1
|
Cosentino A, Agafonova A, Cavallaro L, Musumeci RE, Prinzi C, Lombardo C, Cambria MT, Anfuso CD, Lupo G. Polychlorinated Biphenyls Induce Cytotoxicity and Inflammation in an In Vitro Model of an Ocular Barrier. Int J Mol Sci 2025; 26:916. [PMID: 39940688 PMCID: PMC11817744 DOI: 10.3390/ijms26030916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
Polychlorinated biphenyls (PCBs) are heterogeneous, synthetic, and widespread organochlorine compounds, and are one of the persistent organic pollutants present in improperly dumped waste and electronic equipment (e-waste), with a high bioaccumulation potential. In this study, the toxicity of Aroclor 1254 (a mixture of commercial PCBs) in human corneal epithelial cells (HCEpiCs), in an in vitro model of an ocular barrier, was evaluated. Aroclor 1254 (0.1-10 μg/mL) reduced cell viability, trans-endothelial electric resistance (TEER) and cell migration. Moreover, it induced an inflammatory response, as indicated by the increase in cPLA2 activity, PGE2 production, phosphorylation of ERK 1/2 and p-38, and release of inflammatory cytokines. Aroclor 1254 can damage corneal cells, compromising the integrity of the eye's outermost barrier. This damage may facilitate the occurrence of infectious processes that are physiologically prevented by the corneal barrier.
Collapse
Affiliation(s)
- Alessia Cosentino
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (A.C.); (A.A.); (C.P.); (C.L.); (G.L.)
| | - Aleksandra Agafonova
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (A.C.); (A.A.); (C.P.); (C.L.); (G.L.)
| | - Luca Cavallaro
- Department of Civil Engineering and Architecture, University of Catania, 95123 Catania, Italy; (L.C.); (R.E.M.)
| | - Rosaria Ester Musumeci
- Department of Civil Engineering and Architecture, University of Catania, 95123 Catania, Italy; (L.C.); (R.E.M.)
| | - Chiara Prinzi
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (A.C.); (A.A.); (C.P.); (C.L.); (G.L.)
| | - Cinzia Lombardo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (A.C.); (A.A.); (C.P.); (C.L.); (G.L.)
| | - Maria Teresa Cambria
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (A.C.); (A.A.); (C.P.); (C.L.); (G.L.)
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (A.C.); (A.A.); (C.P.); (C.L.); (G.L.)
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (A.C.); (A.A.); (C.P.); (C.L.); (G.L.)
| |
Collapse
|
2
|
Shi J, Liu M, Zhu H, Jiang C. SIRT3 mitigates high glucose-induced damage in retinal microvascular endothelial cells via OPA1-mediated mitochondrial dynamics. Exp Cell Res 2025; 444:114320. [PMID: 39491778 DOI: 10.1016/j.yexcr.2024.114320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/05/2024]
Abstract
Oxidative stress in endothelial cells is pivotal in diabetic retinopathy (DR), with mitochondrial homeostasis being crucial to mitigate this stress. This study explored the roles of mitochondrial sirtuins (SIRTs) in high glucose (HG)-induced oxidative stress, related endothelial impairment, and mitochondrial homeostasis damage in rat retinal microvascular endothelial cells (RMECs). RMECs were cultured under HG or equivalent osmotic conditions. Cell viability was assessed using the Cell Counting Kit-8 assay, whereas cell death and survival were determined via calcein-AM/propidium iodide double staining. Reactive oxygen species (ROS) levels were measured using 2',7'-dichlorofluorescein fluorescence. Expression of mitochondrial SIRTs3-5 and key mitochondrial homeostasis molecules was quantified by the quantitative real-time polymerase chain reaction and confirmed by western blotting. Mitochondrial morphology was evaluated using electron microscopy and the MitoTracker fluorescent probe. A SIRT3-overexpressing RMEC line was constructed to assess the role of SIRT3 in oxidative stress and mitochondrial dynamics. After 48 h of HG exposure, cell viability was significantly reduced, with a concomitant increase in cell death and ROS levels, alongside a marked decrease in SIRT3 expression and molecules associated with mitochondrial dynamics. SIRT3 overexpression reversed these effects, particularly increasing the mitochondrial fusion-related molecule, optic atrophy 1 (OPA1). However, the OPA1 inhibitor, MYLS22, blocked the protective effect of SIRT3, leading to more dead cells, a higher ROS level, and intensified mitochondrial fragmentation. These results suggest that SIRT3 is involved in HG-induced imbalanced mitochondrial dynamics of endothelial cells in DR, potentially through the OPA1 pathway.
Collapse
Affiliation(s)
- Jiemei Shi
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China; Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Min Liu
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China; Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Haohao Zhu
- Department of Ophthalmology, People's Hospital of Shanghai No. 5, Shanghai, 200240, China.
| | - Chunhui Jiang
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China; Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China.
| |
Collapse
|
3
|
Cimino C, Vidal LB, Conti F, López ES, Bucolo C, García ML, Musumeci T, Pignatello R, Carbone C. From Preformulative Design to in Vivo Tests: A Complex Path of Requisites and Studies for Nanoparticle Ocular Application. Part 2: In Vitro, Ex Vivo, and In Vivo Studies. Mol Pharm 2024; 21:6062-6099. [PMID: 39514183 DOI: 10.1021/acs.molpharmaceut.4c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The incidence of ocular pathologies is constantly increasing, as is the interest of the researchers in developing new strategies to ameliorate the treatment of these conditions. Nowadays, drug delivery systems are considered among the most relevant approaches due to their applicability in the treatment of a great variety of inner and outer eye pathologies through painless topical administrations. The design of such nanocarriers requires a deep study of many aspects related to the administration route but also a consideration of the authorities and pharmacopeial requirements, in order to achieve a clinical outcome. On such bases, the scope of this review is to describe the path of the analyses that could be performed on nanoparticles, along with the assessment of their applicability for ophthalmic treatments. Preformulation studies, physicochemical and technological characterization, and preliminary noncellular in vitro studies have been described in part 1 of this review. Herein, first the in vitro cellular assays are described; subsequently, nonocular organotypic tests and ex vivo studies are reported, as to present the various analyses to which the formulations can be subjected before in vivo studies, described in the last part. In each step, the models that could be used are presented and compared, highlighting the pros and cons. Moreover, their reliability and eventual acceptance by regulatory agencies are discussed. Hence, this review provides an overview of the most relevant assays applicable for nanocarriers intended for ophthalmic administration to guide researchers in the experimental decision process.
