1
|
Firdaus FZ, Skwarczynski M, Toth I. Developments in Vaccine Adjuvants. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2412:145-178. [PMID: 34918245 DOI: 10.1007/978-1-0716-1892-9_8] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vaccines, including subunit, recombinant, and conjugate vaccines, require the use of an immunostimulator/adjuvant for maximum efficacy. Adjuvants not only enhance the strength and longevity of immune responses but may also influence the type of response. In this chapter, we review the adjuvants that are available for use in human vaccines, such as alum, MF59, AS03, and AS01. We extensively discuss their composition, characteristics, mechanism of action, and effects on the immune system. Additionally, we summarize recent trends in adjuvant discovery, providing a brief overview of saponins, TLRs agonists, polysaccharides, nanoparticles, cytokines, and mucosal adjuvants.
Collapse
Affiliation(s)
- Farrhana Ziana Firdaus
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia. .,Institute of Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia. .,School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.
| |
Collapse
|
2
|
ADP-ribosylating enterotoxins as vaccine adjuvants. Curr Opin Pharmacol 2018; 41:42-51. [PMID: 29702466 DOI: 10.1016/j.coph.2018.03.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/30/2018] [Indexed: 01/18/2023]
Abstract
Most infections are caused by pathogens that access the body at mucosal sites. Hence, development of mucosal vaccines to prevent local infection or invasion of pathogens appears highly warranted, especially since only mucosal immunization will stimulate strong local IgA responses and tissue resident memory CD4 and CD8 T cells. The most significant obstacle to developing such vaccines is the lack of approved adjuvants that can effectively and safely enhance relevant mucosal and systemic immune responses. The most potent mucosal adjuvants known today are the adenosine diphosphate (ADP)-ribosylating bacterial enterotoxins cholera toxin (CT) and Escherichia coli heat-labile toxins (LTs). Unfortunately, these molecules are also very toxic, which precludes their clinical use. However, much effort has been devoted to developing derivatives of these enterotoxins with low or no toxicity and retained adjuvant activity. Although it is fair to say that we know more about how these toxins affect the immune system than ever before, we still lack a detailed understanding of how and why these toxins are effective adjuvants. In the present review, we provide a state-of-the-art overview of the mechanism of action of the holotoxins and the strategies used for improving the toxin-based adjuvants.
Collapse
|
3
|
Schulze K, Ebensen T, Riese P, Prochnow B, Lehr CM, Guzmán CA. New Horizons in the Development of Novel Needle-Free Immunization Strategies to Increase Vaccination Efficacy. Curr Top Microbiol Immunol 2017; 398:207-234. [PMID: 27370343 DOI: 10.1007/82_2016_495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The young twenty-first century has already brought several medical advances, such as a functional artificial human liver created from stem cells, improved antiviral (e.g., against HIV) and cancer (e.g., against breast cancer) therapies, interventions controlling cardiovascular diseases, and development of new and optimized vaccines (e.g., HPV vaccine). However, despite this substantial progress and the achievements of the last century, humans still suffer considerably from diseases, especially from infectious diseases. Thus, almost one-fourth of all deaths worldwide are caused directly or indirectly by infectious agents. Although vaccination has led to the control of many diseases, including smallpox, diphtheria, and tetanus, emerging diseases are still not completely contained. Furthermore, pathogens such as Bordetella pertussis undergo alterations making adaptation of the respective vaccine necessary. Moreover, insufficient implementation of vaccination campaigns leads to re-emergence of diseases which were believed to be already under control (e.g., poliomyelitis). Therefore, novel vaccination strategies need to be developed in order to meet the current challenges including lack of compliance, safety issues, and logistic constraints. In this context, mucosal and transdermal approaches constitute promising noninvasive vaccination strategies able to match these demands.
