1
|
Wang T, Shi X, Xu X, Zhang J, Ma Z, Meng C, Jiao D, Wang Y, Chen Y, He Z, Zhu Y, Liu HN, Zhang T, Jiang Q. Emerging prodrug and nano-drug delivery strategies for the detection and elimination of senescent tumor cells. Biomaterials 2025; 318:123129. [PMID: 39922127 DOI: 10.1016/j.biomaterials.2025.123129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 02/10/2025]
Abstract
Tumor cellular senescence, characterized by reversible cell cycle arrest following anti-cancer therapies, presents a complex paradigm in oncology. Given that senescent tumor cells may promote angiogenesis, tumorigenesis, and metastasis, selective killing senescent cells (SCs)-a strategy termed senotherapy-has emerged as a promising approach to improve cancer treatment. However, the clinical implementation of senotherapy faces significant hurdles, including lack of precise methods for SCs identification and the potential for adverse effects associated with highly cytotoxic senolytic agents. In this account, we elucidate recent advancement in developing novel approaches for the detection and selective elimination of SCs, encompassing prodrugs, nanoparticles, and other cutting-edge drug delivery systems such as PROTAC technology and CAR T cell therapy. Furthermore, we explore the paradoxical nature of SCs, which can induce growth arrest in adjacent neoplastic cells and recruit immunomodulatory cells that contribute to tumor suppression. Therefore, we utilize SCs membrane as vehicles to elicit antitumor immunity and potentially augment existing anti-cancer therapies. Finally, the opportunities and challenges are put forward to facilitate the development and clinical transformation of SCs detection, elimination or utilization.
Collapse
Affiliation(s)
- Tao Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Xiaolan Xu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jiaming Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhengdi Ma
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chen Meng
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dian Jiao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yubo Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yanfei Chen
- School of Hainan Provincial Drug Safety Evaluation Research Center, Hainan Medical University, Haikou, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ying Zhu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, 110002, China.
| | - He-Nan Liu
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Tianhong Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Qikun Jiang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China; Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Medical University, Haikou, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| |
Collapse
|
2
|
Cong Y, Li X, Hong H. Current strategies for senescence treatment: Focused on theranostic performance of nanomaterials. J Control Release 2025; 382:113710. [PMID: 40220869 DOI: 10.1016/j.jconrel.2025.113710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/03/2025] [Accepted: 04/06/2025] [Indexed: 04/14/2025]
Abstract
Age-related diseases imposed heavy burdens to the healthcare systems globally, while cell senescence served as one fundamental molecular/cellular basis for these diseases. How to tackle the senescence-relevant problems is a hotspot for biomedical research. In this review article, the hallmarks and molecular pathways of cell senescence were firstly discussed, followed by the introduction of the current anti-senescence strategies, including senolytics and senomorphics. With suitable physical or chemical properties, multiple types of nanomaterials were used successfully in senescence therapeutics, as well as senescence detection. Based on the accumulating knowledges for senescence, the rules of how to use these nanoplatforms more efficiently against senescence were also summarized, including but not limited to surface modification, material-cargo interactions, factor responsiveness etc. The comparison of these "senescence-selective" nanoplatforms to other treatment options (prodrugs, ADCs, PROTACs, CART etc.) was also given. Learning from the past, nanotechnology can add more choice for treating age-related diseases, and provide more (diagnostic) information to further our understanding of senescence process.
Collapse
Affiliation(s)
- Yiyang Cong
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center at Nanjing University, Medical School of Nanjing University, Nanjing 210093, China
| | - Xiaoyang Li
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center at Nanjing University, Medical School of Nanjing University, Nanjing 210093, China
| | - Hao Hong
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center at Nanjing University, Medical School of Nanjing University, Nanjing 210093, China.
| |
Collapse
|
3
|
Chaudhary B, Arya P, Sharma V, Kumar P, Singla D, Grewal AS. Targeting anti-apoptotic mechanisms in tumour cells: Strategies for enhancing Cancer therapy. Bioorg Chem 2025; 159:108388. [PMID: 40107036 DOI: 10.1016/j.bioorg.2025.108388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/05/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Anti-cancer drug's cytotoxicity is determined by their ability to induce predetermined cell demise, commonly called apoptosis. The cancer-causing cells are able to evade cell death, which has been affiliated with both malignancy as well as resistance to cancer treatments. In order to avoid cell death, cancerous tumour cells often produce an abundance of anti-apoptotic proteins, becoming "dependent" on them. Consequently, protein inhibitors of cell death may prove to be beneficial as pharmacological targets for the future creation of cancer therapies. This article examines the molecular routes of apoptosis, its clinical manifestations, anti-cancer therapy options that target the intrinsic mechanism of apoptosis, proteins that prevent cell death, and members of the B-lymphoma-2 subset. In addition, novel approaches to cell death are highlighted, including how curcumin mitigates chemotherapy-induced apoptosis in healthy tissues and the various ways melatonin modifies apoptosis to improve cancer treatment efficacy, particularly through the TNF superfamily. Cancer treatment-induced increases in anti-apoptotic proteins lead to drug resistance; yet, ligands that trigger cell death by inhibiting these proteins are expected to improve chemotherapy's efficacy. The potential of frequency-modulated dietary phytochemicals as a cancer therapeutic pathway, including autophagy and apoptosis, is also explored. This approach may be more efficient than inhibition alone in overcoming drug resistance. Consequently, this method has the potential to allow for lower medication concentrations, reducing cytotoxicity and unwanted side effects.
Collapse
Affiliation(s)
- Benu Chaudhary
- Shri Ram College of Pharmacy, Ramba, Karnal, Haryana, India
| | - Preeti Arya
- Shri Ram College of Pharmacy, Ramba, Karnal, Haryana, India
| | - Vikas Sharma
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar, Haryana, India
| | - Parveen Kumar
- NIMS Institute of Pharmacy, NIMS University, Jaipur, Rajasthan, India
| | - Deepak Singla
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar, Haryana, India
| | | |
Collapse
|
4
|
Coussens NP, Dexheimer TS, Silvers T, Sanchez PR, Chen L, Hollingshead MG, Takebe N, Doroshow JH, Teicher BA. Combinatorial screen with apoptosis pathway targeted agents alrizomadlin, pelcitoclax, and dasminapant in multi-cell type tumor spheroids. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 33:100230. [PMID: 40210129 DOI: 10.1016/j.slasd.2025.100230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/31/2025] [Accepted: 04/08/2025] [Indexed: 04/12/2025]
Abstract
Apoptosis, or programmed cell death, plays a critical role in maintaining tissue homeostasis by eliminating damaged or abnormal cells. Dysregulation of apoptosis pathways is a hallmark of cancer, allowing malignant cells to evade cell death and proliferate uncontrollably. Targeting apoptosis pathways has emerged as a promising therapeutic strategy in cancer treatment, aiming to restore the balance between cell survival and death. The MDM2 inhibitor alrizomadlin, the Bcl-2/Bcl-xL inhibitor pelcitoclax, and the IAP family inhibitor dasminapant were evaluated both individually and in combinations with standard of care and investigational anticancer small molecules in a spheroid model of solid tumors. The multi-cell type tumor spheroids were grown from human endothelial cells and mesenchymal stem cells combined with human malignant cells that were either established or patient-derived cell lines from the NCI Patient-Derived Models Repository. The malignant cell lines were derived from a range of solid tumors including uterine carcinosarcoma, synovial sarcoma, rhabdomyosarcoma, soft tissue sarcoma, malignant fibrous histiocytoma, malignant peripheral nerve sheath tumor (MPNST), pancreas, ovary, colon, breast, and small cell lung cancer. Interactions were observed from combinations of the apoptosis pathway targeted agents. Additionally, interactions were observed from combinations of the apoptosis pathway targeted agents with other agents, including PARP inhibitors, the XPO1 inhibitor eltanexor, and the PI3K inhibitor copanlisib. Enhanced activity was also observed from combinations of the apoptosis pathway targeted agents with MAPK pathway targeted agents, including the MEK inhibitor cobimetinib as well as adagrasib and MRTX1133, which specifically target the KRAS G12C and G12D variants, respectively.
Collapse
Affiliation(s)
- Nathan P Coussens
- Molecular Pharmacology Laboratory, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| | - Thomas S Dexheimer
- Molecular Pharmacology Laboratory, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Thomas Silvers
- Molecular Pharmacology Laboratory, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Phillip R Sanchez
- Molecular Pharmacology Laboratory, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Li Chen
- Molecular Characterization Laboratory, Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Melinda G Hollingshead
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Naoko Takebe
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Beverly A Teicher
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Chatzilygeroudi T, Karantanos T, Pappa V. Unraveling Venetoclax Resistance: Navigating the Future of HMA/Venetoclax-Refractory AML in the Molecular Era. Cancers (Basel) 2025; 17:1586. [PMID: 40361510 PMCID: PMC12071220 DOI: 10.3390/cancers17091586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/02/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025] Open
Abstract
Acute myeloid leukemia (AML) has traditionally been linked to a poor prognosis, particularly in older patients who are ineligible for intensive chemotherapy. The advent of Venetoclax, a powerful oral BH3 mimetic targeting anti-apoptotic protein BCL2, has significantly advanced AML treatment. Its combination with the hypomethylating agent azacitidine (AZA/VEN) has become a standard treatment for this group of AML patients, demonstrating a 65% overall response rate and a median overall survival of 14.7 months, compared to 22% and 8 months with azacitidine monotherapy, respectively. However, resistance and relapses remain common, representing a significant clinical challenge. Recent studies have identified molecular alterations, such as mutations in FLT3-ITD, NRAS/KRAS, TP53, and BAX, as major drivers of resistance. Additionally, other factors, including metabolic changes, anti-apoptotic protein expression, and monocytic or erythroid/megakaryocytic differentiation status, contribute to treatment failure. Clinical trials are exploring strategies to overcome venetoclax resistance, including doublet or triplet therapies targeting IDH and FLT3 mutations; novel epigenetic approaches; menin, XPO1, and MDM2 inhibitors; along with immunotherapies like monoclonal antibodies and antibody-drug conjugates. A deeper understanding of the molecular mechanisms of resistance through single-cell analysis will be crucial for developing future therapeutic strategies.
Collapse
Affiliation(s)
- Theodora Chatzilygeroudi
- Second Department of Internal Medicine and Research Unit, Hematology Unit, National and Kapodistrian University of Athens School of Medicine, Attikon University Hospital, 12462 Athens, Greece;
| | - Theodoros Karantanos
- Division of Hematologic Malignancies and Bone Marrow Transplantation, Department of Medical Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Vasiliki Pappa
- Second Department of Internal Medicine and Research Unit, Hematology Unit, National and Kapodistrian University of Athens School of Medicine, Attikon University Hospital, 12462 Athens, Greece;
| |
Collapse
|
6
|
Rys RN, Calcinotto A. Senescent neutrophils: a hidden role in cancer progression. Trends Cell Biol 2025; 35:399-411. [PMID: 39362804 DOI: 10.1016/j.tcb.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Neutrophils have recently received increased attention in cancer because they contribute to all stages of cancer. Neutrophils are so far considered to have a short half-life. However, a growing body of literature has shown that tumor-associated neutrophils (TANs) acquire a prolonged lifespan. This review discusses recent work surrounding the mechanisms by which neutrophils can persist in the tumor microenvironment (TME). It also highlights different scenarios for therapeutic targeting of protumorigenic neutrophils, supporting the idea that, in tumors, inhibition of neutrophil recruitment is not sufficient because these cells can persist and remain hidden from current interventions. Hence, the elimination of long-lived neutrophils should be pursued to increase the efficacy of standard therapy.
Collapse
Affiliation(s)
- Ryan N Rys
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland
| | - Arianna Calcinotto
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland.
| |
Collapse
|
7
|
Qiu Y, Hüther JA, Wank B, Rath A, Tykwe R, Aldrovandi M, Henkelmann B, Mergner J, Nakamura T, Laschat S, Conrad M, Stöhr D, Rehm M. Interplay of ferroptotic and apoptotic cell death and its modulation by BH3-mimetics. Cell Death Differ 2025:10.1038/s41418-025-01514-7. [PMID: 40301648 DOI: 10.1038/s41418-025-01514-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/28/2025] [Accepted: 04/07/2025] [Indexed: 05/01/2025] Open
Abstract
Ferroptosis and apoptosis are widely considered to be independent cell death modalities. Ferroptotic cell death is a consequence of insufficient radical detoxification and progressive lipid peroxidation, which is counteracted by glutathione peroxidase-4 (GPX4). Apoptotic cell death can be triggered by a wide variety of stresses, including oxygen radicals, and can be suppressed by anti-apoptotic members of the BCL-2 protein family. Mitochondria are the main interaction site of BCL-2 family members and likewise a major source of oxygen radical stress. We therefore studied if ferroptosis and apoptosis might intersect and possibly interfere with one another. Indeed, cells dying from impaired GPX4 activity displayed hallmarks of both ferroptotic and apoptotic cell death, with the latter including (transient) membrane blebbing, submaximal cytochrome-c release and caspase activation. Targeting BCL-2, MCL-1 or BCL-XL with BH3-mimetics under conditions of moderate ferroptotic stress in many cases synergistically enhanced overall cell death and frequently skewed primarily ferroptotic into apoptotic outcomes. Surprisingly though, in other cases BH3-mimetics, most notably the BCL-XL inhibitor WEHI-539, counter-intuitively suppressed cell death and promoted cell survival following GPX4 inhibition. Further studies revealed that most BH3-mimetics possess previously undescribed antioxidant activities that counteract ferroptotic cell death at commonly employed concentration ranges. Our results therefore show that ferroptosis and apoptosis can intersect. We also show that combining ferroptotic stress with BH3-mimetics, context-dependently can either enhance and convert cell death outcomes between ferroptosis and apoptosis or can also suppress cell death by intrinsic antioxidant activities.