Collapse
Affiliation(s)
- Cinzia Cimino
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Lorena Bonilla Vidal
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Federica Conti
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95124 Catania, Italy
| | - Elena Sánchez López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034 Barcelona, Spain
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95124 Catania, Italy
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95124 Catania, Italy
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Teresa Musumeci
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Rosario Pignatello
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Claudia Carbone
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| |
Collapse
|
4
|
Ferulic Acid-Loaded Polymeric Nanoparticles for Potential Ocular Delivery. Pharmaceutics 2021; 13:pharmaceutics13050687. [PMID: 34064572 PMCID: PMC8150711 DOI: 10.3390/pharmaceutics13050687] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022] Open
Abstract
Ferulic acid (FA) is an antioxidant compound that can prevent ROS-related diseases, but due to its poor solubility, therapeutic efficacy is limited. One strategy to improve the bioavailability is nanomedicine. In the following study, FA delivery through polymeric nanoparticles (NPs) consisting of polylactic acid (NPA) and poly(lactic-co-glycolic acid) (NPB) is proposed. To verify the absence of cytotoxicity of blank carriers, a preliminary in vitro assay was performed on retinal pericytes and endothelial cells. FA-loaded NPs were subjected to purification studies and the physico-hemical properties were analyzed by photon correlation spectroscopy. Encapsulation efficiency and in vitro release studies were assessed through high performance liquid chromatography. To maintain the integrity of the systems, nanoformulations were cryoprotected and freeze-dried. Morphology was evaluated by a scanning electron microscope. Physico-chemical stability of resuspended nanosystems was monitored during 28 days of storage at 5 °C. Thermal analysis and Fourier-transform infrared spectroscopy were performed to characterize drug state in the systems. Results showed homogeneous particle populations, a suitable mean size for ocular delivery, drug loading ranging from 64.86 to 75.16%, and a controlled release profile. The obtained systems could be promising carriers for ocular drug delivery, legitimating further studies on FA-loaded NPs to confirm efficacy and safety in vitro.
Collapse
|
5
|
Nag TC, Maurya M, Roy TS. Age-related changes of the human retinal vessels: Possible involvement of lipid peroxidation. Ann Anat 2019; 226:35-47. [PMID: 31330304 DOI: 10.1016/j.aanat.2019.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Aging of the human retina is accompanied by oxidative stress that exerts profound changes in the retinal neurons. It is unknown if oxidative stress influences the cellular components of the retinal vessels in some ways. METHODS We examined changes in retinal vessels in human donor eyes (age: 35-94 years; N=18) by light and transmission electron microscopy, TUNEL and immunohistochemistry for biomarkers of vascular smooth muscle cells (SMC; actin), oxidative stress (4-hydroxy 2-nonenal [HNE] and nitrotyrosine), microglia (Iba-1) and vessels (isolectin B4). RESULTS The earliest changes in the endothelium and pericytes of capillaries are apparent from the seventh decade. With aging, there is clear loss of organelles and cytoplasmic filaments, and a progressive thickening of the endothelial and pericyte basal lamina. Loss of filaments, accumulation of lipofuscin and autophagic vacuoles are significant events in aging pericytes and SMC. Actin immunolabelling reveals discontinuity in arterial SMC layers during eighth decade, indicating partial degeneration of SMC. This is followed by hyalinization, with degeneration of the endothelium and SMC in arteries and arterioles of the nerve fibre layer (NFL) and ganglion cell layer in ninth decade. Iba-1 positive microglia were in close contact with the damaged vessels in inner retina, and their cytoplasm was rich in lysosomes. HNE immunoreactivity, but not of nitrotyrosine, was detected in aged vessels from seventh decade onwards, suggesting that lipid peroxidation is a major problem of aged vessels. However, TUNEL positivity seen during this period was limited to few arteries and venules of NFL. CONCLUSION This study shows prominent age-related alterations of the pericytes and SMC of retinal vessels. These changes may limit the energy supply to the neurons and be responsible for age-related loss of neurons of the inner retina.
Collapse
Affiliation(s)
- Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Meenakshi Maurya
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Tara Sankar Roy
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
6
|
Gong Y, Jin X, Wang QS, Wei SH, Hou BK, Li HY, Zhang MN, Li ZH. The involvement of high mobility group 1 cytokine and phospholipases A2 in diabetic retinopathy. Lipids Health Dis 2014; 13:156. [PMID: 25292258 PMCID: PMC4287419 DOI: 10.1186/1476-511x-13-156] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/15/2014] [Indexed: 01/18/2023] Open
Abstract
Background Diabetic retinopathy, the main microvascular complications of diabetes and one of the leading causes of blindness worldwide. Interesting reports on the role of inflammatory/proangiogenic high mobility group 1 (HMGB-1) cytokine and phospholipases A2 (PLA2) in neovascularization have diverted our concentration to reveal whether HMGB-1 and PLA2 plays role in diabetic retinopathy. Methods We performed our study in streptozotocin (STZ)-induced diabetic rat model. The expression levels of the cytokines, chemokines, and cell adhesion molecules in retinal tissues were evaluated by quantitative RT-PCR. HMGB-1 and PLA2 protein levels along with VEGF, TNF-α, IL-1β and ICAM-1 levels were also measured. Results We observed the retinal pericytes, endothelial injury/death and breakdown of blood–retinal barrier (BRB). The protein expression of HMGB-1, PLA2 and IL-1β were significantly increased in micro vessels from retina of diabetic rats. Diabetic rats had also high retinal levels of VEGF, ICAM-1 and TNF-α. Further investigation revealed that pericyte death is mediated by HMGB-1-induced cytotoxic activity of glial cells, while HMGB-1 can directly mediate endothelial cell death. Similarly, increased expression of PLA2 represents the diabetic mediated alteration of BRB, perhaps up regulating the VEGF. Conclusions Our data suggest that HMGB-1 and PLA2 involved in retinal pericyte and endothelial injury and cell death in diabetic retinopathy. From this study, we suggest that HMGB-1 and PLA2 may be interesting targets in managing diabetic retinopathy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mao-Nian Zhang
- Department of Ophthalmology, Chinese PLA General Hospital, No, 28 Fuxing Road, Haidian District, Beijing 100853, China.
| | | |
Collapse
|
7
|
Assero G, Satriano C, Lupo G, Anfuso CD, Marletta G, Alberghina M. Impaired coronary microvascular and left ventricular diastolic function in patients with inflammatory bowel disease. Microvasc Res 2014; 68:209-20. [PMID: 15501240 DOI: 10.1016/j.mvr.2004.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM Increased incidence of coronary vascular events in patients with inflammatory bowel disease (IBD) is known. However, the association between coronary microvascular function and IBD has not been fully defined. We aimed to investigate whether coronary flow reserve (CFR) and left ventricular diastolic function were impaired in IBD patients. METHODS Seventy-two patients with IBD (36 patients with ulcerative colitis [UC] and 36 Crohn's disease [CD]) were registered. Each subject was evaluated after a minimum 15-day attack-free period. For the control group, 36 age- and sex-matched healthy volunteers were included into the study. IBD clinical disease activity in UC was assessed by the Truelove-Witts Index (TWAS) and in CD by the Crohn's Disease Activity Index (CDAI). In each subject, CFR was measured through transthoracic Doppler echocardiography. RESULTS Compared to the controls, the CD group and UC group had significantly higher high-sensitivity C-reactive protein (hs-CRP) and erythrocyte sedimentation rate. Baseline diastolic peak flow velocity (DPFV) of the left anterior descending artery (LAD) was significantly higher in the IBD group (24.1±3.9 vs. 22. 4±2.9, p<0.05), and hyperemic DPFV (56.1±12.5 vs. 70.6±15.3, p<0.05) and CFR (2.34±0.44 vs. 3.14±0.54, p<0.05) were significantly lower in the IBD group than in the control group. In stepwise linear regression analysis, hs-CRP and lateral Em/Am ratio were independently correlated with CFR. CONCLUSION CFR, reflecting coronary microvascular function, is impaired in patients with IBD. CFR and left ventricular diastolic function parameters are well correlated with hs-CRP.
