Ames fluctuation, micronucleus, Nrf2-CALUX®) covering different mechanistic endpoints as first screening tools for genotoxicity assessment of oils. Cells were exposed to native and chemically dispersed water-accommodated fractions (WAFs) of three oil types varying in their processing degree. Independent of an exogenous metabolic activation system, WAF compounds induced neither base exchange nor frame shift mutations in bacterial strains. However, significantly increased chromosomal aberrations in zebrafish liver (ZF-L) cells were observed. Oxidative stress was indicated for some treatments and was not correlated with observed DNA damage. Application of a chemical dispersant increased the genotoxic potential rather by the increased bioavailability of dissolved and particulate oil compounds. Nonetheless, the dispersant induced a clear oxidative stress response, indicating a relevance for general toxic stress. Results showed that the combination of different in vitro assays is important for a reliable genotoxicity assessment. Especially, the ZF-L capable of active metabolism and DNA repair seems to be a promising model for WAF testing.
Collapse
Affiliation(s)
- Sarah Johann
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany; (M.G.); (H.H.)
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Correspondence: (S.J.); (T.-B.S.)
| | - Mira Goßen
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany; (M.G.); (H.H.)
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Peter A. Behnisch
- BioDetection Systems b.v., Science Park 406, 1098 XH Amsterdam, The Netherlands;
| | - Henner Hollert
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany; (M.G.); (H.H.)
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Thomas-Benjamin Seiler
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Correspondence: (S.J.); (T.-B.S.)
| |
Collapse
|
31
|
Rybak AV, Belykh ES, Maystrenko TA, Shadrin DM, Pylina YI, Chadin IF, Velegzhaninov IO. Genetic analysis in earthworm population from area contaminated with radionuclides and heavy metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:137920. [PMID: 32213403 DOI: 10.1016/j.scitotenv.2020.137920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
This study assessed the effects of environmental contamination by naturally occurring radionuclides and heavy metals on the genetic structure of a population of the earthworm Aporrectodea caliginosa. A. caliginosa were collected from four sites and characterized by amplified fragment length polymorphism (AFLP) analyses. No differences in genetic structure and diversity were found between sites that differed greatly in soil contamination levels of radionuclides and metals. However, when the genetic structure of the A. caliginosa population was analyzed without considering information about the sampling site, a complex intraspecific genetic structure was identified. At least three highly divergent lineages were found, in unequal proportions, of each genetically isolated group from each study site. No associations were found between the distribution of the detected genetic clusters and the geographical origin of the samples. Thus, no noticeable adaptive changes or signs of directional selection were detected, despite the long history of genotoxic waste disposal at the sampling site. These results suggest a combined effect of three factors on the genetic structure and diversity of A. caliginosa in soils: the complexity of the contaminant composition, the heterogeneous spatial distribution of the pollutants, and the complexity of the intraspecific genetic structures of A. caliginosa.
Collapse
Affiliation(s)
- Anna V Rybak
- Institute of Biology of Komi Science Centre of Ural Branch of RAS, Syktyvkar 167982, Russia
| | - Elena S Belykh
- Institute of Biology of Komi Science Centre of Ural Branch of RAS, Syktyvkar 167982, Russia
| | - Tatiana A Maystrenko
- Institute of Biology of Komi Science Centre of Ural Branch of RAS, Syktyvkar 167982, Russia.
| | - Dmitry M Shadrin
- Institute of Biology of Komi Science Centre of Ural Branch of RAS, Syktyvkar 167982, Russia
| | - Yana I Pylina
- Institute of Biology of Komi Science Centre of Ural Branch of RAS, Syktyvkar 167982, Russia
| | - Ivan F Chadin
- Institute of Biology of Komi Science Centre of Ural Branch of RAS, Syktyvkar 167982, Russia.
| | - Ilya O Velegzhaninov
- Institute of Biology of Komi Science Centre of Ural Branch of RAS, Syktyvkar 167982, Russia; Polytechnical Institute of Vyatka State University, Kirov 610020, Russia.
