1
|
Tan S, Zhu F, Li Y, Wen X, Yang S, Liao Z, Duan X, Xiao D, Zhang Y. HELQ upregulates PARP1 to drive platinum resistance and predict therapeutic response in ovarian cancer. Transl Oncol 2025; 57:102416. [PMID: 40381483 PMCID: PMC12143799 DOI: 10.1016/j.tranon.2025.102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 04/27/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025] Open
Abstract
POLQ-like helicase (HELQ), an evolutionarily conserved 3'-5' DNA helicase, is markedly overexpressed in platinum-resistant ovarian cancer (OC), which is correlated with a poor prognosis. However, the mechanisms linking HELQ with resistance to platinum-based chemotherapy remain unkonwn. Our study presents both in vitro and in vivo evidence that elevated HELQ expression is linked to increased chemoresistance in OC models, with reduced HELQ levels enhancing their sensitivity to platinum agents. The expression of γH2AX, RPA1 and 53BP1 determined by immunofluorescence and western blot indicated that HELQ could promote platinum-induced DNA damage repair. HELQ was found to promote OC platinum resistance by regulating the expression of poly (ADP-ribose) polymerase 1(PARP1), which could be reversed by PARP1 downregulation. Furthermore, in vitro experiments showed that HELQ overexpression sensitizes OC cells to PARP inhibitors (PARPi). Immunohistochemical analysis indicates that diminished HELQ expression in tumor tissues correlates with disease progression in patients with first-line maintenance therapy with PARPi, whereby higher expression levels predict improved progression-free survival. Notably, we found a positive correlation between PARP1 and HELQ expression. In conclusion, HELQupregulats PARP1 to promote platinum resistance in OC and warrants consideration as an emerging biomarker for monitoring therapeutic responses to chemotherapy and PARPi treatment in ovarian cancer.
Collapse
Affiliation(s)
- Shuran Tan
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, , 410008, PR China; Gynecological Oncology Research and Engineering Center of Hunan Province, XiangyaHospital, Changsha, Hunan, , 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, PR China
| | - Fang Zhu
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, , 410008, PR China; Gynecological Oncology Research and Engineering Center of Hunan Province, XiangyaHospital, Changsha, Hunan, , 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, PR China
| | - Yi Li
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, , 410008, PR China; Gynecological Oncology Research and Engineering Center of Hunan Province, XiangyaHospital, Changsha, Hunan, , 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, PR China
| | - Xinxin Wen
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, , 410008, PR China; Gynecological Oncology Research and Engineering Center of Hunan Province, XiangyaHospital, Changsha, Hunan, , 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, PR China
| | - Siyu Yang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, , 410008, PR China; Gynecological Oncology Research and Engineering Center of Hunan Province, XiangyaHospital, Changsha, Hunan, , 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, PR China
| | - Zexi Liao
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, , 410008, PR China; Gynecological Oncology Research and Engineering Center of Hunan Province, XiangyaHospital, Changsha, Hunan, , 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, PR China
| | - Xuerui Duan
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, , 410008, PR China; Gynecological Oncology Research and Engineering Center of Hunan Province, XiangyaHospital, Changsha, Hunan, , 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, PR China
| | - Di Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, PR China; The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, PR China.
| | - Yu Zhang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, , 410008, PR China; Gynecological Oncology Research and Engineering Center of Hunan Province, XiangyaHospital, Changsha, Hunan, , 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, PR China.
| |
Collapse
|
2
|
Ma X, Hsu YC, Asare A, Zhang K, Glassman D, Handley KF, Foster K, Sharma K, Westin S, Jazaeri A, Fleming ND, Bhattacharya PK, Jiang X, Sood AK, Shams S. A pioneering artificial intelligence tool to predict treatment outcomes in ovarian cancer via diagnostic laparoscopy. Sci Rep 2025; 15:14437. [PMID: 40281006 PMCID: PMC12032350 DOI: 10.1038/s41598-025-98434-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
Ovarian cancer is associated with high rates of patient mortality and morbidity. Laparoscopic assessment of tumor localization can be used for treatment planning in newly diagnosed high-grade serous ovarian carcinoma (HGSOC). While spread to multiple intra-abdominal areas is correlated with worse outcomes, whether other morphological tumor differences are also associated with patient outcomes is unknown. Given the large volume of visual information in laparoscopic videos, we investigated whether deep-learning models can capture implicit features and predict treatment outcomes. We developed a novel deep-learning framework using pre-treatment laparoscopic images to assess clinical outcomes following upfront standard treatment, defined as short progression-free survival (PFS) (< 8 months) or long PFS (> 12 months). The deep-learning framework consisted of contrastive pre-training to capture morphological features of images and a location-aware transformer to predict patient-level treatment outcomes. We trained and extensively evaluated the model using cross-validation and analyzed the extracted features via UMAP visualizations and Grad-CAM saliency maps. The model reached an AUROC of 0.819 (± 0.119) on fivefold cross-validation and an out-of-fold AUROC of 0.807 on the whole dataset, successfully discriminating between patients with short PFS and long PFS using only laparoscopic images. Our approach demonstrates the potential of deep learning to simplify HGSOC triage and improve early treatment planning by accurately stratifying the patients based on minimally invasive laparoscopy at the diagnostic stage.