Collapse
Affiliation(s)
- Giovanna Assero
- Department of Biochemistry, University of Catania, 95125 Catania, Italy
| | | | | | | | | | | |
Collapse
|
8
|
Endothelial PKCα-MAPK/ERK-phospholipase A2 pathway activation as a response of glioma in a triple culture model. A new role for pericytes? Biochimie 2014; 99:77-87. [PMID: 24287292 DOI: 10.1016/j.biochi.2013.11.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/13/2013] [Indexed: 01/08/2023]
|
9
|
Klebsiella pneumoniae induces an inflammatory response in an in vitro model of blood-retinal barrier. Infect Immun 2013; 82:851-63. [PMID: 24478098 DOI: 10.1128/iai.00843-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Klebsiella pneumoniae has become an important pathogen in recent years. Although most cases of K. pneumoniae endogenous endophthalmitis occur via hematogenous spread, it is not yet clear which microbial and host factors are responsible for the ability of K. pneumoniae to cross the blood-retinal barrier (BRB). In the present study, we show that in an in vitro model of BRB based on coculturing primary bovine retinal endothelial cells (BREC) and primary bovine retinal pericytes (BRPC), K. pneumoniae infection determines changes of transendothelial electrical resistance (TEER) and permeability to sodium fluorescein. In the coculture model, bacteria are able to stimulate the enzyme activities of endothelial cytosolic and Ca(2+)-independent phospholipase A2s (cPLA2 and iPLA2). These results were confirmed by the incremental expression of cPLA2, iPLA2, cyclo-oxygenase-1 (COX1), and COX2 in BREC, as well as by cPLA2 phosphorylation. In supernatants of K. pneumoniae-stimulated cocultures, increases in prostaglandin E2 (PGE2), interleukin-6 (IL-6), IL-8, and vascular endothelial growth factor (VEGF) production were found. Incubation with K. pneumoniae in the presence of arachidonoyl trifluoromethyl ketone (AACOCF3) or bromoenol lactone (BEL) caused decreased PGE2 and VEGF release. Scanning electron microscopy and transmission electron microscopy images of BREC and BRPC showed adhesion of K. pneumoniae to the cells, but no invasion occurred. K. pneumoniae infection also produced reductions in pericyte numbers; transfection of BREC cocultured with BRPC and of human retinal endothelial cells (HREC) cocultured with human retinal pericytes (HRPC) with small interfering RNAs (siRNAs) targeted to cPLA2 and iPLA2 restored the pericyte numbers and the TEER and permeability values. Our results show the proinflammatory effect of K. pneumoniae on BREC, suggest a possible mechanism by which BREC and BRPC react to the K. pneumoniae infection, and may provide physicians and patients with new ways of fighting blinding diseases.
Collapse
|
10
|
Lupo G, Motta C, Giurdanella G, Anfuso CD, Alberghina M, Drago F, Salomone S, Bucolo C. Role of phospholipases A2 in diabetic retinopathy: in vitro and in vivo studies. Biochem Pharmacol 2013; 86:1603-13. [PMID: 24076420 DOI: 10.1016/j.bcp.2013.09.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 09/09/2013] [Accepted: 09/09/2013] [Indexed: 12/13/2022]
Abstract
Diabetic retinopathy is one of the leading causes of blindness and the most common complication of diabetes with no cure available. We investigated the role of phospholipases A2 (PLA2) in diabetic retinopathy using an in vitro blood-retinal barrier model (BRB) and an in vivo streptozotocin (STZ)-induced diabetic model. Mono- and co-cultures of endothelial cells (EC) and pericytes (PC), treated with high or fluctuating concentrations of glucose, to mimic the diabetic condition, were used. PLA2 activity, VEGF and PGE2 levels and cell proliferation were measured, with or without PLA2 inhibition. Diabetes was induced in rats by STZ injection and PLA2 activity along with VEGF, TNFα and ICAM-1 levels were measured in retina. High or fluctuating glucose induced BRB breakdown, and increased PLA2 activity, PGE2 and VEGF in EC/PC co-cultures; inhibition of PLA2 in mono- or co-cultures treated with high or fluctuating glucose dampened PGE2 and VEGF production down to the levels of controls. High or fluctuating glucose increased EC number and reduced PC number in co-cultures; these effects were reversed after transfecting EC with small interfering RNA targeted to PLA2. PLA2 and COX-2 protein expressions were significantly increased in microvessels from retina of diabetic rats. Diabetic rats had also high retinal levels of VEGF, ICAM-1 and TNFα that were reduced by treatment with a cPLA2 inhibitor. In conclusion, the present findings indicate that PLA2 upregulation represents an early step in glucose-induced alteration of BRB, possibly upstream of VEGF; thus, PLA2 may be an interesting target in managing diabetic retinopathy.
Collapse
Affiliation(s)
- Gabriella Lupo
- Department of Clinical and Molecular Biomedicine, Section of Pharmacology and Biochemistry, School of Medicine, University of Catania, Catania, Italy
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Salmeri M, Motta C, Anfuso CD, Amodeo A, Scalia M, Toscano MA, Alberghina M, Lupo G. VEGF receptor-1 involvement in pericyte loss induced by Escherichia coli in an in vitro model of blood brain barrier. Cell Microbiol 2013; 15:1367-84. [PMID: 23421875 DOI: 10.1111/cmi.12121] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 02/04/2013] [Accepted: 02/06/2013] [Indexed: 12/18/2022]
Abstract
The key aspect of neonatal meningitis is related to the ability of pathogens to invade the blood-brain barrier (BBB) and to penetrate the central nervous system. In the present study we show that, in an in vitro model of BBB, on the basis of co-culturing primary bovine brain endothelial cells (BBEC) and primary bovine retinal pericytes (BRPC), Escherichia coli infection determines changes of transendothelial electrical resistance (TEER) and permeability (Pe) to sodium fluorescein. In the co-culture model, within BBEC, bacteria are able to stimulate cytosolic and Ca(2+)-independent phospholipase A2 (cPLA2 and iPLA2 ) enzyme activities. In supernatants of E. coli-stimulated co-cultures, an increase in prostaglandins (PGE2) and VEGF production in comparison with untreated co-cultures were found. Incubation with E. coli in presence of AACOCF3 or BEL caused a decrease of PGE2 and VEGF release. SEM and TEM images of BBEC and BRPC showed E. coli adhesion to BBEC and BRPC but only in BBEC the invasion occurs. VEGFR-1 but not VEGFR-2 blockade by the specific antibody reduced E. coli invasion in BBEC. In our model of BBB infection, a significant loss of BRPC was observed. Following VEGFR-1, but not VEGFR-2 blockade, or in presence of AACOCF3 or BEL, elevated TEER values, reduced permeability and BRPC loss were found. These data suggest that VEGFR-1 negatively regulates BRPC survival and its blockade protects the barrier integrity. PGs and VEGF could exert a biological effect on BBB, probably by BRPC coverage ablation, thus increasing BBB permeability. Our results show the role played by the BBEC as well as BRPC during a bacterial attack on BBB. A better understanding of the mechanisms by which E. coli enter the nervous system and how bacteria alter the communication between endothelial cells and pericytes may provide exciting new insight for clinical intervention.
