1
|
Shekhawat JK, Sharma J, Choudhury B, Chugh A, Purohit P, Sharma P, Banerjee M. Aberrant DNA methylation of EDNRB, MGMT and TIMP3 gene promoters in saliva of head and neck carcinoma patients as a diagnostic tool. Mol Biol Rep 2025; 52:152. [PMID: 39847241 DOI: 10.1007/s11033-025-10250-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/10/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND Differential DNA methylation in the promoter region of tumour suppressor genes leads to gene function silencing. MATERIALS AND METHODS In this study, we aimed to evaluate the salivary promoter methylation of EDNRB, MGMT and TIMP3 genes in H&NC patients (n = 100), premalignant lesions patients (n = 25) and healthy controls (n = 50). Blood and saliva samples were collected from all three groups and 20 concomitant tumour tissues were collected from the H&NC patients. Probe-based Methylation-specific PCR (MSP) was performed to assess the relative quantification of methylation. RESULTS Significant promoter hypermethylation was detected in all three genes between H&NC patients vs. healthy controls and premalignant lesion patients vs. healthy controls. Spearman correlation analysis showed, no significant association between methylation levels and clinicopathological characteristics of HNC patients while tobacco smoking was significantly related to EDNRB methylation in premalignant lesions. The receiver operating curve (ROC) generated for EDNRB, MGMT and TIMP3 genes from saliva samples was able to differentiate between cancer vs. healthy controls and premalignant vs. healthy controls. The combined diagnostic efficiency of the panel was higher than the genes singly. The combined sensitivity of EDNRB and TIMP3 increased to 92%. CONCLUSION This indicates that EDNRB and TIMP3 have potential value in clinical practice as effective diagnostic markers for H&NC using saliva samples.
Collapse
Affiliation(s)
- Jyoti Kanwar Shekhawat
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Jyoti Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Bikram Choudhury
- Department of Otorhinolaryngology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Ankita Chugh
- Department of Dentistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India.
| |
Collapse
|
2
|
Payne K, Suriyanarayanan H, Brooks J, Mehanna H, Nankivell P, Gendoo D. Exploring the impact of intra-tumoural heterogeneity on liquid biopsy cell-free DNA methylation and copy number in head and neck squamous cell carcinoma. Oral Oncol 2024; 158:107011. [PMID: 39236578 DOI: 10.1016/j.oraloncology.2024.107011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/01/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Liquid biopsy profiling is gaining increasing promise towards biomarker-led identification and disease stratification of tumours, particularly for tumours displaying significant intra-tumoural heterogeneity (ITH). For head and neck squamous cell carcinoma (HNSCC), which display high levels of genetic ITH, identification of epigenetic modifications and methylation signatures has shown multiple uses in stratification of HNSCC for prognosis, treatment, and HPV status. In this study, we investigated the potential of liquid biopsy methylomics and genomic copy number to profile HNSCC. We conducted multi-region sampling of tumour core, tumour margin and normal adjacent mucosa, as well as plasma cell-free DNA (cfDNA) across 9 HNSCC patients. Collectively, our work highlights the prevalence of methylomic ITH in HNSCC, and demonstrates the potential of cfDNA methylation as a tool for ITH assessment and serial sampling.
Collapse
Affiliation(s)
- Karl Payne
- Institute of Head and Neck Studies and Education, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| | - Harini Suriyanarayanan
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jill Brooks
- Institute of Head and Neck Studies and Education, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Hisham Mehanna
- Institute of Head and Neck Studies and Education, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Paul Nankivell
- Institute of Head and Neck Studies and Education, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Deena Gendoo
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; Institute for Interdisciplinary Data Science and AI, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
3
|
Viet CT, Asam KR, Yu G, Dyer EC, Kochanny S, Thomas CM, Callahan NF, Morlandt AB, Cheng AC, Patel AA, Roden DF, Young S, Melville J, Shum J, Walker PC, Nguyen KK, Kidd SN, Lee SC, Folk GS, Viet DT, Grandhi A, Deisch J, Ye Y, Momen-Heravi F, Pearson AT, Aouizerat BE. Artificial intelligence-based epigenomic, transcriptomic and histologic signatures of tobacco use in oral squamous cell carcinoma. NPJ Precis Oncol 2024; 8:130. [PMID: 38851780 PMCID: PMC11162452 DOI: 10.1038/s41698-024-00605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 05/08/2024] [Indexed: 06/10/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) biomarker studies rarely employ multi-omic biomarker strategies and pertinent clinicopathologic characteristics to predict mortality. In this study we determine for the first time a combined epigenetic, gene expression, and histology signature that differentiates between patients with different tobacco use history (heavy tobacco use with ≥10 pack years vs. no tobacco use). Using The Cancer Genome Atlas (TCGA) cohort (n = 257) and an internal cohort (n = 40), we identify 3 epigenetic markers (GPR15, GNG12, GDNF) and 13 expression markers (IGHA2, SCG5, RPL3L, NTRK1, CD96, BMP6, TFPI2, EFEMP2, RYR3, DMTN, GPD2, BAALC, and FMO3), which are dysregulated in OSCC patients who were never smokers vs. those who have a ≥ 10 pack year history. While mortality risk prediction based on smoking status and clinicopathologic covariates alone is inaccurate (c-statistic = 0.57), the combined epigenetic/expression and histologic signature has a c-statistic = 0.9409 in predicting 5-year mortality in OSCC patients.
Collapse
Affiliation(s)
- Chi T Viet
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, Loma Linda, CA, USA.
| | - Kesava R Asam
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, USA
- Translational Research Center, New York University College of Dentistry, New York, NY, USA
| | - Gary Yu
- New York University Rory Meyers College of Nursing, New York, NY, USA
| | - Emma C Dyer
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center, Chicago, IL, USA
| | - Sara Kochanny
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center, Chicago, IL, USA
| | - Carissa M Thomas
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nicholas F Callahan
- Department of Oral and Maxillofacial Surgery, University of Illinois Chicago, College of Dentistry, Chicago, IL, USA
| | - Anthony B Morlandt
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Oral and Maxillofacial Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Allen C Cheng
- Head and Neck Surgery, Providence Cancer Institute, Portland, OR, USA
- Head and Neck Surgery, Legacy Cancer Center, Portland, OR, USA
| | - Ashish A Patel
- Head and Neck Surgery, Providence Cancer Institute, Portland, OR, USA
- Head and Neck Surgery, Legacy Cancer Center, Portland, OR, USA
| | - Dylan F Roden
- Department of Otolaryngology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Simon Young
- Katz Department of Oral & Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, USA
| | - James Melville
- Katz Department of Oral & Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, USA
| | - Jonathan Shum
- Katz Department of Oral & Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, USA
| | - Paul C Walker
- Department of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Khanh K Nguyen
- Department of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Stephanie N Kidd
- Department of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Steve C Lee
- Department of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | | | | | - Anupama Grandhi
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, Loma Linda, CA, USA
| | - Jeremy Deisch
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Yi Ye
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, USA
- Translational Research Center, New York University College of Dentistry, New York, NY, USA
| | - Fatemeh Momen-Heravi
- Section of Oral, Diagnostic and Rehabilitation Sciences, College of Dental Medicine, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Alexander T Pearson
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center, Chicago, IL, USA
| | - Bradley E Aouizerat
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, USA
- Translational Research Center, New York University College of Dentistry, New York, NY, USA
- New York University Rory Meyers College of Nursing, New York, NY, USA
| |
Collapse
|
4
|
Hirai R, Kinugasa H, Yamamoto S, Ako S, Tsutsumi K, Abe M, Miyahara K, Nakagawa M, Otsuka M. Methylation analysis of DCC gene in saliva samples is an efficient method for non-invasive detection of superficial hypopharyngeal cancer. Br J Cancer 2024; 130:1725-1731. [PMID: 38538728 PMCID: PMC11091138 DOI: 10.1038/s41416-024-02654-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 05/15/2024] Open
Abstract
BACKGROUND Advances in upper gastrointestinal endoscopic technology have enabled early detection and treatment of hypopharyngeal cancer. However, in-depth pharyngeal observations require sedation and are invasive. It is important to establish a minimally invasive and simple evaluation method to identify high-risk patients. METHODS Eighty-seven patients with superficial hypopharyngeal cancer and 51 healthy controls were recruited. We assessed the methylation status of DCC, PTGDR1, EDNRB, and ECAD, in tissue and saliva samples and verified the diagnostic accuracy by methylation analyses of their promoter regions using quantitative methylation-specific PCR. RESULTS Significant differences between cancer and their surrounding non-cancerous tissues were observed in the methylation values of DCC (p = 0.003), EDNRB (p = 0.001), and ECAD (p = 0.043). Using receiver operating characteristic analyses of the methylation values in saliva samples, DCC showed the highest area under the curve values for the detection of superficial hypopharyngeal cancer (0.917, 95% confidence interval = 0.864-0.970), compared with those for EDNRB (0.680) and ECAD (0.639). When the cutoff for the methylation values of DCC was set at ≥0.163, the sensitivity to detect hypopharyngeal cancer was 82.8% and the specificity was 90.2%. CONCLUSIONS DCC methylation in saliva samples could be a non-invasive and efficient tool for early detection of hypopharyngeal cancer in high-risk patients.
Collapse
Affiliation(s)
- Ryosuke Hirai
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata, Kitaku, Okayama, Okayama, 700-8558, Japan
| | - Hideaki Kinugasa
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata, Kitaku, Okayama, Okayama, 700-8558, Japan.
| | - Shumpei Yamamoto
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata, Kitaku, Okayama, Okayama, 700-8558, Japan
| | - Soichiro Ako
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata, Kitaku, Okayama, Okayama, 700-8558, Japan
| | - Koichiro Tsutsumi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata, Kitaku, Okayama, Okayama, 700-8558, Japan
| | - Makoto Abe
- Department of Internal Medicine, Hiroshima City Hospital, 7-33, Motomachi, Nakaku, Hiroshima, Hiroshima, 730-8518, Japan
| | - Koji Miyahara
- Department of Internal Medicine, Hiroshima City Hospital, 7-33, Motomachi, Nakaku, Hiroshima, Hiroshima, 730-8518, Japan
| | - Masahiro Nakagawa
- Department of Internal Medicine, Hiroshima City Hospital, 7-33, Motomachi, Nakaku, Hiroshima, Hiroshima, 730-8518, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata, Kitaku, Okayama, Okayama, 700-8558, Japan
| |
Collapse
|
5
|
Zohud O, Lone IM, Nashef A, Iraqi FA. Towards system genetics analysis of head and neck squamous cell carcinoma using the mouse model, cellular platform, and clinical human data. Animal Model Exp Med 2023; 6:537-558. [PMID: 38129938 PMCID: PMC10757216 DOI: 10.1002/ame2.12367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Head and neck squamous cell cancer (HNSCC) is a leading global malignancy. Every year, More than 830 000 people are diagnosed with HNSCC globally, with more than 430 000 fatalities. HNSCC is a deadly diverse malignancy with many tumor locations and biological characteristics. It originates from the squamous epithelium of the oral cavity, oropharynx, nasopharynx, larynx, and hypopharynx. The most frequently impacted regions are the tongue and larynx. Previous investigations have demonstrated the critical role of host genetic susceptibility in the progression of HNSCC. Despite the advances in our knowledge, the improved survival rate of HNSCC patients over the last 40 years has been limited. Failure to identify the molecular origins of development of HNSCC and the genetic basis of the disease and its biological heterogeneity impedes the development of new therapeutic methods. These results indicate a need to identify more genetic factors underlying this complex disease, which can be better used in early detection and prevention strategies. The lack of reliable animal models to investigate the underlying molecular processes is one of the most significant barriers to understanding HNSCC tumors. In this report, we explore and discuss potential research prospects utilizing the Collaborative Cross mouse model and crossing it to mice carrying single or double knockout genes (e.g. Smad4 and P53 genes) to identify genetic factors affecting the development of this complex disease using genome-wide association studies, epigenetics, microRNA, long noncoding RNA, lncRNA, histone modifications, methylation, phosphorylation, and proteomics.
Collapse
Affiliation(s)
- Osayd Zohud
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel‐Aviv UniversityTel AvivIsrael
| | - Iqbal M. Lone
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel‐Aviv UniversityTel AvivIsrael
| | - Aysar Nashef
- Department of Oral and Maxillofacial SurgeryBaruch Padeh Medical CenterPoriyaIsrael
- Azrieli Faculty of MedicineBar‐Ilan UniversityRamat GanIsrael
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel‐Aviv UniversityTel AvivIsrael
| |
Collapse
|
6
|
Jayaraman S, Natarajan SR, Veeraraghavan VP, Jasmine S. Unveiling the anti-cancer mechanisms of calotropin: Insights into cell growth inhibition, cell cycle arrest, and metabolic regulation in human oral squamous carcinoma cells (HSC-3). J Oral Biol Craniofac Res 2023; 13:704-713. [PMID: 37731845 PMCID: PMC10507650 DOI: 10.1016/j.jobcr.2023.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/23/2023] [Accepted: 09/09/2023] [Indexed: 09/22/2023] Open
Abstract
Background Calotropin, a cardiac glycoside obtained from the plant Calotropis gigantea, has demonstrated promising potential as an anti-tumorigenesis compound. Objective The main objective of this study was to investigate the potential anti-cancer properties of calotropin against HSC-3 oral squamous cancer cells and to elucidate the underlying mechanisms involved in its action. Material and method Calotropin were treated in HSC-3 to evaluate cell viability by MTT assay. Flow cytometry analysis divulged that calotropin G0/G1 phase cell cycle arrest and apoptosis in HSC-3 cells. Calotropin displayed inhibitory properties against aerobic glycolysis, a metabolic alteration using glucose uptaken, lactose production and LDHA activity assays. Furthermore, migration and invasion assays help that calotropin has ability to reduce the migratory and invasive of HSC-3 cells, using transwell and Matrigel assay. Validation of mRNA expression through RT-PCR. Molecular docking was implemented to validate the binding association of calotropin with apoptosis and metastatic regulating targets. Result The results exemplify that increasing doses of calotropin effectively hold back the HSC-3 cell progression. Migration and invasion assays help that calotropin has ability to reduce the migratory and invasive of HSC-3 cells, indicating its potential to inhibit cancer metastasis. These results imply that calotropin may influence genes linked to metastasis and apoptosis in order to achieve its beneficial effects on cancer. Docking results provided further support, showing a high binding energy between calotropin and metastasis-mediated pathways. Conclusion Overall, our findings shed an experimental evidence on how calotropin inhibits the HSC-3 oral squamous cancer cell growth, highlighting the drug's potential as a treatment for oral cancer. Further, investigation on in-vivo experiment is warranted to explore its potential mechanism of action and to develop a novel drug towards clinical trial.