| |
Collapse
|
32
|
Isolation and purification of Escherichia coli bacteriophage from Tigris River, Baghdad, Iraq. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Sula E, Aliko V, Pagano M, Faggio C. Digital light microscopy as a tool in toxicological evaluation of fish erythrocyte morphological abnormalities. Microsc Res Tech 2020; 83:362-369. [DOI: 10.1002/jemt.23422] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/13/2019] [Accepted: 11/27/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Eldores Sula
- Department of BiologyFaculty of Natural Sciences, Tirana University Tirana Albania
| | - Valbona Aliko
- Department of BiologyFaculty of Natural Sciences, Tirana University Tirana Albania
| | - Maria Pagano
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of Messina Messina Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of Messina Messina Italy
| |
Collapse
|
34
|
Patra AK, Chung O, Yoo JY, Kim MS, Yoon MG, Choi JH, Yang Y. First draft genome for the sand-hopper Trinorchestia longiramus. Sci Data 2020; 7:85. [PMID: 32152293 PMCID: PMC7062882 DOI: 10.1038/s41597-020-0424-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 02/18/2020] [Indexed: 11/09/2022] Open
Abstract
Crustacean amphipods are important trophic links between primary producers and higher consumers. Although most amphipods occur in or around aquatic environments, the family Talitridae is the only family found in terrestrial and semi-terrestrial habitats. The sand-hopper Trinorchestia longiramus is a talitrid species often found in the sandy beaches of South Korea. In this study, we present the first draft genome assembly and annotation of this species. We generated ~380.3 Gb of sequencing data assembled in a 0.89 Gb draft genome. Annotation analysis estimated 26,080 protein-coding genes, with 89.9% genome completeness. Comparison with other amphipods showed that T. longiramus has 327 unique orthologous gene clusters, many of which are expanded gene families responsible for cellular transport of toxic substances, homeostatic processes, and ionic and osmotic stress tolerance. This first talitrid genome will be useful for further understanding the mechanisms of adaptation in terrestrial environments, the effects of heavy metal toxicity, as well as for studies of comparative genomic variation across amphipods.
Collapse
Affiliation(s)
| | | | - Ji Yong Yoo
- National Marine Biodiversity Institute of Korea, Seocheon, 33662, South Korea
| | - Min Seop Kim
- National Marine Biodiversity Institute of Korea, Seocheon, 33662, South Korea
| | - Moon Geun Yoon
- National Marine Biodiversity Institute of Korea, Seocheon, 33662, South Korea
| | - Jeong-Hyeon Choi
- National Marine Biodiversity Institute of Korea, Seocheon, 33662, South Korea
| | - Youngik Yang
- National Marine Biodiversity Institute of Korea, Seocheon, 33662, South Korea.
| |
Collapse
|
35
|
Rybakovas A, Arbačiauskas K, Markovskienė V, Jokšas K. Contamination and genotoxicity biomarker responses in bivalve mussels from the major Lithuanian rivers. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:338-354. [PMID: 31569264 DOI: 10.1002/em.22336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/04/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
European inland waters are under continuous threat of anthropogenic pollution. Determination of background level of biomarker response and subsequent classification of the impact increases the applicability of results. In the current study, we evaluate the range of chemical contamination by measuring the concentrations of metals, polycyclic aromatic hydrocarbons and polychlorinated biphenyls, and the levels of environmental genotoxicity by using the micronuclei and nuclear bud tests in bivalve mussels of the major Lithuanian rivers. Second, we aimed to evaluate the association between chemical contamination and genotoxicity biomarker responses. Finally, we set to determine the background level of genotoxic effects. Such value (summed frequency of MN and NB) was assessed-6‰. On that basis, we develop a scale of potential genotoxic impact and perform ranging sites into five categories. The results clearly indicate the existence of significant differences in the levels of chemical pollution and genotoxicity in different sites. Increased levels of studied parameters were assessed at the areas affected by municipal and industrial effluents, road runoff, combustion products, and in the area contaminated by accidental spillage. On the other hand, downstream decrease of contamination level, presumably associated with biological degradation and photochemical oxidation, were also observed. Genotoxicity parameters were associated with PAH and metal concentrations measured in mussel tissues as well as in sediments. Results also indicate that in situ genotoxicity assessment performed in the areas affected by long-term contamination of municipal origin might be not sufficiently precise. Study highlights the necessity to combine genotoxicity assessment with chemical analysis. Environ. Mol. Mutagen. 61:338-354, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Kęstutis Arbačiauskas
- Nature Research Centre, Vilnius, Lithuania
- Life Sciences Center of Vilnius University, Institute of Biosciences, Vilnius, Lithuania
| | - Vaida Markovskienė
- Life Sciences Center of Vilnius University, Institute of Biosciences, Vilnius, Lithuania
| | | |
Collapse
|
36
|
Oziolor EM, DeSchamphelaere K, Lyon D, Nacci D, Poynton H. Evolutionary Toxicology-An Informational Tool for Chemical Regulation? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:257-268. [PMID: 31978273 PMCID: PMC7885860 DOI: 10.1002/etc.4611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Elias M Oziolor