Collapse
Affiliation(s)
- Xiaotian Ma
- McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yu-Chun Hsu
- McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Amma Asare
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kai Zhang
- McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Deanna Glassman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katelyn F Handley
- Department of Gynecologic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - Khwahish Sharma
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shannon Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amir Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicole D Fleming
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pratip K Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoqian Jiang
- McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shayan Shams
- McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
3
|
Puleo N, Ram H, Dziubinski ML, Carvette D, Teitel J, Sekhar SC, Bedi K, Robida A, Nakashima MM, Farsinejad S, Iwanicki M, Senkowski W, Ray A, Bollerman TJ, Dunbar J, Richardson P, Taddei A, Hudson C, DiFeo A. Identification of a TNIK-CDK9 Axis as a Targetable Strategy for Platinum-Resistant Ovarian Cancer. Mol Cancer Ther 2025; 24:639-656. [PMID: 39873147 PMCID: PMC11962390 DOI: 10.1158/1535-7163.mct-24-0785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/22/2024] [Accepted: 01/24/2025] [Indexed: 01/30/2025]
Abstract
Up to 90% of patients with high-grade serous ovarian cancer (HGSC) will develop resistance to platinum-based chemotherapy, posing substantial therapeutic challenges due to a lack of universally druggable targets. Leveraging BenevolentAI's artificial intelligence (AI)-driven approach to target discovery, we screened potential AI-predicted therapeutic targets mapped to unapproved tool compounds in patient-derived 3D models. This identified TNIK, which is modulated by NCB-0846, as a novel target for platinum-resistant HGSC. Targeting by this compound demonstrated efficacy across both in vitro and ex vivo organoid platinum-resistant models. Additionally, NCB-0846 treatment effectively decreased Wnt activity, a known driver of platinum resistance; however, we found that these effects were not solely mediated by TNIK inhibition. Comprehensive AI, in silico, and in vitro analyses revealed CDK9 as another key target driving NCB-0846's efficacy. Interestingly, TNIK and CDK9 co-expression positively correlated, and chromosomal gains in both served as prognostic markers for poor patient outcomes. Combined knockdown of TNIK and CDK9 markedly diminished downstream Wnt targets and reduced chemotherapy-resistant cell viability. Furthermore, we identified CDK9 as a novel mediator of canonical Wnt activity, providing mechanistic insights into the combinatorial effects of TNIK and CDK9 inhibition and offering a new understanding of NCB-0846 and CDK9 inhibitor function. Our findings identified the TNIK-CDK9 axis as druggable targets mediating platinum resistance and cell viability in HGSC. With AI at the forefront of drug discovery, this work highlights how to ensure that AI findings are biologically relevant by combining compound screens with physiologically relevant models, thus supporting the identification and validation of potential drug targets.
Collapse
Affiliation(s)
- Noah Puleo
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Precision Health, University of Michigan, Ann Arbor, Michigan
| | - Harini Ram
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Michele L. Dziubinski
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Dylan Carvette
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Jessica Teitel
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Sreeja C. Sekhar
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Karan Bedi
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Aaron Robida
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | | | - Sadaf Farsinejad
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey
| | - Marcin Iwanicki
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey
| | - Wojciech Senkowski
- Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | - Analisa DiFeo
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
4
|
Zelisse HS, Hwan RA, van de Vijver MJ, Dijk F, Mom CH, Hooijer GKJ, van Gent MDJM, Snijders MLH. Evaluation of the prognostic potential of histopathological subtyping in high-grade serous ovarian carcinoma. Virchows Arch 2025; 486:381-391. [PMID: 38622323 PMCID: PMC11876211 DOI: 10.1007/s00428-024-03807-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/17/2024]
Abstract
High-grade serous ovarian carcinoma (HGSOC) can be categorized into four gene expression-based subtypes, with supposedly distinct prognoses and treatment responses. Murakami et al. translated these gene expression-based subtypes into the histopathological mesenchymal, immunoreactive, solid and proliferative, and papilloglandular subtypes, showing differences in survival outcomes. Miyagawa et al. refined these criteria to improve the interobserver concordance. The current retrospective study evaluated the interobserver variability and the prognostic differences between the histopathologic subtypes using the criteria of both Murakami et al. and Miyagawa et al. in 208 HGSOC cases. The mesenchymal subtype was considered first, followed by the immunoreactive subtype. Non-conforming cases were categorized as solid and proliferative or papilloglandular. The mesenchymal subtype was identified in 122 patients (58.7%) for both criteria. Using the criteria of Murakami et al., 10 cases (4.8%) were immunoreactive, 26 (12.5%) solid and proliferative, and 50 (24%) papilloglandular, with a concordance rate of 62.5% (κ = 0.34, p < .001). Using the Miyagawa et al. criteria, 23 cases (11%) were immunoreactive, 20 (9.6%) solid and proliferative, and 43 (20.7%) papilloglandular. No survival differences were observed between the subtypes. The fair reproducibility of the histopathological subtype classification of HGSOC and the lack of survival differences among these subtypes indicate the need for further refinement of the criteria and exploration of their correlation with overall survival outcomes before clinical application.