Collapse
Affiliation(s)
- Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Sathan Raj Natarajan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Sharmila Jasmine
- Department of Oral Maxillofacial Surgery, Rajas Dental College and Hospital, Kavalkinaru, Tirunelveli, 627105, Tamil Nadu, India
| |
Collapse
|
7
|
Abstract
Head and neck cancers are a heterogeneous group of highly aggressive tumors and collectively represent the sixth most common cancer worldwide. Most head and neck cancers are squamous cell carcinomas (HNSCCs). Current multimodal treatment concepts combine surgery, chemotherapy, irradiation, immunotherapy, and targeted therapeutics. Recent scientific advancements have enabled a more precise molecular characterization of HNSCC and revealed novel therapeutic targets and prognostic/predictive biomarkers. Notably, HNSCC is characterized by complex relations between stromal, epithelial, and immune cells within the tumor microenvironment (TME). The TME consists of different subsets of immune cells that infiltrate the tumors and interact with the tumor cells or with each other. Understanding multiple pivotal factors in HNSCC tumorigenesis and tumor progression may help define novel targets and develop more effective therapies for patients. This review provides a comprehensive overview of the latest advances in the molecular biology of HNSCC and their effects on clinical oncology; it is meant for a broad readership in the head and neck cancers field.
Collapse
Affiliation(s)
- Subramanya Pandruvada
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, United States.
| | - Remi Kessler
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Ann Thai
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
8
|
Patel KB, Padhya TA, Huang J, Hernandez-Prera JC, Li T, Chung CH, Wang L, Wang X. Plasma cell-free DNA methylome profiling in pre- and post-surgery oral cavity squamous cell carcinoma. Mol Carcinog 2023; 62:493-502. [PMID: 36636912 PMCID: PMC10023468 DOI: 10.1002/mc.23501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/29/2022] [Accepted: 12/30/2022] [Indexed: 01/14/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC), a highly heterogeneous disease that involves multiple anatomic sites, is a leading cause of cancer-related mortality worldwide. Although the utility of noninvasive biomarkers based on circulating cell-free DNA (cfDNA) methylation profiling has been widely recognized, limited studies have been reported so far regarding the dynamics of cfDNA methylome in oral cavity squamous cell carcinoma (OCSCC). It is hypothesized in this study that comparison of methylation profiles in pre- and postsurgery plasma samples will reveal OCSCC-specific prognostic and diagnostic biomarkers. As a strategy to further prioritize tumor-specific targets, top differential methylated regions (DMRs) were called by reanalyzing methylation data from paired tumor and normal tissue collected in the the cancer genome atlas head-neck squamous cell carcinoma (TCGA) head and neck cancer cohort. Matched plasma samples from eight patients with OCSCC were collected at Moffitt Cancer Center before and after surgical resection. Plasma-derived cfDNA was analyzed by cfMBD-seq, which is a high-sensitive methylation profiling assay. Differential methylation analysis was then performed based on the matched samples profiled. In the top 200 HNSCC-specific DMRs detected based on the TCGA data set, a total of 23 regions reached significance in the plasma-based DMR test. The top five validated DMR regions (ranked by the significance in the plasma study) are located in the promoter regions of genes PENK, NXPH1, ZIK1, TBXT, and CDO1, respectively. The genome-wide cfDNA DMR analysis further highlighted candidate biomarkers located in genes SFRP4, SOX1, IRF4, and PCDH17. The prognostic relevance of candidate genes was confirmed by survival analysis using the TCGA data. This study supports the utility of cfDNA-based methylome profiling as a promising noninvasive biomarker source for OCSCC and HNSCC.
Collapse
Affiliation(s)
- Krupal B Patel
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Tapan A Padhya
- Otolaryngology - Head and Neck Surgery, University of South Florida Morsani College of Medicine, Tampa, USA
| | - Jinyong Huang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Juan C Hernandez-Prera
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Tingyi Li
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Christine H Chung
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Moffitt Cancer Center Immuno-Oncology Program, Tampa, FL 33612, USA
| |
Collapse
|
9
|
Dholariya S, Singh RD, Patel KA. Melatonin: Emerging Player in the Management of Oral Cancer. Crit Rev Oncog 2023; 28:77-92. [PMID: 37830217 DOI: 10.1615/critrevoncog.2023048934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Oral cancer (OC) has emerged as a major medical and social issue in many industrialized nations due to the high death rate. It is becoming increasingly common in people under the age of 45, although the underlying causes and mechanisms of this increase remain unclear. Melatonin, as a pleiotropic hormone, plays a pivotal role in a wide variety of cellular and physiological functions. Mounting evidence supports melatonin's ability to modify/influence oral carcinogenesis, help in the reduction of the incidence of OC, and increase chemo- and radiosensitivity. Despite its potential anti-carcinogenic effects, the precise function of melatonin in the management of OC is not well understood. This review summarizes the current knowledge regarding melatonin function in anti-carcinogenesis mechanisms for OC. In addition, clinical assessment and the potential therapeutic utility of melatonin in OC are discussed. This review will provide a basis for researchers to create new melatonin-based personalized medicines for treating and preventing OC.
Collapse
Affiliation(s)
- Sagar Dholariya
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | - Ragini D Singh
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | | |
Collapse
|
10
|
Ding Q, Chen X, Hong W, Wang L, Liu W, Cai S, Chen X, Lu J, Qiu S. The Prognostic Role of Cuproptosis in Head and Neck Squamous Cell Carcinoma Patients: A Comprehensive Analysis. DISEASE MARKERS 2022; 2022:9996946. [PMID: 36092958 PMCID: PMC9463014 DOI: 10.1155/2022/9996946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022]
Abstract
Purpose Head and neck squamous cell carcinoma (HNSCC) exhibits a high mortality and morbidity rate, and its treatment is facing clinical challenges. Cuproptosis, a copper-dependent cell death process, can help derive new forms of cancer therapies. However, the potential of cuproptosis-related genes (CRGs) as novel biomarkers for risk prediction, screening, and prognosis remains to be further explained in HNSCC. Methods We built a prognostic multigene signature with CRGs, which is associated with the tumor immune microenvironment (TME) by gene set enrichment analysis (GSEA), in the TCGA cohort. Furthermore, we systematically correlated risk signature with immunological characteristics in TME including tumor-infiltrating immune cells (TIICs), immune checkpoints, T cell inflamed score, and cancer immunity cycles. We also thoroughly investigated the biological functions of cuproptosis-associated lncRNAs and its immunological characteristics. Results CRGs-related prognostic model showed good prediction performance. A higher risk score was associated with a poorer overall survival (OS) than those with low-risk scores, according to the results of the survival analysis (p < 0.0001). The risk score was significantly related to the variable clinicopathological factors. Samples with high-risk scores had lower levels of CD8+ T cells infiltration. Immune therapy might be effective for the low-risk subtype of HNSCC patients (p < 0.05). Moreover, 11 differentially expressed lncRNAs as the independent prognostic factor could also predict TME in an accurate manner. Conclusion Our study identified and validated novel cuproptosis-related biomarkers for HNSCC prognosis and screening, which offer better insights into developing accurate, reliable, and novel cancer therapies in the era of precision medicine.
Collapse
Affiliation(s)
- Qin Ding
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| | - Xiaochuan Chen
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| | - Wenquan Hong
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| | - Lihua Wang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| | - Wei Liu
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| | - Sunqin Cai
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| | - Xin Chen
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Jun Lu
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Sufang Qiu
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
11
|
Abstract
Purpose of Review This study assesses the current state of knowledge of head and neck squamous cell carcinomas (HNSCC), which are malignancies arising from the orifices and adjacent mucosae of the aerodigestive tracts. These contiguous anatomical areas are unique in that 2 important human oncoviruses, Epstein-Barr virus (EBV) and human papillomavirus (HPV), are causally associated with nasopharyngeal and oropharyngeal cancers, respectively. Mortality rates have remained high over the last 4 decades, and insufficient attention paid to the unique viral and clinical oncology of the different subgroups of HNSCC. Recent Findings We have compared and contrasted the 2 double-stranded DNA viruses and the relevant molecular oncogenesis of their respective cancers against other head and neck cancers. Tobacco and alcohol ingestion are also reviewed, as regard the genetic progression/mutation accumulation model of carcinogenesis. The importance of stringent stratification when searching for cancer mutations and biomarkers is discussed. Evidence is presented for a dysplastic/pre-invasive cancerous phase for HPV+ oropharyngeal cancers, and analogous with other HPV+ cancers. This raises the possibility of strategies for cancer screening as early diagnosis will undoubtedly save lives. Summary Staging and prognostication have changed to take into account the distinct biological and prognostic pathways for viral+ and viral− cancers. Diagnosis of pre-cancers and early stage cancers will reduce mortality rates. Multi-modal treatment options for HNSCC are reviewed, especially recent developments with immunotherapies and precision medicine strategies. Knowledge integration of the viral and molecular oncogenic pathways with sound planning, hypothesis generation, and clinical trials will continue to provide therapeutic options in the future.
Collapse
|
12
|
Ferraguti G, Terracina S, Petrella C, Greco A, Minni A, Lucarelli M, Agostinelli E, Ralli M, de Vincentiis M, Raponi G, Polimeni A, Ceccanti M, Caronti B, Di Certo MG, Barbato C, Mattia A, Tarani L, Fiore M. Alcohol and Head and Neck Cancer: Updates on the Role of Oxidative Stress, Genetic, Epigenetics, Oral Microbiota, Antioxidants, and Alkylating Agents. Antioxidants (Basel) 2022; 11:145. [PMID: 35052649 PMCID: PMC8773066 DOI: 10.3390/antiox11010145] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
Head and neck cancer (HNC) concerns more than 890,000 patients worldwide annually and is associated with the advanced stage at presentation and heavy outcomes. Alcohol drinking, together with tobacco smoking, and human papillomavirus infection are the main recognized risk factors. The tumorigenesis of HNC represents an intricate sequential process that implicates a gradual acquisition of genetic and epigenetics alterations targeting crucial pathways regulating cell growth, motility, and stromal interactions. Tumor microenvironment and growth factors also play a major role in HNC. Alcohol toxicity is caused both directly by ethanol and indirectly by its metabolic products, with the involvement of the oral microbiota and oxidative stress; alcohol might enhance the exposure of epithelial cells to carcinogens, causing epigenetic modifications, DNA damage, and inaccurate DNA repair with the formation of DNA adducts. Long-term markers of alcohol consumption, especially those detected in the hair, may provide crucial information on the real alcohol drinking of HNC patients. Strategies for prevention could include food supplements as polyphenols, and alkylating drugs as therapy that play a key role in HNC management. Indeed, polyphenols throughout their antioxidant and anti-inflammatory actions may counteract or limit the toxic effect of alcohol whereas alkylating agents inhibiting cancer cells' growth could reduce the carcinogenic damage induced by alcohol. Despite the established association between alcohol and HNC, a concerning pattern of alcohol consumption in survivors of HNC has been shown. It is of primary importance to increase the awareness of cancer risks associated with alcohol consumption, both in oncologic patients and the general population, to provide advice for reducing HNC prevalence and complications.
Collapse
Affiliation(s)
- Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (S.T.); (M.L.)
| | - Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (S.T.); (M.L.)
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 000185 Rome, Italy; (C.P.); (M.G.D.C.); (C.B.)
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (A.G.); (A.M.); (E.A.); (M.R.); (M.d.V.)
| | - Antonio Minni
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (A.G.); (A.M.); (E.A.); (M.R.); (M.d.V.)
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (S.T.); (M.L.)
| | - Enzo Agostinelli
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (A.G.); (A.M.); (E.A.); (M.R.); (M.d.V.)