- Department of Environmental Toxicology, University of California at Davis, Davis, CA, USA
| | - Karel DeSchamphelaere
- Laboratory of Environmental Toxicology and Aquatic Ecology, GhEnToxLab Unit, Ghent University, Gent, Belgium
| | - Delina Lyon
- Shell Health, Shell Oil Company, Houston, TX, USA
| | - Diane Nacci
- Atlantic Coastal Environmental Sciences Division, Center for Environmental Measurements and Modeling, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA
| | - Helen Poynton
- School for the Environment, University of Massachusetts Boston, Boston, MA, USA
| |
Collapse
|
37
|
Attaallah A, Marchionni S, El-Beltagy A, Abdelaziz K, Lorenzini A, Milani L. Cell cultures of the Manila clam and their possible use in biomonitoring and species preservation. THE EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2020.1827052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- A. Attaallah
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - S. Marchionni
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - A. El-Beltagy
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - K. Abdelaziz
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - A. Lorenzini
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - L. Milani
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy
| |
Collapse
|
38
|
Salem Al-Howiti N, Ouanes Ben Othmen Z, Ben Othmane A, Hamza Chaffai A. Use of Tridacna maxima, a bivalve in the biomonitoring of the Saudi Arabian Red Sea coast. MARINE POLLUTION BULLETIN 2020; 150:110766. [PMID: 31910521 DOI: 10.1016/j.marpolbul.2019.110766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
The present study is an attempt to assess the effects of contamination of several sites in the Red Sea coasts of Saudi Arabia using bivalves as a biomonitoring tool. Oxidative stress biomarkers (including reduced glutathione level (GSH), glutathione-S-transferase activity (GST), Malondialdehyde level (MDA) and Catalase activity (CAT)), neurotoxicity acetylcholinesterase activity (ACHE), and genotoxicity micronucleus rate (MN) were measured in three distinct tissues - digestive glands, gills and mantle - of specimens of the giant clam Tridacna maxima, collected from five sites in Saudi Arabian Red Sea coast (Al-Khuraybah, Al-Wajh, Yanbu, Rabigh and Thuwal). Our results demonstrated that T. maxima showed differential biomarker responses according to the nature of pollutants and human activity that affect the coast. This study can be considered as the first one using biomarkers to assess the state of the Red Sea coast in Saudi Arabia which must be followed by periodic studies for surveillance of aquatic pollution.
Collapse
Affiliation(s)
- Norah Salem Al-Howiti
- Department of Biology, College of Sciences, Taibah University, Al Madinah Al Munawarah, Saudi Arabia
| | - Zouhour Ouanes Ben Othmen
- Department of Biology, College of Sciences, Taibah University, Al Madinah Al Munawarah, Saudi Arabia; Environmental and Marine Unit Research, UR 09-03, IPEIS Sfax University, Tunisia.
| | - Abdelwaheb Ben Othmane
- Department of Biology, College of Sciences, Taibah University, Al Madinah Al Munawarah, Saudi Arabia
| | - Amel Hamza Chaffai
- Environmental and Marine Unit Research, UR 09-03, IPEIS Sfax University, Tunisia
| |
Collapse
|
39
|
Gouin N, Bertin A, Espinosa MI, Snow DD, Ali JM, Kolok AS. Pesticide contamination drives adaptive genetic variation in the endemic mayfly Andesiops torrens within a semi-arid agricultural watershed of Chile. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113099. [PMID: 31600702 DOI: 10.1016/j.envpol.2019.113099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/01/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Agrichemical contamination can provoke evolutionary responses in freshwater populations. It is a particularly relevant issue in semi-arid regions due to the sensitivity of endemic species to pollutants and to interactions with temperature stress. This paper investigates the presence of pesticides in rivers within a semi-arid agricultural watershed of Chile, testing for their effects on population genetic characteristics of the endemic mayfly Andesiops torrens (Insecta, Ephemeroptera). Pesticides were detected in sediment samples in ten out of the 30 sites analyzed throughout the upper part of the Limarí watershed. To study the evolutionary impact of such contamination on A. torrens, we used a genome-wide approach and analyzed 2056 single nucleotide polymorphisms (SNPs) loci in 551 individuals from all sites. Genetic differentiation was weak between populations, suggesting high gene flow across the study area. While we did not find evidence of pesticide effects on genetic diversity nor on population differentiation, the allele frequency of three outlier SNP loci correlated significantly with pesticide occurrence. Interrogation of genomic resources indicates that two of these SNPs are located within functional genes that encode for the low-density lipoprotein receptor-related protein 2 and Dumpy, both potentially involved in insect cuticle resistance processes. Such genomic signatures of local adaptation are indicative of past adverse effects of pesticide exposure on the locally adapted populations. Our results reveal that A. torrens is sensitive to pesticide exposure, but that a high gene flow may confer resilience to contamination. This research supports the contention that A. torrens is an ideal model organism to study evolutionary responses induced by pesticides on non-target, endemic species.
