1
|
Chan C, Loh JXY, Sin WX, Teo DBL, Tan NKZ, Nagarajan C, Chen Y, Lim FLWI, Birnbaum ME, Williams RB, Springs SL. Extracellular viral microRNAs as biomarkers of virus infection in human cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102444. [PMID: 39897577 PMCID: PMC11787021 DOI: 10.1016/j.omtn.2024.102444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 12/28/2024] [Indexed: 02/04/2025]
Abstract
Nucleic acid amplification tests (NAATs) have enabled fast and sensitive detection of virus infections but are unable to discriminate between live and dead/inert viral fragments or between latent and reactivated virus infections. Here, we show that extracellular viral microRNAs (viral exmiRs) are cell-free candidate biomarkers of live, latent, and reactivated virus infections, achieving fast (under 1 day) and sensitive (30 attomolar [aM]) detection by quantitative real-time reverse transcription PCR (real-time RT-qPCR). We report that spent-media-derived Epstein-Barr virus (EBV) miR-BART10-3p and herpes simplex virus 1 (HSV-1) miR-H5 are biomarkers of live EBV-2 and HSV-1 infection of T cell cultures, respectively. We identified extracellular human herpesvirus 6 (HHV-6) miR-Ro6-4 as a biomarker of endogenous latent HHV-6 in healthy human donor T cell cultures and identified human cytomegalovirus (HCMV) miR-US5-2-5p and miR-US22-5p as plasma biomarkers of endogenous latent HCMV infection. Viral exmiR profiling of spent media from EBV- and HHV-8-reactivated B cell models revealed specific signatures of elevated EBV miR-BHRF1-2-3p and HHV-8 miR-K12-10a-3p, miR-K12-10b, and miR-K12-12-3p, respectively, during virus reactivation. Our study thus suggests the utility of viral exmiR biomarkers in enabling NAAT-based detection of live, endogenous latent, and reactivated virus infections of cells.
Collapse
Affiliation(s)
- Cheryl Chan
- Critical Analytics for Manufacturing Personalized-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Joanne Xin Yi Loh
- Critical Analytics for Manufacturing Personalized-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Wei-Xiang Sin
- Critical Analytics for Manufacturing Personalized-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Denise Bei Lin Teo
- Critical Analytics for Manufacturing Personalized-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Nicholas Kwan Zen Tan
- Critical Analytics for Manufacturing Personalized-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Chandramouli Nagarajan
- Department of Haematology, Singapore General Hospital, Singapore 169608, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Programme, SingHealth Duke-NUS Academic Medical Centre, Singapore 168582, Singapore
- SingHealth Duke-NUS Cell Therapy Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore 168582, Singapore
| | - Yunxin Chen
- Department of Haematology, Singapore General Hospital, Singapore 169608, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Programme, SingHealth Duke-NUS Academic Medical Centre, Singapore 168582, Singapore
- SingHealth Duke-NUS Cell Therapy Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore 168582, Singapore
| | - Francesca Lorraine Wei Inng Lim
- Department of Haematology, Singapore General Hospital, Singapore 169608, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Programme, SingHealth Duke-NUS Academic Medical Centre, Singapore 168582, Singapore
- SingHealth Duke-NUS Cell Therapy Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore 168582, Singapore
| | - Michael E. Birnbaum
- Critical Analytics for Manufacturing Personalized-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rohan B.H. Williams
- Critical Analytics for Manufacturing Personalized-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore 119077, Singapore
| | - Stacy L. Springs
- Critical Analytics for Manufacturing Personalized-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
2
|
Wang Y, Wang Y, Bi Z, Liu Y, Meng C, Zhu J, Liu G, Li C. Simultaneous detection of novel goose parvovirus and novel duck reovirus by SYBR Green I-based duplex real-time quantitative polymerase chain reaction. 3 Biotech 2024; 14:288. [PMID: 39502793 PMCID: PMC11532324 DOI: 10.1007/s13205-024-04139-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
Co-infection with novel goose parvovirus (NGPV) and novel duck reovirus (NDRV) is common, significantly impeding duck growth and resulting in considerable economic losses within the duck farming industry. To facilitate rapid and accurate diagnosis and differentiation of these two viruses, this study developed a SYBR Green I-based duplex real-time quantitative polymerase chain reaction (qPCR) assay. This assay enabled the simultaneous detection of NGPV and NDRV by exploiting their distinct melting temperatures (Tm): 78.5 ± 0.50 °C for NGPV and 84.5 ± 0.50 °C for NDRV. No amplification was observed for other prevalent non-target duck viruses. The intra- and inter-assay coefficients of variation were less than 1.75%. The assay showed good performance with the same detection limit of 102 copies/μL for both NGPV and NDRV. The results of the clinical testing indicated that 45.3% (34/75) of the samples tested positive for NGPV, while 38.7% (29/75) were positive for NDRV. Notably, 13.3% (10/75) exhibited co-infection. These results revealed that the sensitivity of the developed method exceed that of conventional polymerase chain reaction (PCR). The developed method for the identifying of NGPV and NDRV shows good specificity, sensitivity, and repeatability, rendering it an effective tool for the simultaneous detection of co-infection with NGPV and NDRV.
Collapse
Affiliation(s)
- Yimin Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241 China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036 China
| | - Yong Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036 China
| | - Zhuangli Bi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241 China
| | - Yuhan Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241 China
| | - Chunchun Meng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241 China
| | - Jie Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241 China
| | - Guangqing Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241 China
| | - Chuanfeng Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241 China
| |
Collapse
|
3
|
Shimada M, Wang H, Ichino M, Ura T, Mizuki N, Okuda K. Biodistribution and immunity of adenovirus 5/35 and modified vaccinia Ankara vector vaccines against human immunodeficiency virus 1 clade C. Gene Ther 2022; 29:636-642. [PMID: 34987192 DOI: 10.1038/s41434-021-00308-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/06/2021] [Accepted: 11/23/2021] [Indexed: 01/09/2023]
Abstract
Previously, we developed a chimeric adenovirus type 5 with type 35 fiber (Ad5/35), which has high tropism to dendritic cells and low hepatoxicity. For further clinical use, we constructed two recombinant vectors expressing human immunodeficiency virus 1 (HIV-1) clade C gag (Ad5/35-Cgag and MVA-Cgag). The biodistribution of the two viral vectors in a mouse model and immunity in monkeys were assessed. The mice received a single intramuscular injection with the vectors alone. The gag gene in the tissues were periodically detected using a real-time quantitative polymerase chain reaction. The distribution of Ad5/35 was also detected using an in vivo imaging system, followed by luciferase-expressing Ad5/35 administration. We found that Ad5/35-Cgag DNA and luciferase activity were detectable until 8 weeks post-administration, whereas MVA-Cgag was undetectable 72 h post-administration. Furthermore, viral administration did not increase serum aspartate aminotransferase and alanine aminotransferase levels in either mouse or monkey models. Moreover, intramuscular administration of Ad5/35-Cgag induced the gag-specific antibody level and IFNγ-secreting PBMCs, the boost with MVA-Cgag further increased the responses and lasted more than 20 weeks from the initial administration. These data demonstrate that Ad5/35 and MVA vectors are safe for in vivo use, and prime-boost with Ad5/35-MVA vaccines is suitable for clinical use against HIV-1 clade C.