Collapse
Affiliation(s)
- Mario Salmeri
- Department of Bio-medical Sciences, University of Catania, Catania, Italy
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Clinical epidemiological studies have revealed relatively weak, yet statistically significant, associations between dyslipidemia/dyslipoproteinemia and diabetic retinopathy (DR). Recent large interventional studies, however, demonstrated an unexpectedly robust efficacy of fenofibrate on the development of DR, possibly independent of plasma lipids. To unify the apparent discrepancies, we hypothesize that plasma lipoproteins play an indirect but important role in DR, contingent on the integrity of the blood-retina-barrier (BRB). In retinas with an intact BRB, plasma lipoproteins may be largely irrelevant; however, important effects become operative after the BRB is impaired in diabetes, leading to lipoprotein extravasation and subsequent modification, hence toxicity to the neighbouring retinal cells. In this hypothesis, BRB leakage is the key, plasma lipoprotein concentrations mainly modulate its consequences, and fenofibrate has intra-retinal actions. This review summarizes our current knowledge of the direct effects and mechanisms of modified lipoproteins on retinal cells and their potential contribution to the pathogenesis of DR.
Collapse
Affiliation(s)
- Jeremy Y Yu
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, UK
| | - Timothy J Lyons
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, UK ; Harold Hamm Diabetes Center and Section of Endocrinology and Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
13
|
Li X, Cui X, Wang J, Yang J, Sun X, Li X, Zhu Q, Li W. Rhizome of Anemarrhena asphodeloides counteracts diabetic ophthalmopathy progression in streptozotocin-induced diabetic rats. Phytother Res 2012; 27:1243-50. [PMID: 23148017 DOI: 10.1002/ptr.4866] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 09/16/2012] [Accepted: 09/27/2012] [Indexed: 11/08/2022]
Abstract
Diabetic ophthalmopathy (DO) impairs patients' eyesight and even causes blindness. Here, we investigated the effect of 60% ethanol extract of the rhizome of Anemarrhenae asphodeloides (ERA), which is commonly used in Chinese medicine formulae in treating diabetes, on DO progression. Blood glucose, insulin, advanced glycation end products (AGE), super oxygen dehydrogenises (SOD), malondialdehyde (MDA) and glutathione peroxidase (GSH-Px) levels in serum and sorbitol concentration in the lens were measured. Retinal endothelium/pericyte (E/P) ratio was evaluated, and structural changes of the retina and lens were observed. Effects of mangiferin and neomangiferin, the two major components of ERA, on subnormal growth of pericytes induced by high glucose were also detected. It was found that the activities of SOD and GSH-Px in serum were increased, whereas MDA and AGE levels in serum and sorbitol concentration in the lens were decreased in ERA-treated DO rats. E/P ratio was decreased, and the pathological changes of the lens and retina were alleviated by ERA treatment. Moreover, the subnormal growth of pericytes induced by high glucose was ameliorated by mangiferin and neomangiferin. These results indicated that ERA could effectively prevent DO progression in streptozotocin-induced diabetic rats, and mangiferin and neomangiferin may be the main effective components.
Collapse
Affiliation(s)
- Xuan Li
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Microcapillary-like structures prompted by phospholipase A2 activation in endothelial cells and pericytes co-cultures on a polyhydroxymethylsiloxane thin film. Biochimie 2012; 94:1860-70. [PMID: 22575274 DOI: 10.1016/j.biochi.2012.04.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 04/24/2012] [Indexed: 01/04/2023]
Abstract
A thin film of poly(hydroxymethylsiloxane) (PHMS) has been deposited on glass dishes and tested as artificial support material for vascularization from mixed cultures of endothelial cells (EC) and pericytes (PC). The EC/PC co-cultures adhered massively on PHMS, with the formation of net-like microcapillary structures. Such evidence was not found on control glass substrates in the same co-culture conditions neither on PHMS for EC and PC in monocultures. The physicochemical characterization of PHMS and control glass surface by time-of-flight secondary ion mass spectrometry, X-ray photoelectron spectroscopy, water contact angle and atomic force microscopy, pointed to the main role of the polymer hydrophobilicy to explain the observed cellular behavior. Moreover, enhanced intercellular cross-talk was evidenced by the up-regulation and activation of cytoplasmic and Ca(2+)-independent phospholipase A(2) (cPLA(2) and iPLA(2)) expression and cPLA(2) phosphorylation, leading to the cell proliferation and microcapillary formation on the PHMS surface, as evidenced by confocal microscopy analyses. Co-cultures, established with growth-arrested PCs by treatment with mitomycin C, showed an increase in EC proliferation on PHMS. AACOCF(3) or co-transfection with cPLA(2) and iPLA(2)siRNA reduced cell proliferation. The results highlight the major role played by EC/PC cross-talk as well as the hydrophobic character of the substrate surface, to promote microcapillary formation. Our findings suggest an attractive strategy for vascular tissue engineering and provide new details on the interplay of artificial substrates and capillary formation.
Collapse
|
15
|
Amadio M, Scapagnini G, Lupo G, Drago F, Govoni S, Pascale A. PKCbetaII/HuR/VEGF: A new molecular cascade in retinal pericytes for the regulation of VEGF gene expression. Pharmacol Res 2007; 57:60-6. [PMID: 18206386 DOI: 10.1016/j.phrs.2007.11.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 11/26/2007] [Accepted: 11/28/2007] [Indexed: 11/18/2022]
Abstract
Vascular endothelial growth factor (VEGF)-induced new vessels formation is a key event in diabetic retinopathy, a severe progressive multistage pathology. Literature data indicate that protein kinase C (PKC) is involved in the control of VEGF expression, but, so far, no data are available on the molecular pathway underlying this process. Within this context, we suggest the existence of a new molecular cascade, operating in retinal bovine pericytes and involving PKCbetaII, the mRNA-stabilizing protein HuR, and VEGF. In particular we show that PKCbetaII activation is responsible, through the RNA-binding protein HuR, for the increase of VEGF protein content and its release in the medium. The specificity of the PKCbetaII involvement is confirmed by experiments performed with the LY379196 compound, a selective PKCbetaII inhibitor. Following acute high-glucose insult this pathway seems still functioning, suggesting that a brief exposure to glucose does not compromise this molecular cascade in pericytes. A better understanding on this new pathway could open novel opportunities for the development of innovative pharmacological therapies useful in pathologies where VEGF plays a key role such as in diabetic retinopathy.