Collapse
Affiliation(s)
- Yun Qiu
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Juliana A Hüther
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Bianca Wank
- Institute of Organic Chemistry, University of Stuttgart, Stuttgart, Germany
| | - Antonia Rath
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - René Tykwe
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Maceler Aldrovandi
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Bernhard Henkelmann
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Julia Mergner
- Bavarian Center for Biomolecular Mass Spectrometry at MRI, TUM, Munich, Germany
| | - Toshitaka Nakamura
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Sabine Laschat
- Institute of Organic Chemistry, University of Stuttgart, Stuttgart, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Daniela Stöhr
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany.
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
8
|
Hu H, Li C, Song Y, Xie J, Li Q, Ke F, Wen B, Wang S, Gao W, Sun D. Albumin nanocomplex of BCL-2/xL inhibitor reduced platelet toxicity and improved anticancer efficacy in myeloproliferative neoplasm and lymphoma. Biomaterials 2025; 322:123347. [PMID: 40306157 DOI: 10.1016/j.biomaterials.2025.123347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Accepted: 04/14/2025] [Indexed: 05/02/2025]
Abstract
The clinical application of BCL-2/xL inhibitors for cancer treatment is limited by the on-target thrombocytopenia. Although APG-1252 was designed to mitigate this issue, platelet toxicity at higher doses in clinical trials restricts dose escalation for greater efficacy. We have developed albumin nanocomplexes of APG-1252 (Nano-1252) to reduce platelet toxicity while improving drug efficacy through enhancing drug delivery to lymphoid organs. Nano-1252 forms stable nanoparticles due to the strong binding affinity between APG-1252 and albumin, reducing the platelet toxicity threshold by fourfold by limiting premature drug release and conversion to its active forms in circulation. Furthermore, Nano-1252 exhibited preferential accumulation in lymphoid organs, leading to enhanced anticancer efficacy in Mantle Cell Lymphoma (MCL) and Myeloproliferative Neoplasms (MPNs) mouse models. Our study not only develops a potential formulation to overcome the current translational barrier of APG-1252 but also reveals novel properties of the well-established albumin nanoformulation, thereby expanding its clinical applications.
Collapse
Affiliation(s)
- Hongxiang Hu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Chengyi Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yudong Song
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jizhao Xie
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Qiuxia Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Fang Ke
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shaomeng Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Wei Gao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Pharmacology and Pharmaceutical Science, College of Pharmacy, The University of Houston, TX, 77204, USA.
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
9
|
Patel M, Potluri J, Marbury T, Lawitz E, Rondon JC, Hoffman DM, Siddani SR, Marsh KC, Kim EJ, Uddin ME, Menon RM, Polepally AR. Pharmacokinetics and Safety of Navitoclax in Hepatic Impairment. Clin Pharmacokinet 2025; 64:611-617. [PMID: 40146460 DOI: 10.1007/s40262-025-01484-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 03/28/2025]
Abstract
BACKGROUND AND OBJECTIVE Navitoclax, an orally bioavailable B-cell lymphoma-2 (Bcl-2) family protein inhibitor, inhibits antiapoptotic Bcl-2 family proteins (with high affinity to Bcl-XL, Bcl-2, and Bcl-W). Navitoclax in combination with ruxolitinib has been investigated to treat patients with myelofibrosis (MF). METHODS Since navitoclax undergoes hepatic metabolism, we evaluated the pharmacokinetics (PK) and safety of single-dose navitoclax 50 mg in a phase 1 study in participants with mild (N = 6), moderate (N = 6), or severe (N = 1) hepatic impairment and matched participants with normal hepatic function (N = 7). All participants in this study were enrolled per Child-Pugh classification, with demographics matched per age, weight, and race. RESULTS Navitoclax maximum plasma concentration (Cmax), area under the plasma concentration-time curve for time zero to infinity (AUC0-∞), and terminal elimination half-life (t1/2) in participants with mild or moderate hepatic impairment were comparable to participants with normal hepatic function. The change in Cmax and AUC0-∞ values in participants with mild and moderate hepatic impairment were within 25% of normal hepatic function. Overall, 2/20 (10%) participants receiving a 50 mg single dose reported grade 1 treatment-emergent adverse events of nausea (N = 1) and diarrhea (N = 1). CONCLUSIONS In summary, no new safety issues were identified. On the basis of the pharmacokinetic results, no dose adjustment is required for patients with MF with mild or moderate hepatic impairment.
Collapse
Affiliation(s)
- Maulik Patel
- Clinical Pharmacology, AbbVie Inc, South San Francisco, CA, USA
| | | | | | - Eric Lawitz
- Texas Liver Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bracken OV, De Maeyer RPH, Akbar AN. Enhancing immunity during ageing by targeting interactions within the tissue environment. Nat Rev Drug Discov 2025; 24:300-315. [PMID: 39875569 DOI: 10.1038/s41573-024-01126-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2024] [Indexed: 01/30/2025]
Abstract
Immunity declines with age. This results in a higher risk of age-related diseases, diminished ability to respond to new infections and reduced response to vaccines. The causes of this immune dysfunction are cellular senescence, which occurs in both lymphoid and non-lymphoid tissue, and chronic, low-grade inflammation known as 'inflammageing'. In this Review article, we highlight how the processes of inflammation and senescence drive each other, leading to loss of immune function. To break this cycle, therapies are needed that target the interactions between the altered tissue environment and the immune system instead of targeting each component alone. We discuss the relative merits and drawbacks of therapies that are directed at eliminating senescent cells (senolytics) and those that inhibit inflammation (senomorphics) in the context of tissue niches. Furthermore, we discuss therapeutic strategies designed to directly boost immune cell function and improve immune surveillance in tissues.
Collapse
Affiliation(s)
| | - Roel P H De Maeyer
- Division of Medicine, University College London, London, UK
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Arne N Akbar
- Division of Medicine, University College London, London, UK.
| |
Collapse
|
11
|
Zygmunciak P, Dancewicz H, Stróżna K, Błażowska O, Bieliński K, Robak T, Puła B. Double Strike in Chronic Lymphocytic Leukemia-The Combination of BTK and BCL2 Inhibitors in Actual and Future Clinical Practice. Int J Mol Sci 2025; 26:3193. [PMID: 40243993 PMCID: PMC11989886 DOI: 10.3390/ijms26073193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/13/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
In the recent 2024 ESMO guidelines, the combination of venetoclax and ibrutinib was listed as one of the first-line treatment options for CLL patients. These drugs were first-in-class medicines that revolutionized CLL management, extending patients' overall survival even in cases refractory to immunochemotherapy. However, since the approval of both compounds, more and more Bruton Tyrosine Kinase inhibitors (BTKis) and B-cell lymphoma 2 inhibitors (BCL2is) have been discovered. Their efficacy and safety are the reasons for their use in monotherapy among both treatment-naïve and relapsed patients with CLL. Currently, several ongoing clinical trials are investigating the rationale for the combination of BCL2is and BTKis. In this review, we discuss the recent advancements in the field of co-therapy with BTKis and BCL2is.
Collapse
Affiliation(s)
| | - Hanna Dancewicz
- Faculty of Medicine, Warsaw Medical University, 02-091 Warsaw, Poland; (P.Z.)
| | - Katarzyna Stróżna
- Faculty of Medicine, Warsaw Medical University, 02-091 Warsaw, Poland; (P.Z.)
| | - Olga Błażowska
- Faculty of Medicine, Warsaw Medical University, 02-091 Warsaw, Poland; (P.Z.)
| | - Krzysztof Bieliński
- Faculty of Medicine, Warsaw Medical University, 02-091 Warsaw, Poland; (P.Z.)
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland;
- Department of General Hematology, Copernicus Memorial Hospital, 93-510 Lodz, Poland
| | - Bartosz Puła
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland;
- Department of General Hematology, Copernicus Memorial Hospital, 93-510 Lodz, Poland
| |
Collapse
|
12
|
Singh M, Sarhan MO, Damiba NNL, Singh AK, Villabona-Rueda A, Nino-Meza OJ, Chen X, Masias-Leon Y, Ruiz-Gonzalez CE, Ordonez AA, D'Alessio FR, Aboagye EO, Carroll LS, Jain SK. Proapoptotic Bcl-2 inhibitor as potential host directed therapy for pulmonary tuberculosis. Nat Commun 2025; 16:3003. [PMID: 40148277 PMCID: PMC11950383 DOI: 10.1038/s41467-025-58190-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Mycobacterium tuberculosis establishes within host cells by inducing anti-apoptotic Bcl-2 family proteins, triggering necrosis, inflammation, and fibrosis. Here, we demonstrate that navitoclax, an orally bioavailable, small-molecule Bcl-2 inhibitor, significantly improves pulmonary tuberculosis (TB) treatments as a host-directed therapy. Addition of navitoclax to standard TB treatments at human equipotent dosing in mouse models of TB, inhibits Bcl-2 expression, leading to improved bacterial clearance, reduced tissue necrosis, fibrosis and decreased extrapulmonary bacterial dissemination. Using immunohistochemistry and flow cytometry, we show that navitoclax induces apoptosis in several immune cells, including CD68+ and CD11b+ cells. Finally, positron emission tomography (PET) in live animals using clinically translatable biomarkers for apoptosis (18F-ICMT-11) and fibrosis (18F-FAPI-74), demonstrates that navitoclax significantly increases apoptosis and reduces fibrosis in pulmonary tissues, which are confirmed in postmortem analysis. Our studies suggest that proapoptotic drugs such as navitoclax can potentially improve pulmonary TB treatments, reduce lung damage / fibrosis and may be protective against post-TB lung disease.
Collapse
Affiliation(s)
- Medha Singh
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mona O Sarhan
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nerketa N L Damiba
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alok K Singh
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | | | - Oscar J Nino-Meza
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xueyi Chen
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuderleys Masias-Leon
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carlos E Ruiz-Gonzalez
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alvaro A Ordonez
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Franco R D'Alessio
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eric O Aboagye
- Comprehensive Cancer Imaging Centre, Department of Surgery & Cancer, Hammersmith Campus, Imperial College, London, UK
| | - Laurence S Carroll
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sanjay K Jain
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
13
|
Sonehara R, Nakamura T, Takeda T, Kaseki S, Seki T, Tanaka H, Yabuki A, Miyake N, Muraoka A, Osuka S, Iwase A, Kajiyama H. A novel senotherapeutic strategy with azithromycin for preventing endometriosis progression. Reprod Biol Endocrinol 2025; 23:47. [PMID: 40140889 PMCID: PMC11938566 DOI: 10.1186/s12958-025-01381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Endometriosis is an estrogen-dependent chronic inflammatory disease, however the mechanisms underlying inflammation remain unclear. Non-hormonal drugs that can prevent endometriosis progression and resolve endometriotic infertility are urgently required. We thus focused on cellular senescence as a novel feature of endometriosis. Senescent cells cause chronic inflammation via the senescence-associated secretory phenotype (SASP) factor. It has been reported the effects of senolysis for various diseases in recent years. The aim of this study was to validate the involvement of cellular senescence in endometriosis and as the effects of senolytic drug to develop a novel non-hormonal therapeutic strategy for endometriosis. METHODS The senescence markers were assessed by morphological features and semiquantitative immunofluorescence staining (senescence-associated b-galactosidase [SA-b-Gal], the cyclin-dependent kinase inhibitor 2 A locus [p16INK4a], and laminB1) to compare among cell types (normal endometrial stromal cells [nESCs], endometrial stromal cells with endometriosis [eESCs], and ovarian endometriosis [OE] cyst-derived stromal cells [CSCs]). Expression of SASP markers was examined in cell culture supernatants using a cytokine array. In addition, the effects of senolytic drugs (azithromycin [AZM] and navitoclax [ABT263]) on endometriosis were evaluated in vitro and in vivo. The in vivo study used the endometriosis mice model. RESULTS CSCs exhibited stronger senescence markers. Semi-quantitative SA-β-Gal and p16INK4a staining intensities were significantly increased, and that of LaminB1 was decreased in CSCs compared to those in nESCs and eESCs (SA-b-Gal, P < 0.001; p16INK4a, P < 0.05; LaminB1, P < 0.05). Cytokine array analysis revealed elevated SASP-related cytokine levels, including interleukin-6 (IL-6), in CSC supernatants compared to those in nESCs. AZM and ABT263 reduced the viable fraction in CSCs (AZM: P < 0.001, ABT263: P < 0.01). Furthermore, AZM suppressed IL-6 expression in CSC culture supernatants (P < 0.05). In murine model, AZM administration reduced endometriotic lesion volume compared to that in vehicle (P < 0.05). Proliferative activity, IL-6 expression levels, and fibrosis within endometriotic lesions also decreased (Ki67, P < 0.01; IL-6, P < 0.001; fibrosis, P < 0.001). CONCLUSIONS Our findings show that cellular senescence is involved in the pathogenesis of endometriosis and that AZM may be useful for preventing endometriosis progression by suppressing the secretion of IL-6 as a SASP.