Collapse
Affiliation(s)
- Masaru Shimada
- Department of Molecular Biodefense Research, Yokohama City University, Yokohama, 2360004, Japan.
| | - Haibin Wang
- BioRay Pharmaceutical Co., Ltd., Taizhou, Zhejiang, 318000, China
| | - Motohide Ichino
- Department of Immunology, Yokohama City University, Yokohama, 2360004, Japan
| | - Takehiro Ura
- Department of Ophthalmology and Visual Science, Yokohama City University, Yokohama, 2360004, Japan
| | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Yokohama City University, Yokohama, 2360004, Japan
| | - Kenji Okuda
- Department of Molecular Biodefense Research, Yokohama City University, Yokohama, 2360004, Japan.,Okuda Vaccine Research Institute, Yokohama, 2350045, Japan.,Yokohama City University, Yokohama, 2360004, Japan
| |
Collapse
|
4
|
Parr YA, Beall MJ, Levy JK, McDonald M, Hamman NT, Willett BJ, Hosie MJ. Measuring the Humoral Immune Response in Cats Exposed to Feline Leukaemia Virus. Viruses 2021; 13:v13030428. [PMID: 33800090 PMCID: PMC7998633 DOI: 10.3390/v13030428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/23/2021] [Accepted: 03/05/2021] [Indexed: 01/18/2023] Open
Abstract
Retroviruses belong to an important and diverse family of RNA viruses capable of causing neoplastic disease in their hosts. Feline leukaemia virus (FeLV) is a gammaretrovirus that infects domestic and wild cats, causing immunodeficiency, cytopenia and neoplasia in progressively infected cats. The outcome of FeLV infection is influenced by the host immune response; progressively infected cats demonstrate weaker immune responses compared to regressively infected cats. In this study, humoral immune responses were examined in 180 samples collected from 123 domestic cats that had been naturally exposed to FeLV, using a novel ELISA to measure antibodies recognizing the FeLV surface unit (SU) glycoprotein in plasma samples. A correlation was demonstrated between the strength of the humoral immune response to the SU protein and the outcome of exposure. Cats with regressive infection demonstrated higher antibody responses to the SU protein compared to cats belonging to other outcome groups, and samples from cats with regressive infection contained virus neutralising antibodies. These results demonstrate that an ELISA that assesses the humoral response to FeLV SU complements the use of viral diagnostic tests to define the outcome of exposure to FeLV. Together these tests could allow the rapid identification of regressively infected cats that are unlikely to develop FeLV-related disease.
Collapse
Affiliation(s)
- Yasmin A. Parr
- MRC—University of Glasgow Centre for Virus Research, Glasgow, Scotland G61 1QH, UK; (B.J.W.); (M.J.H.)
- Correspondence: ; Tel.: +44-0-141-330-3444
| | | | - Julie K. Levy
- Maddie’s Shelter Medicine Program, University of Florida, Gainesville, FL 32608, USA;
| | - Michael McDonald
- Veterinary Diagnostic Services, University of Glasgow, Glasgow, Scotland G61 1QH, UK;
| | | | - Brian J. Willett
- MRC—University of Glasgow Centre for Virus Research, Glasgow, Scotland G61 1QH, UK; (B.J.W.); (M.J.H.)
| | - Margaret J. Hosie
- MRC—University of Glasgow Centre for Virus Research, Glasgow, Scotland G61 1QH, UK; (B.J.W.); (M.J.H.)
| |
Collapse
|
5
|
Yamamoto S, Matsumoto SI, Goto A, Ugajin M, Nakayama M, Moriya Y, Hirabayashi H. Quantitative PCR methodology with a volume-based unit for the sophisticated cellular kinetic evaluation of chimeric antigen receptor T cells. Sci Rep 2020; 10:17884. [PMID: 33087808 PMCID: PMC7578827 DOI: 10.1038/s41598-020-74927-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/05/2020] [Indexed: 11/16/2022] Open
Abstract
Although the cellular kinetics of chimeric antigen receptor T (CAR T) cells are expressed in units of copies/μg gDNA, this notation carries the risk of misrepresentation owing to dramatic changes in blood gDNA levels after lymphocyte-depleting chemotherapy and rapid expansion of CAR T cells. Therefore, we aimed to establish a novel qPCR methodology incorporating a spike-in calibration curve that expresses cellular kinetics in units of copies/μL blood, as is the case for conventional pharmacokinetic studies of small molecules and other biologics. Dog gDNA was used as an external control gene. Our methodology enables more accurate evaluation of in vivo CAR T-cell expansion than the conventional approach; the unit “copies/μL blood” is therefore more appropriate for evaluating cellular kinetics than the unit “copies/μg gDNA.” The results of the present study provide new insights into the relationship between cellular kinetics and treatment efficacy, thereby greatly benefiting patients undergoing CAR T-cell therapy.