Collapse
Affiliation(s)
- Nicolas Gouin
- Departamento de Biología, Universidad de La Serena, Raúl Bitrán, 1305, La Serena, Chile; Instituto de Investigación Multidisciplinar en Ciencia y Tecnología, Universidad de La Serena, La Serena, Chile; Centro de Estudios Avanzados Zonas en Áridas, Raúl Bitrán, 1305, La Serena, Chile.
| | - Angéline Bertin
- Departamento de Biología, Universidad de La Serena, Raúl Bitrán, 1305, La Serena, Chile.
| | - Mara I Espinosa
- Departamento de Biología, Universidad de La Serena, Raúl Bitrán, 1305, La Serena, Chile.
| | - Daniel D Snow
- Nebraska Water Center, University of Nebraska-Lincoln, Lincoln, NE, 68583-0844, United States.
| | - Jonathan M Ali
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Alan S Kolok
- Idaho Water Resources Research Institute, University of Idaho, Moscow, ID, 83844-3002, United States.
| |
Collapse
|
40
|
Neerland ED, Bytingsvik J, Nikiforov VA, Evenset A, Krøkje Å. DNA Double-Strand Breaks in Arctic Char (Salvelinus alpinus) from Bjørnøya in the Norwegian Arctic. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2405-2413. [PMID: 31343779 DOI: 10.1002/etc.4546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/13/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
High levels of organochlorine contaminants (OCs) have been found in arctic char (Salvelinus alpinus) from Lake Ellasjøen, Bjørnøya (Norwegian Arctic). The aim of the present study was to investigate the potential genotoxic effect of environmental organochlorine contaminant exposure in arctic char from Ellasjøen compared with arctic char from the low-contaminated Lake Laksvatn nearby. Blood was analyzed using agarose gel electrophoresis and image data analysis to quantify the fraction of total DNA that migrated into the gel (DNA-FTM) as a relative measure of DNA double-strand breaks (DSBs). Analysis by GC-MS of muscle samples showed an average 43 times higher concentration of ΣOCs in arctic char from Ellasjøen (n = 18) compared with Laksvatn char (n = 21). Char from Lake Ellasjøen had a much higher frequency of DSBs, as measured by DNA-FTM, than char from Lake Laksvatn. Principal component analysis and multiple linear regressions show that there was a significant positive relationship between DSBs and levels of organochlorine contaminants in the char. In addition, DSBs were less frequent in reproductively mature char than in immature char. The results suggest that organochlorine contaminants are genotoxic to arctic char. Environ Toxicol Chem 2019;38:2405-2413. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Eirik D Neerland
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jenny Bytingsvik
- Akvaplan-niva AS, Fram Centre-High North Research Centre for Climate and the Environment, Tromsø, Norway
| | - Vladimir A Nikiforov
- Norwegian Institute for Air Research, Fram Centre-High North Research Centre for Climate and the Environment, Tromsø, Norway
| | - Anita Evenset
- Akvaplan-niva AS, Fram Centre-High North Research Centre for Climate and the Environment, Tromsø, Norway
- The Arctic University of Norway, Tromsø, Norway
| | - Åse Krøkje
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
41
|
Alavi MS, Shamsizadeh A, Karimi G, Roohbakhsh A. Transient receptor potential ankyrin 1 (TRPA1)-mediated toxicity: friend or foe? Toxicol Mech Methods 2019; 30:1-18. [PMID: 31409172 DOI: 10.1080/15376516.2019.1652872] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transient receptor potential (TRP) channels have been widely studied during the last decade. New studies uncover new features and potential applications for these channels. TRPA1 has a huge distribution all over the human body and has been reported to be involved in different physiological and pathological conditions including cold, pain, and damage sensation. Considering its role, many studies have been devoted to evaluating the role of this channel in the initiation and progression of different toxicities. Accordingly, we reviewed the most recent studies and divided the role of TRPA1 in toxicology into the following sections: neurotoxicity, cardiotoxicity, dermatotoxicity, and pulmonary toxicity. Acetaminophen, heavy metals, tear gases, various chemotherapeutic agents, acrolein, wood smoke particulate materials, particulate air pollution materials, diesel exhaust particles, cigarette smoke extracts, air born irritants, sulfur mustard, and plasticizers are selected compounds and materials with toxic effects that are, at least in part, mediated by TRPA1. Considering the high safety of TRPA1 antagonists and their efficacy to resolve selected toxic or adverse drug reactions, the future of these drugs looks promising.