Collapse
Affiliation(s)
- Reina Sonehara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-chou, Showa-ku, Nagoya, 466-8550, Aichi, Japan
| | - Tomoko Nakamura
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-chou, Showa-ku, Nagoya, 466-8550, Aichi, Japan.
| | - Takehiko Takeda
- Department of Maternal and Perinatal Medicine, Nagoya University Hospital, 65 Tsurumai-chou, Showa-ku, Nagoya, 466-8550, Aichi, Japan
| | - Satoshi Kaseki
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-chou, Showa-ku, Nagoya, 466-8550, Aichi, Japan
| | - Tomomi Seki
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-chou, Showa-ku, Nagoya, 466-8550, Aichi, Japan
| | - Hideaki Tanaka
- Department of Maternal and Perinatal Medicine, Nagoya University Hospital, 65 Tsurumai-chou, Showa-ku, Nagoya, 466-8550, Aichi, Japan
| | - Atsushi Yabuki
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-chou, Showa-ku, Nagoya, 466-8550, Aichi, Japan
| | - Natsuki Miyake
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-chou, Showa-ku, Nagoya, 466-8550, Aichi, Japan
| | - Ayako Muraoka
- Department of Maternal and Perinatal Medicine, Nagoya University Hospital, 65 Tsurumai-chou, Showa-ku, Nagoya, 466-8550, Aichi, Japan
| | - Satoko Osuka
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-chou, Showa-ku, Nagoya, 466-8550, Aichi, Japan
| | - Akira Iwase
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, 371-8511, Gunma, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-chou, Showa-ku, Nagoya, 466-8550, Aichi, Japan
| |
Collapse
|
14
|
Vogler M, Braun Y, Smith VM, Westhoff MA, Pereira RS, Pieper NM, Anders M, Callens M, Vervliet T, Abbas M, Macip S, Schmid R, Bultynck G, Dyer MJ. The BCL2 family: from apoptosis mechanisms to new advances in targeted therapy. Signal Transduct Target Ther 2025; 10:91. [PMID: 40113751 PMCID: PMC11926181 DOI: 10.1038/s41392-025-02176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/21/2024] [Accepted: 02/10/2025] [Indexed: 03/22/2025] Open
Abstract
The B cell lymphoma 2 (BCL2) protein family critically controls apoptosis by regulating the release of cytochrome c from mitochondria. In this cutting-edge review, we summarize the basic biology regulating the BCL2 family including canonical and non-canonical functions, and highlight milestones from basic research to clinical applications in cancer and other pathophysiological conditions. We review laboratory and clinical development of BH3-mimetics as well as more recent approaches including proteolysis targeting chimeras (PROTACs), antibody-drug conjugates (ADCs) and tools targeting the BH4 domain of BCL2. The first BCL2-selective BH3-mimetic, venetoclax, showed remarkable efficacy with manageable toxicities and has transformed the treatment of several hematologic malignancies. Following its success, several chemically similar BCL2 inhibitors such as sonrotoclax and lisaftoclax are currently under clinical evaluation, alone and in combination. Genetic analysis highlights the importance of BCL-XL and MCL1 across different cancer types and the possible utility of BH3-mimetics targeting these proteins. However, the development of BH3-mimetics targeting BCL-XL or MCL1 has been more challenging, with on-target toxicities including thrombocytopenia for BCL-XL and cardiac toxicities for MCL1 inhibitors precluding clinical development. Tumor-specific BCL-XL or MCL1 inhibition may be achieved by novel targeting approaches using PROTACs or selective drug delivery strategies and would be transformational in many subtypes of malignancy. Taken together, we envision that the targeting of BCL2 proteins, while already a success story of translational research, may in the foreseeable future have broader clinical applicability and improve the treatment of multiple diseases.
Collapse
Affiliation(s)
- Meike Vogler
- Goethe University Frankfurt, Institute for Experimental Pediatric Hematology and Oncology, Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany.
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany.
| | - Yannick Braun
- Goethe University Frankfurt, Institute for Experimental Pediatric Hematology and Oncology, Frankfurt am Main, Germany
- Department of Pediatric Surgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Victoria M Smith
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Raquel S Pereira
- Goethe University Frankfurt, Institute for Experimental Pediatric Hematology and Oncology, Frankfurt am Main, Germany
| | - Nadja M Pieper
- Goethe University Frankfurt, Institute for Experimental Pediatric Hematology and Oncology, Frankfurt am Main, Germany
| | - Marius Anders
- Goethe University Frankfurt, Institute for Experimental Pediatric Hematology and Oncology, Frankfurt am Main, Germany
| | - Manon Callens
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, and Leuven Kankerinstituut (LKI), Leuven, Belgium
| | - Tim Vervliet
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, and Leuven Kankerinstituut (LKI), Leuven, Belgium
| | - Maha Abbas
- Mechanisms of Cancer and Ageing Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Salvador Macip
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
- Mechanisms of Cancer and Ageing Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- Josep Carreras Leukaemia Research Institute, Badalona, Spain
- FoodLab, Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Ralf Schmid
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- Institute for Structural and Chemical Biology, University of Leicester, Leicester, UK
| | - Geert Bultynck
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, and Leuven Kankerinstituut (LKI), Leuven, Belgium
| | - Martin Js Dyer
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
15
|
Yun J, Indorf AL. Optimizing intermittent dosing of oral small molecule inhibitors. J Oncol Pharm Pract 2025:10781552251327598. [PMID: 40116755 DOI: 10.1177/10781552251327598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
IntroductionWith recent expansion of oral small molecule inhibitors, the drug development studies need to provide insight into optimal dose selection for these agents with vastly different mechanism and pharmacokinetic considerations compared to our traditional chemotherapy agents. Currently there is one published meta-analysis that examines intermittent and alternative dosing of oral small molecule inhibitors and it is unclear what guidance is available for treatment personalization beyond package insert labeling for patients undergoing toxicities from treatment.MethodsA systematic review of oral small molecule inhibitors with intermittent dosing was conducted in the National Library of Medicine PubMed database. Studies were selected based on predefined inclusion/exclusion criteria. Data was extracted to summarize findings on available guidance for intermittent or alternative dosing of oral small molecule inhibitors. Studies were categorized based on food and drug administration (FDA) approved or non-FDA approved agents, and further characterized by comparison of different dosing schemas.ResultsFifty-five trials were included in the final review and data analysis. Thirty-three trials were phase 1 trials, 26 trials for FDA approved agents and 29 non-FDA approved agents. Most trials reported on agents used in solid tumors, particularly renal cell carcinoma, with most trials examining sunitinib. Of the 55 trials, 28 compared different dosing strategies with 26 of the 28 trials examining efficacy outcomes with 27 of the 28 trials examining safety outcomes.ConclusionsThis systematic review found limited guidance for clinicians in optimizing dosing for intermittently dosed oral small molecule inhibitors.
Collapse
Affiliation(s)
- Jina Yun
- Department of Pharmacy, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
| | - Amy Ly Indorf
- Department of Pharmacy, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
| |
Collapse
|
16
|
Spiegel M. Fisetin as a Blueprint for Senotherapeutic Agents - Elucidating Geroprotective and Senolytic Properties with Molecular Modeling. Chemistry 2025; 31:e202403755. [PMID: 39688310 PMCID: PMC11914956 DOI: 10.1002/chem.202403755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/18/2024]
Abstract
Targeting senescent cells and the factors that accelerate this pathological state has recently emerged as a novel field in medicinal chemistry. As attention shifts to synthetic substances, studies on natural agents are often overlooked. In this paper, we present a detailed computational modeling study that encompasses quantum mechanics and molecular dynamics to elucidate the senotherapeutic activity of fisetin, a natural flavonoid. The mitochondrial environment, serving as a proxy for senescence, received special attention. Throughout the study, fisetin's outstanding geroprotective properties-exhibiting significant potential against ⋅OOH, O2⋅-, and ⋅OH radicals, surpassing those of Trolox or ascorbate-were identified. Furthermore, fisetin demonstrated a high capacity to restore oxidatively damaged biomolecules to their pristine forms, thereby renewing the functionality of proteins and amino acids. The senolytic properties were examined in terms of Bcl-2 and Bcl-xL inhibition. The results indicated that fisetin not only binds effectively to these proteins but also, with appropriate modifications, may exhibit specific selectivity toward either target. This study highlights fisetin's remarkable activity in these areas and provides a molecular description of the underlying processes, paving the way for future research.
Collapse
Affiliation(s)
- Maciej Spiegel
- Department of Organic Chemistry and Pharmaceutical TechnologyFaculty of PharmacyWroclaw Medical UniversityBorowska 211A50–556WroclawPoland
| |
Collapse
|
17
|
Wang L, Tang D. Immunosenescence promotes cancer development: from mechanisms to treatment strategies. Cell Commun Signal 2025; 23:128. [PMID: 40065335 PMCID: PMC11892258 DOI: 10.1186/s12964-025-02082-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025] Open
Abstract
The body's innate immune system plays a pivotal role in identifying and eliminating cancer cells. However, as the immune system ages, its functionality can deteriorate, becoming dysfunctional, inefficient, or even inactive-a condition referred to as immunosenescence. This decline significantly increases the risk of malignancies. While the pro-cancer effects of T-cell aging have been widely explored, there remains a notable gap in the literature regarding the impact of aging on innate immune cells, such as macrophages and neutrophils. This review seeks to address this gap, with emphasis on these cell types. Furthermore, although certain cancer immunotherapies, including immune checkpoint inhibitors (ICIs), have demonstrated efficacy across a broad spectrum of cancers, elderly patients are less likely to derive clinical benefit from these treatments. In some cases, they may even experience immune-related adverse events (irAEs). While senolytic strategies have shown promise in exerting anti-cancer effects, their adverse reactions and potential off-target effects present significant challenges. This review aims to elucidate the pro-cancer effects of immunosenescence, its implications for the efficacy and safety of ICIs, and potential anti-aging treatment strategies. In addition, optimizing anti-aging therapies to minimize adverse reactions and enhance therapeutic outcomes remains a critical focus for future research endeavors.
Collapse
Affiliation(s)
- Leihan Wang
- Clinical Medical College, Yangzhou University, Yangzhou, People's Republic of China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University; Northern Jiangsu People's Hospital; The Yangzhou Clinical Medical College of Xuzhou Medical University; The Yangzhou School of Clinical Medicine of Dalian Medical University; The Yangzhou School of Clinical Medicine of Nanjing Medical University; Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou, 225000, China.
| |
Collapse
|
18
|
Meguro S, Nakanishi M. Cellular senescence in the cancer microenvironment. J Biochem 2025; 177:171-176. [PMID: 39760850 DOI: 10.1093/jb/mvaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/25/2024] [Accepted: 12/07/2024] [Indexed: 01/07/2025] Open
Abstract
In this ageing society, the number of patients suffering from age-related diseases, including cancer, is increasing. Cellular senescence is a cell fate that involves permanent cell cycle arrest. Accumulated senescent cells in tissues over time present senescence-associated secretory phenotype (SASP) and make the inflammatory context, disturbing the tumour microenvironment. In particular, the effect of senescent cancer-associated fibroblasts on cancer progression has recently come under the spotlight. Although scientific evidence on the impact of cellular senescence on cancer is emerging, the association between cellular senescence and cancer is heterogeneous and the comprehensive mechanism is still not revealed. Recently, a therapy targeting senescent cells, senotherapeutics, has been reported to be effective against cancer in preclinical research and even clinical trials. With further research, the development of senotherapeutics as a novel cancer therapy is expected.
Collapse
Affiliation(s)
- Satoru Meguro
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, Shirokanedai 4-6-1, Minato-ku, Tokyo 108-8639, Tokyo, Japan
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, 960-1247, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, Shirokanedai 4-6-1, Minato-ku, Tokyo 108-8639, Tokyo, Japan
| |
Collapse
|
19
|
Xu W, Guo Y, Zhao L, Fu R, Qin X, Zhang Y, Cheng X, Xu S. The Aging Immune System: A Critical Attack on Ischemic Stroke. Mol Neurobiol 2025; 62:3322-3342. [PMID: 39271626 DOI: 10.1007/s12035-024-04464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Ischemic stroke caused by cerebrovascular embolism is an age-related disease with high rates of disability and mortality. Although the mechanisms of immune and inflammatory development after stroke have been of great interest, most studies have neglected the critical and unavoidable factor of age. As the global aging trend intensifies, the number of stroke patients is constantly increasing, emphasizing the urgency of finding effective measures to address the needs of elderly stroke patients. The concept of "immunosenescence" appears to explain the worse stroke outcomes in older individuals. Immune remodeling due to aging involves dynamic changes at all levels of the immune system, and the overall consequences of central (brain-resident) and peripheral (non-brain-resident) immune cells in stroke vary according to the age of the individual. Lastly, the review outlines recent strategies aimed at immunosenescence to improve stroke prognosis.
Collapse
Affiliation(s)
- Wenzhe Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuying Guo
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Linna Zhao
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Rong Fu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoli Qin
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunsha Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xueqi Cheng
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shixin Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.
| |
Collapse
|
20
|
Sererols-Viñas L, Garcia-Vicién G, Ruiz-Blázquez P, Lee TF, Lee YA, Gonzalez-Sanchez E, Vaquero J, Moles A, Filliol A, Affò S. Hepatic Stellate Cells Functional Heterogeneity in Liver Cancer. Semin Liver Dis 2025; 45:33-51. [PMID: 40043738 DOI: 10.1055/a-2551-0724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
Hepatic stellate cells (HSCs) are the liver's pericytes, and play key roles in liver homeostasis, regeneration, fibrosis, and cancer. Upon injury, HSCs activate and are the main origin of myofibroblasts and cancer-associated fibroblasts (CAFs) in liver fibrosis and cancer. Primary liver cancer has a grim prognosis, ranking as the third leading cause of cancer-related deaths worldwide, with hepatocellular carcinoma (HCC) being the predominant type, followed by intrahepatic cholangiocarcinoma (iCCA). Moreover, the liver hosts 35% of all metastatic lesions. The distinct spatial distribution and functional roles of HSCs across these malignancies represent a significant challenge for universal therapeutic strategies, requiring a nuanced and tailored understanding of their contributions. This review examines the heterogeneous roles of HSCs in liver cancer, focusing on their spatial localization, dynamic interactions within the tumor microenvironment (TME), and emerging therapeutic opportunities, including strategies to modulate their activity, and harness their potential as targets for antifibrotic and antitumor interventions.