Collapse
Affiliation(s)
- Syunsuke Yamamoto
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan.
| | - Shin-Ichi Matsumoto
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| | - Akihiko Goto
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| | - Miyuki Ugajin
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| | - Miyu Nakayama
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| | - Yuu Moriya
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| | - Hideki Hirabayashi
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| |
Collapse
|
6
|
Mohamad NA, Mustafa S, Khairil Mokhtar NF, El Sheikha AF. Molecular beacon-based real-time PCR method for detection of porcine DNA in gelatin and gelatin capsules. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:4570-4577. [PMID: 29505123 DOI: 10.1002/jsfa.8985] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/23/2018] [Accepted: 02/24/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The pharmaceutical industry has boosted gelatin consumption worldwide. This is supported by the availability of cost-effective gelatin production from porcine by-products. However, cross-contamination of gelatin materials, where porcine gelatin was unintentionally included in the other animal sources of gelatin, has caused significant concerns about halal authenticity. The real-time polymerase chain reaction (PCR) has enabled a highly specific and sensitive animal species detection method in various food products. Hence, such a technique was employed in the present study to detect and quantify porcine DNA in gelatin using a molecular beacon probe, with differences in performance between mitochondrial (cytochrome b gene) and chromosomal DNA-(MPRE42 repetitive element) based porcine-specific PCR assays being compared. RESULTS A higher sensitivity was observed in chromosomal DNA (MPRE-PCR assay), where this assay allows the detection of gelatin DNA at amounts as as low as 1 pg, whereas mitochondrial DNA (CBH-PCR assay) can only detect at levels down to 10 pg of gelatin DNA. When an analysis with commercial gelatin and gelatin capsule samples was conducted, the same result was observed, with a significantly more sensitive detection being provided by the repetitive element of chromosomal DNA. CONCLUSION The present study has established highly sensitive DNA-based porcine detection systems derived from chromosomal DNA that are feasible for highly processed products such as gelatin and gelatin capsules containing a minute amount of DNA. This sensitive detection method can also be implemented to assist the halal authentication process of various food products available on the market. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nurhidayatul Asma Mohamad
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia (UPM), Putra Infoport, Selangor Darul Ehsan, Malaysia
| | - Shuhaimi Mustafa
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia (UPM), Putra Infoport, Selangor Darul Ehsan, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Selangor Darul Ehsan, Malaysia
| | - Nur Fadhilah Khairil Mokhtar
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia (UPM), Putra Infoport, Selangor Darul Ehsan, Malaysia
| | - Aly Farag El Sheikha
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- Department of Food Science and Technology, Faculty of Agriculture, Minufiya University, Shibin El Kom, Minufiya Government, Egypt
| |
Collapse
|
7
|
Palacios JDCA, Barreto CAB, Lara JSM, Navas ÁML. Standardization of DNA Residual Quantification Method of Vero Cell Rabies Vaccine for Human Use. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2017; 11:66-80. [PMID: 28839473 PMCID: PMC5543725 DOI: 10.2174/1874104501711010066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/30/2017] [Accepted: 04/11/2017] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Normalize the quantification of residual DNA from Vero cells in the rabies vaccine for use in human VAHV I, by quantitative PCR in real time and the design of primers that amplified, highly repetitive sequences of Cercopithecus aethiops and a constitutive gene according to sequences reported in the GenBank and quantifying the residual DNA in the vaccine VAHV I in three consecutive batches according to the standard set by the World Health Organization. METHODS A real time quantitative method based on SYBR Green chemistry has been applied for the quantification of residual DNA (resDNA) using highly repetitive DNA (Alu) and a housekeeping gene (B-actin) as target sequences. RESULTS The sensitivity achieved with this white sequence is within the reported limits and who are between 5 and 50 pg. For real time PCR optimization with Alu-p53, different concentrations of MgCl2 (0.5, 0.75, 1.0, 1.25 and 1.5 mm) in combination with three different concentrations of primers (75, 100 and 150nM) were used. pDNA in concentration of 1x107 copies / ul was used as template. Optimal concentrations were 1.25 mM MgCl2 and 100nM primers. To level of detection of 1.53 ng/ul was found for p53-Alu and Alu-Glob and 0.39 ng/ul for B-actin with gDNA curves. CONCLUSION Quantification of resDNA of vaccine VAHV I with close-ups of B-actin was normalized. Reached a sensitivity of 30 pg of resDNA/dose VAHV I, with close-ups of B-actin. Found, in three consecutive batches, an amount less than 10 ng/dose, these results suggest that the production process ensures vaccine resDNA removal, meeting international requirements for biological products for use in humans that use continuous cell lines for production.
Collapse
Affiliation(s)
| | | | - José Salvador Montaña Lara
- Grupo UNIDIA. Unidad de Investigaciones Agropecuarias. Facultad de Ciencias. Pontificia Universidad Javeriana, Bogota, Colombia
| | - Ángela María Londoño Navas
- Departamento de Microbiología. Carrera de Microbiología Industrial Pontificia Universidad Javeriana, Bogota, Colombia
| |
Collapse
|
8
|
Asvapathanagul P, Olson BH. Improving qPCR methodology for detection of foaming bacteria by analysis of broad-spectrum primers and a highly specific probe for quantification of Nocardia spp. in activated sludge. J Appl Microbiol 2016; 122:97-105. [PMID: 27699950 DOI: 10.1111/jam.13311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/10/2016] [Accepted: 09/27/2016] [Indexed: 11/27/2022]
Abstract
AIMS To develop qPCR broad-spectrum primers combined with a Nocardia genus-specific probe for the identification of a broad spectrum of Nocardia spp. and to analyse the effects of using this developed primer and probe set on the ability to quantify Nocardia spp. in mixed DNA. METHODS AND RESULTS The consequences of using a degenerative primer set and species-specific probe for the genus Nocardia on qPCR assays were examined using DNA extracts of pure cultures and activated sludge. The mixed DNA extracts where the target organism Nocardia flavorosea concentration ranged from 5 × 102 to 5 × 106 copies per reaction, while the background organism's DNA (Mycobacterium bovis) concentration was held at 5 × 106 copies per reaction, only produced comparable cycle threshold florescence levels when N. flavorosea concentration was greater than or equal to the background organism concentration. When concentrations of N. flavorosea were lowered in increments of 1 log, while holding M. bovis concentrations constant at 5 × 106 copies per reaction, all assays demonstrated delayed cycle threshold values with a maximum 34·6-fold decrease in cycle threshold at a ratio of 106 M. bovis: 102 N. flavorosea copies per reaction. CONCLUSIONS The data presented in this study indicated that increasing the ability of a primer set to capture a broad group of organisms can affect the accuracy of quantification even when a highly specific probe is used. This study examined several applications of molecular tools in complex communities such as evaluating the effect of mispriming vs interference. It also elucidates the importance of understanding the community genetic make-up on primer design. SIGNIFICANCE AND IMPACT OF THE STUDY Degenerative primers are very useful in amplifying bacterial DNA across genera, but reduce the efficiency of qPCR reactions. Therefore, standards that address closely related background species must be used to obtain accurate qPCR results.