Collapse
Affiliation(s)
- Mohaddeseh Sadat Alavi
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Shamsizadeh
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
42
|
Millette KL, Fugère V, Debyser C, Greiner A, Chain FJJ, Gonzalez A. No consistent effects of humans on animal genetic diversity worldwide. Ecol Lett 2019; 23:55-67. [DOI: 10.1111/ele.13394] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/19/2019] [Accepted: 09/04/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Katie L. Millette
- Department of Biology McGill University Montreal QC Canada
- Quebec Centre for Biodiversity Science Montreal QC Canada
| | - Vincent Fugère
- Department of Biology McGill University Montreal QC Canada
- Quebec Centre for Biodiversity Science Montreal QC Canada
- Département des Sciences Biologiques Université du Québec à Montréal Montreal QC Canada
| | - Chloé Debyser
- Department of Biology McGill University Montreal QC Canada
- Quebec Centre for Biodiversity Science Montreal QC Canada
| | - Ariel Greiner
- Department of Ecology & Evolutionary Biology University of Toronto Toronto ON Canada
| | - Frédéric J. J. Chain
- Department of Biological Sciences University of Massachusetts at Lowell Lowell MA USA
| | - Andrew Gonzalez
- Department of Biology McGill University Montreal QC Canada
- Quebec Centre for Biodiversity Science Montreal QC Canada
| |
Collapse
|
43
|
Fuller N, Ford AT, Lerebours A, Gudkov DI, Nagorskaya LL, Smith JT. Chronic radiation exposure at Chernobyl shows no effect on genetic diversity in the freshwater crustacean, Asellus aquaticus thirty years on. Ecol Evol 2019; 9:10135-10144. [PMID: 31624541 PMCID: PMC6787803 DOI: 10.1002/ece3.5478] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/19/2019] [Accepted: 07/02/2019] [Indexed: 12/17/2022] Open
Abstract
Analysis of genetic diversity represents a fundamental component of ecological risk assessments in contaminated environments. Many studies have assessed the genetic implications of chronic radiation exposure at Chernobyl, generally recording an elevated genetic diversity and mutation rate in rodents, plants, and birds inhabiting contaminated areas. Only limited studies have considered genetic diversity in aquatic biota at Chernobyl, despite the large number of freshwater systems where elevated dose rates will persist for many years. Consequently, the present study aimed to assess the effects of chronic radiation exposure on genetic diversity in the freshwater crustacean, Asellus aquaticus, using a genome-wide SNP approach (Genotyping-by-sequencing). It was hypothesized that genetic diversity in A. aquaticus would be positively correlated with dose rate. A. aquaticus was collected from six lakes in Belarus and the Ukraine ranging in dose rate from 0.064 to 27.1 µGy/hr. Genotyping-by-sequencing analysis was performed on 74 individuals. A significant relationship between geographical distance and genetic differentiation confirmed the Isolation-by-Distance model. Conversely, no significant relationship between dose rate and genetic differentiation suggested no effect of the contamination gradient on genetic differentiation between populations. No significant relationship between five measures of genetic diversity and dose rate was recorded, suggesting that radiation exposure has not significantly influenced genetic diversity in A. aquaticus at Chernobyl. This is the first study to adopt a genome-wide SNP approach to assess the impacts of environmental radiation exposure on biota. These findings are fundamental to understanding the long-term success of aquatic populations in contaminated environments at Chernobyl and Fukushima.