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (A.G.); (A.M.); (E.A.); (M.R.); (M.d.V.)
| | - Marco de Vincentiis
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (A.G.); (A.M.); (E.A.); (M.R.); (M.d.V.)
| | - Giammarco Raponi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy;
| | - Antonella Polimeni
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell’Alcolismo, 00184 Rome, Italy;
- SIFASD, Società Italiana Sindrome Feto-Alcolica, 00184 Rome, Italy
| | - Brunella Caronti
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy;
| | - Maria Grazia Di Certo
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 000185 Rome, Italy; (C.P.); (M.G.D.C.); (C.B.)
| | - Christian Barbato
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 000185 Rome, Italy; (C.P.); (M.G.D.C.); (C.B.)
| | - Alessandro Mattia
- Ministero dell’Interno, Dipartimento della Pubblica Sicurezza, Direzione Centrale di Sanità, Centro di Ricerche e Laboratorio di Tossicologia Forense, 00185 Rome, Italy;
| | - Luigi Tarani
- Department of Pediatrics, Sapienza University Hospital of Rome, 00185 Rome, Italy;
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 000185 Rome, Italy; (C.P.); (M.G.D.C.); (C.B.)
| |
Collapse
|
13
|
Viet CT, Zhang X, Xu K, Yu G, Asam K, Thomas CM, Callahan NF, Doan C, Walker PC, Nguyen K, Kidd SC, Lee SC, Grandhi A, Allen CT, Young S, Melville JC, Shum JW, Viet DT, Herford AS, Roden DF, Gonzalez ML, Zhong JF, Aouizerat BE. Brush swab as a noninvasive surrogate for tissue biopsies in epigenomic profiling of oral cancer. Biomark Res 2021; 9:90. [PMID: 34930473 PMCID: PMC8686381 DOI: 10.1186/s40364-021-00349-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/28/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) has poor survival rates. There is a pressing need to develop more precise risk assessment methods to tailor clinical treatment. Epigenome-wide association studies in OSCC have not produced a viable biomarker. These studies have relied on methylation array platforms, which are limited in their ability to profile the methylome. In this study, we use MethylCap-Seq (MC-Seq), a comprehensive methylation quantification technique, and brush swab samples, to develop a noninvasive, readily translatable approach to profile the methylome in OSCC patients. METHODS Three OSCC patients underwent collection of cancer and contralateral normal tissue and brush swab biopsies, totaling 4 samples for each patient. Epigenome-wide DNA methylation quantification was performed using the SureSelectXT Methyl-Seq platform. DNA quality and methylation site resolution were compared between brush swab and tissue samples. Correlation and methylation value difference were determined for brush swabs vs. tissues for each respective patient and site (i.e., cancer or normal). Correlations were calculated between cancer and normal tissues and brush swab samples for each patient to determine the robustness of DNA methylation marks using brush swabs in clinical biomarker studies. RESULTS There were no significant differences in DNA yield between tissue and brush swab samples. Mapping efficiency exceeded 90% across all samples, with no differences between tissue and brush swabs. The average number of CpG sites with at least 10x depth of coverage was 2,716,674 for brush swabs and 2,903,261 for tissues. Matched tissue and brush swabs had excellent correlation (r = 0.913 for cancer samples and r = 0.951 for normal samples). The methylation profile of the top 1000 CpGs was significantly different between cancer and normal samples (mean p-value = 0.00021) but not different between tissues and brush swabs (mean p-value = 0.11). CONCLUSIONS Our results demonstrate that MC-Seq is an efficient platform for epigenome profiling in cancer biomarker studies, with broader methylome coverage than array-based platforms. Brush swab biopsy provides adequate DNA yield for MC-Seq, and taken together, our findings set the stage for development of a non-invasive methylome quantification technique for oral cancer with high translational potential.
Collapse
Affiliation(s)
- Chi T Viet
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, Loma Linda, CA, USA.
| | - Xinyu Zhang
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- VA Connecticut Healthcare System, West Haven, CT, USA
| | - Ke Xu
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- VA Connecticut Healthcare System, West Haven, CT, USA
| | - Gary Yu
- New York University Rory Meyers College of Nursing, New York, NY, USA
| | - Kesava Asam
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, USA
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY, USA
| | - Carissa M Thomas
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nicholas F Callahan
- Department of Oral and Maxillofacial Surgery, University of Illinois Chicago, College of Dentistry, Chicago, IL, USA
| | - Coleen Doan
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, Loma Linda, CA, USA
| | - Paul C Walker
- Department of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Khanh Nguyen
- Department of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Stephanie C Kidd
- Department of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Steve C Lee
- Department of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Anupama Grandhi
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, Loma Linda, CA, USA
| | - Clint T Allen
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Simon Young
- Department of Oral, Head and Neck Oncology and Microvascular Reconstructive Surgery, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - James C Melville
- Department of Oral, Head and Neck Oncology and Microvascular Reconstructive Surgery, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jonathan W Shum
- Department of Oral, Head and Neck Oncology and Microvascular Reconstructive Surgery, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Alan S Herford
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, Loma Linda, CA, USA
| | - Dylan F Roden
- Department of Otolaryngology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Manuel L Gonzalez
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jiang F Zhong
- Department of Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - Bradley E Aouizerat
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- VA Connecticut Healthcare System, West Haven, CT, USA
- New York University Rory Meyers College of Nursing, New York, NY, USA
| |
Collapse
|
14
|
Burkitt K, Saloura V. Epigenetic Modifiers as Novel Therapeutic Targets and a Systematic Review of Clinical Studies Investigating Epigenetic Inhibitors in Head and Neck Cancer. Cancers (Basel) 2021; 13:cancers13205241. [PMID: 34680389 PMCID: PMC8534083 DOI: 10.3390/cancers13205241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Head and neck cancer is the sixth most common malignancy worldwide and it affects approximately 50,000 patients annually in the United States. Current treatments are suboptimal and induce significant long-term toxicities that permanently affect quality of life. Novel therapeutic approaches are thus urgently needed to increase the survival and quality of life of these patients. Epigenetic modifications have been recognized as potential therapeutic targets in various cancer types, including head and neck cancer. The objective of this review is to provide a brief overview of the function of important epigenetic modifiers in head and neck cancer, and to discuss the results of past and ongoing clinical trials evaluating epigenetic interventions targeting these epigenetic modifiers in head and neck cancer patients. The field of epigenetic therapy in head and neck cancer is still nascent; however, it holds significant promise. Although more specific epigenetic drugs are being developed, we envision the rational design of clinical trials that will target a select group of head and neck cancer patients with epigenetic vulnerabilities that can be targeted in combination with immunotherapy, chemotherapy and/or radiotherapy, rendering higher and durable responses while minimizing chronic complications for patients with head and neck cancer. Abstract The survival rate of head and neck squamous cell carcinoma patients with the current standard of care therapy is suboptimal and is associated with long-term side effects. Novel therapeutics that will improve survival rates while minimizing treatment-related side effects are the focus of active investigation. Epigenetic modifications have been recognized as potential therapeutic targets in various cancer types, including head and neck cancer. This review summarizes the current knowledge on the function of important epigenetic modifiers in head and neck cancer, their clinical implications and discusses results of clinical trials evaluating epigenetic interventions in past and ongoing clinical trials as monotherapy or combination therapy with either chemotherapy, radiotherapy or immunotherapy. Understanding the function of epigenetic modifiers in both preclinical and clinical settings will provide insight into a more rational design of clinical trials using epigenetic interventions and the patient subgroups that may benefit from such interventions.
Collapse
Affiliation(s)
- Kyunghee Burkitt
- Head and Neck Medical Oncology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Correspondence: (K.B.); (V.S.)
| | - Vassiliki Saloura
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
- Correspondence: (K.B.); (V.S.)
| |
Collapse
|
15
|
The scope of liquid biopsy in the clinical management of oral cancer. Int J Oral Maxillofac Surg 2021; 51:591-601. [PMID: 34462176 DOI: 10.1016/j.ijom.2021.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/18/2021] [Accepted: 08/11/2021] [Indexed: 12/24/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most prevalent forms of head and neck cancer, and it remains a leading cause of death in developing countries. Failure to detect the disease at an early stage is the main reason for the lack of improvement in the overall survival rate over the decades. Even though tissue biopsy is considered as the gold standard for diagnosis and molecular workup, it is an invasive, expensive and time-consuming procedure. Besides, it may not indicate the genetic status of the entire tumour owing to the heterogeneity of the cancer. In this context, liquid biopsy could be quite useful as it provides a more representative picture of the circulating tumour cells, circulating tumour DNA, circulating RNA, and tumour-derived exosomes obtained from all types of body fluids. This technique provides real-time assessment of variations in the molecular profile of the whole tumour and enables the serial monitoring of the disease status. The method has many advantages, such as easy accessibility, reliability, reproducibility and the possibility for early detection of the disease. However, the concept is still in its infancy, and the research on its application in various tumours including OSCC is rapidly progressing.
Collapse
|
16
|
Hoes L, Dok R, Verstrepen KJ, Nuyts S. Ethanol-Induced Cell Damage Can Result in the Development of Oral Tumors. Cancers (Basel) 2021; 13:cancers13153846. [PMID: 34359747 PMCID: PMC8345464 DOI: 10.3390/cancers13153846] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Alcohol consumption is linked to 26.4% of all lip and oral cavity cancer cases worldwide. Despite this clear causal relationship, the exact molecular mechanisms by which ethanol damages cells are still under investigation. It is well-established that the metabolism of ethanol plays an important role. Ethanol metabolism yields reactive metabolites that can directly damage the DNA. If the damage is repaired incorrectly, mutations can be fixed in the DNA sequence. Whenever mutations affect key regulatory genes, for instance cell cycle regulating genes, uncontrolled cell growth can be the consequence. Recently, global patterns of mutations have been identified. These so-called mutational signatures represent a fingerprint of the different mutational processes over time. Interestingly, there were ethanol-related signatures discovered that did not associate with ethanol metabolism. This finding highlights there might be other molecular effects of ethanol that are yet to be discovered. Abstract Alcohol consumption is an underestimated risk factor for the development of precancerous lesions in the oral cavity. Although alcohol is a well-accepted recreational drug, 26.4% of all lip and oral cavity cancers worldwide are related to heavy drinking. Molecular mechanisms underlying this carcinogenic effect of ethanol are still under investigation. An important damaging effect comes from the first metabolite of ethanol, being acetaldehyde. Concentrations of acetaldehyde detected in the oral cavity are relatively high due to the metabolization of ethanol by oral microbes. Acetaldehyde can directly damage the DNA by the formation of mutagenic DNA adducts and interstrand crosslinks. Additionally, ethanol is known to affect epigenetic methylation and acetylation patterns, which are important regulators of gene expression. Ethanol-induced hypomethylation can activate the expression of oncogenes which subsequently can result in malignant transformation. The recent identification of ethanol-related mutational signatures emphasizes the role of acetaldehyde in alcohol-associated carcinogenesis. However, not all signatures associated with alcohol intake also relate to acetaldehyde. This finding highlights that there might be other effects of ethanol yet to be discovered.
Collapse
Affiliation(s)
- Lore Hoes
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3000 Leuven, Belgium; (L.H.); (K.J.V.)
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, KU Leuven, 3000 Leuven, Belgium
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium;
| | - Rüveyda Dok
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium;
| | - Kevin J. Verstrepen
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3000 Leuven, Belgium; (L.H.); (K.J.V.)
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Sandra Nuyts
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium;
- Department of Radiation Oncology, Leuven Cancer Institute, University Hospital Leuven, 3000 Leuven, Belgium
- Correspondence: ; Tel.: +32-1634-7600; Fax: +32-1634-7623
| |
Collapse
|
17
|
Bruixola G, Remacha E, Jiménez-Pastor A, Dualde D, Viala A, Montón JV, Ibarrola-Villava M, Alberich-Bayarri Á, Cervantes A. Radiomics and radiogenomics in head and neck squamous cell carcinoma: Potential contribution to patient management and challenges. Cancer Treat Rev 2021; 99:102263. [PMID: 34343892 DOI: 10.1016/j.ctrv.2021.102263] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/06/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022]
Abstract
The application of imaging biomarkers in oncology is still in its infancy, but with the expansion of radiomics and radiogenomics a revolution is expected in this field. This may be of special interest in head and neck cancer, since it can promote precision medicine and personalization of treatment by overcoming several intrinsic obstacles in this pathology. Our goal is to provide the medical oncologist with the basis to approach these disciplines and appreciate their main uses in clinical research and clinical practice in the medium term. Aligned with this objective we analyzed the most relevant studies in the field, also highlighting novel opportunities and current challenges.
Collapse
Affiliation(s)
- Gema Bruixola
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - Elena Remacha
- Quantitative Imaging Biomarkers in Medicine (QUIBIM SL), Valencia, Spain
| | - Ana Jiménez-Pastor
- Quantitative Imaging Biomarkers in Medicine (QUIBIM SL), Valencia, Spain
| | - Delfina Dualde
- Department of Radiology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - Alba Viala
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - Jose Vicente Montón
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - Maider Ibarrola-Villava
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Andrés Cervantes
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
18
|
Flausino CS, Daniel FI, Modolo F. DNA methylation in oral squamous cell carcinoma: from its role in carcinogenesis to potential inhibitor drugs. Crit Rev Oncol Hematol 2021; 164:103399. [PMID: 34147646 DOI: 10.1016/j.critrevonc.2021.103399] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
DNA methylation is one of epigenetic changes most frequently studied nowadays, together with its relationship with oral carcinogenesis. A group of enzymes is responsible for methylation process, known as DNA methyltransferases (DNMT). Although essential during embryogenesis, DNA methylation pattern alterations, including global hypomethylation or gene promoter hypermethylation, can be respectively associated with chromosomal instability and tumor suppressor gene silencing. Higher expression of DNA methyltransferases is a common finding in oral cancer and may contribute to inactivation of important tumor suppressor genes, influencing development, progression, metastasis, and prognosis of the tumor. To control these alterations, inhibitor drugs have been developed as a way to regulate DNMT overexpression, and they are intended to be associated with ongoing chemo- and radiotherapy in oral cancer treatments. In this article, we aimed to highlight the current knowledge about DNA methylation in oral cancer, including main hyper/hypomethylated genes, DNMT expression and its inhibitor treatments.