Collapse
Affiliation(s)
- Marialaura Amadio
- Department of Experimental and Applied Pharmacology, Via Taramelli 14, 27100 Pavia, Italy.
| | | | | | | | | | | |
Collapse
|
16
|
Barth JL, Yu Y, Song W, Lu K, Dashti A, Huang Y, Argraves WS, Lyons TJ. Oxidised, glycated LDL selectively influences tissue inhibitor of metalloproteinase-3 gene expression and protein production in human retinal capillary pericytes. Diabetologia 2007; 50:2200-8. [PMID: 17676308 DOI: 10.1007/s00125-007-0768-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 06/22/2007] [Indexed: 11/26/2022]
Abstract
AIMS/HYPOTHESIS Matrix metalloproteinases (MMPs) and their natural inhibitors, tissue inhibitor of metalloproteinases (TIMPs), regulate important biological processes including the homeostasis of the extracellular matrix, proteolysis of cell surface proteins, proteinase zymogen activation, angiogenesis and inflammation. Studies have shown that their balance is altered in retinal microvascular tissues in diabetes. Since LDLs modified by oxidation/glycation are implicated in the pathogenesis of diabetic vascular complications, we examined the effects of modified LDL on the gene expression and protein production of MMPs and TIMPs in retinal pericytes. METHODS Quiescent human retinal pericytes were exposed to native LDL (N-LDL), glycated LDL (G-LDL) and heavily oxidised and glycated LDL (HOG-LDL) for 24 h. We studied the expression of the genes encoding MMPs and TIMPs mRNAs by analysis of microarray data and quantitative PCR, and protein levels by immunoblotting and ELISA. RESULTS Microarray analysis showed that MMP1, MMP2, MMP11, MMP14 and MMP25 and TIMP1, TIMP2, TIMP3 and TIMP4 were expressed in pericytes. Of these, only TIMP3 mRNA showed altered regulation, being expressed at significantly lower levels in response to HOG- vs N-LDL. Quantitative PCR and immunoblotting of cell/matrix proteins confirmed the reduction in TIMP3 mRNA and protein in response to HOG-LDL. In contrast to cellular TIMP3 protein, analysis of secreted TIMP1, TIMP2, MMP1 and collagenase activity indicated no changes in their production in response to modified LDL. Combined treatment with N- and HOG-LDL restored TIMP3 mRNA expression to a level comparable with that after N-LDL alone. CONCLUSIONS/INTERPRETATION Among the genes encoding for MMPs and TIMPs expressed in retinal pericytes, TIMP3 is uniquely regulated by HOG-LDL. Reduced TIMP3 expression might contribute to microvascular abnormalities in diabetic retinopathy.
Collapse
Affiliation(s)
- J L Barth
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, SC, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Akiba S, Mukaida Y, Hane K, Oka M, Uozumi N, Shimizu T, Sato T. Group IVA phospholipase A2-mediated production of fibronectin by oxidized LDL in mesangial cells. Kidney Int 2006; 70:1013-8. [PMID: 16837927 DOI: 10.1038/sj.ki.5001631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The deposition of atherogenic lipoproteins such as oxidized low-density lipoprotein (oxLDL) within the mesangium is involved in the overproduction of extracellular matrix proteins, a key event in the progression of glomerular diseases including glomerulosclerosis. To clarify the mechanisms underlying the oxLDL-induced production of extracellular matrix proteins, we examined the possible involvement of group IVA phospholipase A(2) (PLA(2)) using human mesangial cells and group IVA PLA(2)-deficient mouse mesangial cells. oxLDL accelerated the production of fibronectin and collagen (type IV), components of extracellular matrix proteins, with the preceding release of arachidonic acid. Methyl arachidonyl fluorophosphonate (MAFP), known as an inhibitor of group IVA PLA(2), markedly suppressed the oxLDL-induced production of fibronectin as well as the release of arachidonic acid, whereas it did not inhibit the production of collagen. The inhibitory effect of MAFP on the production of fibronectin was reversed by adding arachidonic acid and 12-hydroxyeicosatetraenoic acid. Furthermore, we found that in group IVA PLA(2)-deficient mouse mesangial cells, the production of fibronectin in response to oxLDL was weak as compared with that in wild-type cells. However, the production by oxLDL of collagen was not suppressed in the group IVA PLA(2)-deficient cells. These findings suggest that group IVA PLA(2) is involved in the production of fibronectin in oxLDL-stimulated mesangial cells.
Collapse
Affiliation(s)
- S Akiba
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, Japan.
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
We and others have shown that foam cell formation initiated by exposing macrophages to oxidized low density lipoprotein (oxLDL) triggers the differential expression of a number of proteins. Specifically, our experiments have identified peroxiredoxin I (Prx I) as one of these up-regulated proteins. The peroxiredoxins, a family of peroxidases initially described for their antioxidant capability, have generated recent interest for their potential to regulate signaling pathways. Those studies, however, have not examined peroxiredoxin for a potential dual functionality as both cytoprotective antioxidant and signal modulator in a single, oxidant-stressed system. In this report, we examine the up-regulation of Prx I in macrophages in response to oxLDL exposure and its ability to function as both antioxidant enzyme and regulator of p38 MAPK activation. As an antioxidant, induction of Prx I expression led to improved cell survival following treatment with oxLDL or tert-butyl hydroperoxide. The improved survival coincided with a decrease in measurable reactive oxygen species (ROS), and both the increased survival and reduced ROS were reversed by Prx I small interfering RNA transfection. Additionally, our data show that activation of p38 MAPK in oxLDL-treated macrophages was dependent on the up-regulation of Prx I. Reduction of Prx I expression by small interfering RNA transfection resulted in a significant decrease in p38 MAPK activation, whereas the up-regulation of Prx I expression with either oxLDL or ethoxyquin led to increased p38 MAPK activation. These results are consistent with multiple roles for Prx I in macrophage-derived foam cells that include functionality as both an antioxidant and a regulator of oxidant-sensitive signal transduction.
Collapse
Affiliation(s)
- James P Conway
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
19
|
Hardy P, Beauchamp M, Sennlaub F, Gobeil F, Tremblay L, Mwaikambo B, Lachapelle P, Chemtob S. New insights into the retinal circulation: inflammatory lipid mediators in ischemic retinopathy. Prostaglandins Leukot Essent Fatty Acids 2005; 72:301-25. [PMID: 15850712 DOI: 10.1016/j.plefa.2005.02.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 12/21/2004] [Accepted: 02/11/2005] [Indexed: 10/25/2022]
Abstract
Ischemic proliferative retinopathy develops in various retinal disorders, including retinal vein occlusion, diabetic retinopathy and retinopathy of prematurity. Ischemic retinopathy remains a common cause of visual impairment and blindness in the industrialized world due to relatively ineffective treatment. Oxygen-induced retinopathy (OIR) is an established model of retinopathy of prematurity associated with vascular cell injury culminating in microvascular degeneration, which precedes an abnormal neovascularization. The retina is a tissue particularly rich in polyunsaturated fatty acids and the ischemic retina becomes highly sensitive to lipid peroxidation initiated by oxygenated free radicals. Consequently, the retina constitutes an excellent model for testing the functional consequences of membrane lipid peroxidation. Retinal tissue responds to physiological and pathophysiological stimuli by the activation of phospholipases and the consequent release from membrane phospholipids of biologically active metabolites. Activation of phospholipase A(2) is the first step in the synthesis of two important classes of lipid second messengers, the eicosanoids and a membrane-derived phospholipid mediator platelet-activating factor (PAF). These lipid mediators accumulate in the retina in response to injury and a physiologic role of these metabolites in retinal vasculature remains for the most part to be determined; albeit proposed roles have been suggested for some. The eicosanoids, in particular the prostanoids, thromboxane (TXA2) and PAF are abundantly generated following an oxidant stress and contribute to neurovascular injury. TXA2 and PAF play an important role in the retinal microvacular degeneration of OIR by directly inducing endothelial cell death and potentially could contribute to the pathogenesis of ischemic retinopathies. Despite these advances there are still a number of important questions that remain to be answered before we can confidently target pathological signals. This review focuses on mechanisms that precede the development of neovascularization, most notably regarding the role of lipid mediators that partake in microvascular degeneration.