Collapse
Affiliation(s)
- P Asvapathanagul
- Department of Civil Engineering and Construction Engineering Management, California State University, Long Beach, Long Beach, CA, USA
| | - B H Olson
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
9
|
Devito L, Petrova A, Miere C, Codognotto S, Blakely N, Lovatt A, Ogilvie C, Khalaf Y, Ilic D. Cost-effective master cell bank validation of multiple clinical-grade human pluripotent stem cell lines from a single donor. Stem Cells Transl Med 2014; 3:1116-24. [PMID: 25122690 DOI: 10.5966/sctm.2014-0015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Standardization guidelines for human pluripotent stem cells are still very broadly defined, despite ongoing clinical trials in the U.S., U.K., and Japan. The requirements for validation of human embryonic (hESCs) and induced pluripotent stem cells (iPSCs) in general follow the regulations for other clinically compliant biologics already in place but without addressing key differences between cell types or final products. In order to realize the full potential of stem cell therapy, validation criteria, methodology, and, most importantly, strategy, should address the shortfalls and efficiency of current approaches; without this, hESC- and, especially, iPSC-based therapy will not be able to compete with other technologies in a cost-efficient way. We addressed the protocols for testing cell lines for human viral pathogens and propose a novel strategy that would significantly reduce costs. It is highly unlikely that the multiple cell lines derived in parallel from a tissue sample taken from one donor would have different profiles of endogenous viral pathogens; we therefore argue that samples from the Master Cell Banks of sibling lines could be safely pooled for validation. We illustrate this approach with tiered validation of two sibling clinical-grade hESC lines, KCL033 and KCL034 (stage 1, sterility; stage 2, specific human pathogens; and stage 3, nonspecific human pathogens). The results of all tests were negative. This cost-effective strategy could also be applied for validation of Master Cell Banks of multiple clinical-grade iPSC lines derived from a single donor.
Collapse
Affiliation(s)
- Liani Devito
- Division of Women's Health, Women's Health Academic Centre, King's College London, London, United Kingdom
| | - Anastasia Petrova
- Division of Women's Health, Women's Health Academic Centre, King's College London, London, United Kingdom
| | - Cristian Miere
- Division of Women's Health, Women's Health Academic Centre, King's College London, London, United Kingdom
| | - Stefano Codognotto
- Division of Women's Health, Women's Health Academic Centre, King's College London, London, United Kingdom; St8Biologics, QA Consultancy, London, United Kingdom
| | | | | | - Caroline Ogilvie
- Guy's & St. Thomas' Centre for Preimplantation Genetic Diagnosis and Genetics Centre and
| | - Yacoub Khalaf
- Division of Women's Health, Women's Health Academic Centre, King's College London, London, United Kingdom; Assisted Conception Unit, Guy's & St. Thomas' National Health Services Foundation Trust, London, United Kingdom
| | - Dusko Ilic
- Division of Women's Health, Women's Health Academic Centre, King's College London, London, United Kingdom;
| |
Collapse
|
10
|
Jung J, Kim KH, Yang K, Bang KH, Yang TJ. Practical application of DNA markers for high-throughput authentication of Panax ginseng and Panax quinquefolius from commercial ginseng products. J Ginseng Res 2014; 38:123-9. [PMID: 24748836 PMCID: PMC3986582 DOI: 10.1016/j.jgr.2013.11.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/06/2013] [Accepted: 11/20/2013] [Indexed: 11/30/2022] Open
Abstract
Korean ginseng (Panax ginseng) and American ginseng (Panax quinquefolius) are widely used medicinal plants with similar morphology but different medicinal efficacy. Roots, flowers, and processed products of Korean and American ginseng can be difficult to differentiate from each other, leading to illegal trade in which one species is sold as the other. This study was carried out to develop convenient and reliable chloroplast genome-derived DNA markers for authentication of Korean and American ginseng in commercial processed products. One codominant marker could reproducibly identify both species and intentional mixtures of the two species. We further developed a set of species-unique dominant DNA markers. Each species-specific dominant marker could detect 1% cross contamination with other species by low resolution agarose gel electrophoresis or quantitative polymerase chain reaction. Both markers were successfully applied to evaluate the original species from various processed ginseng products purchased from markets in Korea and China. We believe that high-throughput application of this marker system will eradicate illegal trade and promote confident marketing for both species to increase the value of Korean as well as American ginseng in Korea and worldwide.
Collapse
Affiliation(s)
- Juyeon Jung
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Kyung Hee Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Kiwoung Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Kyong-Hwan Bang
- National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, Korea
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
11
|
Chen Z, Dai H, Liu Z, Zhang L, Pang J, Ou J, Yang D. Quantitation of the residual DNA from rice-derived recombinant human serum albumin. Anal Biochem 2014; 450:4-10. [PMID: 24388867 DOI: 10.1016/j.ab.2013.12.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/22/2013] [Accepted: 12/23/2013] [Indexed: 02/02/2023]
Abstract
Residual DNA in recombinant protein pharmaceuticals can potentially cause safety issues in clinical applications; thus, maximum residual limit has been established by drug safety authorities. Assays for residual DNA in Escherichia coli, yeast, and Chinese hamster ovary (CHO) cell expression systems have been established, but no rice residual DNA assay for rice expression systems has been designed. To develop an assay for the quantification of residual DNA that is produced from rice seed, we established a sensitive assay using quantitative real-time polymerase chain reaction (qPCR) based on the 5S ribosomal RNA (rRNA) genes. We found that a 40-cycle qPCR exhibited a linear response when the template concentration was in the range of 2×10(4) to 0.2pg of DNA per reaction in TaqMan and SYBR Green I assays. The amplification efficiency was 103 to 104%, and the amount of residual DNA from recombinant human serum albumin from Oryza sativa (OsrHSA) was less than 3.8ng per dosage, which was lower than that recommended by the World Health Organization (WHO). Our results indicate that the current purification protocol could efficiently remove residual DNA during manufacturing and processing. Furthermore, this protocol could be viable in other cereal crop endosperm expression systems for developing a residual DNA quantitation assay using the highly conserved 5S rRNA gene of the crops.