Collapse
Affiliation(s)
| | - Filipe Ivan Daniel
- Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| | - Filipe Modolo
- Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
19
|
Bhat GR, Hyole RG, Li J. Head and neck cancer: Current challenges and future perspectives. Adv Cancer Res 2021; 152:67-102. [PMID: 34353444 DOI: 10.1016/bs.acr.2021.05.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Head and neck cancers are a heterogeneous, aggressive and genetically complex collection of malignancies of the oral cavity, nasopharynx, oropharynx, hypopharynx, larynx, paranasal sinuses and salivary glands, which are difficult to treat. About 90% of all head and neck cancers are squamous cell carcinomas (HNSCC). Larynx and Oral cavity carcinomas are generally related with tobacco consumption, alcohol abuse (or both), but pharynx carcinomas are generally associated with infection of human papillomavirus (HPV), especially HPV-16 subtype. Thus, usually HNSCC can be separated into HPV-negative and HPV-positive categories. Despite substantial efforts invested into therapeutic development of HNSCC, the 5-year survival rate of patients with HNSCC still remains dismal. The primary reason being late diagnosis, recurrent metastasis, relapse and resistance to therapies. Currently surgery and radiotherapy represent the baseline treatment options for most initial stage HNSCC patients, but these treatments are associated with significant morbidity and poor prognosis. Moreover, the issue of resistance to both radiotherapy/chemotherapy and recurrent relapse are common in HNSCC. Elucidation of the genetic landscape, tumor microenvironment and aberrant signaling pathways have generated new insights into the molecular pathogenesis of this disease. Thus, the scientific research has therefore been focused on the understanding of HNSCC biology and immunobiology to identification of predictive/prognostic biomarkers, which will be key to develop more effective targeted therapies with less toxicity and high specificity.
Collapse
Affiliation(s)
- Gh Rasool Bhat
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Rosalie G Hyole
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Jiong Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, United States; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, VA, United States; Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
20
|
Viet CT, Yu G, Asam K, Thomas CM, Yoon AJ, Wongworawat YC, Haghighiabyaneh M, Kilkuts CA, McGue CM, Couey MA, Callahan NF, Doan C, Walker PC, Nguyen K, Kidd SC, Lee SC, Grandhi A, Cheng AC, Patel AA, Philipone E, Ricks OL, Allen CT, Aouizerat BE. The REASON score: an epigenetic and clinicopathologic score to predict risk of poor survival in patients with early stage oral squamous cell carcinoma. Biomark Res 2021; 9:42. [PMID: 34090518 PMCID: PMC8178935 DOI: 10.1186/s40364-021-00292-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a capricious cancer with poor survival rates, even for early-stage patients. There is a pressing need to develop more precise risk assessment methods to appropriately tailor clinical treatment. Genome-wide association studies have not produced a viable biomarker. However, these studies are limited by using heterogeneous cohorts, not focusing on methylation although OSCC is a heavily epigenetically-regulated cancer, and not combining molecular data with clinicopathologic data for risk prediction. In this study we focused on early-stage (I/II) OSCC and created a risk score called the REASON score, which combines clinicopathologic characteristics with a 12-gene methylation signature, to predict the risk of 5-year mortality. METHODS We combined data from an internal cohort (n = 515) and The Cancer Genome Atlas (TCGA) cohort (n = 58). We collected clinicopathologic data from both cohorts to derive the non-molecular portion of the REASON score. We then analyzed the TCGA cohort DNA methylation data to derive the molecular portion of the risk score. RESULTS 5-year disease specific survival was 63% for the internal cohort and 86% for the TCGA cohort. The clinicopathologic features with the highest predictive ability among the two the cohorts were age, race, sex, tobacco use, alcohol use, histologic grade, stage, perineural invasion (PNI), lymphovascular invasion (LVI), and margin status. This panel of 10 non-molecular features predicted 5-year mortality risk with a concordance (c)-index = 0.67. Our molecular panel consisted of a 12-gene methylation signature (i.e., HORMAD2, MYLK, GPR133, SOX8, TRPA1, ABCA2, HGFAC, MCPH1, WDR86, CACNA1H, RNF216, CCNJL), which had the most significant differential methylation between patients who survived vs. died by 5 years. All 12 genes have already been linked to survival in other cancers. Of the genes, only SOX8 was previously associated with OSCC; our study was the first to link the remaining 11 genes to OSCC survival. The combined molecular and non-molecular panel formed the REASON score, which predicted risk of death with a c-index = 0.915. CONCLUSIONS The REASON score is a promising biomarker to predict risk of mortality in early-stage OSCC patients. Validation of the REASON score in a larger independent cohort is warranted.
Collapse
Affiliation(s)
- Chi T Viet
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, 11092 Anderson St., Suite 3304, Loma Linda, CA, 92350, USA.
| | - Gary Yu
- New York University Rory Meyers College of Nursing, New York, NY, USA
| | - Kesava Asam
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, USA
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY, USA
| | - Carissa M Thomas
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Angela J Yoon
- Division of Oral and Maxillofacial Pathology, Department of Pathology & Cell Biology, Columbia University College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Yan Chen Wongworawat
- Department of Pathology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Mina Haghighiabyaneh
- Department of Pathology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Courtney A Kilkuts
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, 11092 Anderson St., Suite 3304, Loma Linda, CA, 92350, USA
| | - Caitlyn M McGue
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, 11092 Anderson St., Suite 3304, Loma Linda, CA, 92350, USA
| | - Marcus A Couey
- Head and Neck Surgery, Providence Cancer Institute, Portland, OR, USA
- Head and Neck Surgery, Legacy Cancer Center, Portland, OR, USA
| | - Nicholas F Callahan
- Department of Oral and Maxillofacial Surgery, University of Illinois at Chicago, College of Dentistry, Chicago, IL, USA
| | - Coleen Doan
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, 11092 Anderson St., Suite 3304, Loma Linda, CA, 92350, USA
| | - Paul C Walker
- Department of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Khanh Nguyen
- Department of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Stephanie C Kidd
- Department of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Steve C Lee
- Department of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Anupama Grandhi
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, 11092 Anderson St., Suite 3304, Loma Linda, CA, 92350, USA
| | - Allen C Cheng
- Head and Neck Surgery, Providence Cancer Institute, Portland, OR, USA
- Head and Neck Surgery, Legacy Cancer Center, Portland, OR, USA
| | - Ashish A Patel
- Head and Neck Surgery, Providence Cancer Institute, Portland, OR, USA
- Head and Neck Surgery, Legacy Cancer Center, Portland, OR, USA
| | - Elizabeth Philipone
- Division of Oral and Maxillofacial Pathology, Department of Pathology & Cell Biology, Columbia University College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Olivia L Ricks
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Clint T Allen
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Bradley E Aouizerat
- New York University Rory Meyers College of Nursing, New York, NY, USA
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, USA
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY, USA
| |
Collapse
|
21
|
Jie W, Bai J, Yan J, Chi Y, Li BB. Multi-Site Tumour Sampling Improves the Detection of Intra-Tumour Heterogeneity in Oral and Oropharyngeal Squamous Cell Carcinoma. Front Med (Lausanne) 2021; 8:670305. [PMID: 34041255 PMCID: PMC8141800 DOI: 10.3389/fmed.2021.670305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/08/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Oral squamous cell carcinoma (OSCC) and oropharyngeal squamous cell carcinoma (OPSCC) are very common in head and neck malignancy. Intratumour heterogeneity (ITH) may hamper their responses to treatment. Hence, novel tumour sampling methods that reflect ITH are required. In this study, we investigated the clinical significance of multi-site tumour sampling (MSTS) to detect ITH in OSCC and OPSCC. Methods: One hundred eighty-two paired specimens were sampled by routine sampling (RS) or MSTS, respectively. Histologically, tumour grade, peri-tumoural vascular and lymphatic growth, perineural permeation, tumour necrosis, and muscle invasion were assessed. Immunohistochemically, the positive and average detection rates of P53(mutant), ki67 and CyclinD1 were detected. The exon 9 and exon 20 mutations of PIK3CA gene and the methylation status of the CDKN2A promoter were analysed. Results: Microscopically, the detection rate of perineural permeation, the detection density of peri-tumoural vascular and lymphatic growth, necrosis and muscle invasion in MSTS were significantly more frequent than those in RP (P < 0.05, P < 0.05, P < 0.01, P < 0.01). MSTS resulted in a higher detection rate of P53 (mutant), ki67, and CyclinD1 expression than did RS, but the difference was not significant. MSTS's detection rates in PIK3CA gene mutation and gene methylation sequencing in CDKN2A gene promoter region were both higher than RP (P < 0.05, P < 0.01). To be emphasised, the hotspot mutation H1047Rwas detected in one MSTS specimen (case 24M5) but in no RS specimens. Conclusions: This study verified that MSTS's advantage in the reflection of morphological and molecular characteristics of OSCC and OPSCC. MSTS was more representative than RP. Therefore, MSTS can compensate the RP limitations in ITH detection especially in large tumours.
Collapse
Affiliation(s)
- Weiping Jie
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China.,Research Unit of Precision Pathologic Diagnosis in Tumours of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiaying Bai
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China.,Research Unit of Precision Pathologic Diagnosis in Tumours of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Yan
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China.,Research Unit of Precision Pathologic Diagnosis in Tumours of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanting Chi
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China.,Research Unit of Precision Pathologic Diagnosis in Tumours of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences, Beijing, China
| | - Bin-Bin Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China.,Research Unit of Precision Pathologic Diagnosis in Tumours of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Romanowska K, Sobecka A, Rawłuszko-Wieczorek AA, Suchorska WM, Golusiński W. Head and Neck Squamous Cell Carcinoma: Epigenetic Landscape. Diagnostics (Basel) 2020; 11:diagnostics11010034. [PMID: 33375464 PMCID: PMC7823717 DOI: 10.3390/diagnostics11010034] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous carcinoma (HNSCC) constitutes the sixth most prevalent cancer worldwide. The molecular pathogenesis of HNSCC includes disorders in cell cycle, intercellular signaling, proliferation, squamous cell differentiation and apoptosis. In addition to the genetic mutations, changes in HNSCC are also characterized by the accumulation of epigenetic alterations such as DNA methylation, histone modifications, non-coding RNA activity and RNA methylation. In fact, some of them may promote cancer formation and progression by controlling the gene expression machinery, hence, they could be used as biomarkers in the clinical surveillance of HNSCC or as targets for therapeutic strategies. In this review, we focus on the current knowledge regarding epigenetic modifications observed in HNSCC and its predictive value for cancer development.
Collapse
Affiliation(s)
- Kamila Romanowska
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland; (A.S.); (W.G.)
- Department of Medical Physics, Radiobiology Laboratory, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland;
- Correspondence:
| | - Agnieszka Sobecka
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland; (A.S.); (W.G.)
- Department of Medical Physics, Radiobiology Laboratory, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland;
| | | | - Wiktoria M. Suchorska
- Department of Medical Physics, Radiobiology Laboratory, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland;
| | - Wojciech Golusiński
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland; (A.S.); (W.G.)
| |
Collapse
|
23
|
Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE, Grandis JR. Head and neck squamous cell carcinoma. Nat Rev Dis Primers 2020; 6:92. [PMID: 33243986 PMCID: PMC7944998 DOI: 10.1038/s41572-020-00224-3] [Citation(s) in RCA: 2304] [Impact Index Per Article: 460.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
Most head and neck cancers are derived from the mucosal epithelium in the oral cavity, pharynx and larynx and are known collectively as head and neck squamous cell carcinoma (HNSCC). Oral cavity and larynx cancers are generally associated with tobacco consumption, alcohol abuse or both, whereas pharynx cancers are increasingly attributed to infection with human papillomavirus (HPV), primarily HPV-16. Thus, HNSCC can be separated into HPV-negative and HPV-positive HNSCC. Despite evidence of histological progression from cellular atypia through various degrees of dysplasia, ultimately leading to invasive HNSCC, most patients are diagnosed with late-stage HNSCC without a clinically evident antecedent pre-malignant lesion. Traditional staging of HNSCC using the tumour-node-metastasis system has been supplemented by the 2017 AJCC/UICC staging system, which incorporates additional information relevant to HPV-positive disease. Treatment is generally multimodal, consisting of surgery followed by chemoradiotherapy (CRT) for oral cavity cancers and primary CRT for pharynx and larynx cancers. The EGFR monoclonal antibody cetuximab is generally used in combination with radiation in HPV-negative HNSCC where comorbidities prevent the use of cytotoxic chemotherapy. The FDA approved the immune checkpoint inhibitors pembrolizumab and nivolumab for treatment of recurrent or metastatic HNSCC and pembrolizumab as primary treatment for unresectable disease. Elucidation of the molecular genetic landscape of HNSCC over the past decade has revealed new opportunities for therapeutic intervention. Ongoing efforts aim to integrate our understanding of HNSCC biology and immunobiology to identify predictive biomarkers that will enable delivery of the most effective, least-toxic therapies.