Collapse
Affiliation(s)
- Pierre Hardy
- Department of Obstetrics, Research Center Sainte-Justine Hospital and University of Montreal, Montreal, Quebec, Canada, H3T 1C5.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Nicotra A, Lupo G, Giurdanella G, Anfuso CD, Ragusa N, Tirolo C, Marchetti B, Alberghina M. MAPKs mediate the activation of cytosolic phospholipase A2 by amyloid β(25–35) peptide in bovine retina pericytes. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1733:172-86. [PMID: 15863364 DOI: 10.1016/j.bbalip.2004.12.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 10/15/2004] [Accepted: 12/28/2004] [Indexed: 10/25/2022]
Abstract
We have previously shown that, in bovine retina pericytes, amyloid beta(1-42) and its truncated form containing amino acids 25-35, after 24 h treatment, stimulate arachidonic acid (AA) release and phosphatidylcholine hydrolysis, by activation of both cytosolic (cPLA(2)) and Ca(2+)-independent (iPLA(2)) phospholipase A(2). A putative role for MAP kinases in this process emerged. Here we studied the role of the MAP-kinase family as well as both cPLA(2) and iPLA(2) mRNA expression by a semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) in the same sublethal model of amyloid-beta (Abeta) damage to pericytes in vitro. Abeta(25-35) peptide evoked AA release as well as stimulated phosphorylation of ERK1/2, p38 MAPKs and cPLA(2), but not c-Jun N-terminal kinase (JNK/SAPK). PD98059, an inhibitor of ERK-activating kinase MEK-1, and SB203580, an inhibitor of p38 protein kinase, abolished the stimulation of AA release and MAPK activities. In cells stimulated by Abeta(25-35) peptide, Western blotting and confocal microscopy analyses confirmed either an increase in the phosphorylated form of ERKs and p38 or their nuclear translocation. A complete inhibition of MAPK activation and AA release was also observed when pericytes were treated with GF109203X, a general PKC inhibitor, indicating the important role of both PKC and the two MAPKs in mediating the Abeta peptide response. Compared with samples untreated or treated with reverse Abeta(35-25) peptide, pretreatment with 50 microM Abeta(25-35) for 24 h significantly increased the level of constitutively expressed iPLA(2) mRNA by 25%, which seems to depend on the activation of kinases. By contrast, the level of cPLA(2) mRNA remained unchanged. Together, these data link either the stimulation of PKC-ERK-p38 cascades or PLA(2) activity by Abeta peptide to prooxidant mechanism induced by amyloid, which may initially stimulate the cell reaction as well as metabolic repair, such as during inflammation.
Collapse
Affiliation(s)
- Ambra Nicotra
- Department of Biochemistry, University of Catania, Italy
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Akiba S, Ii H, Yoneda Y, Sato T. Translocation of phospholipase A2 to membranes by oxidized LDL and hydroxyoctadecadienoic acid to contribute to cholesteryl ester formation. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1686:77-84. [PMID: 15522824 DOI: 10.1016/j.bbalip.2004.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Revised: 08/17/2004] [Accepted: 08/25/2004] [Indexed: 10/26/2022]
Abstract
We examined the mechanisms underlying the activation of group IVA cytosolic phospholipase A(2) (cPLA(2)alpha) contributing to the supply of fatty acids required for the formation of cholesteryl ester in oxidized low-density lipoprotein (oxLDL)-stimulated macrophages. The possible involvement of oxidized lipids was also examined. In [(3)H]arachidonic acid-labeled mouse peritoneal macrophages, oxLDL stimulated the release of arachidonic acid, which was suppressed by methyl arachidonyl fluorophosphonate (MAFP), a cPLA(2)alpha inhibitor. oxLDL induced an increase in PLA(2)alpha levels in the membrane fraction without affecting those in whole cells or the activity in the lysate. Among 13-hydroxyoctadecadienoic acid (13-HODE), 7-ketocholesterol, and 25-hydroxycholesterol, oxidized lipids present in oxLDL particles, only 13-HODE induced the release of arachidonic acid, which was also sensitive to MAFP. Under conditions where addition of Ca(2+) to the cell lysate induced an increase in cPLA(2)alpha protein in the membrane fraction, preincubation with 13-HODE facilitated the Ca(2+)-dependent translocation of cPLA(2)alpha. Furthermore, 13-HODE increased cholesteryl ester formation in the presence of [(3)H]cholesterol. These results suggest that 13-HODE mediates the oxLDL-induced activation of cPLA(2)alpha through an increase in cPLA(2)alpha protein in the membranes, thus contributing, in part, to the supply of fatty acids required for the esterification of cholesterol in macrophages.
Collapse
Affiliation(s)
- Satoshi Akiba
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | | | | | | |
Collapse
|
22
|
Anfuso CD, Assero G, Lupo G, Nicotra A, Cannavò G, Strosznajder RP, Rapisarda P, Pluta R, Alberghina M. Amyloid β(1–42) and its β(25–35) fragment induce activation and membrane translocation of cytosolic phospholipase A2 in bovine retina capillary pericytes. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1686:125-38. [PMID: 15522829 DOI: 10.1016/j.bbalip.2004.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Revised: 09/07/2004] [Accepted: 09/14/2004] [Indexed: 10/26/2022]
Abstract
We investigated changes in cytosolic phospholipase A(2) (cPLA(2)) and calcium-independent PLA(2) (iPLA(2)) activities in bovine retina capillary pericytes after stimulation with 50 microM amyloid-beta (Abeta) (1-42) and its (25-35) fragment, over 24 h (mild, sublethal model of cell damage). In the presence of Abeta peptides, we found that cPLA(2) activity was increased and translocated from the cytosolic fraction to the membrane system, particularly in the nuclear region. Reversed-sequence Abeta(35-25) peptide did not stimulate or induce cPLA(2) translocation. Exposure to both Abeta peptides had no significant effect on cPLA(2) protein content as tested by Western immunoblot analysis. The addition of Abetas to quiescent pericytes was followed by phosphorylation of cPLA(2) and arachidonic acid release. Treatment with inhibitors (AACOCF(3), staurosporine and cycloheximide) resulted in a sharp decrease in basal and stimulated cPLA(2) activity. Inactivating effects of bromoenol lactone (BEL), inhibitor of iPLA(2), demonstrated that the stimulation of total PLA(2) activity by Abetas was mediated by both PLA(2) enzymes. Taken together with our previous observations that both Abeta peptides may induce hydrolysis of phosphatidylcholine, the present results provide evidence that this process is cooperatively mediated by cPLA(2) activation/translocation and iPLA(2) activation. The effect is very likely triggered by a mild prooxidant mechanism which was not able to divert the cell to degeneration. The data confirm the hypothesis that pericytes could be a target of potential vascular damage and reactivity during processes involving amyloid accumulation.