Collapse
Affiliation(s)
- Zhen Chen
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China
| | - Huixia Dai
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China
| | - Zhenwei Liu
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China
| | - Liping Zhang
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China
| | - Jianlei Pang
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China
| | - Jiquan Ou
- Hubei Engineering Research Center for Molecular Pharming, Biolake, Wuhan 430076, China
| | - Daichang Yang
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; Hubei Engineering Research Center for Molecular Pharming, Biolake, Wuhan 430076, China.
| |
Collapse
|
12
|
Sedlackova T, Repiska G, Celec P, Szemes T, Minarik G. Fragmentation of DNA affects the accuracy of the DNA quantitation by the commonly used methods. Biol Proced Online 2013; 15:5. [PMID: 23406353 PMCID: PMC3576356 DOI: 10.1186/1480-9222-15-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 02/09/2013] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED BACKGROUND Specific applications and modern technologies, like non-invasive prenatal testing, non-invasive cancer diagnostic and next generation sequencing, are currently in the focus of researchers worldwide. These have common characteristics in use of highly fragmented DNA molecules for analysis. Hence, for the performance of molecular methods, DNA concentration is a crucial parameter; we compared the influence of different levels of DNA fragmentation on the accuracy of DNA concentration measurements. RESULTS In our comparison, the performance of the currently most commonly used methods for DNA concentration measurement (spectrophotometric, fluorometric and qPCR based) were tested on artificially fragmented DNA samples. In our comparison, unfragmented and three specifically fragmented DNA samples were used.According to our results, the level of fragmentation did not influence the accuracy of spectrophotometric measurements of DNA concentration, while other methods, fluorometric as well as qPCR-based, were significantly influenced and a decrease in measured concentration was observed with more intensive DNA fragmentation. CONCLUSIONS Our study has confirmed that the level of fragmentation of DNA has significant impact on accuracy of DNA concentration measurement with two of three mostly used methods (PicoGreen and qPCR). Only spectrophotometric measurement was not influenced by the level of fragmentation, but sensitivity of this method was lowest among the three tested. Therefore if it is possible the DNA quantification should be performed with use of equally fragmented control DNA.
Collapse
Affiliation(s)
- Tatiana Sedlackova
- Institute of Molecular BioMedicine, Faculty of Medicine, Comenius University, Sasinkova 4, Bratislava, 811 08, Slovakia.
| | | | | | | | | |
Collapse
|
13
|
Wang F, Wang Z, Tian H, Qi M, Zhai Z, Li S, Li R, Zhang H, Wang W, Fu S, Lu J, Rodriguez R, Guo Y, Zhou L. Biodistribution and safety assessment of bladder cancer specific recombinant oncolytic adenovirus in subcutaneous xenografts tumor model in nude mice. Curr Gene Ther 2012; 12:67-76. [PMID: 22384806 DOI: 10.2174/156652312800099599] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 01/27/2012] [Accepted: 01/27/2012] [Indexed: 11/22/2022]
Abstract
BACKGROUND The previous works about safety evaluation for constructed bladder tissue specific adenovirus are poorly documented. Thus, we investigated the biodistribution and body toxicity of bladder specific oncolytic adenovirus Ad-PSCAE-UPII-E1A (APU-E1A) and Ad-PSCAE-UPII-E1A-AR (APU-E1A-AR), providing meaningful information prior to embarking on human clinical trials. MATERIALS AND METHOD Conditionally replicate recombinant adenovirus (CRADs) APU-E1A, APU-EIA-AR were constructed with bladder tissue specific UroplakinII(UPII) promoter to induce the expression of Ad5E1A gene and E1A-AR fusing gene, and PSCAE was inserted at upstream of promoter to enhance the function of promoter. Based on the cytopathic and anti-tumor effect of bladder cancer, these CRADs were intratumorally injected into subcutaneous xenografts tumor in nude mice. We then determined the toxicity through general health and behavioral assessment, hepatic and hematological toxicity evaluation, macroscopic and microscopic postmortem analyses. The spread of the transgene E1A of adenovirus was detected with RT-PCR and Western blot. Virus replication and distribution were examined with APU-LUC administration and Luciferase Assay. RESULTS General assessment and body weight of the animals did not reveal any alteration in general behavior. The hematological alterations of groups which were injected with 5x10(8) pfu or higher dose (5x10(9) pfu) of APU-E1A and APU-E1A-AR showed no difference in comparison with PBS group, and only slight increased transaminases in contrast to PBS group at 5x10(9) pfu of APU-E1A and APU-E1A-AR were observed. E1A transgene did not disseminate to organs outside of xenograft tumor. Virus replication was not detected in other organs beside tumor according to Luciferase Assay. CONCLUSIONS Our study showed that recombinant adenovirus APU-E1A-AR and APU-E1A appear safe with 5x10(7) pfu and 5x10(8) pfu intratumorally injection in mice, without any discernable effects on general health and behavior.
Collapse
Affiliation(s)
- Fang Wang
- School of Life Sciences in Lanzhou University, Lanzhou, Gansu Province, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Prathalingam N, Ferguson L, Young L, Lietz G, Oldershaw R, Healy L, Craig A, Lister H, Binaykia R, Sheth R, Murdoch A, Herbert M. Production and validation of a good manufacturing practice grade human fibroblast line for supporting human embryonic stem cell derivation and culture. Stem Cell Res Ther 2012; 3:12. [PMID: 22472092 PMCID: PMC3392772 DOI: 10.1186/scrt103] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 02/02/2012] [Accepted: 03/28/2012] [Indexed: 12/31/2022] Open
Abstract
Introduction The development of reproducible methods for deriving human embryonic stem cell (hESC) lines in compliance with good manufacturing practice (GMP) is essential for the development of hESC-based therapies. Although significant progress has been made toward the development of chemically defined conditions for the maintenance and differentiation of hESCs, efficient derivation of new hESCs requires the use of fibroblast feeder cells. However, GMP-grade feeder cell lines validated for hESC derivation are not readily available. Methods We derived a fibroblast cell line (NclFed1A) from human foreskin in compliance with GMP standards. Consent was obtained to use the cells for the production of hESCs and to generate induced pluripotent stem cells (iPSCs). We compared the line with a variety of other cell lines for its ability to support derivation and self-renewal of hESCs. Results NclFed1A supports efficient rates (33%) of hESC colony formation after explantation of the inner cell mass (ICM) of human blastocysts. This compared favorably with two mouse embryonic fibroblast (MEF) cell lines. NclFed1A also compared favorably with commercially available foreskin fibroblasts and MEFs in promoting proliferation and pluripotency of a number of existing and widely used hESCs. The ability of NclFed1A to maintain self-renewal remained undiminished for up to 28 population doublings from the master cell bank. Conclusions The human fibroblast line Ncl1Fed1A, produced in compliance with GMP standards and qualified for derivation and maintenance of hESCs, is a useful resource for the advancement of progress toward hESC-based therapies in regenerative medicine.