Collapse
Affiliation(s)
- Daniel E. Johnson
- Department of Otolaryngology-Head and Neck Surgery, University of California at San Francisco, San Francisco, CA, USA
| | - Barbara Burtness
- Department of Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, CT, USA
| | - C. René Leemans
- Department of Otolaryngology-Head and Neck Surgery, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Vivian Wai Yan Lui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Julie E. Bauman
- Department of Medicine-Hematology/Oncology, University of Arizona, Tucson, AZ, USA
| | - Jennifer R. Grandis
- Department of Otolaryngology-Head and Neck Surgery, University of California at San Francisco, San Francisco, CA, USA,
| |
Collapse
|
24
|
Buenahora MR, Lafaurie GI, Perdomo SJ. Identification of HPV16-p16 INK4a mediated methylation in oral potentially malignant disorder. Epigenetics 2020; 16:1016-1030. [PMID: 33164635 DOI: 10.1080/15592294.2020.1834923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To evaluate the possible involvement of epigenetic modulation by HPV16-p16INK4a in oral potentially malignant disorder (OPMD). We generated DNA-methylation profiles, according to p16INK4a expression and HPV16 genotype (positive or negative), of OPMD samples and p16INK4a-HPV16 negative samples (used as control), using reduced-representation bisulphite sequencing (RRBS-Seq- Illumina) technology. Twelve samples, four for each group, as follows: 1) p16INK4a+ HPV16+; 2) p16INK4a+ HPV16-; 3) p16INK4a- HPV16-, were analysed in triplicate for DNA-methylation profiles. Fifty-four per cent of DMRs were hypermethylated and 46% were hypomethylated. An increase in methylation of loci in OPMD was independent of the presence of HPV. The hypermethylated genes in HPV+ samples were associated with signalling pathways such as NICD traffics to nucleus, signalling by NOTCH1 (p = 0.008), Interferon-gamma (p = 0.008) and Interleukin-6 signalling (p = 0.027). The hypomethylated genes in HPV infection were associated with TRAF3-dependent IRF activation pathway (p = 0.002), RIG-I/MDA5 mediated induction of IFN-alpha/beta pathways (p = 0.005), TRAF6 mediated IRF7 activation (p = 0.009), TRIF-mediated TLR3/TLR4 signalling (p = 0.011) and MyD88-independent cascade release of apoptotic factors (p = 0.011). Protein association analysis of DMRs in OPMD revealed 19 genes involved in the cell cycle regulation, immune system, and focal adhesion. Aberrantly methylated loci in OPMD were observed in p16INK4a positive samples which suggests that a shift in global methylation status may be important for cancer progression. The results suggest that HPV infection in OPMD induces modulation of genes related to the immune system and regulation of the cellular cycle.
Collapse
Affiliation(s)
- Maria Rosa Buenahora
- Unit of Oral Clinical Epidemiology, School of Dentistry, El Bosque University, Bogotá, Colombia
| | - Gloria Inés Lafaurie
- Unit of Basic Oral Investigation, School of Dentistry, El Bosque University, Bogotá, Colombia
| | - Sandra J Perdomo
- Cellular and Molecular Immunology Research Group, Universidad El Bosque, Bogotá, Colombia
| |
Collapse
|
25
|
He X, Xu C, Wu X, Wang M, Guo Y, Zhang W, Sun Y, Stha A. Expression and methylation of Dickkopf-1 in the pathogenesis and malignant transformation of oral submucous fibrosis. J Oral Pathol Med 2020; 49:809-815. [PMID: 32794220 DOI: 10.1111/jop.13096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Dickkopf-1 is an inhibitor of the Wnt/β-catenin pathway, but the role of Dickkopf-1 in oral submucous fibrosis remains unclear. We evaluated the protein expression and gene methylation levels of dickkopf-1 to determine the mechanism underlying abnormal Wnt/β-catenin pathway activation. METHODS Healthy mucosa, oral submucous fibrosis, oral squamous cell carcinoma, and cancer-adjacent tissues were collected. The expression and promoter methylation levels of dickkopf-1 were analyzed. RESULTS The expression levels of dickkopf-1 in oral submucous fibrosis and oral squamous cell carcinoma tissues were lower than those in healthy and cancer-adjacent tissues. The methylation levels of the dickkopf-1 gene in oral submucous fibrosis and oral squamous cell carcinoma tissues were higher than those in healthy and cancer-adjacent tissues. Dickkopf-1 expression was negatively correlated with dickkopf-1 gene methylation. CONCLUSIONS High dickkopf-1 methylation levels in oral submucous fibrosis and oral squamous cell carcinoma tissues may decrease dickkopf-1 expression, which may induce an abnormal activation of the Wnt/β-catenin pathway and oral submucous fibrosis pathogenesis.
Collapse
Affiliation(s)
- Xiufang He
- Department of Oral Mucosa, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.,Department of Stomatology, Affiliated Hospital of Jianghan University (The Sixth Hospital of Wuhan City), Wuhan, China
| | - Chunjiao Xu
- Department of Oral Mucosa, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoshan Wu
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Miaomiao Wang
- Department of Oral Mucosa, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yiting Guo
- Department of Oral Mucosa, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenrui Zhang
- Department of Oral Mucosa, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yumei Sun
- Department of Oral Mucosa, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Alisha Stha
- Department of Oral Mucosa, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
26
|
Borgato GB, Borges GA, Souza AP, Squarize CH, Castilho RM. Loss of PTEN sensitizes head and neck squamous cell carcinoma to 5-AZA-2'-deoxycytidine. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 130:181-190. [PMID: 32546428 DOI: 10.1016/j.oooo.2020.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 03/23/2020] [Accepted: 05/03/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Head and neck squamous cell carcinoma (HNSCC) is an aggressive cancer associated with poor survival. Phosphatase and tensin homolog (PTEN) is a tumor suppressor gene involved in the maintenance of stem cells. DNA methylation is a known epigenetic modification involved in tumor progression. In this study, we investigated the effect of the DNA demethylation agent 5-AZA-2'-deoxycytidine (5-AZA) over HNSCC and its population of cancer stem cells (CSCs) presenting dysfunctional PTEN. STUDY DESIGN The effects of 5-AZA on HNSCC were evaluated by using WSU-HN13 cells. CSC was assessed by sphere-forming assays, along with the endogenous levels of aldehyde dehydrogenase. The clonogenic potential of tumors was evaluated, along with the protein expression of mTOR signaling and the identification of nuclear factor-κB (NF-κB) and epithelial-mesenchymal transition (EMT)-associated genes, using real-time polymerase chain reaction (PCR). RESULTS We observed that loss of PTEN enhances tumor biologic behavior, including colony- and tumor sphere-forming abilities. We also found that 5-AZA has an inhibitory effect over the CSCs and molecular markers associated with the NF-κB and EMT pathways. CONCLUSIONS Our findings suggest that the stratification of treatment of HNSCC based on PTEN status may identify a subset of patients who can benefit from the coadministration of 5-AZA.
Collapse
Affiliation(s)
- Gabriell Bonifacio Borgato
- Department of Oral Biology, School of Dentistry, State University of Campinas, Piracicaba, São Paulo, Brazil; Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Gabriel Alvares Borges
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasilia, Brasilia, Brazil
| | - Ana Paula Souza
- Department of Oral Biology, School of Dentistry, State University of Campinas, Piracicaba, São Paulo, Brazil
| | - Cristiane Helena Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA
| | - Rogerio Moraes Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA.
| |
Collapse
|
27
|
Solomon MC, Radhakrishnan RA. MicroRNA's - The vibrant performers in the oral cancer scenario. JAPANESE DENTAL SCIENCE REVIEW 2020; 56:85-89. [PMID: 32612717 PMCID: PMC7310692 DOI: 10.1016/j.jdsr.2020.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/11/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a family of small non-coding (18–22 nucleotide) RNA molecules. These molecules regulate gene expression by either inhibiting mRNA translation or by degrading mRNA. A single miRNA can control the expression of target genes, and the expression of a target gene can be regulated by multiple miRNAs. They are key regulators of various biological and pathological processes. These include cell proliferation, development and tumorigenesis. Novel studies have discovered definite signature miRNAs in the initiation and progression of cancers. Interestingly, miRNAs have also been found in fragile genomic sites that are associated with increased cancer risk. These micro RNAs regulate the expression of several genes that play a crucial role in the transition of normal oral mucosa through dysplasia to malignancy. The aim of this review is to recapitulate the current understanding of the many miRNAs that have been identified, the genes that they target and the role that they play in the carcinogenic pathway. The review also highlights the prospective role of miRNAs in the diagnosis, prognosis and treatment of oral cancers.
Collapse
Affiliation(s)
- Monica Charlotte Solomon
- Department of Oral Pathology and Microbiology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raghu Anekal Radhakrishnan
- Department of Oral Pathology and Microbiology, Manipal College of Dental Sciences, Manipal, Wellcome Trust/DBT India Alliance Fellow, Director, International Relations, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
28
|
Lin K, Song LJ, Ma J, Zhang TS, You DY, He YW. Identification of cancer hallmark-associated gene and lncRNA cooperative regulation pairs and dictate lncRNA roles in oral squamous cell carcinoma. J Cell Mol Med 2020; 24:5213-5223. [PMID: 32202050 PMCID: PMC7205782 DOI: 10.1111/jcmm.15174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/17/2019] [Accepted: 03/01/2020] [Indexed: 12/28/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignant tumour in the oral and maxillofacial region. Numerous cancers share ten common traits ("hallmarks") that govern the transformation of normal cells into cancer cells. Long non-coding RNAs (lncRNAs) are important factors that contribute to tumorigenesis. However, very little is known about the cooperative relationships between lncRNAs and cancer hallmark-associated genes in OSCC. Through integrative analysis of cancer hallmarks, somatic mutations, copy number variants (CNVs) and expression, some OSCC-specific cancer hallmark-associated genes and lncRNAs are identified. A computational framework to identify gene and lncRNA cooperative regulation pairs (GLCRPs) associated with different cancer hallmarks is developed based on the co-expression and co-occurrence of mutations. The distinct and common features of ten cancer hallmarks based on GLCRPs are characterized in OSCC. Cancer hallmark insensitivity to antigrowth signals and self-sufficiency in growth signals are shared by most GLCRPs in OSCC. Some key GLCRPs participate in many cancer hallmarks in OSCC. Cancer hallmark-associated GLCRP networks have complex patterns and specific functions in OSCC. Specially, some key GLCRPs are associated with the prognosis of OSCC patients. In summary, we generate a comprehensive landscape of cancer hallmark-associated GLCRPs that can act as a starting point for future functional explorations, the identification of biomarkers and lncRNA-based targeted therapy in OSCC.
Collapse
Affiliation(s)
- Ken Lin
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Children's Hospital of Kunming Medical University, Kunming, China.,Department of Otolaryngology, Head and Neck Surgery, Kunming Children's Hospital, Kunming, China.,The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, China
| | - Lin-Jing Song
- Department of Oncology, Yan'an Hospital, Kunming, China
| | - Jing Ma
- Department of Otolaryngology, Head and Neck Surgery, Kunming Children's Hospital, Kunming, China
| | - Tie-Song Zhang
- Department of Otolaryngology, Head and Neck Surgery, Kunming Children's Hospital, Kunming, China
| | - Ding-Yun You
- School of Public Health, Kunming Medical University, Kunming, China
| | - Yong-Wen He
- Department of Dental Research, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
29
|
Chen S, Zhou Q, Liu T, Zhang W, Zeng XT, Guo Z. Prognostic value of downregulated 5-hydroxymethylcytosine expression in renal cell carcinoma: a 10 year follow-up retrospective study. J Cancer 2020; 11:1212-1222. [PMID: 31956367 PMCID: PMC6959072 DOI: 10.7150/jca.38283] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/02/2019] [Indexed: 01/10/2023] Open
Abstract
5-hydroxymethylcytosine (5hmC) is converted from DNA methylation of cytosine (5mC) by the catalysis of TET proteins, and proposed to be involved in tumorigenesis. However, the prognostic value of 5hmC in renal cell carcinoma (RCC) is still unclear. This study aimed to define the clinical significance of 5hmC in RCC. We performed dot blot assays to measure the relative expression of 5hmC in RCC. We reviewed the clinical records of 310 RCC patients and performed immunohistochemical (IHC) staining of 5hmC. The overall survival (OS) and cancer specific survival (CSS) of all patients were recorded over a 10-year follow-up period. Effective prognostic nomograms which contained 5hmC were established to provide individualized OS and CSS in RCC. 5hmC expression level was significantly decreased in RCC tissues compared with those in the normal counterparts. Kaplan-Meier curves revealed that high 5hmC expression had a good prognostic impact on RCC patients. Cox multivariate survival analyses further indicated 5hmC was an independent prognostic factor for RCC survival. Nomograms constructed based on cox regression analysis were available to calculate the survival probability directly. Calibration curves displayed good agreements. The findings were validated with an independent external cohort included 77 RCC cases. Thus, we believe we have found a significative prognostic factor for RCC.
Collapse
Affiliation(s)
- Song Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Qiang Zhou
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Tongzu Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Weibing Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xian-Tao Zeng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhongqiang Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
30
|
Potential of Melatonin as Adjuvant Therapy of Oral Cancer in the Era of Epigenomics. Cancers (Basel) 2019; 11:cancers11111712. [PMID: 31684096 PMCID: PMC6895876 DOI: 10.3390/cancers11111712] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/16/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
The wide variety of epigenetic controls available is rapidly expanding the knowledge of molecular biology even overflowing it. At the same time, it can illuminate unsuspected ways of understanding the etiology of cancer. New emerging therapeutic horizons, then, promise to overcome the current antitumor strategies need. The translational utility of this complexity is particularly welcome in oral cancer (OC), in which natural history is alarmingly disappointing due to the invasive and mutilating surgery, the high relapsing rate, the poor quality of life and the reduced survival after diagnosis. Melatonin activates protective receptor-dependent and receptor-independent processes that prevent tissue cancerisation and inhibit progressive tumor malignancy and metastasis. Related evidence has shown that melatonin pleiotropy encompasses gene expression regulation through all the three best-characterized epigenetic mechanisms: DNA methylation, chromatin modification, and non-coding RNA. OC has received less attention than other cancers despite prognosis is usually negative and there are no significant therapy improvements recorded in the past decade. However, a large research effort is being carried out to elucidate how melatonin´s machinery can prevent epigenetic insults that lead to cancer. In the light of recent findings, a comprehensive examination of biochemistry through which melatonin may reverse epigenetic aberrations in OC is an extraordinary opportunity to take a step forward in the clinical management of patients.