Collapse
Affiliation(s)
- Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.
| | - Peggy Riese
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Blair Prochnow
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Claus-Michael Lehr
- Department of Drug Delivery, Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Braunschweig, Germany.,Department of Pharmacy, Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken, Germany
| | - Carlos A Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| |
Collapse
|
4
|
Bagley K, Xu R, Ota-Setlik A, Egan M, Schwartz J, Fouts T. The catalytic A1 domains of cholera toxin and heat-labile enterotoxin are potent DNA adjuvants that evoke mixed Th1/Th17 cellular immune responses. Hum Vaccin Immunother 2016; 11:2228-40. [PMID: 26042527 PMCID: PMC4635876 DOI: 10.1080/21645515.2015.1026498] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
DNA encoded adjuvants are well known for increasing the magnitude of cellular and/or humoral immune responses directed against vaccine antigens. DNA adjuvants can also tune immune responses directed against vaccine antigens to better protect against infection of the target organism. Two potent DNA adjuvants that have unique abilities to tune immune responses are the catalytic A1 domains of Cholera Toxin (CTA1) and Heat-Labile Enterotoxin (LTA1). Here, we have characterized the adjuvant activities of CTA1 and LTA1 using HIV and SIV genes as model antigens. Both of these adjuvants enhanced the magnitude of antigen-specific cellular immune responses on par with those induced by the well-characterized cytokine adjuvants IL-12 and GM-CSF. CTA1 and LTA1 preferentially enhanced cellular responses to the intracellular antigen SIVmac239-gag over those for the secreted HIVBaL-gp120 antigen. IL-12, GM-CSF and electroporation did the opposite suggesting differences in the mechanisms of actions of these diverse adjuvants. Combinations of CTA1 or LTA1 with IL-12 or GM-CSF generated additive and better balanced cellular responses to both of these antigens. Consistent with observations made with the holotoxin and the CTA1-DD adjuvant, CTA1 and LTA1 evoked mixed Th1/Th17 cellular immune responses. Together, these results show that CTA1 and LTA1 are potent DNA vaccine adjuvants that favor the intracellular antigen gag over the secreted antigen gp120 and evoke mixed Th1/Th17 responses against both of these antigens. The results also indicate that achieving a balanced immune response to multiple intracellular and extracellular antigens delivered via DNA vaccination may require combining adjuvants that have different and complementary mechanisms of action.
Collapse
|
5
|
Passive delivery techniques for transcutaneous immunization. J Drug Deliv Sci Technol 2014. [DOI: 10.1016/s1773-2247(14)50045-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Levine MM. “IDEAL” vaccines for resource poor settings. Vaccine 2011; 29 Suppl 4:D116-25. [DOI: 10.1016/j.vaccine.2011.11.090] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/18/2011] [Accepted: 11/23/2011] [Indexed: 12/22/2022]
|
7
|
Nawar HF, Arce S, Russell MW, Connell TD. Mucosal adjuvant properties of mutant LT-IIa and LT-IIb enterotoxins that exhibit altered ganglioside-binding activities. Infect Immun 2005; 73:1330-42. [PMID: 15731030 PMCID: PMC1064923 DOI: 10.1128/iai.73.3.1330-1342.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LT-IIa and LT-IIb, the type II heat-labile enterotoxins of Escherichia coli, are closely related in structure and function to cholera toxin and LT-I, the type I heat-labile enterotoxins of Vibrio cholerae and E. coli, respectively. Recent studies from our group demonstrated that LT-IIa and LT-IIb are potent systemic and mucosal adjuvants. To determine whether binding of LT-IIa and LT-IIb to their specific ganglioside receptors is essential for adjuvant activity, LT-IIa and LT-IIb enterotoxins were compared with their respective single-point substitution mutants which have no detectable binding activity for their major ganglioside receptors [e.g., LT-IIa(T34I) and LT-IIb(T13I)]. Both mutant enterotoxins exhibited an extremely low capacity for intoxicating mouse Y1 adrenal cells and for inducing production of cyclic AMP in a macrophage cell line. BALB/c female mice were immunized by the intranasal route with the surface adhesin protein AgI/II of Streptococcus mutans alone or in combination with LT-IIa, LT-IIa(T34I), LT-IIb, or LT-IIb(T13I). Both LT-IIa and LT-IIb potentiated strong mucosal and systemic immune responses against AgI/II. Of the two mutant enterotoxins, only LT-IIb(T13I) had the capacity to strongly potentiate mucosal anti-AgI/II and systemic anti-AgI/II antibody responses. Upon boosting with AgI/II, however, both LT-IIa(T34I) and LT-IIb(T13I) enhanced humoral memory responses to AgI/II. Flow cytometry demonstrated that LT-IIa(T34I) had no affinity for cervical lymph node lymphocytes. In contrast, LT-IIb(T13I) retained binding activity for T cells, B cells, and macrophages, indicating that this immunostimulatory mutant enterotoxin interacts with one or more unknown lymphoid cell receptors.