Collapse
Affiliation(s)
- Nilendran Prathalingam
- NorthEast England Stem Cell Institute, Centre for Life, Times Square, Newcastle upon Tyne NE1 4EP, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kang MJ, Yu H, Kim SK, Park SR, Yang I. Quantification of trace-level DNA by real-time whole genome amplification. PLoS One 2011; 6:e28661. [PMID: 22174862 PMCID: PMC3235147 DOI: 10.1371/journal.pone.0028661] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 11/12/2011] [Indexed: 11/18/2022] Open
Abstract
Quantification of trace amounts of DNA is a challenge in analytical applications where the concentration of a target DNA is very low or only limited amounts of samples are available for analysis. PCR-based methods including real-time PCR are highly sensitive and widely used for quantification of low-level DNA samples. However, ordinary PCR methods require at least one copy of a specific gene sequence for amplification and may not work for a sub-genomic amount of DNA. We suggest a real-time whole genome amplification method adopting the degenerate oligonucleotide primed PCR (DOP-PCR) for quantification of sub-genomic amounts of DNA. This approach enabled quantification of sub-picogram amounts of DNA independently of their sequences. When the method was applied to the human placental DNA of which amount was accurately determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES), an accurate and stable quantification capability for DNA samples ranging from 80 fg to 8 ng was obtained. In blind tests of laboratory-prepared DNA samples, measurement accuracies of 7.4%, -2.1%, and -13.9% with analytical precisions around 15% were achieved for 400-pg, 4-pg, and 400-fg DNA samples, respectively. A similar quantification capability was also observed for other DNA species from calf, E. coli, and lambda phage. Therefore, when provided with an appropriate standard DNA, the suggested real-time DOP-PCR method can be used as a universal method for quantification of trace amounts of DNA.
Collapse
Affiliation(s)
- Min-Jung Kang
- Center for Bio-Analysis, Korea Research Institute of Standards and Science, Daejon, Republic of Korea
| | - Hannah Yu
- Department of Bio-Analytical Science, University of Science and Technology, Daejon, Republic of Korea
| | - Sook-Kyung Kim
- Center for Bio-Analysis, Korea Research Institute of Standards and Science, Daejon, Republic of Korea
| | - Sang-Ryoul Park
- Center for Bio-Analysis, Korea Research Institute of Standards and Science, Daejon, Republic of Korea
| | - Inchul Yang
- Center for Bio-Analysis, Korea Research Institute of Standards and Science, Daejon, Republic of Korea
| |
Collapse
|
16
|
Caution in evaluation of removal of virus by filtration: Misinterpretation due to detection of viral genome fragments by PCR. J Virol Methods 2011; 178:39-43. [DOI: 10.1016/j.jviromet.2011.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 08/05/2011] [Accepted: 08/10/2011] [Indexed: 11/20/2022]
|
17
|
Wang X, Morgan DM, Wang G, Mozier NM. Residual DNA analysis in biologics development: Review of measurement and quantitation technologies and future directions. Biotechnol Bioeng 2011; 109:307-17. [DOI: 10.1002/bit.23343] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/09/2011] [Accepted: 09/19/2011] [Indexed: 01/09/2023]
|
18
|
Bhambure R, Kumar K, Rathore AS. High-throughput process development for biopharmaceutical drug substances. Trends Biotechnol 2011; 29:127-35. [PMID: 21255855 DOI: 10.1016/j.tibtech.2010.12.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 11/24/2010] [Accepted: 12/02/2010] [Indexed: 10/18/2022]
Abstract
Quality by Design (QbD) is gaining industry acceptance as an approach towards development and commercialization of biotechnology therapeutic products that are expressed via microbial or mammalian cell lines. In QbD, the process is designed and controlled to deliver specified quality attributes consistently. To acquire the enhanced understanding that is necessary to achieve the above, however, requires more extensive experimentation to establish the design space for the process and the product. With biotechnology companies operating under ever-increasing pressure towards lowering the cost of manufacturing, the use of high-throughput tools has emerged as a necessary enabler of QbD in a time- and resource-constrained environment. We review this topic for those in academia and industry that are engaged in drug substance process development.
Collapse
Affiliation(s)
- Rahul Bhambure
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | | | | |
Collapse
|
19
|
Concannon SP, Wimberley PB, Workman WE. A quantitative PCR method to quantify ruminant DNA in porcine crude heparin. Anal Bioanal Chem 2011; 399:757-62. [PMID: 21058016 PMCID: PMC3015209 DOI: 10.1007/s00216-010-4362-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 10/14/2010] [Accepted: 10/19/2010] [Indexed: 11/26/2022]
Abstract
Heparin is a well-known glycosaminoglycan extracted from porcine intestines. Increased vigilance for transmissible spongiform encephalopathy in animal-derived pharmaceuticals requires methods to prevent the introduction of heparin from ruminants into the supply chain. The sensitivity, specificity, and precision of the quantitative polymerase chain reaction (PCR) make it a superior analytical platform for screening heparin raw material for bovine-, ovine-, and caprine-derived material. A quantitative PCR probe and primer set homologous to the ruminant Bov-A2 short interspersed nuclear element (SINE) locus (Mendoza-Romero et al. J. Food Prot. 67:550-554, 2004) demonstrated nearly equivalent affinities for bovine, ovine, and caprine DNA targets, while exhibiting no cross-reactivity with porcine DNA in the quantitative PCR method. A second PCR primer and probe set, specific for the porcine PRE1 SINE sequence, was also developed to quantify the background porcine DNA level. DNA extraction and purification was not necessary for analysis of the raw heparin samples, although digestion of the sample with heparinase was employed. The method exhibits a quantitation range of 0.3-3,000 ppm ruminant DNA in heparin. Validation parameters of the method included accuracy, repeatability, precision, specificity, range, quantitation limit, and linearity.