Collapse
Affiliation(s)
- Neil Fuller
- Institute of Marine Sciences, School of Biological SciencesUniversity of PortsmouthPortsmouthUK
| | - Alex T. Ford
- Institute of Marine Sciences, School of Biological SciencesUniversity of PortsmouthPortsmouthUK
| | - Adélaïde Lerebours
- Institute of Marine Sciences, School of Biological SciencesUniversity of PortsmouthPortsmouthUK
| | - Dmitri I. Gudkov
- Department of Freshwater RadioecologyInstitute of HydrobiologyKievUkraine
| | - Liubov L. Nagorskaya
- Applied Science Center for Bioresources of the National Academy of Sciences of BelarusMinskBelarus
| | - Jim T. Smith
- School of Earth & Environmental SciencesUniversity of PortsmouthPortsmouthUK
| |
Collapse
|
44
|
Fairbrother A, Muir D, Solomon KR, Ankley GT, Rudd MA, Boxall AB, Apell JN, Armbrust KL, Blalock BJ, Bowman SR, Campbell LM, Cobb GP, Connors KA, Dreier DA, Evans MS, Henry CJ, Hoke RA, Houde M, Klaine SJ, Klaper RD, Kullik SA, Lanno RP, Meyer C, Ottinger MA, Oziolor E, Petersen EJ, Poynton HC, Rice PJ, Rodriguez‐Fuentes G, Samel A, Shaw JR, Steevens JA, Verslycke TA, Vidal‐Dorsch DE, Weir SM, Wilson P, Brooks BW. Toward Sustainable Environmental Quality: Priority Research Questions for North America. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1606-1624. [PMID: 31361364 PMCID: PMC6852658 DOI: 10.1002/etc.4502] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/19/2019] [Accepted: 05/16/2019] [Indexed: 05/19/2023]
Abstract
Anticipating, identifying, and prioritizing strategic needs represent essential activities by research organizations. Decided benefits emerge when these pursuits engage globally important environment and health goals, including the United Nations Sustainable Development Goals. To this end, horizon scanning efforts can facilitate identification of specific research needs to address grand challenges. We report and discuss 40 priority research questions following engagement of scientists and engineers in North America. These timely questions identify the importance of stimulating innovation and developing new methods, tools, and concepts in environmental chemistry and toxicology to improve assessment and management of chemical contaminants and other diverse environmental stressors. Grand challenges to achieving sustainable management of the environment are becoming increasingly complex and structured by global megatrends, which collectively challenge existing sustainable environmental quality efforts. Transdisciplinary, systems-based approaches will be required to define and avoid adverse biological effects across temporal and spatial gradients. Similarly, coordinated research activities among organizations within and among countries are necessary to address the priority research needs reported here. Acquiring answers to these 40 research questions will not be trivial, but doing so promises to advance sustainable environmental quality in the 21st century. Environ Toxicol Chem 2019;38:1606-1624. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
| | - Derek Muir
- Aquatic Contaminants Research DivisionEnvironment and Climate Change Canada, Burlington ONCanada
| | - Keith R. Solomon
- School of Environmental SciencesUniversity of Guelph, GuelphOntarioCanada
| | | | | | | | - Jennifer N. Apell
- Department of Civil & Environmental EngineeringMassachusetts Institute of Technology, CambridgeMAUSA
| | - Kevin L. Armbrust
- Department of Environmental Sciences, College of the Coast and EnvironmentLouisiana State University, Baton RougeLouisianaUSA
| | - Bonnie J. Blalock
- School for the EnvironmentUniversity of Massachusetts BostonBostonMassachusettsUSA
| | - Sarah R. Bowman
- Michigan Department of Environmental QualityDetroitMichiganUSA
| | - Linda M. Campbell
- Environmental Science, Saint Mary's University, HalifaxNova ScotiaCanada
| | - George P. Cobb
- Department of Environmental ScienceBaylor UniversityWacoTexasUSA
| | | | - David A. Dreier
- Center for Environmental & Human ToxicologyUniversity of FloridaGainesvilleFloridaUSA
| | - Marlene S. Evans
- Aquatic Contaminants Research DivisionEnvironment and Climate Change Canada, Burlington ONCanada
| | | | | | - Magali Houde
- Aquatic Contaminants Research DivisionEnvironment and Climate Change Canada, Burlington ONCanada
| | | | | | | | | | | | - Mary Ann Ottinger
- Department of Biology and BiochemistryUniversity of HoustonHoustonTexasUSA
| | - Elias Oziolor
- Department of Environmental ScienceBaylor UniversityWacoTexasUSA
| | - Elijah J. Petersen
- Material Measurement LaboratoryNational Institute of Standards and TechnologyGaithersburgMarylandUSA
| | - Helen C. Poynton
- School for the EnvironmentUniversity of Massachusetts BostonBostonMassachusettsUSA
| | - Pamela J. Rice
- US Department of AgricultureAgricultural Research ServiceWashington, DC
| | | | | | - Joseph R. Shaw
- School of Public and Environmental Affairs, Indiana UniversityBloomingtonIndianaUSA
| | | | | | | | - Scott M. Weir
- Queen's University of CharlotteCharlotteNorth CarolinaUSA
| | | | - Bryan W. Brooks
- Procter and GambleCincinnatiOhioUSA
- Institute of Biomedical Studies, Baylor UniversityWacoTexasUSA
| |
Collapse
|
45
|
Loria A, Cristescu ME, Gonzalez A. Mixed evidence for adaptation to environmental pollution. Evol Appl 2019; 12:1259-1273. [PMID: 31417613 PMCID: PMC6691217 DOI: 10.1111/eva.12782] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/12/2019] [Indexed: 12/25/2022] Open
Abstract
Adaptation to pollution has been studied since the first observations of heavy metal tolerance in plants decades ago. To document micro-evolutionary responses to pollution, researchers have used phenotypic, molecular genetics, and demographic approaches. We reviewed 258 articles and evaluated the evidence for adaptive responses following exposure to a wide range of pollutants, across multiple taxonomic groups. We also conducted a meta-analysis to calculate the magnitude of phenotypic change in invertebrates in response to metal pollution. The majority of studies that reported differences in responses to pollution were focused on phenotypic responses at the individual level. Most of the studies that used demographic assays in their investigations found that negative effects induced by pollution often worsened over multiple generations. Our meta-analysis did not reveal a significant relationship between metal pollution intensity and changes in the traits studied, and this was probably due to differences in coping responses among different species, the broad array of abiotic and biotic factors, and the weak statistical power of the analysis. We found it difficult to make broad statements about how likely or how common adaptation is in the presence of environmental contamination. Ecological and evolutionary responses to contamination are complex, and difficult to interpret in the context of taxonomic, and methodological biases, and the inconsistent set of approaches that have been used to study adaptation to pollution in the laboratory and in the field. This review emphasizes the need for: (a) long-term monitoring programs on exposed populations that link demography to phenotypic, genetic, and selection assays; (b) the use of standardized protocols across studies especially for similar taxa. Approaches that combine field and laboratory studies offer the greatest opportunity to reveal the complex eco-evolutionary feedback that can occur under selection imposed by pollution.