Collapse
Affiliation(s)
- Carmelina Daniela Anfuso
- Department of Biochemistry, Faculty of Medicine, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Akiba S, Yoneda Y, Ohno S, Nemoto M, Sato T. Oxidized LDL activates phospholipase A2 to supply fatty acids required for cholesterol esterification. J Lipid Res 2003; 44:1676-85. [PMID: 12777475 DOI: 10.1194/jlr.m300012-jlr200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined the roles of phospholipase A2 (PLA2) in oxidized LDL (oxLDL)-induced cholesteryl ester formation in macrophages. In [3H]oleic acid-labeled RAW264.7 cells and mouse peritoneal macrophages, oxLDL induced [3H]cholesteryl oleate formation with an increase in free [3H]oleic acid and a decrease in [3H]phosphatidylcholine. The changes in these lipids were suppressed by methyl arachidonyl fluorophosphonate (MAFP), a cytosolic PLA2 (cPLA2) inhibitor. However, MAFP had no effect on the ACAT activity or the binding and/or uptake of oxLDL. Stimulation with oxLDL in the presence of [3H]cholesterol increased [3H]cholesteryl ester bearing fatty acyl chains derived from cellular and/or exogenous (oxLDL) lipids. The formation of cholesteryl ester under this condition was also inhibited by MAFP, and the inhibitory effect was reversed by adding oleic acid. While oxLDL did not affect the activity or amounts of cPLA2, preincubation with oxLDL enhanced the release of oleic acid and arachidonic acid induced by ionomycin in RAW264.7 cells. 13(S)-hydroxyoctadecadienoic acid, but not 7-ketocholesterol, also enhanced ionomycin-induced oleic acid release. These results suggest that oxLDL induces cPLA2 activation, which contributes, at least in part, to the supply of fatty acids required for the cholesteryl esterification, probably through the acceleration by oxidized lipids of the catalytic action of cPLA2 in macrophages.
Collapse
Affiliation(s)
- Satoshi Akiba
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
| | | | | | | | | |
Collapse
|
24
|
Anfuso CD, Sipione S, Lupo G, Ragusa N, Alberghina M. Characterization of glycerophosphocholine phosphodiesterase activity and phosphatidylcholine biosynthesis in cultured retinal microcapillary pericytes. Effect of adenosine and endothelin-1. Lipids 2003; 38:45-52. [PMID: 12669819 DOI: 10.1007/s11745-003-1030-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In pericytes from bovine retina, the enzyme glycerophosphocholine phosphodiesterase, catalyzing the hydrolysis of sn-glycero-3-phosphocholine to glycero-3-phosphate and choline, has been characterized with respect to pH optimum, metal ion dependence, Km, inhibitors, and subcellular localization. In these cells, the natural substrate sn-glycero-3-phosphocholine was present at relatively high concentration (6.4 +/- 1.2 nmol/mg protein), and the EDTA-sensitive phosphodiesterase activity was also found to be markedly high (9.80 +/- 1.5 nmol/min/mg protein) compared to that estimated in liver and brain (1-3 nmol/min/mg protein) or in renal epithelial cell culture (0.27 nmol/min/mg protein). The reaction conditions were in general agreement with those found earlier in brain and other tissues. The majority of the enzyme specific activity was located in the plasma membrane, whereas a minor part was present in the microsomal fraction. The physiological significance of the high catabolic phosphodiesterase activity in these cells may be related to the transfer, followed by deacylation, of lysophosphatidylcholine from the bloodstream to nervous tissue. In addition, capillary pericytes in culture were able to incorporate 3H-choline rapidly into choline-containing soluble phosphorylated intermediates and into phosphatidylcholine. To find a positive and negative effector on phosphatidylcholine formation, adenosine, an important intercellular mediator in the retina in response to alterations in oxygen delivery, and endothelin-1, a potent paracrine mediator present at the blood-brain and blood-retina barrier, were tested. The cells cultured for 1 or 24 h in a medium containing adenosine at concentrations of 10(-6) and 10(-4) M showed significant reduction in 3H-choline incorporation compared to control cultures, whereas endothelin-1, at a concentration of 10 and 100 nM, caused stimulation of phosphatidylcholine biosynthesis. These findings provide evidence that both agonists may modulate phosphatidylcholine metabolism in pericytes.
Collapse
Affiliation(s)
- Carmelina D Anfuso
- Department of Biochemistry, Faculty of Medicine, University of Catania, 95125 Catania, Italy
| | | | | | | | | |
Collapse
|
25
|
Lupo G, Assero G, Anfuso CD, Nicotra A, Palumbo M, Cannavò G, Renis M, Ragusa N, Alberghina M. Cytosolic phospholipase A2 mediates arachidonoyl phospholipid hydrolysis in immortalized rat brain endothelial cells stimulated by oxidized LDL. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1585:19-29. [PMID: 12457711 DOI: 10.1016/s1388-1981(02)00303-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We tested the hypothesis that oxidized low-density lipoprotein (oxLDL), administered in sublethal doses to the culture medium of immortalized rat brain endothelial cells (ECs, GP8.39), acts as a prooxidant signal to stimulate peroxidation processes and membrane phospholipid hydrolysis. ECs were grown at confluence in a medium with or without native LDL (nLDL) or oxLDL (1.5 mg/dish; up to 350-450 nmol hydroperoxides/mg protein) for two temporally distinct phases (short incubation period up to 1 h, or long incubation period spanning 24 h). Peroxidation parameters (conjugated dienes, MDA, hydroperoxides and LDH release) and arachidonic acid (AA) release were determined. Cell lysates and subcellular fractions were assayed for cPLA(2) while the cytotoxic effect and apoptosis were monitored by morphological changes, trypan blue dye exclusion, MTT reduction test, caspase-3 activity, COMET and laser confocal fluorescence microscopy (LCFM) analyses. Effects of alpha-tocopherol and 85-kDa PLA(2) inhibitor (AACOCF(3)), alone or in combination, were also tested. Immunoblot analysis of cPLA(2) was carried out on cell fraction proteins. After incubation for 1 or 24 h, oxLDL (100-200 microM hydroperoxides), but not nLDL, markedly increased lipid peroxidation, cPLA(2) activity and AA release in a dose-dependent manner. AACOCF(3) and antioxidant alpha-tocopherol (1 mM) strongly inhibited the prooxidant-stimulated AA release. Long-term exposure (24 h) to oxLDL (100 microM) had no effect on the cPLA(2) protein content as tested by Western immunoblot analysis, while showing a sharp cytotoxic effect on the cells. Caspase-3 activity and LCFM analysis indicated that oxLDL (100/200 microM) were able to trigger an apoptotic process. The results suggest that (i) ECs may be the target of extensive oxidative damage caused by oxLDL; (ii) activation of cPLA(2) mediates liberation of AA; (iii) cPLA(2) expression was not stimulated by long-term exposure to oxLDL; (iv) oxidized specific constituents of oxLDL, acting as regulatory signals, increase the ability of ECs to degrade membrane phospholipids, end products of which are linked to the development of atherosclerotic lesions.