Collapse
Affiliation(s)
- Sean P. Concannon
- Specialty/Biotechnology Quality Organization, Pfizer Global Manufacturing, 700 Chesterfield Parkway West, Chesterfield, MO 63017-1732 USA
| | - P. Brett Wimberley
- Specialty/Biotechnology Quality Organization, Pfizer Global Manufacturing, 700 Chesterfield Parkway West, Chesterfield, MO 63017-1732 USA
| | - Wesley E. Workman
- Specialty/Biotechnology Quality Organization, Pfizer Global Manufacturing, 700 Chesterfield Parkway West, Chesterfield, MO 63017-1732 USA
| |
Collapse
|
20
|
Stoeckel DM, Stelzer EA, Dick LK. Evaluation of two spike-and-recovery controls for assessment of extraction efficiency in microbial source tracking studies. WATER RESEARCH 2009; 43:4820-4827. [PMID: 19589555 DOI: 10.1016/j.watres.2009.06.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 06/04/2009] [Accepted: 06/10/2009] [Indexed: 05/28/2023]
Abstract
Quantitative PCR (qPCR), applied to complex environmental samples such as water, wastewater, and feces, is susceptible to methodological and sample related biases. In this study, we evaluated two exogenous DNA spike-and-recovery controls as proxies for recovery efficiency of Bacteroidales 16S rDNA gene sequences (AllBac and qHF183) that are used for microbial source tracking (MST) in river water. Two controls--(1) the plant pathogen Pantoea stewartii, carrying the chromosomal target gene cpsD, and (2) Escherichia coli, carrying the plasmid-borne target gene DsRed2--were added to raw water samples immediately prior to concentration and DNA extraction for qPCR. When applied to samples processed in replicate, recovery of each control was positively correlated with the observed concentration of each MST marker. Adjustment of MST marker concentrations according to recovery efficiency reduced variability in replicate analyses when consistent processing and extraction methodologies were applied. Although the effects of this procedure on accuracy could not be tested due to uncertainties in control DNA concentrations, the observed reduction in variability should improve the strength of statistical comparisons. These findings suggest that either of the tested spike-and-recovery controls can be useful to measure efficiency of extraction and recovery in routine laboratory processing.
Collapse
Affiliation(s)
- Donald M Stoeckel
- US Geological Survey, Ohio Water Microbiology Laboratory, Columbus, OH 43229, USA
| | | | | |
Collapse
|
21
|
Development and Application of a Real-time PCR Method for Pharmacokinetic and Biodistribution Studies of Recombinant Adenovirus. Mol Biotechnol 2009; 43:130-7. [DOI: 10.1007/s12033-009-9173-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 04/07/2009] [Indexed: 10/20/2022]
|
22
|
Bradeen JM, Iorizzo M, Mollov DS, Raasch J, Kramer LC, Millett BP, Austin-Phillips S, Jiang J, Carputo D. Higher copy numbers of the potato RB transgene correspond to enhanced transcript and late blight resistance levels. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:437-446. [PMID: 19271958 DOI: 10.1094/mpmi-22-4-0437] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Late blight of potato ranks among the costliest of crop diseases worldwide. Host resistance offers the best means for controlling late blight, but previously deployed single resistance genes have been short-lived in their effectiveness. The foliar blight resistance gene RB, previously cloned from the wild potato Solanum bulbocastanum, has proven effective in greenhouse tests of transgenic cultivated potato. In this study, we examined the effects of the RB transgene on foliar late blight resistance in transgenic cultivated potato under field production conditions. In a two-year replicated trial, the RB transgene, under the control of its endogenous promoter, provided effective disease resistance in various genetic backgrounds, including commercially prominent potato cultivars, without fungicides. RB copy numbers and transcript levels were estimated with transgene-specific assays. Disease resistance was enhanced as copy numbers and transcript levels increased. The RB gene, like many other disease resistance genes, is constitutively transcribed at low levels. Transgenic potato lines with an estimated 15 copies of the RB transgene maintain high RB transcript levels and were ranked among the most resistant of 57 lines tested. We conclude that even in these ultra-high copy number lines, innate RNA silencing mechanisms have not been fully activated. Our findings suggest resistance-gene transcript levels may have to surpass a threshold before triggering RNA silencing. Strategies for the deployment of RB are discussed in light of the current research.
Collapse
Affiliation(s)
- James M Bradeen
- University of Minnesota, Department of Plant Pathology, St. Paul, 55108, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Capacitive biosensor for quantification of trace amounts of DNA. Biosens Bioelectron 2009; 24:2559-65. [DOI: 10.1016/j.bios.2009.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 01/06/2009] [Accepted: 01/06/2009] [Indexed: 11/20/2022]
|
24
|
Yoshimoto Y, Yasukawa T, Mizutani F. Cisplatin-based DNA sensing with enhanced current response. Analyst 2009; 134:2113-7. [DOI: 10.1039/b906734e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Mahajan R, Feher B, Jones B, Jones D, Marjerison L, Sam M, Hartikka J, Wloch M, Lalor P, Kaslow D, Hall K, Rolland A. A TaqMan reverse transcription polymerase chain reaction (RT-PCR) in vitro potency assay for plasmid-based vaccine products. Mol Biotechnol 2008; 40:47-57. [PMID: 18365771 DOI: 10.1007/s12033-008-9058-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 03/07/2008] [Indexed: 11/28/2022]
Abstract
A TaqMan-based reverse transcription polymerase chain reaction (RT-PCR) assay has been developed as an in vitro potency assay to measure the most immediate biological activity of plasmid DNA (pDNA)-based products. The assay measures transgene-specific messenger RNA (mRNA) from cultured cells transfected with VCL-CB01, a bivalent pDNA-based human cytomegalovirus (CMV) vaccine. The forward and reverse primers have been designed to make the RT-PCR reaction selective for plasmid-derived mRNA and to allow discrimination of expression levels of individual plasmids in a multivalent pDNA vaccine. The relative potency of a vaccine lot is assessed by transfecting reference and test samples into cultured cells in parallel and analyzing total RNA from the cells by RT-PCR. Statistical analysis of dose response data from reference material supports a parallel-line model for calculating relative potency. Preliminary data demonstrate the ability of this assay to distinguish product potencies at 50, 75, 150, and 200% of the reference material. In addition, forced degradation of pDNA demonstrates that a decrease in relative potency as measured by the RT-PCR assay in vitro correlates well with a decrease in CMV DNA vaccine-mediated humoral immune responses in mice injected with the same material.