Collapse
Affiliation(s)
- Laura Sererols-Viñas
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Gemma Garcia-Vicién
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Paloma Ruiz-Blázquez
- University of Barcelona, Barcelona, Spain
- Tissue Remodeling Fibrosis and Cancer Group, Institute of Biomedical Research of Barcelona, Spanish National Research Council, Barcelona, Spain
- Institute of Biomedical Research of Barcelona (IDIBAPS), Barcelona, Spain
- CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Ting-Fang Lee
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Youngmin A Lee
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ester Gonzalez-Sanchez
- HepatoBiliary Tumours Lab, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
- Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain
| | - Javier Vaquero
- CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Madrid, Spain
- HepatoBiliary Tumours Lab, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Anna Moles
- Tissue Remodeling Fibrosis and Cancer Group, Institute of Biomedical Research of Barcelona, Spanish National Research Council, Barcelona, Spain
- Institute of Biomedical Research of Barcelona (IDIBAPS), Barcelona, Spain
- CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Aveline Filliol
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Silvia Affò
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
21
|
Scott SC, Farago A, Lai WV, Zahurak M, Rudek MA, Murray J, Carducci MA, Uziel T, Takebe N, Gore SD, Rudin CM, Hann CL. A phase 1 study of the combination of BH3-mimetic, navitoclax, and mTORC1/2 inhibitor, vistusertib, in patients with advanced solid tumors. Cancer Chemother Pharmacol 2025; 95:37. [PMID: 39998620 DOI: 10.1007/s00280-025-04760-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 01/28/2025] [Indexed: 02/27/2025]
Abstract
PURPOSE To determine the, safety, tolerability and recommended phase 2 dosing of the combination of navitoclax, a dual Bcl-2/xL inhibitor, and vistusertib, a TORC1/2 inhibitor. METHODS Patients with advanced solid tumors received navitoclax plus vistusertib following a 3 + 3 dose escalation design. To mitigate thrombocytopenia, a known toxicity of navitoclax, all patients received lead-in dosing of navitoclax alone at 150 mg orally daily for a minimum of 7 days. In addition to safety and tolerability, pharmacokinetics of navitoclax and vistusertib were evaluated. RESULTS 14 patients received combination treatment which was well-tolerated at dose level 1 (navitoclax 150 mg orally daily plus vistusertib 35 mg orally twice daily). The main dose-limiting toxicity, grade 3 serum aminotransferase elevation, occurred in two of five patients at dose level 2 (navitoclax 250 mg orally daily plus vistusertib 35 mg orally twice daily). Navitoclax and vistusertib exposures appeared consistent with levels reported in prior studies of each agent. No responses were observed among the 8 response evaluable patients. CONCLUSIONS A tolerable dose of navitoclax at 150 mg orally daily plus vistusertib at 35 mg orally twice daily was identified in patients with advanced solid tumors and established as the recommended phase 2 dose (RP2D). Further efficacy assessment of this combination, in a planned phase 2 expansion in patients with relapsed small cell lung cancer, was terminated due to discontinuation of vistusertib. TRIAL REGISTRATION NCT03366103 (First posted December 8, 2017).
Collapse
Affiliation(s)
- Susan C Scott
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Anna Farago
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - W Victoria Lai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marianna Zahurak
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology Biostatistics, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Michelle A Rudek
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Judy Murray
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Michael A Carducci
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Tamar Uziel
- Oncology Discovery, AbbVie Inc, North Chicago, IL, USA
| | - Naoko Takebe
- IDB/CTEP/NCI, National Cancer Institute, Rockville, MD, USA
| | - Steven D Gore
- IDB/CTEP/NCI, National Cancer Institute, Rockville, MD, USA
| | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christine L Hann
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
22
|
Kannan S, Li Y, Baran N, Yang X, Ghotbaldini S, Zhang Tatarata Q, Yoshimura S, Li Z, Hsiao Y, Balachander S, Andersen CL, Cidado J, Yu J, Jain N, Yang JJ, Konopleva M. Antileukemia efficacy of the dual BCL2/BCL-XL inhibitor AZD0466 in acute lymphoblastic leukemia preclinical models. Blood Adv 2025; 9:473-487. [PMID: 39561378 PMCID: PMC11808622 DOI: 10.1182/bloodadvances.2024013423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/26/2024] [Accepted: 09/18/2024] [Indexed: 11/21/2024] Open
Abstract
ABSTRACT The upregulation of B-cell lymphoma 2 (BCL2) and B-cell lymphoma-extra large (BCL-XL), 2 proteins in the BCL2 family of proteins, leads to a disproportional expression of prodeath and prosurvival proteins in favor of leukemia survival, tumorigenesis, and chemoresistance. In different subsets of acute lymphoblastic leukemia (ALL), the proportion of these 2 proteins varies, and their potential as therapeutic targets needs detailed characterization. Here, we investigated BCL2 and BCL-XL, the genes that encode BCL2 and BCL-XL, and their expression differences between B-cell acute lymphoblastic leukemia (B-ALL) and T-cell ALL (T-ALL). We also evaluated the therapeutic potential of targeting these proteins with AZD0466, a novel drug-dendrimer conjugate of the BCL2/BCL-XL inhibitor AZD4320, and with BCL2 inhibitor venetoclax (ABT-199). Gene expression and activity analyses supported by the protein expression patterns in ALL cell lines and primary samples demonstrated increased levels of BCL2 expression in B-ALL, with high sensitivity to venetoclax or AZD4320. In contrast, strong BCL-XL expression and sensitivity to dual BCL2/BCL-XL inhibition was observed specifically in T-ALL samples. This observation was confirmed by BH3 profiling, demonstrating BCL2/BCL-XL codependence in T-ALL and BCL2 dependence in B-ALL. In a mouse model of T-ALL, AZD0466 but not venetoclax reduced leukemic burden and prolonged survival without significant toxicities. Our findings therefore suggest that the novel dual BCL2/BCL-XL inhibitor AZD0466 outperforms single BCL2 inhibition by venetoclax in T-ALL. These findings facilitate the translation of dual BCL2/BCL-XL inhibitors into ALL clinical trials, either alone or in combination with standard-of-care chemotherapy and immune therapies.
Collapse
Affiliation(s)
- Sankaranarayanan Kannan
- Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yizhen Li
- Department of Hematology, Children’s Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Natalia Baran
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Xu Yang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Sanaz Ghotbaldini
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Qi Zhang Tatarata
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Satoshi Yoshimura
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Zhenhua Li
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - YuChih Hsiao
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | | | | | | | - Jiyang Yu
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jun J. Yang
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
23
|
Phillips PCA, de Sousa Loreto Aresta Branco M, Cliff CL, Ward JK, Squires PE, Hills CE. Targeting senescence to prevent diabetic kidney disease: Exploring molecular mechanisms and potential therapeutic targets for disease management. Diabet Med 2025; 42:e15408. [PMID: 38995865 PMCID: PMC11733669 DOI: 10.1111/dme.15408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND/AIMS As a microvascular complication, diabetic kidney disease is the leading cause of chronic kidney disease and end-stage renal disease worldwide. While the underlying pathophysiology driving transition of diabetic kidney disease to renal failure is yet to be fully understood, recent studies suggest that cellular senescence is central in disease development and progression. Consequently, understanding the molecular mechanisms which initiate and drive senescence in response to the diabetic milieu is crucial in developing targeted therapies that halt progression of renal disease. METHODS To understand the mechanistic pathways underpinning cellular senescence in the context of diabetic kidney disease, we reviewed the literature using PubMed for English language articles that contained key words related to senescence, inflammation, fibrosis, senescence-associated secretory phenotype (SASP), autophagy, and diabetes. RESULTS Aberrant accumulation of metabolically active senescent cells is a notable event in the progression of diabetic kidney disease. Through autocrine- and paracrine-mediated mechanisms, resident senescent cells potentiate inflammation and fibrosis through increased expression and secretion of pro-inflammatory cytokines, chemoattractants, recruitment of immune cells, myofibroblast activation, and extracellular matrix remodelling. Compounds that eliminate senescent cells and/or target the SASP - including senolytic and senomorphics drugs - demonstrate promising results in reducing the senescent cell burden and associated pro-inflammatory effect. CONCLUSIONS Here we evidence the link between senescence and diabetic kidney disease and highlight underlying molecular mechanisms and potential therapeutic targets that could be exploited to delay disease progression and improve outcomes for individuals with the disease. Trials are now required to translate their therapeutic potential to a clinical setting.
Collapse
Affiliation(s)
| | | | | | - Joanna Kate Ward
- Joseph Banks Laboratories, College of Health and ScienceLincolnUK
| | | | | |
Collapse
|
24
|
Kwiatek M, Murthy GSG, Hoffmann M, Tessoulin B, Danilov A, Alencar AJ, Shah NN, Ghesquieres H, Le Gouill S, Jurczak W, Han H, Yuen E, Patel V, Guo-Avrutin Y, Pauff JM, Roeker LE. A First-in-Human Phase I Study of LOXO-338, an Oral Selective Bcl-2 Inhibitor, in Patients With Advanced Hematologic Malignancies. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2025:S2152-2650(25)00034-5. [PMID: 40000354 DOI: 10.1016/j.clml.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/16/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND LOXO-338 is a novel, orally bioavailable small-molecule inhibitor of Bcl-2, designed to achieve selectivity for Bcl-2 over Bcl-xL, thus avoiding dose-limiting thrombocytopenia associated with Bcl-xL inhibition. This first-in-human, open-label, Phase 1 study investigated LOXO-338 in patients with chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma (SLL), or B-cell non-Hodgkin lymphoma (NHL) (NCT05024045). PATIENTS AND METHODS Patients with histologically confirmed advanced B-cell malignancies who had received ≥ 2 prior therapies were enrolled in Phase 1 dose escalation (interval 3 + 3 design). LOXO-338 was administered orally as 50 to 300 mg once-daily dose until discontinuation due to progressive disease or unacceptable toxicity. The primary objective was to determine the maximum tolerated dose (MTD)/recommended Phase 2 dose of LOXO-338. Secondary objectives included safety, tolerability, pharmacokinetics, and preliminary antitumor activity. RESULTS In total, 27 patients with CLL/SLL (n = 10) or NHL (n = 17) were treated. No dose-limiting toxicities occurred and the MTD was not reached. Treatment-emergent adverse events occurred in 23 patients (85%); anemia (22%) and fatigue (22%) were the most prevalent. Treatment-related adverse events (TRAEs) occurred in 15% and were mostly grade 1 (11%) or 2 (4%); grade ≥ 3 or serious TRAEs were not reported. Tumor lysis syndrome was not observed. The overall response rate was 19% (95% CI: 6.3, 38.1) and disease control rate was 67% (95% CI: 46, 83.5). LOXO-338 was orally bioavailable with dose-dependent increases in exposure. CONCLUSION LOXO-338 was well tolerated with a favorable safety profile in previously treated patients with advanced hematologic malignancies. Preliminary efficacy was observed in this heavily pretreated population supporting further investigation.
Collapse
Affiliation(s)
| | | | - Marc Hoffmann
- Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Cancer Center, Overland Park, KS
| | - Benoit Tessoulin
- Service d'Hématologie Clinique, CHU de Nantes, Place Alexis Ricordeau, Nantes, France
| | - Alexey Danilov
- Toni Stephenson Lymphoma Center, City of Hope National Medical Center, Duarte, CA
| | - Alvaro J Alencar
- Department of Medicine, Division of Hematology, University of Miami Sylvester Comprehensive Cancer Center, Miami, FL
| | - Nirav N Shah
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI
| | | | - Steven Le Gouill
- Service d'hématologie, Institut Curie, 5 Rue Gaston Latouche, 92210, Saint-Cloud, France; Université de Versailles Saint-Quentin (UVSQ), France; Laboratoire d'Imagerie Translationnelle en Oncologie (LITO), U1288 Inserm/Institut Curie Centre de recherche
| | - Wojciech Jurczak
- Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Krakow, Poland
| | | | | | | | | | | | | |
Collapse
|
25
|
Kawakatsu R, Tadagaki K, Yamasaki K, Kuwahara Y, Yoshida T. Valproic Acid Enhances Venetoclax Efficacy in Targeting Acute Myeloid Leukemia. Diseases 2025; 13:10. [PMID: 39851474 PMCID: PMC11764158 DOI: 10.3390/diseases13010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a common and aggressive form of leukemia, yet current treatment strategies remain insufficient. Venetoclax, a BH3-mimetic approved for AML treatment, induces Bcl-2-dependent apoptosis, though its therapeutic efficacy is still limited. Therefore, new strategies to enhance the effect of venetoclax are highly sought. Valproic acid (VPA), commonly used for epilepsy, has also been studied for potential applications in AML treatment. METHODS AML cells were treated with venetoclax, with or without VPA. Cell viability was assessed using the trypan blue dye exclusion assay, while cell cycle progression was analyzed by flow cytometry. The expression of pro-apoptotic proteins Bax and Bak was measured by RT-qPCR. RESULTS Venetoclax and VPA individually had only mild effects on AML cell proliferation. However, their combination significantly inhibited cell growth and triggered pronounced cell death. This combination also led to the cleavage of poly (ADP-ribose) polymerase (PARP), a substrate of caspases, indicating activation of apoptosis. VPA treatment upregulated the expression of Bax and Bak, further supporting apoptosis induction. The cell death induced by the venetoclax-VPA combination was predominantly apoptotic, as confirmed by the near-complete blockade of cell death by a pan-caspase inhibitor. CONCLUSIONS Our study demonstrates that VPA enhances venetoclax-induced apoptosis in AML cell lines, providing a novel role for VPA and suggesting a promising combinatory strategy for AML treatment. These findings offer valuable insights into potential clinical applications of venetoclax and VPA in AML management.
Collapse
Affiliation(s)
- Renshi Kawakatsu
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Kenjiro Tadagaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Kenta Yamasaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yasumichi Kuwahara
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Department of Kyoto Pediatric Community-Based Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tatsushi Yoshida
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
26
|
Summers RJ, Teachey DT, Hunger SP. How I treat ETP-ALL in children. Blood 2025; 145:43-52. [PMID: 38364183 DOI: 10.1182/blood.2023023155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/18/2024] Open
Abstract
ABSTRACT Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) is a unique subtype of immature T-cell ALL that was initially associated with a dramatically inferior prognosis compared with non-ETP T-cell ALL (Not-ETP) when it was first described in 2009. Analyses of larger patient cohorts treated with more contemporary regimens, however, have shown minimal survival differences between ETP and Not-ETP. In this manuscript, we use representative cases to explore therapeutic advances and address common clinical questions regarding the management of children, adolescents, and young adults with ETP-ALL. We describe our recommended treatment approach for a child or adolescent with newly diagnosed ETP-ALL, with an emphasis on the prognostic significance of induction failure and detectable minimal residual disease and the role of hematopoietic stem cell transplant in first remission. We discuss the interplay between the ETP immunophenotype and genomic markers of immaturity in T-cell ALL. Finally, we review novel therapeutic approaches that should be considered when managing relapsed or refractory ETP-ALL.