Collapse
|
31
|
Su CW, Chang YC, Chien MH, Hsieh YH, Chen MK, Lin CW, Yang SF. Loss of TIMP3 by promoter methylation of Sp1 binding site promotes oral cancer metastasis. Cell Death Dis 2019; 10:793. [PMID: 31624299 PMCID: PMC6797751 DOI: 10.1038/s41419-019-2016-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/18/2019] [Accepted: 09/25/2019] [Indexed: 11/09/2022]
Abstract
The tissue inhibitor of metalloproteinase-3 (TIMP3) is the only member of the TIMP family that binds to the extracellular matrix and suppresses cancer cell growth, angiogenesis, migration, and invasion. However, whether the abnormal expression and promoter methylation of TIMP3 facilitates oral cancer metastasis remain unclear. In this study, the DNA methylation levels of TIMP3 CpG islands were assessed through pyrosequencing. Artificial modulation of TIMP3 was performed to explore the role of TIMP3 in tumor metastasis in vitro and in vivo. Our results showed that the suppression of TIMP3 transcription by DNA methylation involves the inhibition of the binding of the transcription factor Sp1 to the TIMP3 promoter as well as the upregulation of DNMT1 and DNMT3B. Functional analyses revealed that TIMP3 overexpression reduced migration and invasion abilities in oral cancer cells and inhibited lymph node metastasis in vivo. Moreover, TIMP3 regulated epithelial-mesenchymal transition by increasing the expression of the epithelial markers and reducing the expression of the mesenchymal markers. In conclusion, our findings suggested that the suppression of TIMP3 by DNA methylation contributes to oral cancer metastasis.
Collapse
Affiliation(s)
- Chun-Wen Su
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Chao Chang
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Mu-Kuan Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Chiao-Wen Lin
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan.
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
32
|
The potential of nanomaterials in theranostics of oral squamous cell carcinoma: Recent progress. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
33
|
Li Y, Gao X, Lou Y. Interactions of tea polyphenols with intestinal microbiota and their implication for cellular signal conditioning mechanism. J Food Biochem 2019; 43:e12953. [PMID: 31368563 DOI: 10.1111/jfbc.12953] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/23/2019] [Accepted: 05/31/2019] [Indexed: 12/14/2022]
Abstract
Tea polyphenols (TP) is the main functional substances in tea. It has been reported that TP can modulate the composition of gut microbes in the human body, in addition, after the bio-transformation by intestinal flora, the metabolites of TP also have positive effects on the health of the host. Lots of researches have shown that TP have possible therapeutic effect against high fat diet induced obesity, which is closely related to the gut flora of the host. Therefore, this review focused on the interactions of TP with intestinal microbiota and their implication for cellular signal conditioning mechanism that will enable us to better study the two-way effects of TP and intestinal microbiota on host health improvement. PRACTICAL APPLICATIONS: TP have been widely concerned for their health care properties. As the functional food components, TP have strong antioxidant and physiological activities for human body. A better understanding on the interactions of TP with intestinal microbiota and their implication for cellular signal conditioning mechanism will lead us to better evaluate the contribution of the microbial metabolites of TP, as well as the regulation of intestinal bacterial diversity and abundance for host health.
Collapse
Affiliation(s)
- Yongyong Li
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| | - Xing Gao
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| | - Yongjiang Lou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| |
Collapse
|
34
|
Németh CG, Röcken C, Siebert R, Wiltfang J, Ammerpohl O, Gassling V. Recurrent chromosomal and epigenetic alterations in oral squamous cell carcinoma and its putative premalignant condition oral lichen planus. PLoS One 2019; 14:e0215055. [PMID: 30964915 PMCID: PMC6456184 DOI: 10.1371/journal.pone.0215055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 03/26/2019] [Indexed: 12/31/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) affects about 700.000 individuals per year worldwide with oral squamous cell carcinoma (OSCC) as a major subcategory. Despite a comprehensive treatment concept including surgery, radiation, and chemotherapy the 5-year survival rate is still only about 50 percent. Chronic inflammation is one of the hallmarks of carcinogenesis. Until now, little is known about the premalignant status of oral lichen planus (OLP) and molecular alterations in OLP are still poorly characterized. Our study aims to delineate differential DNA methylation patterns in OLP, OSCC, and normal oral mucosa. By applying a bead chip approach, we identified altered chromosomal patterns characteristic for OSCC while finding no recurrent alterations in OLP. In contrast, we identified numerous alterations in the DNA methylation pattern in OLP, as compared to normal controls, that were also present in OSCC. Our data support the hypothesis that OLP is a precursor lesion of OSCC sharing multiple epigenetic alterations with OSCC.
Collapse
Affiliation(s)
- Christopher G Németh
- Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Christoph Röcken
- Department of Pathology, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Reiner Siebert
- Institute of Human Genetics, University Hospital of Schleswig-Holstein, Kiel, Germany.,Institute of Human Genetics, University Medical Centre, Ulm, Germany
| | - Jörg Wiltfang
- Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Ole Ammerpohl
- Institute of Human Genetics, University Hospital of Schleswig-Holstein, Kiel, Germany.,Institute of Human Genetics, University Medical Centre, Ulm, Germany
| | - Volker Gassling
- Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
35
|
Yang CX, Sedhom W, Song J, Lu SL. The Role of MicroRNAs in Recurrence and Metastasis of Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2019; 11:E395. [PMID: 30901831 PMCID: PMC6468798 DOI: 10.3390/cancers11030395] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/19/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) affects 650,000 people worldwide and has a dismal 50% 5-year survival rate. Recurrence and metastasis are believed the two most important factors causing this high mortality. Understanding the biological process and the underlying mechanisms of recurrence and metastasis is critical to develop novel and effective treatment, which is expected to improve patients' survival of HNSCC. MicroRNAs are small, non-coding nucleotides that regulate gene expression at the transcriptional and post-transcriptional level. Oncogenic and tumor-suppressive microRNAs have shown to regulate nearly every step of recurrence and metastasis, ranging from migration and invasion, epithelial-mesenchymal transition (EMT), anoikis, to gain of cancer stem cell property. This review encompasses an overview of microRNAs involved in these processes. The recent advances of utilizing microRNA as biomarkers and targets for treatment, particularly on controlling recurrence and metastasis are also reviewed.
Collapse
Affiliation(s)
- Chris X Yang
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Wafik Sedhom
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - John Song
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Shi-Long Lu
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
36
|
Allameh A, Moazeni-Roodi A, Harirchi I, Ravanshad M, Motiee-Langroudi M, Garajei A, Hamidavi A, Mesbah-Namin SA. Promoter DNA Methylation and mRNA Expression Level of p16 Gene in Oral Squamous Cell Carcinoma: Correlation with Clinicopathological Characteristics. Pathol Oncol Res 2018; 25:1535-1543. [PMID: 30511108 DOI: 10.1007/s12253-018-0542-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 11/14/2018] [Indexed: 12/20/2022]
Abstract
The aim of this study was to investigate the relationship between p16 methylation and its expression in oral squamous cell carcinoma (OSCC). Also the contribution of clinicopathological factors, HPV infection and smoking in p16 expression and promoter methylation has been investigated. In this study 67 consecutive OSCC patients and 59 normal individuals were enrolled. All patients were candidates for surgery of oral cavity and fresh tumor biopsies were collected and processed for DNA and RNA extraction. Normal gingival tissues were collected from individuals referred to dentistry clinic and considered as controls. All the cases and controls were checked for HPV infection and then promoter methylation and expression of p16 gene were determined using Methylation-specific PCR (MSP) and real-time PCR (QPCR), respectively. Methylation of p16 in tumors and normal tissues were 59.7 and 38.9%, respectively. Most of hypermethylated samples (>82%) were in high grades. P16 methylation was comparable in HPV+ and HPV- patients or smokers. P16 was overexpressed (~3 fold; p = 0.044) in HPV+ tumors, but it was significantly down-regulated in smoker patients (40% of all tumors). Comparison of P16 expression in OSCC tumors with different degrees of promoter methylation further suggest the relationship of methylation rate and down-regulation of P16 expression. The p16 methylation and expression was differentially affected in patients with HPV infection and the smoker cases. Regardless of the influence of environmental factors, it appears that P16 status is useful for classifying patients with OSCC and for influencing treatment strategies in accordance with this classification. Moreover, targeting the upregulation of p16 could be a promising therapeutic option.
Collapse
Affiliation(s)
- Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran.
| | - Abdolkarim Moazeni-Roodi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran.,Department of Clinical Biochemistry, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Iraj Harirchi
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mehrdad Ravanshad
- Department of Medical Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran
| | - Maziar Motiee-Langroudi
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Ata Garajei
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.,Department of Oral and Maxillofacial Surgery, School of Dentistry and Department of Head and Neck Surgical Oncology and Reconstructive Surgery, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azin Hamidavi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran
| | - Seyed Alireza Mesbah-Namin
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran
| |
Collapse
|
37
|
Abstract
Head and neck cancers (HNCs) are the most prevalent and aggressive type of cancers. Genetic, epigenetic, environmental and viral risk-factors are associated with HNC carcinogenesis. Persistent infection of oncogenic human papillomaviruses (HR-HPVs) represent distinct biological, molecular and epigenetic entities in HNCs. There are three main epigenetic mechanisms that regulate transcription, these are DNA methylation, histone modifications and alteration in non-coding RNA networks, which can dissected to identify innovative and accurate epigenetic biomarkers for diagnosis and prognosis of HNC patients. Due to the lacunae of accurate distinctive biomarkers for the definite diagnosis of HNC, the identification of predictive epigenetic markers is necessary that might modify or increase HNC patient’s survival. In this mini review, we briefly summarize the current knowledge of different epigenetic biomarkers in HNC.
Collapse
Affiliation(s)
- Shilpi Gupta
- National Institute of Cancer Prevention and Research (NICPR), I-7, Sector-39, Noida-201301, India
| | - Prabhat Kumar
- Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida-201313, India
| | - Jayant Maini
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi-110007, India
| | - Harsimrut Kaur
- Department of Chemistry and Biochemistry (SBSR), Sharda University, Greater Noida-201310, India
| |
Collapse
|
38
|
Payne K, Spruce R, Beggs A, Sharma N, Kong A, Martin T, Parmar S, Praveen P, Nankivell P, Mehanna H. Circulating tumor DNA as a biomarker and liquid biopsy in head and neck squamous cell carcinoma. Head Neck 2018; 40:1598-1604. [PMID: 29542214 DOI: 10.1002/hed.25140] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/20/2017] [Accepted: 02/01/2018] [Indexed: 11/12/2022] Open
Abstract
The use of circulating biochemical molecular markers in head and neck cancer holds the promise of improved diagnostics, treatment planning, and posttreatment surveillance. In this review, we provide an introduction for the head and neck surgeon of the basic science, current evidence, and future applications of circulating tumor DNA (ctDNA) as a biomarker and liquid biopsy to detect tumor genetic heterogeneity in patients with head and neck squamous cell carcinoma (HNSCC).
Collapse
Affiliation(s)
- Karl Payne
- Department of Oral and Maxillofacial Surgery, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Rachel Spruce
- Translational Laboratory Team, University of Birmingham, Birmingham, United Kingdom
| | - Andrew Beggs
- Department of Cancer and Genetics, University of Birmingham, Birmingham, United Kingdom
| | - Neil Sharma
- Department of Head and Neck Surgery, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Anthony Kong
- Department of Clinical Oncology, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Timothy Martin
- Department of Oral and Maxillofacial Surgery, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Satyesh Parmar
- Department of Oral and Maxillofacial Surgery, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Prav Praveen
- Department of Oral and Maxillofacial Surgery, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Paul Nankivell
- Department of Head and Neck Surgery, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Hisham Mehanna
- Institute of Head and Neck Studies and Education, Department of Head and Neck Surgery, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
39
|
Hearnden V, Powers HJ, Elmogassabi A, Lowe R, Murdoch C. Methyl-donor depletion of head and neck cancer cells in vitro establishes a less aggressive tumour cell phenotype. Eur J Nutr 2018; 57:1321-1332. [PMID: 28251343 PMCID: PMC5959985 DOI: 10.1007/s00394-017-1411-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 02/19/2017] [Indexed: 11/24/2022]
Abstract
PURPOSE DNA methylation plays a fundamental role in the epigenetic control of carcinogenesis and is, in part, influenced by the availability of methyl donors obtained from the diet. In this study, we developed an in-vitro model to investigate whether methyl donor depletion affects the phenotype and gene expression in head and neck squamous cell carcinoma (HNSCC) cells. METHODS HNSCC cell lines (UD-SCC2 and UPCI-SCC72) were cultured in medium deficient in methionine, folate, and choline or methyl donor complete medium. Cell doubling-time, proliferation, migration, and apoptosis were analysed. The effects of methyl donor depletion on enzymes controlling DNA methylation and the pro-apoptotic factors death-associated protein kinase-1 (DAPK1) and p53 upregulated modulator of apoptosis (PUMA) were examined by quantitative-PCR or immunoblotting. RESULTS HNSCC cells cultured in methyl donor deplete conditions showed significantly increased cell doubling times, reduced cell proliferation, impaired cell migration, and a dose-dependent increase in apoptosis when compared to cells cultured in complete medium. Methyl donor depletion significantly increased the gene expression of DNMT3a and TET-1, an effect that was reversed upon methyl donor repletion in UD-SCC2 cells. In addition, expression of DAPK1 and PUMA was increased in UD-SCC2 cells cultured in methyl donor deplete compared to complete medium, possibly explaining the observed increase in apoptosis in these cells. CONCLUSION Taken together, these data show that depleting HNSCC cells of methyl donors reduces the growth and mobility of HNSCC cells, while increasing rates of apoptosis, suggesting that a methyl donor depleted diet may significantly affect the growth of established HNSCC.