Collapse
|
26
|
Yuan JS, Burris J, Stewart NR, Mentewab A, Stewart CN. Statistical tools for transgene copy number estimation based on real-time PCR. BMC Bioinformatics 2007; 8 Suppl 7:S6. [PMID: 18047729 PMCID: PMC2099498 DOI: 10.1186/1471-2105-8-s7-s6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background As compared with traditional transgene copy number detection technologies such as Southern blot analysis, real-time PCR provides a fast, inexpensive and high-throughput alternative. However, the real-time PCR based transgene copy number estimation tends to be ambiguous and subjective stemming from the lack of proper statistical analysis and data quality control to render a reliable estimation of copy number with a prediction value. Despite the recent progresses in statistical analysis of real-time PCR, few publications have integrated these advancements in real-time PCR based transgene copy number determination. Results Three experimental designs and four data quality control integrated statistical models are presented. For the first method, external calibration curves are established for the transgene based on serially-diluted templates. The Ct number from a control transgenic event and putative transgenic event are compared to derive the transgene copy number or zygosity estimation. Simple linear regression and two group T-test procedures were combined to model the data from this design. For the second experimental design, standard curves were generated for both an internal reference gene and the transgene, and the copy number of transgene was compared with that of internal reference gene. Multiple regression models and ANOVA models can be employed to analyze the data and perform quality control for this approach. In the third experimental design, transgene copy number is compared with reference gene without a standard curve, but rather, is based directly on fluorescence data. Two different multiple regression models were proposed to analyze the data based on two different approaches of amplification efficiency integration. Our results highlight the importance of proper statistical treatment and quality control integration in real-time PCR-based transgene copy number determination. Conclusion These statistical methods allow the real-time PCR-based transgene copy number estimation to be more reliable and precise with a proper statistical estimation. Proper confidence intervals are necessary for unambiguous prediction of trangene copy number. The four different statistical methods are compared for their advantages and disadvantages. Moreover, the statistical methods can also be applied for other real-time PCR-based quantification assays including transfection efficiency analysis and pathogen quantification.
Collapse
Affiliation(s)
- Joshua S Yuan
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA.
| | | | | | | | | |
Collapse
|
27
|
Crow RM, Gartland JS, McHugh AT, Gartland KMA. Real-time GUS analysis using Q-PCR instrumentation. J Biotechnol 2006; 126:135-9. [PMID: 16730833 DOI: 10.1016/j.jbiotec.2006.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 03/31/2006] [Accepted: 04/10/2006] [Indexed: 10/24/2022]
Abstract
The development of new technology within biological sciences has resulted in a number of real-time PCR instruments that have become essential tools within molecular biology. This equipment has facilitated high throughput analysis of samples and optimal information gathering of completed PCR reactions for example estimating the copy number of a gene of interest that is inserted into particular genomes. Real-time PCR instruments frequently come with optional filter sets, e.g. the ALEXA filter set which has parameters in common with excitation and emission wavelengths of sodium methyl umbelliferone (NaMU) widely used in beta-glucuronidase reporter gene assays. Using these filter sets it has been possible to quantify and measure gus A activity of Ulmus procera SR4 in real-time removing the necessity for aliquots of reactions to be stopped by pipetting into carbonate buffer for each time point. The introduction of real-time GUS analysis leads to faster, more accurate and reproducible assays with reduced potential for pipetting errors, requires fewer manipulations and encourages high throughput analysis of inter-individual gene expression variation.
Collapse
Affiliation(s)
- Robert M Crow
- Abertay Centre for the Environment (ACE), Kydd Building, University of Abertay, Bell Street, Dundee DD1 1HG, United Kingdom
| | | | | | | |
Collapse
|
28
|
Graumann K, Premstaller A. Manufacturing of recombinant therapeutic proteins in microbial systems. Biotechnol J 2006; 1:164-86. [PMID: 16892246 DOI: 10.1002/biot.200500051] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Recombinant therapeutic proteins have gained enormous importance for clinical applications. The first recombinant products have been produced in E. coli more than 20 years ago. Although with the advent of antibody-based therapeutics mammalian expression systems have experienced a major boost, microbial expression systems continue to be widely used in industry. Their intrinsic advantages, such as rapid growth, high yields and ease of manipulation, make them the premier choice for expression of non-glycosylated peptides and proteins. Innovative product classes such as antibody fragments or alternative binding molecules will further expand the use of microbial systems. Even more, novel, engineered production hosts and integrated technology platforms hold enormous potential for future applications. This review summarizes current applications and trends for development, production and analytical characterization of recombinant therapeutic proteins in microbial systems.
Collapse
Affiliation(s)
- Klaus Graumann
- Novartis Biopharmaceutical Operations, Sandoz GmbH, Biochemiestrasse 10, 6250 Kundl, Austria.
| | | |
Collapse
|
29
|
Quality Control of Antibodies for Human Use. Antibodies (Basel) 2004. [DOI: 10.1007/978-1-4419-8875-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
30
|
Bray J, Brattle MK. Monoclonal Antibody Production: Minimising Virus Safety Issues. Antibodies (Basel) 2004. [DOI: 10.1007/978-1-4419-8875-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
31
|
Rantakokko-Jalava K, Laaksonen S, Issakainen J, Vauras J, Nikoskelainen J, Viljanen MK, Salonen J. Semiquantitative detection by real-time PCR of Aspergillus fumigatus in bronchoalveolar lavage fluids and tissue biopsy specimens from patients with invasive aspergillosis. J Clin Microbiol 2003; 41:4304-11. [PMID: 12958261 PMCID: PMC193834 DOI: 10.1128/jcm.41.9.4304-4311.2003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A real-time PCR method was developed and used to detect Aspergillus fumigatus mitochondrial DNA (mtDNA) in bronchoalveolar lavage (BAL) fluids and tissue biopsy specimens. The analytical sensitivity of the assay was one A. fumigatus conidium per reaction, and the assay was linear at least over 4 orders of magnitude above the detection limit. BAL fluids from 66 immunocompromised patients at risk of invasive pulmonary aspergillosis (IPA) and 33 immunocompetent controls and tissue biopsy specimens from 10 immunocompromised patients were analyzed. The results were related to the clinical diagnosis established according to recently published consensus criteria. A. fumigatus mtDNA positivity was encountered in 16 of 81 (20%) BAL fluid specimens from patients at risk and 1 of 33 (3%) specimens from immunocompetent controls. PCRs were positive in six of seven, two of four, and four of five of the patients with proven, probable, and possible IPA, respectively, as well as in four patients at risk but without any other evidence of IPA. With qualitative detection, the diagnostic sensitivity of PCR was 73%, specificity was 93%, and predictive values of positive (PPV) and negative (NPV) results were 73 and 95%, respectively. Using a threshold cycle of <35 as a limit for positive PCR, the specificity and PPV of PCR in the diagnosis of invasive aspergillosis were 100%, but its sensitivity was only 45% and NPV was 92%. PCR was positive in tissue biopsy specimens from all patients with invasive aspergillosis caused by A. fumigatus. Semiquantitative detection of A. fumigatus mtDNA in BAL fluid may be helpful in the diagnosis of IPA. PCR is well suited for the verification of the presence of A. fumigatus in tissue biopsy specimens.
Collapse
|