Collapse
Affiliation(s)
- Hesham F Nawar
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 138 Farber Hall, 3435 Main St., Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
8
|
Partidos CD, Beignon AS, Briand JP, Muller S. Modulation of immune responses with transcutaneously deliverable adjuvants. Vaccine 2004; 22:2385-90. [PMID: 15193399 DOI: 10.1016/j.vaccine.2003.11.063] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Accepted: 11/11/2003] [Indexed: 12/20/2022]
Abstract
Transcutaneous immunisation is a novel vaccination strategy based on the application of antigen together with an adjuvant onto hydrated bare skin. This simple and non-invasive immunisation procedure elicits systemic and mucosal immune responses and therefore, it provides a viable and cost-effective strategy for disease prevention. For the induction of antigen-specific immune responses the use of adjuvants is critical. They potentiate and modulate the type of immune responses by stimulating the production of cytokines that drive the differentiation of T cells towards the Th1 or Th2-phenotype. These cells mediate protection against different infectious diseases and therefore, their selective induction is important for successful vaccination. In this review we give a brief overview of transcutaneously deliverable adjuvants and we discuss how they modulate immune responses to topically applied antigens.
Collapse
Affiliation(s)
- Charalambos D Partidos
- UPR 9021, Immunologie et Chimie Thérapeutiques, Institut de Biologie Moléculaire et Cellulaire, CNRS, 15 rue René Descartes, F-67084 Strasbourg, France.
| | | | | | | |
Collapse
|
9
|
Bagley KC, Abdelwahab SF, Tuskan RG, Lewis GK. An enzymatically active a domain is required for cholera-like enterotoxins to induce a long-lived blockade on the induction of oral tolerance: new method for screening mucosal adjuvants. Infect Immun 2003; 71:6850-6856. [PMID: 14638772 PMCID: PMC308947 DOI: 10.1128/iai.71.12.6850-6856.2003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2003] [Accepted: 09/04/2003] [Indexed: 02/08/2023] Open
Abstract
The cholera-like enterotoxins (CLETS), cholera toxin (CT) and Escherichia coli heat-labile toxin (LT), are powerful mucosal adjuvants. Here we show that these toxins also induce a long-lived blockade (of at least 6 months) on the induction of oral tolerance when they are coadministered with the antigen ovalbumin. Strikingly, only enzymatically active CLETS induced this blockade on the induction of oral tolerance. In this regard, the enzymatically inactive mutants of CT and LT, CTK63 and LTK63, and their recombinant B pentamers, rCTB and rLTB, failed to block the induction of oral tolerance, demonstrating a stringent requirement for an enzymatically active A domain in this phenomenon. Together with the results of other recent studies, these results indicate that the enzymatic activity of CLETS, most likely cyclic AMP elevation, is responsible for their adjuvant effects. The results of this study also indicate that measuring the ability of putative mucosal adjuvants to block the induction of oral tolerance may be a superior method for measuring mucosal adjuvanticity.