Collapse
Affiliation(s)
- Vanessa Hearnden
- Human Nutrition Unit, Department of Oncology, University of Sheffield, Sheffield, S10 2RX, UK
- School of Clinical Dentistry, University of Sheffield, Sheffield, S10 2TA, UK
| | - Hilary J Powers
- Human Nutrition Unit, Department of Oncology, University of Sheffield, Sheffield, S10 2RX, UK
| | - Abeir Elmogassabi
- Human Nutrition Unit, Department of Oncology, University of Sheffield, Sheffield, S10 2RX, UK
| | - Rosanna Lowe
- Human Nutrition Unit, Department of Oncology, University of Sheffield, Sheffield, S10 2RX, UK
| | - Craig Murdoch
- School of Clinical Dentistry, University of Sheffield, Sheffield, S10 2TA, UK.
| |
Collapse
|
40
|
Lin CC, Hsieh TC, Wu LSH. Long-term use of valproic acid and the prevalence of cancers in bipolar disorder patients in a Taiwanese population: An association analysis using the National Health Insurance Research Database (NHIRD). J Affect Disord 2018; 232:103-108. [PMID: 29481993 DOI: 10.1016/j.jad.2018.02.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/24/2018] [Accepted: 02/16/2018] [Indexed: 10/18/2022]
Abstract
BACKGROUND Epigenetic events play a major role in the carcinogenesis of many cancers. A retrospective cohort study had been performed to evaluate the effects of exposure to the anticonvulsant agent valproic acid (VPA), a histone deacetylase inhibitor, on the risk of developing cancers. METHODS The study was based on the 1998 through 2009 National Health Insurance Research Database (NHIRD), provided by the Taiwan National Health Research Institute. Patients with a diagnosis of bipolar disorder (ICD-9-CM codes 296.0, 296.1, 296.4-8) from 1998 to 2009 were identified. VPA and lithium were the primary index drugs. Patients treated with anticonvulsants who did not use VPA or lithium were selected as the control group. Competing risk regression analysis were used to estimate hazards ratios (HR) and 95% confidence intervals (95% CI) reflecting the association between use of VPA and cancer incidence. RESULTS The cancer incidence of bipolar disorder patients treated with VPA was no significant difference than treated with lithium and other anticonvulsants. In subgroup analysis, VPA associated to higher risk of genitourinary cancer in the duration < 1 year group (HR: 3.49; 95%CI: 1.04, 11.67). No significant differences in other cancers incidence in any duration of VPA treatment. LIMITATIONS The cancer prevalence in selected bipolar disorder patients was still low. The sample size was not enough for some types of cancer. CONCLUSIONS A role of VPA in cancer prevention was not found in this study. An increased subgroup risk of genitourinary cancer was observed.
Collapse
Affiliation(s)
- Cheng Chia Lin
- Department of Urology, Chang Gung Memorial Hospital, Keelung Division Taiwan, ROC
| | - Tsung-Cheng Hsieh
- Institute of Medical Sciences, Tzu Chi University, #701, Zhongyang Road, Section 3, Hualien 97004, Taiwan, ROC
| | - Lawrence Shih-Hsin Wu
- Graduate Institute of Biomedical Sciences, China Medical University, #91 Hsueh-Shih Road, Taichung, Taiwan, ROC.
| |
Collapse
|
41
|
Cao Y, Green K, Quattlebaum S, Milam B, Lu L, Gao D, He H, Li N, Gao L, Hall F, Whinery M, Handley E, Ma Y, Xu T, Jin F, Xiao J, Wei M, Smith D, Bornstein S, Gross N, Pyeon D, Song J, Lu SL. Methylated genomic loci encoding microRNA as a biomarker panel in tissue and saliva for head and neck squamous cell carcinoma. Clin Epigenetics 2018; 10:43. [PMID: 29636832 PMCID: PMC5883341 DOI: 10.1186/s13148-018-0470-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/12/2018] [Indexed: 02/07/2023] Open
Abstract
Background To identify aberrant promoter methylation of genomic loci encoding microRNA (mgmiR) in head and neck squamous cell carcinoma (HNSCC) and to evaluate a biomarker panel of mgmiRs to improve the diagnostic accuracy of HNSCC in tissues and saliva. Methods Methylation of promoter regions of mgmiR candidates was initially screened using HNSCC and control cell lines and further selected using HNSCC and control tissues by quantitative methylation-specific PCR (qMS-PCR). We then examined a panel of seven mgmiRs for validation in an expanded cohort including 189 HNSCC and 92 non-HNSCC controls. Saliva from 86 pre-treatment HNSCC patients and 108 non-HNSCC controls was also examined using this panel of seven mgmiRs to assess the potentials of clinical utilization. Results Among the 315 screened mgmiRs, 12 mgmiRs were significantly increased in HNSCC cell lines compared to control cell lines. Seven out of the 12 mgmiRs, i.e., mgmiR9-1, mgmiR124-1, mgmiR124-2, mgmiR124-3, mgmiR129-2, mgmiR137, and mgmiR148a, were further found to significantly increase in HNSCC tumor tissues compared to control tissues. Using multivariable logistic regression with dichotomized variables, a combination of the seven mgmiRs had sensitivity and specificity of 92.6 and 92.4% in tissues and 76.7 and 86.1% in saliva, respectively. Area under the receiver operating curve for this panel was 0.97 in tissue and 0.93 in saliva. This model was validated by independent bootstrap validation and random forest analysis. Conclusions mgmiR biomarkers represent a novel and promising screening tool, and the seven-mgmiR panel is able to robustly detect HNSCC in both patient tissue and saliva. Electronic supplementary material The online version of this article (10.1186/s13148-018-0470-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu Cao
- 1Department of Otolaryngology, University of Colorado Anschutz Medical Campus, 12700 E19th Avenue, Aurora, CO 80045 USA.,2Laboratory of Precision Oncology, China Medical University School of Pharmacy, No. 77 Puhe Road, Shenyang, 110122 China
| | - Katherine Green
- 1Department of Otolaryngology, University of Colorado Anschutz Medical Campus, 12700 E19th Avenue, Aurora, CO 80045 USA
| | - Steve Quattlebaum
- 1Department of Otolaryngology, University of Colorado Anschutz Medical Campus, 12700 E19th Avenue, Aurora, CO 80045 USA
| | - Ben Milam
- 1Department of Otolaryngology, University of Colorado Anschutz Medical Campus, 12700 E19th Avenue, Aurora, CO 80045 USA
| | - Ling Lu
- 1Department of Otolaryngology, University of Colorado Anschutz Medical Campus, 12700 E19th Avenue, Aurora, CO 80045 USA
| | - Dexiang Gao
- 3Department of Biostatistics, University of Colorado Anschutz Medical Campus, 12700 E19th Avenue, Aurora, CO 80045 USA
| | - Hui He
- 1Department of Otolaryngology, University of Colorado Anschutz Medical Campus, 12700 E19th Avenue, Aurora, CO 80045 USA.,Research Laboratory and Department of Hematology, Benxi Central Hospital, Benxi, 117000 China
| | - Ningning Li
- 1Department of Otolaryngology, University of Colorado Anschutz Medical Campus, 12700 E19th Avenue, Aurora, CO 80045 USA.,Department of Medical Oncology, Peking Union Medical School Hospital, Beijing, 100730 China
| | - Liwei Gao
- 1Department of Otolaryngology, University of Colorado Anschutz Medical Campus, 12700 E19th Avenue, Aurora, CO 80045 USA.,6Department of Radiation Oncology, China Japan Friendship Hospital, Beijing, China
| | - Francis Hall
- 1Department of Otolaryngology, University of Colorado Anschutz Medical Campus, 12700 E19th Avenue, Aurora, CO 80045 USA
| | - Matthew Whinery
- 1Department of Otolaryngology, University of Colorado Anschutz Medical Campus, 12700 E19th Avenue, Aurora, CO 80045 USA
| | - Elyse Handley
- 1Department of Otolaryngology, University of Colorado Anschutz Medical Campus, 12700 E19th Avenue, Aurora, CO 80045 USA
| | - Yi Ma
- 1Department of Otolaryngology, University of Colorado Anschutz Medical Campus, 12700 E19th Avenue, Aurora, CO 80045 USA.,7Department of Otolaryngology, The First University Hospital of China Medical University, Shenyang, 110001 China
| | - Tao Xu
- 8Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, 12700 E19th Avenue, Aurora, CO 80045 USA
| | - Feng Jin
- 9Department of Surgical Oncology, The First University Hospital of China Medical University, Shenyang, 110001 China
| | - Jing Xiao
- 10Department of Oral Pathology, Dental School of Dalian Medical University, Dalian, 116044 China
| | - Minjie Wei
- 2Laboratory of Precision Oncology, China Medical University School of Pharmacy, No. 77 Puhe Road, Shenyang, 110122 China
| | - Derek Smith
- 3Department of Biostatistics, University of Colorado Anschutz Medical Campus, 12700 E19th Avenue, Aurora, CO 80045 USA
| | - Sophia Bornstein
- 11Department of Radiation Oncology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239 USA.,15Department of Radiation Oncology, Cornell University, New York, NY USA
| | - Neil Gross
- 12Department of Otolaryngology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239 USA.,16Department of Head and Neck Surgery, MD Anderson Cancer Center, Houston, TX USA
| | - Dohun Pyeon
- 8Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, 12700 E19th Avenue, Aurora, CO 80045 USA
| | - John Song
- 1Department of Otolaryngology, University of Colorado Anschutz Medical Campus, 12700 E19th Avenue, Aurora, CO 80045 USA
| | - Shi-Long Lu
- 1Department of Otolaryngology, University of Colorado Anschutz Medical Campus, 12700 E19th Avenue, Aurora, CO 80045 USA.,2Laboratory of Precision Oncology, China Medical University School of Pharmacy, No. 77 Puhe Road, Shenyang, 110122 China.,13Department of Pathology, University of Colorado Anschutz Medical Campus, 12700 E19th Avenue, Aurora, CO 80045 USA.,14Department of Dermatology, University of Colorado Anschutz Medical Campus, 12700 E19th Avenue, Aurora, CO 80045 USA
| |
Collapse
|
42
|
Pereira CM, de Carvalho AC, da Silva FR, Melendez ME, Lessa RC, Andrade VCC, Kowalski LP, Vettore AL, Carvalho AL. In vitro and in silico validation of CA3 and FHL1 downregulation in oral cancer. BMC Cancer 2018; 18:193. [PMID: 29454310 PMCID: PMC5816396 DOI: 10.1186/s12885-018-4077-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 01/29/2018] [Indexed: 12/31/2022] Open
Abstract
Background Aberrant methylation is a frequent event in oral cancer. Methods In order to better characterize these alterations, a search for genes downregulated by aberrant methylation in oral squamous cell carcinoma (OSCC) was conducted through the mining of ORESTES dataset. Findings were further validated in OSCC cell lines and patients’ samples and confirmed using TCGA data. Differentially expressed genes were identified in ORESTES libraries and validated in vitro using RT-PCR in HNSCC cell-lines and OSCC tumor samples. Further confirmation of these results was performed using mRNA expression and methylation data from The Cancer Genome Atlas (TCGA) data. Results From the set of genes selected for validation, CA3 and FHL1 were downregulated in 60% (12/20) and 75% (15/20) of OSCC samples, respectively, and in HNSCC cell lines. The treatment of cell lines JHU-13 and FaDu with the demethylating agent 5'-aza-dC was efficient in restoring CA3 and FHL1 expression. TCGA expression and methylation data on OSCC confirms the downregulation of these genes in OSCC samples and also suggests that expression of CA3 and FHL1 is probably regulated by methylation. The downregulation of CA3 and FHL1 observed in silico was validated in HNSCC cell lines and OSCC samples, showing the feasibility of integrating different datasets to select differentially expressed genes in silico. Conclusions These results showed that the downregulation of CA3 and FHL1 data observed in the ORESTES libraries was validated in HNSCC cell lines and OSCC samples and in a large cohort of samples from the TCGA database. Moreover, it suggests that expression of CA3 and FHL1 could probably be regulated by methylation having an important role the oral carcinogenesis. Electronic supplementary material The online version of this article (10.1186/s12885-018-4077-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cláudia Maria Pereira
- Department of Head and Neck Surgery, A. C. Camargo Cancer Hospital, São Paulo, Brazil.,Laboratory of Cancer Genetics, Ludwig Institute for Cancer Research, Sao Paulo, Branch, Brazil
| | - Ana Carolina de Carvalho
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Department of Science Biology, Universidade Federal de São Paulo, UNIFESP, Diadema, Brazil
| | | | | | - Roberta Cardim Lessa
- Department of Head and Neck Surgery, A. C. Camargo Cancer Hospital, São Paulo, Brazil.,Laboratory of Cancer Genetics, Ludwig Institute for Cancer Research, Sao Paulo, Branch, Brazil
| | | | - Luiz Paulo Kowalski
- Department of Head and Neck Surgery, A. C. Camargo Cancer Hospital, São Paulo, Brazil
| | - André L Vettore
- Laboratory of Cancer Genetics, Ludwig Institute for Cancer Research, Sao Paulo, Branch, Brazil.,Department of Science Biology, Universidade Federal de São Paulo, UNIFESP, Diadema, Brazil
| | - André Lopes Carvalho
- Department of Head and Neck Surgery, A. C. Camargo Cancer Hospital, São Paulo, Brazil. .,Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil. .,Department of Head and Neck Surgery, Barretos Cancer Hospital, Barretos, São Paulo, Brazil.