Collapse
Affiliation(s)
- Ryan J Summers
- Department of Pediatrics, Emory University, Atlanta, GA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA
| | - David T Teachey
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Stephen P Hunger
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
27
|
Camps-Fajol C, Cavero D, Minguillón J, Surrallés J. Targeting protein-protein interactions in drug discovery: Modulators approved or in clinical trials for cancer treatment. Pharmacol Res 2025; 211:107544. [PMID: 39667542 DOI: 10.1016/j.phrs.2024.107544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/27/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Protein-protein interactions (PPIs) form complex cellular networks fundamental to many key biological processes, including signal transduction, cell proliferation and DNA repair. In consequence, their perturbation is often associated with many human diseases. Targeting PPIs offers a promising approach in drug discovery and ongoing advancements in this field hold the potential to provide highly specific therapies for a wide range of complex diseases. Despite the development of PPI modulators is challenging, advances in the genetic, proteomic and computational level have facilitated their discovery and optimization. Focusing on anticancer drugs, in the last years several PPI modulators have entered clinical trials and venetoclax, which targets Bcl-2 family proteins, has been approved for treating different types of leukemia. This review discusses the clinical development status of drugs modulating several PPIs, such as MDM2-4/p53, Hsp90/Hsp90, Hsp90/CDC37, c-Myc/Max, KRAS/SOS1, CCR5/CCL5, CCR2/CCL2 or Smac/XIAP, in cancer drug discovery.
Collapse
Affiliation(s)
- Cristina Camps-Fajol
- Unitat Mixta de Recerca en Medicina Genòmica, Universitat Autònoma de Barcelona (UAB)-IR SANT PAU, Barcelona, Spain; Institut de Bioenginyeria de Catalunya (IBEC), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CIBERER, ISCIII), Madrid, Spain
| | - Debora Cavero
- Unitat Mixta de Recerca en Medicina Genòmica, Universitat Autònoma de Barcelona (UAB)-IR SANT PAU, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CIBERER, ISCIII), Madrid, Spain
| | - Jordi Minguillón
- CIBERER-ISCIII, IdiPAZ-CNIO Translational Research Unit in Pediatric Hemato-Oncology, La Paz University Hospital Research Institute; Spanish National Cancer Center, Madrid, Spain; Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Jordi Surrallés
- Unitat Mixta de Recerca en Medicina Genòmica, Universitat Autònoma de Barcelona (UAB)-IR SANT PAU, Barcelona, Spain; Institut de Bioenginyeria de Catalunya (IBEC), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CIBERER, ISCIII), Madrid, Spain; Servei de Genètica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|
28
|
Trory JS, Vautrinot J, May CJ, Hers I. PROTACs in platelets: emerging antithrombotic strategies and future perspectives. Curr Opin Hematol 2025; 32:34-42. [PMID: 39446364 DOI: 10.1097/moh.0000000000000846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
PURPOSE OF REVIEW Proteolysis-targeted chimeras (PROTACs) are heterobifunctional compounds that selectively target proteins for degradation and are an emerging therapeutic modality to treat diseases such as cancer and neurodegenerative disorders. This review will widen the area of application by highlighting the ability of PROTACs to remove proteins from the anucleate platelets and evaluate their antithrombotic potential. RECENT FINDINGS Proteomic and biochemical studies demonstrated that human platelets possess the Ubiquitin Proteasomal System as well as the E3 ligase cereblon (CRBN) and therefore may be susceptible to PROTAC-mediated protein degradation. Recent findings confirmed that CRBN ligand-based PROTACs targeting generic tyrosine kinases, Btk and/or Fak lead to efficacious and selective protein degradation in human platelets. Downregulation of Btk, a key player involved in signalling to thrombosis, but not haemostasis, resulted in impaired in-vitro thrombus formation. SUMMARY Platelets are susceptible to targeted protein degradation by CRBN ligand-based PROTACs and have limited ability to resynthesise proteins, ensuring long-term downregulation of target proteins. Therefore, PROTACs serve as an additional research tool to study platelet function and offer new therapeutic potential to prevent thrombosis. Future studies should focus on enhancing cell specificity to avoid on-target side effects on other blood cells.
Collapse
Affiliation(s)
- Justin S Trory
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | | | | | | |
Collapse
|
29
|
Boroujeni AF, Ates-Alagoz Z. Pioneering the Battle Against Breast Cancer: The Promise of New Bcl-2 Family. Anticancer Agents Med Chem 2025; 25:164-178. [PMID: 39313901 DOI: 10.2174/0118715206320224240910054728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024]
Abstract
Currently, breast cancer is the most common cancer type, accounting for 1 in every 4 cancer cases. Leading both in mortality and incidence, breast cancer causes 1 in 4 cancer deaths. To decrease the burden of breast cancer, novel therapeutic agents which target the key hallmarks of cancer, are being explored. The Bcl-2 family of proteins has a crucial role in governing cell death, making them an attractive target for cancer therapy. As cancer chemotherapies lead to oncogenic stress, cancer cells upregulate the Bcl-2 family to overcome apoptosis, leading to failure of treatment. To fix this issue, Bcl-2 family inhibitors, which can cause cell death, have been introduced as novel therapeutic agents. Members of this group have shown promising results in in-vitro studies, and some are currently in clinical trials. In this review, we will investigate Bcl-2 family inhibitors, which are already in trials as monotherapy or combination therapy for breast cancer, and we will also highlight the result of in vitro studies of novel Bcl-2 family inhibitors on breast cancer cells. The findings of these studies have yielded encouraging outcomes regarding the identification of novel Bcl-2 family inhibitors. These compounds hold significant potential as efficacious agents for employment in both monotherapy and combination therapy settings.
Collapse
Affiliation(s)
- Ali Farhang Boroujeni
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Zeynep Ates-Alagoz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
30
|
Moustapha A, Andreu P, Gonzalvez F, Fradin D, Tissier JP, Diolez P, Petit PX. Reappraisal of the fundamental mechanisms of the sHA14-1 molecule as a Bcl-2/Bcl-XL ligand in the context of anticancer therapy: A cell biological study. J Biol Methods 2024; 11:e99010040. [PMID: 39839094 PMCID: PMC11744068 DOI: 10.14440/jbm.2024.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/26/2024] [Accepted: 11/05/2024] [Indexed: 01/23/2025] Open
Abstract
Background HA14-1 is a small-molecule, stable B-cell lymphoma 2 (Bcl-2) antagonist that promotes apoptosis in malignant cells through an incompletely-defined mechanism of action. Bcl-2 and related anti-apoptotic proteins, such as B-cell lymphoma-extra-large [Bcl-XL]), are predominantly localized to the outer mitochondrial membrane, where they regulate cell death pathways. However, the notably short half-life of HA14-1 in vitro limits its potential therapeutic application. To address this limitation, a more stable analog, ethyl-2-amino-6-phenyl-4-(2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (sHA14-1), was developed. Objective This study investigated the relationship between sHA14-1 and Bcl-2/Bcl-XL. The sHA14-1 molecule acts as a hormetic substance. Therefore, it is crucial to determine whether the hormetic zone corresponds to a putative therapeutic window, that is, the optimal concentration at which sHA14-1 selectively kills cancer cells overexpressing Bcl-2 or Bcl-XL while causing minimal damage to normal cells. Methods Using classical cell biology and flow cytometry, we examined the main signaling pathways involving Bcl-2 or Bcl-XL, and their modification in the presence of sHA14-1. Results We showed that sHA14-1 exerted a dual effect on mitochondria: (i) it sensitized cells to increased permeability, and (ii) it inhibited adenosine diphosphate-stimulated respiration and uncoupled respiration. At relatively low concentrations, sHA14-1 induced mitochondrial swelling, reminiscent of "pore opening" but with distinct characteristics. Over 30 μM, sHA14-1 caused mitochondrial transition depolarization independent of permeability transition and cell death that resembled secondary necrosis (i.e., occurring after maximal mitochondrial permeability) rather than apoptosis. The balance between apoptotic and necrotic cell death induced by sHA14-1 was also evaluated. Conclusion Our results suggested that sHA14-1 plays a multifunctional role, involving both mitochondria and the endoplasmic reticulum. Its actions are more complex than its originally intended role in targeting anti-apoptotic Bcl-2 family members, which may complicate its potential application as an anticancer therapy.
Collapse
Affiliation(s)
- Aoula Moustapha
- National Center for Scientific Research UMR 8003, Paris City University, SSPIN Neuroscience Institute, Saint-Germain Campus, Paris, Île de France 75006, France
- Department of Genetic and Development, INSERM U567/National Center for Scientific Research UMR 8104, Cochin Institut, Paris 750014, France
| | - Pauline Andreu
- Department of Genetic and Development, INSERM U567/National Center for Scientific Research UMR 8104, Cochin Institut, Paris 750014, France
| | - François Gonzalvez
- Department of Genetic and Development, INSERM U567/National Center for Scientific Research UMR 8104, Cochin Institut, Paris 750014, France
| | - Delphine Fradin
- Department of Genetic and Development, INSERM U567/National Center for Scientific Research UMR 8104, Cochin Institut, Paris 750014, France
| | - Jean-Pierre Tissier
- Laboratory of Process Engineering and Food Technologies, INRA Lille Research Center, Villeneuve D’Ascq Cedex, Hauts-de-France 59591, France
| | - Phillippe Diolez
- IHU Liryc, Bordeaux University Foundation, Pessac, Bordeaux, Nouvelle-Aquitaine 33000, France
- National Institute of Health and Medical Research, Cardio-Thoracic Research Center, Bordeaux, Nouvelle-Aquitaine 33000, France
| | - Patrice Xavier Petit
- National Center for Scientific Research UMR 8003, Paris City University, SSPIN Neuroscience Institute, Saint-Germain Campus, Paris, Île de France 75006, France
- Department of Genetic and Development, INSERM U567/National Center for Scientific Research UMR 8104, Cochin Institut, Paris 750014, France
| |
Collapse
|
31
|
Zarco N, Dovas A, de Araujo Farias V, Nagaiah NK, Haddock A, Sims PA, Hambardzumyan D, Meyer CT, Canoll P, Rosenfeld SS, Kenchappa RS. Resistance to spindle inhibitors in glioblastoma depends on STAT3 and therapy induced senescence. iScience 2024; 27:111311. [PMID: 39640583 PMCID: PMC11617384 DOI: 10.1016/j.isci.2024.111311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/16/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024] Open
Abstract
While mitotic spindle inhibitors specifically kill proliferating tumor cells without the toxicities of microtubule poisons, resistance has limited their clinical utility. Treating glioblastomas with the spindle inhibitors ispinesib, alisertib, or volasertib creates a subpopulation of therapy induced senescent cells that resist these drugs by relying upon the anti-apoptotic and metabolic effects of activated STAT3. Furthermore, these senescent cells expand the repertoire of cells resistant to these drugs by secreting an array of factors, including TGFβ, which induce proliferating cells to exit mitosis and become quiescent-a state that also resists spindle inhibitors. Targeting STAT3 restores sensitivity to each of these drugs by depleting the senescent subpopulation and inducing quiescent cells to enter the mitotic cycle. These results support a therapeutic strategy of targeting STAT3-dependent therapy-induced senescence to enhance the efficacy of spindle inhibitors for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Natanael Zarco
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Athanassios Dovas
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | | | - Ashley Haddock
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Peter A. Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Dolores Hambardzumyan
- Departments of Oncological Sciences and Neurosurgery, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Steven S. Rosenfeld
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Rajappa S. Kenchappa
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
32
|
Kim J, Brunetti B, Kumar A, Mangla A, Honda K, Yoshida A. Inhibition of glutaminase elicits senolysis in therapy-induced senescent melanoma cells. Cell Death Dis 2024; 15:902. [PMID: 39695080 DOI: 10.1038/s41419-024-07284-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024]
Abstract
The cyclin D1-Cyclin-Dependent Kinases 4 and 6 (CDK4/6) complex is crucial for the development of melanoma. We previously demonstrated that targeting CDK4/6 using small molecule inhibitors (CDK4/6i) suppresses BrafV600E melanoma growth in vitro and in vivo through induction of cellular senescence. However, clinical trials investigating CDK4/6i in melanoma have not yielded successful outcomes, underscoring the necessity to enhance the therapeutic efficacy of CDK4/6i. Accumulated research has shown that while senescence initially suppresses cell proliferation, a prolonged state of senescence eventually leads to tumor relapse by altering the tumor microenvironment, suggesting that removal of those senescent cells (in a process referred to as senolysis) is of clinical necessity to facilitate clinical response. We demonstrate that glutaminase 1 (GLS1) expression is specifically upregulated in CDK4/6i-induced senescent BrafV600E melanoma cells. Upregulated GLS1 expression renders BrafV600E melanoma senescent cells vulnerable to GLS1 inhibitor (GLS1i). Furthermore, we demonstrate that this senolytic approach targeting upregulated GLS1 expression is applicable even though those cells developed resistance to the BrafV600E inhibitor vemurafenib, a frequently encountered substantial clinical challenge to treating patients. Thus, this novel senolytic approach may revolutionize current CDK4/6i mediated melanoma treatment if melanoma cells undergo senescence prior to developing resistance to CDK4/6i. Given that we demonstrate that a low dose of vemurafenib induced senescence, which renders BrafV600E melanoma cells susceptible to GLS1i and recent accumulated research shows many cancer cells undergo senescence in response to chemotherapy, radiation, and immunotherapy, this senolytic therapy approach may prove applicable to a wide range of cancer types once senescence and GLS1 expression are induced.