Collapse
|
46
|
Bolognesi C. Micronucleus Experiments with Bivalve Molluscs. THE MICRONUCLEUS ASSAY IN TOXICOLOGY 2019. [DOI: 10.1039/9781788013604-00273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The micronucleus (MN) test, as an index of accumulated DNA damage during the lifespan of cells, is the most applied assay in aquatic animals to assess the exposure to a complex mixture of genotoxic pollutants. An increase in MN frequency was reported on mussels exposed to the most common environmental pollutants under laboratory conditions, such as heavy metals, polycyclic aromatic hydrocarbons, and ionizing radiation. The test was applied in a large number of biomonitoring studies in different geographic areas to identify the exposure to different classes of pollutants with good discrimination power and to evaluate the recovery effects after accidental pollution events. A standardized MN assay protocol in hemocytes and gill cells for use in bivalve species, including scoring of different cell types, necrotic and apoptotic cells and nuclear anomalies, was established following the “cytome approach”. The mussel MNcytome (MUMNcyt) assay, using the proposed detailed criteria for the identification of cell types, is suitable for application in experimental studies under controlled conditions and in biomonitoring programs in aquatic environments.
Collapse
Affiliation(s)
- Claudia Bolognesi
- Unit of Environmental Carcinogenesis Ospedale Policlinico San Martino L.go Rosanna Benzi 10, 16132 Genova Italy
| |
Collapse
|
47
|
Mišík M, Isidori M, Umbuzeiro G. Ecotoxicology: Conventional and new topics and methods. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 842:1-2. [PMID: 31255216 DOI: 10.1016/j.mrgentox.2019.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Miroslav Mišík
- Institute for Cancer Research, Department of Internal Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| | - Marina Isidori
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi, 43, 81100 Caserta, Italy
| | - Gisela Umbuzeiro
- Laboratory of Ecotoxicology and Genotoxicity, School of Technology, University of Campinas, Limeira, SP, Brazil
| |
Collapse
|
48
|
Affandi FA, Ishak MY. Impacts of suspended sediment and metal pollution from mining activities on riverine fish population-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:16939-16951. [PMID: 31028621 DOI: 10.1007/s11356-019-05137-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Mining activities are responsible for the elevated input levels of suspended sediment and hazardous metals into the riverine ecosystem. These have been shown to threaten the riverine fish populations and can even lead to localized population extinction. To date, research on the effects of mining activities on fish has been focused within metal contamination and bioaccumulation and its threat to human consumption, neglecting the effects of suspended sediment. This paper reviews the effects of suspended sediment and metal pollution on riverine ecosystem and fish population by examining the possibilities of genetic changes and population extinction. In addition, possible assessments and studies of the riverine fish population are discussed to cope with the risks from mining activities and fish population declines.