| |
Collapse
|
43
|
Guerrero-Preston R, White JR, Godoy-Vitorino F, Rodríguez-Hilario A, Navarro K, González H, Michailidi C, Jedlicka A, Canapp S, Bondy J, Dziedzic A, Mora-Lagos B, Rivera-Alvarez G, Ili-Gangas C, Brebi-Mieville P, Westra W, Koch W, Kang H, Marchionni L, Kim Y, Sidransky D. High-resolution microbiome profiling uncovers Fusobacterium nucleatum, Lactobacillus gasseri/johnsonii, and Lactobacillus vaginalis associated to oral and oropharyngeal cancer in saliva from HPV positive and HPV negative patients treated with surgery and chemo-radiation. Oncotarget 2017; 8:110931-110948. [PMID: 29340028 PMCID: PMC5762296 DOI: 10.18632/oncotarget.20677] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/12/2017] [Indexed: 12/19/2022] Open
Abstract
Microbiome studies show altered microbiota in head and neck squamous cell carcinoma (HNSCC), both in terms of taxonomic composition and metabolic capacity. These studies utilized a traditional bioinformatics methodology, which allows for accurate taxonomic assignment down to the genus level, but cannot accurately resolve species level membership. We applied Resphera Insight, a high-resolution methodology for 16S rRNA taxonomic assignment that is able to provide species-level context in its assignments of 16S rRNA next generation sequencing (NGS) data. Resphera Insight applied to saliva samples from HNSCC patients and healthy controls led to the discovery that a subset of HNSCC saliva samples is significantly enriched with commensal species from the vaginal flora, including Lactobacillus gasseri/johnsonii (710x higher in saliva) and Lactobacillus vaginalis (52x higher in saliva). These species were not observed in normal saliva from Johns Hopkins patients, nor in 16S rRNA NGS saliva samples from the Human Microbiome Project (HMP). Interestingly, both species were only observed in saliva from Human Papilloma Virus (HPV) positive and HPV negative oropharyngeal cancer patients. We confirmed the representation of both species in HMP data obtained from mid-vagina (n=128) and vaginal introitus (n=121) samples. Resphera Insight also led to the discovery that Fusobacterium nucleatum, an oral cavity flora commensal bacterium linked to colon cancer, is enriched (600x higher) in saliva from a subset of HNSCC patients with advanced tumors stages. Together, these high-resolution analyses on 583 samples suggest a possible role for bacterial species in the therapeutic outcome of HPV positive and HPV negative HNSCC patients.
Collapse
Affiliation(s)
- Rafael Guerrero-Preston
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA.,Department of Obstetrics and Gynecology, University of Puerto Rico, School of Medicine, San Juan, Puerto Rico
| | - James Robert White
- Department of Computational Biology Resphera Biosciences, Baltimore, MD, USA
| | - Filipa Godoy-Vitorino
- Natural Sciences Department, Microbial Ecology and Genomics Lab, Inter American University of Puerto Rico, Metropolitan Campus, San Juan, Puerto Rico
| | - Arnold Rodríguez-Hilario
- Natural Sciences Department, Microbial Ecology and Genomics Lab, Inter American University of Puerto Rico, Metropolitan Campus, San Juan, Puerto Rico
| | - Kelvin Navarro
- Natural Sciences Department, Microbial Ecology and Genomics Lab, Inter American University of Puerto Rico, Metropolitan Campus, San Juan, Puerto Rico
| | - Herminio González
- Natural Sciences Department, Microbial Ecology and Genomics Lab, Inter American University of Puerto Rico, Metropolitan Campus, San Juan, Puerto Rico
| | - Christina Michailidi
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Anne Jedlicka
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, School of Public Health, Baltimore, Maryland, USA
| | - Sierra Canapp
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Jessica Bondy
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Amanda Dziedzic
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, School of Public Health, Baltimore, Maryland, USA
| | - Barbara Mora-Lagos
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA.,Laboratory of Molecular Pathology, Department of Pathological Anatomy, School of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Gustavo Rivera-Alvarez
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA.,Department of Obstetrics and Gynecology, University of Puerto Rico, School of Medicine, San Juan, Puerto Rico
| | - Carmen Ili-Gangas
- Laboratory of Molecular Pathology, Department of Pathological Anatomy, School of Medicine, Universidad de La Frontera, Temuco, Chile.,Center of Excellence in Translational Medicine - Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Priscilla Brebi-Mieville
- Laboratory of Molecular Pathology, Department of Pathological Anatomy, School of Medicine, Universidad de La Frontera, Temuco, Chile.,Center of Excellence in Translational Medicine - Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - William Westra
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Wayne Koch
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Hyunseok Kang
- Department of Oncology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Luigi Marchionni
- Department of Oncology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Young Kim
- Department of Otolaryngology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David Sidransky
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
44
|
Molecular progression of head and neck squamous cell carcinoma. THE NUCLEUS 2017. [DOI: 10.1007/s13237-017-0212-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
45
|
|
46
|
Molecular mechanisms of human papillomavirus-related carcinogenesis in head and neck cancer. Microbes Infect 2017; 19:464-475. [PMID: 28619685 DOI: 10.1016/j.micinf.2017.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 01/04/2023]
Abstract
This review examines the general cellular and molecular underpinnings of human papillomavirus (HPV)-related carcinogenesis in the context of head and neck squamous cell carcinoma (HNSCC) and focuses on HPV-positive oropharyngeal squamous cell carcinoma in areas for which specific data is available. It covers the major pathways dysregulated in HPV-positive HNSCC and the genome-wide changes associated with this disease.
Collapse
|
47
|
Wang Y, Hu H, Wang Q, Li Z, Zhu Y, Zhang W, Wang Y, Jiang H, Cheng J. The level and clinical significance of 5-hydroxymethylcytosine in oral squamous cell carcinoma: An immunohistochemical study in 95 patients. Pathol Res Pract 2017; 213:969-974. [PMID: 28554766 DOI: 10.1016/j.prp.2017.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/26/2017] [Accepted: 04/14/2017] [Indexed: 12/22/2022]
Abstract
Accumulating evidence has revealed that aberrant abundance of 5-hydroxymethylcytosine (5hmC) is critically involved in tumorigenesis. The aim of the present study was to investigate the level of 5hmC in primary oral squamous cell carcinoma (OSCC) and determine its clinical significance as well as prognostic value in predicting patients' outcomes. The expression levels of 5hmC in 95 human OSCC samples and 24 normal oral mucosa were evaluated by immunohistochemical staining. Moreover, the associations between the expression status of 5hmC and several clinicopathological parameters as well as patients' survival were further statistically assessed. Our immunohistochemical results revealed that 5hmC was significantly downregulated in a significant fraction of OSCC as compared their normal counterparts. However, elevated 5hmC level was found to be significantly associated with pathological grade and cervical node metastasis with P-values of 0.0239 and 0.0041, respectively. Results from Kaplan-Meier cumulative survival analyses indicated that high expression of 5hmC in OSCC was significantly associated with decreased overall survival, disease-free and disease-specific survival as compared to those with low 5hmC (Log-rank, P=0.0210, 0.0313, 0.0415, respectively). Furthermore, the univariate and multivariate survival analyses further identified the expression status of 5hmC as an independent prognostic factor affecting patients' survival. Taken together, our results reveal a significant decrease of 5hmC level in a large subset of OSCC. However, high level of 5hmC associates with tumor aggressive features and unfavorable prognosis in a fraction of OSCC patients.
Collapse
Affiliation(s)
- Yi Wang
- Jiangsu Key Institute of Stomatology, Nanjing Medical University, Nanjing, 210029, PR China; Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, PR China
| | - Huijun Hu
- Jiangsu Key Institute of Stomatology, Nanjing Medical University, Nanjing, 210029, PR China
| | - Qiong Wang
- Jiangsu Key Institute of Stomatology, Nanjing Medical University, Nanjing, 210029, PR China; Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, PR China
| | - Zhongwu Li
- Jiangsu Key Institute of Stomatology, Nanjing Medical University, Nanjing, 210029, PR China
| | - Yumin Zhu
- Jiangsu Key Institute of Stomatology, Nanjing Medical University, Nanjing, 210029, PR China
| | - Wei Zhang
- Department of Oral Pathology, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, PR China
| | - Yanling Wang
- Jiangsu Key Institute of Stomatology, Nanjing Medical University, Nanjing, 210029, PR China
| | - Hongbing Jiang
- Jiangsu Key Institute of Stomatology, Nanjing Medical University, Nanjing, 210029, PR China.
| | - Jie Cheng
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, PR China.
| |
Collapse
|
48
|
Al-Dewik NI, Qoronfleh MW. Novel Developments in the Molecular Genetic Basis of Oral Squamous Cell Carcinoma (OSCC). DEVELOPMENT OF ORAL CANCER 2017:23-37. [DOI: 10.1007/978-3-319-48054-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
49
|
Chen LH, Hsu WL, Tseng YJ, Liu DW, Weng CF. Involvement of DNMT 3B promotes epithelial-mesenchymal transition and gene expression profile of invasive head and neck squamous cell carcinomas cell lines. BMC Cancer 2016; 16:431. [PMID: 27391030 PMCID: PMC4938990 DOI: 10.1186/s12885-016-2468-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 06/29/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The 5-year overall survival rates for head and neck cancer (HNC) relies on distant metastasis. Importantly, the epithelial-mesenchymal transition (EMT) is believed to be an initial step of metastasis. However, the relationship of epigenetic with EMT formation is still unexplored in HNC. This study focuses on invasive subclones of HNC cell lines through the simulation of invasion in vitro; and underlying mechanisms were analyzed including DNA methylation and gene expression profile. METHODS Invasive subclones of NHC cell lines were successfully obtained using transwell coated with Matrixgel. Cells invaded through 8 μm pore several times were subcultured and examined with EMT features including morphology, EMT marker genes expression, and invasive ability. Moreover, compared the profile of genes expression in parental and invasive cells was analyzed using mRNA expression array. RESULTS DNA methyltransferase 3B (DNMT 3B) was upregulated in invasive subclones and might control the 5' region of E-cadherin (E-cad) methylation and further inhibited E-cad protein expression. Interference of DNMT 3B by siRNA or miRNA 29b could reduce EMT and cell invasion. Expression array analysis revealed the most possible involved pathways in cell invasion including arginine and proline metabolism, TGF-beta, and focal adhesion. CONCLUSIONS DNMT 3B might control EMT by DNA methylation manner in invasive HNC cell lines. Moreover, miR-29b mimic downregulated DNMT 3B and inhibited EMT and cell invasion indicated the role of therapeutic agent for invasive HNC. Genes identified from array data and new molecules are involved in metastasis of HNC need further validation.
Collapse
Affiliation(s)
- Li-Hsuen Chen
- />Department of Life Science and the Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
- />Department of Radiation Oncology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Wen-Lin Hsu
- />Department of Radiation Oncology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- />School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yen-Ju Tseng
- />Department of Life Science and the Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
- />Department of Radiation Oncology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Dai-Wei Liu
- />Department of Radiation Oncology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- />School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ching-Feng Weng
- />Department of Life Science and the Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| |
Collapse
|
50
|
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide and is frequently impervious to curative treatment efforts. Similar to other cancers associated with prolonged exposure to carcinogens, HNSCCs often have a high burden of mutations, contributing to substantial inter- and intra-tumor heterogeneity. The heterogeneity of this malignancy is further increased by the rising rate of human papillomavirus (HPV)-associated (HPV+) HNSCC, which defines an etiological subtype significantly different from the more common tobacco and alcohol associated HPV-negative (HPV-) HNSCC. Since 2011, application of large scale genome sequencing projects by The Cancer Genome Atlas (TCGA) network and other groups have established extensive datasets to characterize HPV- and HPV+ HNSCC, providing a foundation for advanced molecular diagnoses, identification of potential biomarkers, and therapeutic insights. Some genomic lesions are now appreciated as widely dispersed. For example, HPV- HNSCC characteristically inactivates the cell cycle suppressors TP53 (p53) and CDKN2A (p16), and often amplifies CCND1 (cyclin D), which phosphorylates RB1 to promote cell cycle progression from G1 to S. By contrast, HPV+ HNSCC expresses viral oncogenes E6 and E7, which inhibit TP53 and RB1, and activates the cell cycle regulator E2F1. Frequent activating mutations in PIK3CA and inactivating mutations in NOTCH1 are seen in both subtypes of HNSCC, emphasizing the importance of these pathways. Studies of large patient cohorts have also begun to identify less common genetic alterations, predominantly found in HPV- tumors, which suggest new mechanisms relevant to disease pathogenesis. Targets of these alterations including AJUBA and FAT1, both involved in the regulation of NOTCH/CTNNB1 signaling. Genes involved in oxidative stress, particularly CUL3, KEAP1 and NFE2L2, strongly associated with smoking, have also been identified, and are less well understood mechanistically. Application of sophisticated data-mining approaches, integrating genomic information with profiles of tumor methylation and gene expression, have helped to further yield insights, and in some cases suggest additional approaches to stratify patients for clinical treatment. We here discuss some recent insights built on TCGA and other genomic foundations.
Collapse
Affiliation(s)
- Tim N Beck
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA.,Program in Molecular and Cell Biology and Genetics, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA.,Program in Molecular and Cell Biology and Genetics, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|