Collapse
Affiliation(s)
- Justin Kim
- Department of Dermatology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Bryce Brunetti
- Department of Dermatology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Ayanesh Kumar
- Department of Dermatology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Ankit Mangla
- Department of Hematology and Oncology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Kord Honda
- Department of Dermatology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Akihiro Yoshida
- Department of Dermatology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
33
|
May L, Hu B, Jerajani P, Jagdeesh A, Alhawiti O, Cai L, Semenova N, Guo C, Isbell M, Deng X, Faber A, Pillappa R, Bandyopadhyay D, Wang XY, Neuwelt A, Koblinski J, Bos PD, Li H, Martin R, Landry JW. The Innate Immune System and the TRAIL-Bcl-XL Axis Mediate a Sex Bias in Lung Cancer and Confer a Therapeutic Vulnerability in Females. Cancer Res 2024; 84:4140-4155. [PMID: 39312191 PMCID: PMC11649478 DOI: 10.1158/0008-5472.can-24-0585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/21/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
There is a significant sex bias in lung cancer, with males showing increased mortality compared with females. A better mechanistic understanding of these differences could help identify therapeutic targets to personalize cancer therapies to each sex. After observing a clear sex bias in humanized mice, with male patient-derived xenograft lung tumors being more progressive and deadlier than female patient-derived xenograft lung tumors, we identified mouse tumor models of lung cancer with the same sex bias. This sex bias was not observed in models of breast, colon, melanoma, and renal cancers. In vivo, the sex bias in growth and lethality required intact ovaries, functional innate NK cells and monocytes/macrophages, and the activating receptor NKG2D. Ex vivo cell culture models were sensitized to the anticancer effects of NKG2D-mediated NK cell and macrophage killing through the TRAIL-Bcl-XL axis when cultured with serum from female mice with intact ovaries. In both flank and orthotopic models, the Bcl-XL inhibitor navitoclax (ABT-263) improved tumor growth control in female mice and required NK cells, macrophages, and the TRAIL signaling pathway. This research suggests that navitoclax and TRAIL pathway agonists could be used as a personalized therapy to improve outcomes in women with lung cancer. Significance: Lung cancers in females are more susceptible to killing through a TRAIL-Bcl-XL axis, indicating that targeting this axis therapeutically could represent a personalized approach to treat female patients with lung cancer.
Collapse
Affiliation(s)
- Lauren May
- Department of Human and Molecular Genetics, VCU School of Medicine, VCU Institute of Molecular Medicine, VCU Massey Comprehensive Cancer Center, Richmond, VA 23298, USA
| | - Bin Hu
- VCU OVPRI, Virginia Commonwealth University, VCU Massey Comprehensive Cancer Center, Richmond, VA, 23298
| | - Preksha Jerajani
- Department of Human and Molecular Genetics, VCU School of Medicine, VCU Institute of Molecular Medicine, VCU Massey Comprehensive Cancer Center, Richmond, VA 23298, USA
| | - Akash Jagdeesh
- Department of Human and Molecular Genetics, VCU School of Medicine, VCU Institute of Molecular Medicine, VCU Massey Comprehensive Cancer Center, Richmond, VA 23298, USA
| | - Ohud Alhawiti
- Department of Human and Molecular Genetics, VCU School of Medicine, VCU Institute of Molecular Medicine, VCU Massey Comprehensive Cancer Center, Richmond, VA 23298, USA
| | - Lillian Cai
- Department of Human and Molecular Genetics, VCU School of Medicine, VCU Institute of Molecular Medicine, VCU Massey Comprehensive Cancer Center, Richmond, VA 23298, USA
| | - Nina Semenova
- Department of Pharmaceutical Science, Hampton University, Hampton VA, 23668
| | - Chunqing Guo
- Department of Human and Molecular Genetics, VCU School of Medicine, VCU Institute of Molecular Medicine, VCU Massey Comprehensive Cancer Center, Richmond, VA 23298, USA
| | - Madison Isbell
- Department of Microbiology and Immunology, VCU School of Medicine, VCU Massey Comprehensive Cancer Center, Richmond, VA, 23298
| | - Xiaoyan Deng
- Department of Biostatistics, School of Population Health, VCU Massey Comprehensive Cancer Center, Richmond, VA 23298
| | - Anthony Faber
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, VCU School of Dentistry, VCU Massey Comprehensive Cancer Center, Richmond, VA 23298
| | - Raghavendra Pillappa
- Department of Pathology, VCU School of Medicine, VCU Massey Comprehensive Cancer Center, Richmond, VA, 23298
| | - Dipankar Bandyopadhyay
- Department of Biostatistics, School of Population Health, VCU Massey Comprehensive Cancer Center, Richmond, VA 23298
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, VCU School of Medicine, VCU Institute of Molecular Medicine, VCU Massey Comprehensive Cancer Center, Richmond, VA 23298, USA
| | - Alexander Neuwelt
- Department of Internal Medicine, Division of Hematology, Oncology, and Palliative Care, Virginia Commonwealth University, Richmond, VA, 23298
- Staff Physician, Department of Internal Medicine, Division of Hematology and Oncology, Richmond VA Medical Center, Richmond, VA, 23249
| | - Jennifer Koblinski
- VCU OVPRI, Virginia Commonwealth University, VCU Massey Comprehensive Cancer Center, Richmond, VA, 23298
| | - Paula D. Bos
- Department of Pathology, VCU School of Medicine, VCU Massey Comprehensive Cancer, Richmond, VA, 23298
| | - Howard Li
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401
| | - Rebecca Martin
- Department of Microbiology and Immunology, VCU School of Medicine, VCU Massey Comprehensive Cancer Center, Richmond, VA, 23298
| | - Joseph W. Landry
- Department of Human and Molecular Genetics, VCU School of Medicine, VCU Institute of Molecular Medicine, VCU Massey Comprehensive Cancer Center, Richmond, VA 23298, USA
| |
Collapse
|
34
|
Wichert MC, Fortner C, Niedermayer A, Bender J, Enzenmüller S, Debatin KM, Meyer LH, Seyfried F. The dual BCL-2 and BCL-XL inhibitor AZD4320 acts on-target and synergizes with MCL-1 inhibition in B-cell precursor ALL. Blood Adv 2024; 8:6035-6042. [PMID: 39368805 PMCID: PMC11635643 DOI: 10.1182/bloodadvances.2024013194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 10/07/2024] Open
Affiliation(s)
| | - Colin Fortner
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
- International Graduate School in Molecular Medicine, Ulm University, Ulm, Germany
| | - Alexandra Niedermayer
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
- International Graduate School in Molecular Medicine, Ulm University, Ulm, Germany
| | - Johanna Bender
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
- International Graduate School in Molecular Medicine, Ulm University, Ulm, Germany
| | - Stefanie Enzenmüller
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Lüder Hinrich Meyer
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Felix Seyfried
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
35
|
Sui X, Wang W, Zhang D, Xu J, Li J, Jia Y, Qin Y. Integrated analysis of ferroptosis and stemness based on single-cell and bulk RNA-sequencing data provide insights into the prognosis and treatment of esophageal carcinoma. Gene 2024; 927:148701. [PMID: 38885819 DOI: 10.1016/j.gene.2024.148701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Cancer stem cells (CSCs) play a significant role in the recurrence and drug resistance of esophageal carcinoma (ESCA). Ferroptosis is a promising anticancer therapeutic strategy that effectively targets CSCs exhibiting high tumorigenicity and treatment resistance. However, there is a lack of research on the combined role of ferroptosis-related genes (FRGs) and stemness signature in the prognosis of ESCA. METHODS The cellular compositions were characterized using single-cell RNA sequencing (scRNA-seq) data from 18 untreated ESCA samples. 50 ferroptosis-related stemness genes (FRSGs) were identified by integrating FRGs with stemness-related genes (SRGs), and then the cells were grouped by AUCell analysis. Next, functional enrichment, intercellular communication, and trajectory analyses were performed to characterize the different groups of cells. Subsequently, the stem-ferr-index was calculated using machine learning algorithms based on the expression profiles of the identified risk genes. Additionally, therapeutic drugs were predicted by analyzing the GDSC2 database. Finally, the expression and functional roles of the identified marker genes were validated through in vitro experiments. RESULTS The analysis of scRNA-seq data demonstrates the diversity and cellular heterogeneity of ESCA. Then, we identified 50 FRSGs and classified cells into high or low ferroptosis score stemness cells accordingly. Functional enrichment analysis conducted on the differentially up-regulated genes between these groups revealed predominant enrichment in pathways associated with intercellular communication and cell differentiation. Subsequently, we identified 9 risk genes and developed a prognostic signature, termed stem_ferr_index, based on these identified risk genes. We found that the stem-ferr-index was correlated with the clinical characteristics of patients, and patients with high stem-ferr-index had poor prognosis. Furthermore, we identified four drugs (Navitoclax, Foretinib, Axitinib, and Talazoparib) with potential efficacy targeting patients with a high stem_ferr_index. Additionally, we delineated two marker genes (STMN1 and SLC2A1). Particularly noteworthy, SLC2A1 exhibited elevated expression levels in ESCA tissues and cells. We provided evidence suggesting that SLC2A1 could influence the migration, invasion, and stemness of ESCA cells, and it was associated with sensitivity to Foretinib. CONCLUSION This study constructed a novel ferroptosis-related stemness signature, identified two marker genes for ESCA, and provided valuable insights for developing more effective therapeutic targets targeting ESCA CSCs in the future.
Collapse
Affiliation(s)
- Xin Sui
- Department of Clinical Oncology, The First Affiliated Hospital Zhengzhou University, Zhengzhou, 450052, China
| | - Wenjia Wang
- Department of Clinical Oncology, The First Affiliated Hospital Zhengzhou University, Zhengzhou, 450052, China
| | - Daidi Zhang
- Department of Clinical Oncology, The First Affiliated Hospital Zhengzhou University, Zhengzhou, 450052, China
| | - Jiayao Xu
- Department of Clinical Oncology, The First Affiliated Hospital Zhengzhou University, Zhengzhou, 450052, China
| | - Jing Li
- Department of Clinical Oncology, The First Affiliated Hospital Zhengzhou University, Zhengzhou, 450052, China
| | - Yongxu Jia
- Department of Clinical Oncology, The First Affiliated Hospital Zhengzhou University, Zhengzhou, 450052, China
| | - Yanru Qin
- Department of Clinical Oncology, The First Affiliated Hospital Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
36
|
Carvalho AM, Greene MK, Smyth P, Mutch A, McLaughlin KM, Cairns LV, Mills KI, McCloskey KD, Scott CJ. Development of CD33-Targeted Dual Drug-Loaded Nanoparticles for the Treatment of Pediatric Acute Myeloid Leukemia. Biomacromolecules 2024; 25:6503-6514. [PMID: 39235263 PMCID: PMC11480974 DOI: 10.1021/acs.biomac.4c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
Paediatric acute myeloid leukemia (AML) is a heterogeneous hematological malignancy still heavily reliant on traditional chemotherapeutic approaches. Combination treatments have shown to be a superior approach, but their success is often hindered by side effects and different drugs' pharmacokinetics. Here, we investigated ABT-737 and Purvalanol A as a potential drug pairing for pediatric AML and described the development of CD33-targeted polymeric nanoparticles (NPs) to enable their simultaneous targeted codelivery. Separate drug encapsulation within poly(lactic-co-glycolic acid) (PLGA) NPs was optimized prior to coencapsulation of both drugs at a synergistic ratio in PEGylated PLGA NPs. The therapeutic effects of formulations were evaluated in a panel of pediatric AML cells, and dual drug-loaded NPs (dual NPs) demonstrated significantly enhanced apoptotic cell death. Moreover, conjugation to gemtuzumab resulted in improved NP binding and internalization in CD33-positive cells. Finally, CD33-targeted dual-loaded NPs showed enhanced cytotoxicity to CD33-positive AML cells via CD33-mediated targeted drug delivery.
Collapse
Affiliation(s)
- Ana M. Carvalho
- The Patrick G Johnston Centre
for Cancer Research, School of Medicine, Dentistry and Biomedical
Sciences, Queen’s University Belfast, Belfast BT9 7AE, U.K.
| | - Michelle K. Greene
- The Patrick G Johnston Centre
for Cancer Research, School of Medicine, Dentistry and Biomedical
Sciences, Queen’s University Belfast, Belfast BT9 7AE, U.K.
| | - Peter Smyth
- The Patrick G Johnston Centre
for Cancer Research, School of Medicine, Dentistry and Biomedical
Sciences, Queen’s University Belfast, Belfast BT9 7AE, U.K.
| | - Alexander Mutch
- The Patrick G Johnston Centre
for Cancer Research, School of Medicine, Dentistry and Biomedical
Sciences, Queen’s University Belfast, Belfast BT9 7AE, U.K.
| | - Kirsty M. McLaughlin
- The Patrick G Johnston Centre
for Cancer Research, School of Medicine, Dentistry and Biomedical
Sciences, Queen’s University Belfast, Belfast BT9 7AE, U.K.
| | - Lauren V. Cairns
- The Patrick G Johnston Centre
for Cancer Research, School of Medicine, Dentistry and Biomedical
Sciences, Queen’s University Belfast, Belfast BT9 7AE, U.K.
| | - Ken I. Mills
- The Patrick G Johnston Centre
for Cancer Research, School of Medicine, Dentistry and Biomedical
Sciences, Queen’s University Belfast, Belfast BT9 7AE, U.K.
| | - Karen D. McCloskey
- The Patrick G Johnston Centre
for Cancer Research, School of Medicine, Dentistry and Biomedical
Sciences, Queen’s University Belfast, Belfast BT9 7AE, U.K.
| | - Christopher J. Scott
- The Patrick G Johnston Centre
for Cancer Research, School of Medicine, Dentistry and Biomedical
Sciences, Queen’s University Belfast, Belfast BT9 7AE, U.K.
| |
Collapse
|
37
|
La Marca JE, Kelly GL, Strasser A, Diepstraten ST. Don't fear the reaper: The role of regulated cell death in tumorigenesis and BH3-mimetics for cancer therapy. Dev Cell 2024; 59:2532-2548. [PMID: 39378839 DOI: 10.1016/j.devcel.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 10/10/2024]
Abstract
From its earliest characterization, it has been recognized that there is a role for regulated (programmed) cell death in cancer. As our understanding of the different types of programmed cell death processes and their molecular control has advanced, so have the technologies that allow us to manipulate these processes to, for example, fight against cancer. In this review, we describe the roles of the different forms of regulated cell death in the development of cancer as well as their potential therapeutic exploitation. In that vein, we explore the development and use of BH3-mimetics, a unique class of drugs that can directly activate the apoptotic cell death machinery to treat cancer. Finally, we address key challenges that face the field to improve the use of these therapeutics and the efforts that are being undertaken to do so.