Collapse
Affiliation(s)
- Kenneth C Bagley
- Division of Vaccine Research, Institute of Human Virology, University of Maryland Biotechnology Institute, Baltimore 21201, USA
| | | | | | | |
Collapse
|
10
|
Vajdy M, Singh M, Ugozzoli M, Briones M, Soenawan E, Cuadra L, Kazzaz J, Ruggiero P, Peppoloni S, Norelli F, Del Giudice G, O'Hagan D. Enhanced mucosal and systemic immune responses to Helicobacter pylori antigens through mucosal priming followed by systemic boosting immunizations. Immunology 2003; 110:86-94. [PMID: 12941145 PMCID: PMC1783019 DOI: 10.1046/j.1365-2567.2003.01711.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
It is estimated that Helicobacter pylori infects the stomachs of over 50% of the world's population and if not treated may cause chronic gastritis, peptic ulcer disease, gastric adenocarcinoma and gastric B-cell lymphoma. The aim of this study was to enhance the mucosal and systemic immune responses against the H. pylori antigens cytotoxin-associated gene A (CagA) and neutrophil-activating protein (NAP), through combinations of mucosal and systemic immunizations in female BALB/c mice. We found that oral or intranasal (i.n.) followed by i.m. immunizations induced significantly higher serum titres against NAP and CagA compared to i.n. alone, oral alone, i.m. alone, i.m. followed by i.n. or i.m. followed by oral immunizations. However, only oral followed by i.m. immunizations induced anti-NAP antibody-secreting cells in the stomach. Moreover, mucosal immunizations alone or in combination with i.m., but not i.m. immunizations alone, induced mucosal immunoglobulin A (IgA) responses in faeces. Any single route or combination of immunization routes with NAP and CagA preferentially induced antigen-specific splenic interleukin-4-secreting cells and far fewer interferon-gamma-secreting cells in the spleen. Moreover, i.n. immunizations alone or in combination with i.m. immunizations induced predominantly serum IgG1 and far less serum IgG2a. Importantly, we found that while both i.n. and i.m. recall immunizations induced similar levels of serum antibody responses, mucosal IgA responses in faeces were only achieved through i.n. recall immunization. Collectively, our data show that mucosal followed by systemic immunization significantly enhanced local and systemic immune responses and that i.n. recall immunization is required to induce both mucosal and systemic memory type responses.
Collapse
Affiliation(s)
- Michael Vajdy
- Immunology and Infectious DiseasesEmeryville, CA, USA
| | | | | | | | | | - Lina Cuadra
- Immunology and Infectious DiseasesEmeryville, CA, USA
| | - Jina Kazzaz
- Immunology and Infectious DiseasesEmeryville, CA, USA
| | | | | | | | | | - Derek O'Hagan
- Immunology and Infectious DiseasesEmeryville, CA, USA
| |
Collapse
|
11
|
Otten G, Schaefer M, Greer C, Calderon-Cacia M, Coit D, Kazzaz J, Medina-Selby A, Selby M, Singh M, Ugozzoli M, zur Megede J, Barnett SW, O'Hagan D, Donnelly J, Ulmer J. Induction of broad and potent anti-human immunodeficiency virus immune responses in rhesus macaques by priming with a DNA vaccine and boosting with protein-adsorbed polylactide coglycolide microparticles. J Virol 2003; 77:6087-92. [PMID: 12719603 PMCID: PMC154004 DOI: 10.1128/jvi.77.10.6087-6092.2003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several vaccine technologies were evaluated for their abilities to induce anti-human immunodeficiency virus Gag immune responses in rhesus macaques. While no vaccine alone was able to induce broad and strong immune responses, these were achieved by priming with Gag DNA and boosting with Gag protein adsorbed to polylactide coglycolide microparticles. This regimen elicited strong antibodies, helper T cells, and cytotoxic T lymphocytes and thus holds promise as an effective vaccination scheme.