Collapse
Affiliation(s)
- Gabriella Lupo
- Department of Biochemistry, Faculty of Medicine, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Spector A, Ma W, Sun F, Li D, Kleiman NJ. The effect of H2O2 and tertiary butyl hydroperoxide upon a murine immortal lens epithelial cell line, alphaTN4-1. Exp Eye Res 2002; 75:573-82. [PMID: 12457869 DOI: 10.1006/exer.2002.2045] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of comparable concentrations of H(2)O(2) and tertiary butyl hydroperoxide (TBHP) upon an immortal murine lens epithelial cell line was examined as part of an ongoing effort to delineate differences in the mechanism by which these peroxides cause cell death. Both compounds result in cell death of normal, unconditioned cells within 24hr. It was found that with similar conditions, TBHP conditioned alphaTN4-1 cells survive H(2)O(2) stress while H(2)O(2) conditioned cells are killed by TBHP. To better understand how these peroxides act, their effect upon unconditioned cells has been investigated. Both peroxides cause a rapid loss of GSH and disruption of pump activity as illustrated by (14)C-choline transport and (86)Rb uptake. While H(2)O(2) exposure resulted in extensive DNA damage, TBHP had a minimal effect. DNA damage caused by H(2)O(2) was shown to activate polyADP-ribosyl polymerase (PARP), leading to depletion of NAD and ATP. H(2)O(2) induced cell death could be delayed by addition of 3-aminobenzamide (3AB), an inhibitor of PARP. ATP levels in cells subjected to H(2)O(2) were also maintained by the presence of 3AB. H(2)O(2) stress also disrupted glycolysis and mitochondrial activity but these parameters were not affected by TBHP. TBHP induced cell death, under the relatively mild conditions used in this work, appears to be caused by membrane disruption and loss of a reducing environment.
Collapse
Affiliation(s)
- Abraham Spector
- Department of Ophthalmology, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA.
| | | | | | | | | |
Collapse
|
27
|
Assero G, Lupo G, Anfuso CD, Ragusa N, Alberghina M. High glucose and advanced glycation end products induce phospholipid hydrolysis and phospholipid enzyme inhibition in bovine retinal pericytes. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1533:128-40. [PMID: 11566450 DOI: 10.1016/s1388-1981(01)00151-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the present study, we investigated the possible role of oxidative stress and the modulation of phospholipid turnover in two related models of pericyte injury, i.e., treatment with high glucose or advanced glycation end products (AGEs). Growing microcapillary pericytes from bovine retinas in culture were incubated, for 3 weeks, with 20-50 mM glucose or 2-20 microM AGEs, and peroxidation parameters (malondialdehyde, conjugated diene, hydroperoxide, glutathione (GSH) levels and lactate dehydrogenase (LDH) release) were evaluated. Arachidonate (AA) and choline release from membrane phospholipids was determined in pericytes prelabeled with [1-(14)C]arachidonate and [Me-(3)H]choline, respectively, and stimulated with elevated glucose or AGEs for 30 min or 2 h. [1-(14)C]arachidonate and [Me-(3)H]choline incorporation into phospholipids, for 2 h and 3 h respectively, was also studied in conditioned and serum-starved cultures. Finally, lysates of treated and control cells were assayed for cytosolic phospholipase A(2) (cPLA(2)), acyl-CoA:1-acyl-sn-glycero-3-phosphocholine O-acyltransferase (AT), CTP:phosphocholine cytidylyltransferase (CT) and microsomal choline phosphotransferase (CPT) enzyme activities. We found that high glucose and AGEs caused neither significant production of reactive oxygen species nor cell toxicity or death, unlike other cell types. Both agents had no significant effect on the cellular ultrastructure, evaluated by light and electron microscopy, AA incorporation and release, cytosolic phospholipase A(2) (cPLA(2)) and AT activities. On the contrary, choline incorporation into phosphatidylcholine, CT and CPT activities were significantly reduced either by 50 mM glucose or 20 microM AGEs. Simultaneously, [Me-(3)H]choline release was significantly stimulated by both agents. We conclude that prolonged treatments with high glucose or AGEs are not able to induce oxidative injury in bovine retinal capillary pericytes. Nevertheless, they do induce phospholipid hydrolysis and phospholipid enzyme activity inhibition.
Collapse
Affiliation(s)
- G Assero
- Department of Biochemistry, Faculty of Medicine, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | | | | | | | | |
Collapse
|
28
|
Lupo G, Anfuso CD, Assero G, Strosznajder RP, Walski M, Pluta R, Alberghina M. Amyloid beta(1-42) and its beta(25-35) fragment induce in vitro phosphatidylcholine hydrolysis in bovine retina capillary pericytes. Neurosci Lett 2001; 303:185-8. [PMID: 11323116 DOI: 10.1016/s0304-3940(01)01749-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe the inhibitory effect of full-length Abeta(1-42) and Abeta(25-35) fragment of amyloid-beta peptide on phosphatidylcholine (PtdCho) metabolism in bovine retina capillary pericytes. Cell cultures were incubated with Abetas for 24 h. Peroxidation indices (malondialdehyde and lactate dehydrogenase release) significantly increased after 20-50 microM Abeta(1-42) or Abeta(25-35) treatment. In addition, [Me-3H]choline incorporation into PtdCho strongly decreased while either 3H-choline or 14C-arachidonic acid release from prelabeled cells increased, indicating PtdCho hydrolysis. The effect was very likely due to prooxidant action of both Abeta peptides. Reversed-sequence Abeta(35-25) peptide did not depress 3H-choline incorporation nor stimulate PtdCho breakdown. With addition of Abetas at low concentrations (2-20 microM) to pericytes, marked ultrastructural changes, well connected to metabolic alterations, emerged including shrinkage of cell bodies, retraction of processes, disruption of the intracellular actin network. Cells treated with higher concentrations (50-200 microM) displayed characteristics of necrotic cell death. The data suggest that: (a) Abeta(1-42) and Abeta(25-35) peptides may modulate phospholipid turnover in microvessel pericytes; (b) together with endothelial cells, pericytes could be the target of vascular damage during processes involving amyloid accumulation.
Collapse
Affiliation(s)
- G Lupo
- Department of Biochemistry, Faculty of Medicine, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | | | | | | | | | | | | |
Collapse
|