Collapse
Affiliation(s)
- John E La Marca
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Genome Engineering and Cancer Modelling Program, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia.
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Andreas Strasser
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Sarah T Diepstraten
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
38
|
Kaur G, Sohanur Rahman M, Shaikh S, Panda K, Chinnapaiyan S, Santiago Estevez M, Xia L, Unwalla H, Rahman I. Emerging roles of senolytics/senomorphics in HIV-related co-morbidities. Biochem Pharmacol 2024; 228:116179. [PMID: 38556028 PMCID: PMC11410549 DOI: 10.1016/j.bcp.2024.116179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Human immunodeficiency virus (HIV) is known to cause cellular senescence and inflammation among infected individuals. While the traditional antiretroviral therapies (ART) have allowed the once fatal infection to be managed effectively, the quality of life of HIV patients on prolonged ART use is still inferior. Most of these individuals suffer from life-threatening comorbidities like chronic obstructive pulmonary disease (COPD), pulmonary arterial hypertension (PAH), and diabetes, to name a few. Interestingly, cellular senescence is known to play a critical role in the pathophysiology of these comorbidities as well. It is therefore important to understand the role of cellular senescence in the disease progression and co-morbidity development in HIV-infected individuals. In this respect, use of senolytic/senomorphic drugs as combination therapy with ART would be beneficial for HIV patients. This review provides a critical analysis of the current literature to determine the potential and efficacy of using senolytics/senotherapeutics in managing HIV infection, latency, and associated co-morbidities in humans. The various classes of senolytics have been studied in detail to focus on their potential to combat against HIV infections and associated pathologies with advancing age.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Md Sohanur Rahman
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Sadiya Shaikh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Kingshuk Panda
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Srinivasan Chinnapaiyan
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Maria Santiago Estevez
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Li Xia
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Hoshang Unwalla
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
39
|
Kjer-Hansen P, Phan TG, Weatheritt RJ. Protein isoform-centric therapeutics: expanding targets and increasing specificity. Nat Rev Drug Discov 2024; 23:759-779. [PMID: 39232238 DOI: 10.1038/s41573-024-01025-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
Most protein-coding genes produce multiple protein isoforms; however, these isoforms are commonly neglected in drug discovery. The expression of protein isoforms can be specific to a disease, tissue and/or developmental stage, and this specific expression can be harnessed to achieve greater drug specificity than pan-targeting of all gene products and to enable improved treatments for diseases caused by aberrant protein isoform production. In recent years, several protein isoform-centric therapeutics have been developed. Here, we collate these studies and clinical trials to highlight three distinct but overlapping modes of action for protein isoform-centric drugs: isoform switching, isoform introduction or depletion, and modulation of isoform activity. In addition, we discuss how protein isoforms can be used clinically as targets for cell type-specific drug delivery and immunotherapy, diagnostic biomarkers and sources of cancer neoantigens. Collectively, we emphasize the value of a focus on isoforms as a route to discovering drugs with greater specificity and fewer adverse effects. This approach could enable the targeting of proteins for which pan-inhibition of all isoforms is toxic and poorly tolerated.
Collapse
Affiliation(s)
- Peter Kjer-Hansen
- EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
- St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Darlinghurst, New South Wales, Australia.
| | - Tri Giang Phan
- St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Darlinghurst, New South Wales, Australia
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Robert J Weatheritt
- EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
40
|
Lei SY, Qu Y, Yang YQ, Liu JC, Zhang YF, Zhou SY, He QY, Jin H, Yang Y, Guo ZN. Cellular senescence: A novel therapeutic target for central nervous system diseases. Biomed Pharmacother 2024; 179:117311. [PMID: 39182322 DOI: 10.1016/j.biopha.2024.117311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
The underlying mechanisms of diseases affecting the central nervous system (CNS) remain unclear, limiting the development of effective therapeutic strategies. Remarkably, cellular senescence, a biological phenomenon observed in cultured fibroblasts in vitro, is a crucial intrinsic mechanism that influences homeostasis of the brain microenvironment and contributes to the onset and progression of CNS diseases. Cellular senescence has been observed in disease models established in vitro and in vivo and in bodily fluids or tissue components from patients with CNS diseases. These findings highlight cellular senescence as a promising target for preventing and treating CNS diseases. Consequently, emerging novel therapies targeting senescent cells have exhibited promising therapeutic effects in preclinical and clinical studies on aging-related diseases. These innovative therapies can potentially delay brain cell loss and functional changes, improve the prognosis of CNS diseases, and provide alternative treatments for patients. In this study, we examined the relevant advancements in this field, particularly focusing on the targeting of senescent cells in the brain for the treatment of chronic neurodegenerative diseases (e.g., Alzheimer's disease, Parkinson's disease, and multiple sclerosis) and acute neurotraumatic insults (e.g., ischemic stroke, spinal cord injury, and traumatic brain injury).
Collapse
Affiliation(s)
- Shuang-Yin Lei
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Yang Qu
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Yu-Qian Yang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Jia-Cheng Liu
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Yi-Fei Zhang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Sheng-Yu Zhou
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Qian-Yan He
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Hang Jin
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Yi Yang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China; Neuroscience Research Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
41
|
Gao H, Nepovimova E, Adam V, Heger Z, Valko M, Wu Q, Kuca K. Age-associated changes in innate and adaptive immunity: role of the gut microbiota. Front Immunol 2024; 15:1421062. [PMID: 39351234 PMCID: PMC11439693 DOI: 10.3389/fimmu.2024.1421062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Aging is generally regarded as an irreversible process, and its intricate relationship with the immune system has garnered significant attention due to its profound implications for the health and well-being of the aging population. As people age, a multitude of alterations occur within the immune system, affecting both innate and adaptive immunity. In the realm of innate immunity, aging brings about changes in the number and function of various immune cells, including neutrophils, monocytes, and macrophages. Additionally, certain immune pathways, like the cGAS-STING, become activated. These alterations can potentially result in telomere damage, the disruption of cytokine signaling, and impaired recognition of pathogens. The adaptive immune system, too, undergoes a myriad of changes as age advances. These include shifts in the number, frequency, subtype, and function of T cells and B cells. Furthermore, the human gut microbiota undergoes dynamic changes as a part of the aging process. Notably, the interplay between immune changes and gut microbiota highlights the gut's role in modulating immune responses and maintaining immune homeostasis. The gut microbiota of centenarians exhibits characteristics akin to those found in young individuals, setting it apart from the microbiota observed in typical elderly individuals. This review delves into the current understanding of how aging impacts the immune system and suggests potential strategies for reversing aging through interventions in immune factors.
Collapse
Affiliation(s)
- Haoyu Gao
- College of Life Science, Yangtze University, Jingzhou, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| |
Collapse
|
42
|
Jain S, Singh M, Sarhan M, Damiba N, Singh A, Villabona-Rueda A, Meza ON, Chen X, Ordonez A, D'Alessio F, Aboagye E, Carroll L. Proapoptotic Bcl-2 inhibitor as host directed therapy for pulmonary tuberculosis. RESEARCH SQUARE 2024:rs.3.rs-4926508. [PMID: 39281866 PMCID: PMC11398574 DOI: 10.21203/rs.3.rs-4926508/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Mycobacterium tuberculosis establishes within host cells by inducing anti-apoptotic Bcl-2 family proteins, triggering necrosis, inflammation, and fibrosis. Here, we demonstrate that navitoclax, an orally bioavailable, small-molecule Bcl-2 inhibitor, significantly improves pulmonary tuberculosis (TB) treatments as a host-directed therapy. Addition of navitoclax to standard TB treatments at human equipotent dosing in mouse models of TB, inhibits Bcl-2 expression, leading to improved bacterial clearance, reduced tissue damage / fibrosis and decreased extrapulmonary bacterial dissemination. Using immunohistochemistry and flow cytometry, we show that navitoclax induces apoptosis in several immune cells, including CD68 + and CD11b + cells. Finally, positron emission tomography (PET) in live animals using novel, clinically translatable biomarkers for apoptosis (18F-ICMT-11) and fibrosis (18F-FAPI-74) demonstrates that navitoclax significantly increases apoptosis and reduces fibrosis in pulmonary tissues, which are confirmed using post-mortem studies. Our studies suggest that proapoptotic drugs such as navitoclax can improve pulmonary TB treatments, and should be evaluated in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - Alok Singh
- Johns Hopkins University School of Medicine
| | | | | | - Xueyi Chen
- Johns Hopkins University School of Medicine
| | | | | | | | | |
Collapse
|
43
|
Jacobs W, Khalifeh M, Koot M, Palacio-Castañeda V, van Oostrum J, Ansems M, Verdurmen WPR, Brock R. RNA-based logic for selective protein expression in senescent cells. Int J Biochem Cell Biol 2024; 174:106636. [PMID: 39089613 DOI: 10.1016/j.biocel.2024.106636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/21/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Cellular senescence is a cellular state characterized by irreversible growth arrest, resistance to apoptosis and secretion of inflammatory molecules, which is causally linked to the pathogenesis of many age-related diseases. Besides, there is accumulating evidence that selective removal of senescent cells can benefit therapies for cancer and fibrosis by modulating the inflammatory microenvironment. While the field of so-called senolytics has spawned promising small molecules and peptides for the selective removal of senescent cells, there is still no effective means to detect senescent cells in vivo, a prerequisite for understanding the role of senescence in pathophysiology and to assess the effectiveness of treatments aimed at removing senescent cells. Here, we present a strategy based on an mRNA logic circuit, that yields mRNA-dependent protein expression only when a senescence-specific miRNA signature is present. Following a validation of radiation-induced senescence induction in primary human fibroblasts, we identify miRNAs up- and downregulated in association with cellular senescence using RT-qPCR. Incorporating binding sites to these miRNAs into the 3' untranslated regions of the mRNA logic circuit, we demonstrate the senescence-specific expression of EGFP for detection of senescent cells and of a constitutively active caspase-3 for selective removal. Altogether, our results pave the way for a novel approach to execute an mRNA-based programme specifically in senescent cells aimed at their detection or selective removal.
Collapse
Affiliation(s)
- Ward Jacobs
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Masoomeh Khalifeh
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Merijn Koot
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | | | - Jenny van Oostrum
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Marleen Ansems
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Wouter P R Verdurmen
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Roland Brock
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands; Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain.
| |
Collapse
|
44
|
Seiboldt T, Zeiser C, Nguyen D, Celikyürekli S, Herter S, Najafi S, Stroh-Dege A, Meulenbroeks C, Mack N, Salem-Altintas R, Westermann F, Schlesner M, Milde T, Kool M, Holland-Letz T, Vogler M, Peterziel H, Witt O, Oehme I. Synergy of retinoic acid and BH3 mimetics in MYC(N)-driven embryonal nervous system tumours. Br J Cancer 2024; 131:763-777. [PMID: 38942989 PMCID: PMC11333474 DOI: 10.1038/s41416-024-02740-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Certain paediatric nervous system malignancies have dismal prognoses. Retinoic acid (RA) is used in neuroblastoma treatment, and preclinical data indicate potential benefit in selected paediatric brain tumour entities. However, limited single-agent efficacy necessitates combination treatment approaches. METHODS We performed drug sensitivity profiling of 76 clinically relevant drugs in combination with RA in 16 models (including patient-derived tumouroids) of the most common paediatric nervous system tumours. Drug responses were assessed by viability assays, high-content imaging, and apoptosis assays and RA relevant pathways by RNAseq from treated models and patient samples obtained through the precision oncology programme INFORM (n = 2288). Immunoprecipitation detected BCL-2 family interactions, and zebrafish embryo xenografts were used for in vivo efficacy testing. RESULTS Group 3 medulloblastoma (MBG3) and neuroblastoma models were highly sensitive to RA treatment. RA induced differentiation and regulated apoptotic genes. RNAseq analysis revealed high expression of BCL2L1 in MBG3 and BCL2 in neuroblastomas. Co-treatments with RA and BCL-2/XL inhibitor navitoclax synergistically decreased viability at clinically achievable concentrations. The combination of RA with navitoclax disrupted the binding of BIM to BCL-XL in MBG3 and to BCL-2 in neuroblastoma, inducing apoptosis in vitro and in vivo. CONCLUSIONS RA treatment primes MBG3 and NB cells for apoptosis, triggered by navitoclax cotreatment.
Collapse
Affiliation(s)
- Till Seiboldt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology (B310), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Constantia Zeiser
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology (B310), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Duy Nguyen
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simay Celikyürekli
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology (B310), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sonja Herter
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology (B310), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Sara Najafi
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology (B310), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Alexandra Stroh-Dege
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology (B310), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
| | | | - Norman Mack
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Rabia Salem-Altintas
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology (B310), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Frank Westermann
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
- Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Schlesner
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Biomedical Informatics, Data Mining and Data Analytics, Faculty of Applied Computer Science and Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology (B310), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Tim Holland-Letz
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Meike Vogler
- Institute for Experimental Pediatric Hematology and Oncology, Goethe-University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt, Germany
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe-University Frankfurt, Frankfurt, Germany
| | - Heike Peterziel
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology (B310), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
| | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology (B310), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ina Oehme
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Clinical Cooperation Unit Pediatric Oncology (B310), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.