Collapse
Affiliation(s)
- Farhana Ahmad Affandi
- Department of Environmental Management, Faculty of Environmental Studies, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Mohd Yusoff Ishak
- Department of Environmental Management, Faculty of Environmental Studies, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
49
|
Carvalho Neta RNF, Mota Andrade TDSDO, de Oliveira SRS, Torres Junior AR, da Silva Cardoso W, Santos DMS, Dos Santos Batista W, de Sousa Serra IMR, Brito NM. Biochemical and morphological responses in Ucides cordatus (Crustacea, Decapoda) as indicators of contamination status in mangroves and port areas from northern Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:15884-15893. [PMID: 30955201 DOI: 10.1007/s11356-019-04849-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
The aims of this study were to analyze biochemical and morphological responses (glutathione S-transferase activity and branchial lesions) in Ucides cordatus (crabs) and to verify how the species is responding to environmental contamination in a port (potentially contaminated area) and mangrove (reference area; Amazon Coast, Maranhão, Brazil). Adult males were captured bimonthly for a period of 1 year. Higher GST activity (1.03 ± 0.07 μmol min-1 mg protein-1) was observed in crabs in the port when compared with those in the reference area (p < 0.05). The greatest number of branchial lesions (serious alterations) was recorded in crabs only in the port area. The GST activity increased until serious lesions appeared; after this limit, GST activity decreased dramatically to very low levels, thus resulting in irreversible lesions (lamella collapse). The mathematical model based on the two parameters evaluated in U. cordatus showed that the port area experienced substantial contamination impact, while the mangroves (reference area) presented moderate environmental quality.
Collapse
Affiliation(s)
| | | | | | - Audalio Rebelo Torres Junior
- Marine Sciences Institute, Federal University of Maranhão (UFMA), Campus Dom Delgado, São Luís, Maranhão, Brazil
| | - William da Silva Cardoso
- Department of Chemistry and Biology, State University of Maranhão (UEMA), Campus Paulo VI, São Luís, Maranhão, Brazil
| | - Débora Martins Silva Santos
- Department of Chemistry and Biology, State University of Maranhão (UEMA), Campus Paulo VI, São Luís, Maranhão, Brazil
| | - Wanda Dos Santos Batista
- Postgraduate Program of Aquatic Resources and Fishery (PPGRAP/UEMA), State University of Maranhão (UEMA), Campus Paulo VI, São Luís, Maranhão, Brazil
| | - Ilka Márcia R de Sousa Serra
- Department of Chemistry and Biology, State University of Maranhão (UEMA), Campus Paulo VI, São Luís, Maranhão, Brazil
| | - Natilene Mesquita Brito
- Federal Institute of Education, Science and Technology of Maranhao (IFMA), São Luis, Maranhão, Brazil
| |
Collapse
|
50
|
Goodman J, Copplestone D, Laptev GV, Gashchak S, Auld SKJR. Variation in chronic radiation exposure does not drive life history divergence among Daphnia populations across the Chernobyl Exclusion Zone. Ecol Evol 2019; 9:2640-2650. [PMID: 30891205 PMCID: PMC6405491 DOI: 10.1002/ece3.4931] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 12/20/2018] [Accepted: 12/31/2018] [Indexed: 11/12/2022] Open
Abstract
Ionizing radiation is a mutagen with known negative impacts on individual fitness. However, much less is known about how these individual fitness effects translate into population-level variation in natural environments that have experienced varying levels of radiation exposure. In this study, we sampled genotypes of the freshwater crustacean, Daphnia pulex, from the eight inhabited lakes across the Chernobyl Exclusion Zone (CEZ). Each lake has experienced very different levels of chronic radiation exposure since a nuclear power reactor exploded there over thirty years ago. The sampled Daphnia genotypes represent genetic snapshots of current populations and allowed us to examine fitness-related traits under controlled laboratory conditions at UK background dose rates. We found that whilst there was variation in survival and schedules of reproduction among populations, there was no compelling evidence that this was driven by variation in exposure to radiation. Previous studies have shown that controlled exposure to radiation at dose rates included in the range measured in the current study reduce survival, or fecundity, or both. One limitation of this study is the lack of available sites at high dose rates, and future work could test life history variation in various organisms at other high radiation areas. Our results are nevertheless consistent with the idea that other ecological factors, for example competition, predation or parasitism, are likely to play a much bigger role in driving variation among populations than exposure to the high radiation dose rates found in the CEZ. These findings clearly demonstrate that it is important to examine the potential negative effects of radiation across wild populations that are subject to many and varied selection pressures as a result of complex ecological interactions.
Collapse
Affiliation(s)
- Jessica Goodman
- Biological and Environmental Sciences, Faculty of Natural SciencesStirling UniversityStirlingUK
| | - David Copplestone
- Biological and Environmental Sciences, Faculty of Natural SciencesStirling UniversityStirlingUK
| | | | - Sergey Gashchak
- International Chornobyl Center 11SlavutychKyiv RegionUkraine
| | - Stuart K. J. R. Auld
- Biological and Environmental Sciences, Faculty of Natural SciencesStirling UniversityStirlingUK
| |
Collapse
|