Collapse
Affiliation(s)
- Gillis Otten
- Vaccines Research, Chiron Corporation, Emeryville, California 94608, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Altboum Z, Levine MM, Galen JE, Barry EM. Genetic characterization and immunogenicity of coli surface antigen 4 from enterotoxigenic Escherichia coli when it is expressed in a Shigella live-vector strain. Infect Immun 2003; 71:1352-60. [PMID: 12595452 PMCID: PMC148885 DOI: 10.1128/iai.71.3.1352-1360.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genes that encode the enterotoxigenic Escherichia coli (ETEC) CS4 fimbriae, csaA, -B, -C, -E, and -D', were isolated from strain E11881A. The csa operon encodes a 17-kDa major fimbrial subunit (CsaB), a 40-kDa tip-associated protein (CsaE), a 27-kDa chaperone-like protein (CsaA), a 97-kDa usher-like protein (CsaC), and a deleted regulatory protein (CsaD'). The predicted amino acid sequences of the CS4 proteins are highly homologous to structural and assembly proteins of other ETEC fimbriae, including CS1 and CS2, and to CFA/I in particular. The csaA, -B, -C, -E operon was cloned on a stabilized plasmid downstream from an osomotically regulated ompC promoter. pGA2-CS4 directs production of CS4 fimbriae in both E. coli DH5alpha and Shigella flexneri 2a vaccine strain CVD 1204, as detected by Western blot analysis and bacterial agglutination with anti-CS4 immune sera. Electron-microscopic examination of Shigella expressing CS4 confirmed the presence of fimbriae on the bacterial surface. Guinea pigs immunized with CVD 1204(pGA2-CS4) showed serum and mucosal antibody responses to both the Shigella vector and the ETEC fimbria CS4. Among the seven most prevalent fimbrial antigens of human ETEC, CS4 is the last to be cloned and sequenced. These findings pave the way for CS4 to be included in multivalent ETEC vaccines, including an attenuated Shigella live-vector-based ETEC vaccine.
Collapse
Affiliation(s)
- Zeev Altboum
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
13
|
Beignon AS, Briand JP, Rappuoli R, Muller S, Partidos CD. The LTR72 mutant of heat-labile enterotoxin of Escherichia coli enhances the ability of peptide antigens to elicit CD4(+) T cells and secrete gamma interferon after coapplication onto bare skin. Infect Immun 2002; 70:3012-9. [PMID: 12010992 PMCID: PMC128003 DOI: 10.1128/iai.70.6.3012-3019.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2001] [Revised: 01/23/2002] [Accepted: 03/11/2002] [Indexed: 01/08/2023] Open
Abstract
Application of antigens with an adjuvant onto bare skin is a needle-free and pain-free immunization procedure that delivers antigens to the immunocompetent cells of the epidermis. We tested here the immunogenicity and adjuvanticity of two mutants of heat-labile enterotoxin (LT) of Escherichia coli, LTK63 and LTR72. Both mutants were shown to be immunogenic, inducing serum and mucosal antibody responses. The application of LTK63 and LTR72 to bare skin induced significant protection against intraperitoneal challenge with a lethal dose of LT. In addition, both LT mutants enhanced the capacity of peptides TT:830-843 and HA:307-319 (representing T-helper epitopes from tetanus toxin and influenza virus hemagglutinin, respectively) to elicit antigen-specific CD4(+) T cells after coapplication onto bare skin. However, only mutant LTR72 was capable of stimulating the secretion of high levels of gamma interferon. These findings demonstrate that successful skin immunization protocols require the selection of the right adjuvant in order to induce the appropriate type of antigen-specific immune responses in a selective and reliable way. Moreover, the use of adjuvants such the LTK63 and LTR72 mutants, with no or low residual toxicity, holds a lot of promise for the future application of vaccines to the bare skin of humans.