- National Center for Tumor Diseases Heidelberg, Heidelberg, Germany.
| |
Collapse
|
45
|
Thorman AW, Reigle J, Chutipongtanate S, Yang J, Shamsaei B, Pilarczyk M, Fazel-Najafabadi M, Adamczak R, Kouril M, Bhatnagar S, Hummel S, Niu W, Morrow AL, Czyzyk-Krzeska MF, McCullumsmith R, Seibel W, Nassar N, Zheng Y, Hildeman DA, Medvedovic M, Herr AB, Meller J. Accelerating drug discovery and repurposing by combining transcriptional signature connectivity with docking. SCIENCE ADVANCES 2024; 10:eadj3010. [PMID: 39213358 PMCID: PMC11364105 DOI: 10.1126/sciadv.adj3010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
We present an in silico approach for drug discovery, dubbed connectivity enhanced structure activity relationship (ceSAR). Building on the landmark LINCS library of transcriptional signatures of drug-like molecules and gene knockdowns, ceSAR combines cheminformatic techniques with signature concordance analysis to connect small molecules and their targets and further assess their biophysical compatibility using molecular docking. Candidate compounds are first ranked in a target structure-independent manner, using chemical similarity to LINCS analogs that exhibit transcriptomic concordance with a target gene knockdown. Top candidates are subsequently rescored using docking simulations and machine learning-based consensus of the two approaches. Using extensive benchmarking, we show that ceSAR greatly reduces false-positive rates, while cutting run times by multiple orders of magnitude and further democratizing drug discovery pipelines. We further demonstrate the utility of ceSAR by identifying and experimentally validating inhibitors of BCL2A1, an important antiapoptotic target in melanoma and preterm birth-associated inflammation.
Collapse
Affiliation(s)
- Alexander W. Thorman
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - James Reigle
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA
- Department of Biostatistics, Health Informatics and Data Sciences, University of Cincinnati, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Somchai Chutipongtanate
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Juechen Yang
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA
- Department of Biostatistics, Health Informatics and Data Sciences, University of Cincinnati, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Behrouz Shamsaei
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Marcin Pilarczyk
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Mehdi Fazel-Najafabadi
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Rafal Adamczak
- Department of Informatics, Faculty of Physics, Astronomy an Informatics, Nicolaus Copernicus University, Toruń, Poland
| | - Michal Kouril
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Surbhi Bhatnagar
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Computer Science, University of Cincinnati, Cincinnati, OH, USA
| | - Sarah Hummel
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Wen Niu
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Ardythe L. Morrow
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Maria F. Czyzyk-Krzeska
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Veterans Affairs, Cincinnati Veteran Affairs Medical Center, Cincinnati, OH, USA
| | | | - William Seibel
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Nicolas Nassar
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Yi Zheng
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - David A. Hildeman
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Mario Medvedovic
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA
- Department of Biostatistics, Health Informatics and Data Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Andrew B. Herr
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Jarek Meller
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA
- Department of Biostatistics, Health Informatics and Data Sciences, University of Cincinnati, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Informatics, Faculty of Physics, Astronomy an Informatics, Nicolaus Copernicus University, Toruń, Poland
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Computer Science, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
46
|
Shi Y, Zhang Y, Zhang Y, Yao J, Guo J, Xu X, Wang L. Advances in Nanotherapy for Targeting Senescent Cells. Int J Nanomedicine 2024; 19:8797-8813. [PMID: 39220198 PMCID: PMC11365502 DOI: 10.2147/ijn.s469110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
Aging is an inevitable process in the human body, and cellular senescence refers to irreversible cell cycle arrest caused by external aging-promoting mechanisms. Moreover, as age increases, the accumulation of senescent cells limits both the health of the body and lifespan and even accelerates the occurrence and progression of age-related diseases. Therefore, it is crucial to delay the periodic irreversible arrest and continuous accumulation of senescent cells to address the issue of aging. The fundamental solution is targeted therapy focused on eliminating senescent cells or reducing the senescence-associated secretory phenotype. Over the past few decades, the remarkable development of nanomaterials has revolutionized clinical drug delivery pathways. Their unique optical, magnetic, and electrical properties effectively compensate for the shortcomings of traditional drugs, such as low stability and short half-life, thereby maximizing the bioavailability and minimizing the toxicity of drug delivery. This article provides an overview of how nanomedicine systems control drug release and achieve effective diagnosis. By presenting and analyzing recent advances in nanotherapy for targeting senescent cells, the underlying mechanisms of nanomedicine for senolytic and senomorphic therapy are clarified, providing great potential for targeting senescent cells.
Collapse
Affiliation(s)
- Yurou Shi
- Geriatric Medicine Center, Department of Endocrinology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310015, People’s Republic of China
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Yingjie Zhang
- Geriatric Medicine Center, Department of Endocrinology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310015, People’s Republic of China
| | - Yaxuan Zhang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Jiali Yao
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Junping Guo
- Rainbowfish Rehabilitation and Nursing School, Hangzhou Vocational & Technical College, Hangzhou, 310018, People’s Republic of China
| | - Xiaoling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Lijun Wang
- Geriatric Medicine Center, Department of Endocrinology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310015, People’s Republic of China
| |
Collapse
|
47
|
Kataria R, Duhan N, Kaundal R. Navigating the human-monkeypox virus interactome: HuPoxNET atlas reveals functional insights. Front Microbiol 2024; 15:1399555. [PMID: 39155985 PMCID: PMC11327128 DOI: 10.3389/fmicb.2024.1399555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/09/2024] [Indexed: 08/20/2024] Open
Abstract
Monkeypox virus, a close relative of variola virus, has significantly increased the incidence of monkeypox disease in humans, with several clinical symptoms. The sporadic spread of the disease outbreaks has resulted in the need for a comprehensive understanding of the molecular mechanisms underlying disease infection and potential therapeutic targets. Protein-protein interactions play a crucial role in various cellular processes and regulate different immune signals during virus infection. Computational algorithms have gained high significance in the prediction of potential protein interaction pairs. Here, we developed a comprehensive database called HuPoxNET (https://kaabil.net/hupoxnet/) using the state-of-the-art MERN stack technology. The database leverages two sequence-based computational models to predict strain-specific protein-protein interactions between human and monkeypox virus proteins. Furthermore, various protein annotations of the human and viral proteins such as gene ontology, KEGG pathways, subcellular localization, protein domains, and novel drug targets identified from our study are also available on the database. HuPoxNET is a user-friendly platform for the scientific community to gain more insights into the monkeypox disease infection and aid in the development of therapeutic drugs against the disease.
Collapse
Affiliation(s)
- Raghav Kataria
- Department of Plants, Soils, and Climate, College of Agriculture and Applied Sciences, Logan, UT, United States
- Bioinformatics Facility, Center for Integrated BioSystems, Logan, UT, United States
| | - Naveen Duhan
- Department of Plants, Soils, and Climate, College of Agriculture and Applied Sciences, Logan, UT, United States
- Bioinformatics Facility, Center for Integrated BioSystems, Logan, UT, United States
| | - Rakesh Kaundal
- Department of Plants, Soils, and Climate, College of Agriculture and Applied Sciences, Logan, UT, United States
- Bioinformatics Facility, Center for Integrated BioSystems, Logan, UT, United States
- Department of Computer Science, College of Science, Utah State University, Logan, UT, United States
| |
Collapse
|
48
|
Robert M, Kennedy BK, Crasta KC. Therapy-induced senescence through the redox lens. Redox Biol 2024; 74:103228. [PMID: 38865902 PMCID: PMC11215421 DOI: 10.1016/j.redox.2024.103228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/22/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
Therapy-induced senescent tumor cells have emerged as significant drivers of tumor recurrence and disease relapse. Interestingly, reactive oxygen species (ROS) production and its associated redox signaling networks are intertwined with initiation and establishment of therapy-induced senescence. Therapy-induced senescent cells influence neighboring cells and the tumor microenvironment via their bioactive secretome known as the senescence-associated secretory phenotype (SASP). The intracellular effects of ROS are dose and context-dependent. Under normal physiological conditions, ROS is involved in various signalling pathways and cellular processes important for maintenance of cellular homeostasis, such as redox balance, stress response, inflammatory signalling, cell proliferation and cell death among others. However excess ROS accompanied by a pro-oxidant microenvironment can engender oxidative DNA damage, triggering cellular senescence. In this review, we discuss the role of ROS and the redox state dynamics in fine-tuning homeostatic processes that drive therapy-induced cell fate towards senescence establishment, as well as their influence in stimulating inflammatory signalling and SASP production. We also offer insights into interventional strategies, specifically senotherapeutics, that could potentially leverage on modulation of redox and antioxidant pathways. Lastly, we evaluate possible implications of redox rewiring during escape from therapy-induced senescence, an emerging area of research. We envision that examining therapy-induced senescence through the redox lens, integrated with time-resolved single-cell RNA sequencing combined with spatiotemporal multi-omics, could further enhance our understanding of its functional heterogeneity. This could aid identification of targetable signalling nodes to reduce disease relapse, as well as inform strategies for development of broad-spectrum senotherapeutics. Overall, our review aims to delineate redox-driven mechanisms which contribute to the biology of therapy-induced senescence and beyond, while highlighting implications for tumor initiation and recurrence.
Collapse
Affiliation(s)
- Matius Robert
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Brian K Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Karen C Crasta
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
49
|
Palominos C, Fuentes-Retamal S, Salazar JP, Guzmán-Rivera D, Correa P, Mellado M, Araya-Maturana R, Urra FA. Mitochondrial bioenergetics as a cell fate rheostat for responsive to Bcl-2 drugs: New cues for cancer chemotherapy. Cancer Lett 2024; 594:216965. [PMID: 38788967 DOI: 10.1016/j.canlet.2024.216965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/03/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Pro-survival BCL-2 proteins prevent the initiation of intrinsic apoptosis (mitochondria-dependent pathway) by inhibiting the pro-apoptotic proteins BAX and BAK, while BH3-only proteins promote apoptosis by blocking pro-survival BCL-2 proteins. Disruptions in this delicate balance contribute to cancer cell survival and chemoresistance. Recent advances in cancer therapeutics involve a new generation of drugs known as BH3-mimetics, which are small molecules designed to mimic the action of BH3-only proteins. Promising effects have been observed in patients with hematological and solid tumors undergoing treatment with these agents. However, the rapid emergence of mitochondria-dependent resistance to BH3-mimetics has been reported. This resistance involves increased mitochondrial respiration, altered mitophagy, and mitochondria with higher and tighter cristae. Conversely, mutations in isocitrate dehydrogenase 1 and 2, catalyzing R-2-hydroxyglutarate production, promote sensitivity to venetoclax. This evidence underscores the urgency for comprehensive studies on bioenergetics-based adaptive responses in both BH3 mimetics-sensitive and -resistant cancer cells. Ongoing clinical trials are evaluating BH3-mimetics in combination with standard chemotherapeutics. In this article, we discuss the role of mitochondrial bioenergetics in response to BH3-mimetics and explore potential therapeutic opportunities through metabolism-targeting strategies.
Collapse
Affiliation(s)
- Charlotte Palominos
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile
| | - Sebastián Fuentes-Retamal
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile; Universidad Andrés Bello. Escuela de Química y Farmacia, Facultad de Medicina, 8320000, Santiago, Chile
| | - Juan Pablo Salazar
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile
| | - Daniela Guzmán-Rivera
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Universidad Andrés Bello. Escuela de Química y Farmacia, Facultad de Medicina, 8320000, Santiago, Chile
| | - Pablo Correa
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile
| | - Mathias Mellado
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile
| | - Ramiro Araya-Maturana
- Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile; Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, 3460000, Chile
| | - Félix A Urra
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile; Interuniversity Center for Healthy Aging (CIES), Consortium of Universities of the State of Chile (CUECH), Santiago, 8320216, Chile.
| |
Collapse
|
50
|
Lawrence M, Goyal A, Pathak S, Ganguly P. Cellular Senescence and Inflammaging in the Bone: Pathways, Genetics, Anti-Aging Strategies and Interventions. Int J Mol Sci 2024; 25:7411. [PMID: 39000517 PMCID: PMC11242738 DOI: 10.3390/ijms25137411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/22/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Advancing age is associated with several age-related diseases (ARDs), with musculoskeletal conditions impacting millions of elderly people worldwide. With orthopedic conditions contributing towards considerable number of patients, a deeper understanding of bone aging is the need of the hour. One of the underlying factors of bone aging is cellular senescence and its associated senescence associated secretory phenotype (SASP). SASP comprises of pro-inflammatory markers, cytokines and chemokines that arrest cell growth and development. The accumulation of SASP over several years leads to chronic low-grade inflammation with advancing age, also known as inflammaging. The pathways and molecular mechanisms focused on bone senescence and inflammaging are currently limited but are increasingly being explored. Most of the genes, pathways and mechanisms involved in senescence and inflammaging coincide with those associated with cancer and other ARDs like osteoarthritis (OA). Thus, exploring these pathways using techniques like sequencing, identifying these factors and combatting them with the most suitable approach are crucial for healthy aging and the early detection of ARDs. Several approaches can be used to aid regeneration and reduce senescence in the bone. These may be pharmacological, non-pharmacological and lifestyle interventions. With increasing evidence towards the intricate relationship between aging, senescence, inflammation and ARDs, these approaches may also be used as anti-aging strategies for the aging bone marrow (BM).
Collapse
Affiliation(s)
- Merin Lawrence
- School of Biological and Chemical Sciences, University of Galway, H91W2TY Galway, Ireland
| | - Abhishek Goyal
- RAS Life Science Solutions, Stresemannallee 61, 60596 Frankfurt, Germany
| | - Shelly Pathak
- Observational and Pragmatic Research Institute, 5 Coles Lane, Oakington, Cambridge CB24 3BA, UK
| | - Payal Ganguly
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK
| |
Collapse
|