Collapse
Affiliation(s)
- A.-S. Beignon
- UPR 9021, Institut de Biologie Moléculaire et Cellulaire, CNRS, F-67084 Strasbourg, France, IRIS, Chiron, SpA, 53100 Siena, Italy
| | - J.-P. Briand
- UPR 9021, Institut de Biologie Moléculaire et Cellulaire, CNRS, F-67084 Strasbourg, France, IRIS, Chiron, SpA, 53100 Siena, Italy
| | - R. Rappuoli
- UPR 9021, Institut de Biologie Moléculaire et Cellulaire, CNRS, F-67084 Strasbourg, France, IRIS, Chiron, SpA, 53100 Siena, Italy
| | - S. Muller
- UPR 9021, Institut de Biologie Moléculaire et Cellulaire, CNRS, F-67084 Strasbourg, France, IRIS, Chiron, SpA, 53100 Siena, Italy
| | - C. D. Partidos
- UPR 9021, Institut de Biologie Moléculaire et Cellulaire, CNRS, F-67084 Strasbourg, France, IRIS, Chiron, SpA, 53100 Siena, Italy
| |
Collapse
|
14
|
Jakobsen H, Bjarnarson S, Del Giudice G, Moreau M, Siegrist CA, Jonsdottir I. Intranasal immunization with pneumococcal conjugate vaccines with LT-K63, a nontoxic mutant of heat-Labile enterotoxin, as adjuvant rapidly induces protective immunity against lethal pneumococcal infections in neonatal mice. Infect Immun 2002; 70:1443-52. [PMID: 11854231 PMCID: PMC127807 DOI: 10.1128/iai.70.3.1443-1452.2002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immunization with pneumococcal polysaccharides (PPS) conjugated to tetanus toxoid (TT) (Pnc-TT) elicits protective immunity in an adult murine pneumococcal infection model. To assess immunogenicity and protective immunity in early life, neonatal (1 week old) and infant (3 weeks old) mice were immunized intranasally (i.n.) or subcutaneously (s.c.) with Pnc-TT of serotype 1 (Pnc1-TT). Anti-PPS-1 and anti-TT immunoglobulin G (IgG) and IgM antibodies were measured in serum and saliva, and vaccine-induced protection was evaluated by i.n. challenge with serotype 1 pneumococci. Pnc1-TT was immunogenic in neonatal and infant mice when administered s.c. without adjuvant: a majority of the young mice were protected from bacteremia and a reduction of pneumococcal density in the lungs was observed, although antibody responses and protective efficacy remained lower than in adults. The addition of LT-K63, a nontoxic mutant of heat-labile enterotoxin, as adjuvant significantly enhanced PPS-1-specific IgG responses and protective efficacy following either s.c. or i.n. Pnc1-TT immunization. Mucosal immunization was particularly efficient in neonates, as a single i.n. dose of Pnc1-TT and LT-K63 induced significantly higher PPS-1-specific IgG responses than s.c. immunization and was sufficient to protect neonatal mice against pneumococcal infections, whereas two s.c. doses were required to induce complete protection. In addition, i.n. immunization with Pnc1-TT and LT-K63 induced a vigorous salivary IgA response. This suggests that mucosal immunization with pneumococcal conjugate vaccines and LT-K63 may be able to circumvent some of the limitations of neonatal antibody responses, which are required for protective immunity in early life.
Collapse
Affiliation(s)
- Håvard Jakobsen
- Department of Immunology, Landspitali-University Hospital, Reykjavik, Iceland
| | | | | | | | | | | |
Collapse
|
15
|
Plante M, Jones T, Allard F, Torossian K, Gauthier J, St-Félix N, White GL, Lowell GH, Burt DS. Nasal immunization with subunit proteosome influenza vaccines induces serum HAI, mucosal IgA and protection against influenza challenge. Vaccine 2001; 20:218-25. [PMID: 11567767 DOI: 10.1016/s0264-410x(01)00268-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The immunogenicity of a mucosally delivered subunit influenza vaccine was assessed in mice. Split influenza virus vaccine (sFlu) was formulated with proteosomes (Pr-sFlu), administered intranasally, and the induced immunity was compared with the responses elicited by sFlu alone given either intramuscularly or intranasally. Intranasal (i.n.) immunization with Pr-sFlu induced specific serum IgG and hemagglutination inhibition (HAI) titers comparable to or better than those induced by intramuscular (i.m.) sFlu, and in contrast to sFlu alone, i.n. Pr-sFlu also induced high levels of influenza-specific IgA in lung and nasal washes. Mice receiving i.n. Pr-sFlu were completely protected against live virus challenge, as were mice immunized by injection with sFlu alone. The i.n. Pr-sFlu elicited cytokine responses polarized towards a type 1 phenotype whereas those elicited by sFlu alone were of a mixed type 1/type 2 phenotype. The data strongly suggest that i.n. proteosome-formulated influenza antigens are highly effective and are excellent candidates for a non-invasive human vaccine.
Collapse
Affiliation(s)
- M Plante
- Intellivax International Inc., 7150 Frederick Banting, Suite 200, Que., H4S 2A1, Ville St-Laurent, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|