Collapse
Affiliation(s)
- Hein S Zelisse
- Department of Pathology, Cancer Center Amsterdam, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Robin A Hwan
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Marc J van de Vijver
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Frederike Dijk
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Constantijne H Mom
- Department of Gynaecologic Oncology, Centre for Gynaecologic Oncology Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Gerrit K J Hooijer
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Mignon D J M van Gent
- Department of Gynaecologic Oncology, Centre for Gynaecologic Oncology Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Malou L H Snijders
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Gedda G, Park YJ, Pang MG. Recent development of nanotechnology-based approaches for gynecologic cancer therapy. Obstet Gynecol Sci 2025; 68:18-29. [PMID: 39591955 PMCID: PMC11788694 DOI: 10.5468/ogs.24180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/29/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Gynecological cancer is a life-threatening malignancy among women. Traditional therapies, including chemotherapy, often face challenges in terms of chemotherapeutic drug solubility and resistance, specificity, tumor site targeting, and toxicity to healthy tissues, leading to shortened efficacy and unfavorable patient outcomes and survival rates in patients with gynecologic malignancies. Recently, nanotechnology-based therapeutic methods such as targeted drug delivery and phototherapies have emerged as an appropriate alternative to overcome issues associated with traditional therapeutic methods. Specifically, nanomaterials and nanomaterial-based methods enhance the delivery of therapeutic/targeting agents to tumor sites and cellular uptakes and improve the tumor-suppressing effect. This review aims to provide an overview and future perspective on the potential impact of nanotechnology-based therapeutic methods for effective therapies for gynecologic cancer.
Collapse
Affiliation(s)
- Gangaraju Gedda
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Korea
- Central Research Laboratory, KS Hegde Medical Academy, NITTE (Deemed to be University), Mangaluru, India
| | - Yoo-Jin Park
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Korea
| |
Collapse
|
6
|
Cosgrove PA, Bild AH, Dellinger TH, Badie B, Portnow J, Nath A. Single-Cell Transcriptomics Sheds Light on Tumor Evolution: Perspectives from City of Hope's Clinical Trial Teams. J Clin Med 2024; 13:7507. [PMID: 39768430 PMCID: PMC11677125 DOI: 10.3390/jcm13247507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Tumor heterogeneity is a significant factor influencing cancer treatment effectiveness and can arise from genetic, epigenetic, and phenotypic variations among cancer cells. Understanding how tumor heterogeneity impacts tumor evolution and therapy response can lead to more effective treatments and improved patient outcomes. Traditional bulk genomic approaches fail to provide insights into cellular-level events, whereas single-cell RNA sequencing (scRNA-seq) offers transcriptomic analysis at the individual cell level, advancing our understanding of tumor growth, progression, and drug response. However, implementing single-cell approaches in clinical trials involves challenges, such as obtaining high-quality cells, technical variability, and the need for complex computational analysis. Effective implementation of single-cell genomics in clinical trials requires a collaborative "Team Medicine" approach, leveraging shared resources, expertise, and workflows. Here, we describe key technical considerations in implementing the collection of research biopsies and lessons learned from integrating scRNA-seq into City of Hope's clinical trial design, highlighting collaborative efforts between computational and clinical teams across breast, brain, and ovarian cancer studies to understand the composition, phenotypic state, and underlying resistance mechanisms within the tumor microenvironment.
Collapse
Affiliation(s)
- Patrick A. Cosgrove
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (P.A.C.)
| | - Andrea H. Bild
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (P.A.C.)
| | - Thanh H. Dellinger
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Behnam Badie
- Division of Neurosurgery, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jana Portnow
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (P.A.C.)
| | - Aritro Nath
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (P.A.C.)
| |
Collapse
|
7
|
Ye C, Cheng Y, Qian X, Zhong B, Ma J, Guo H. The CDK4/6 Inhibitor Palbociclib Induces Cell Senescence of High-grade Serous Ovarian Cancer Through Acetylation of p53. Biochem Genet 2024; 62:5115-5128. [PMID: 38388849 DOI: 10.1007/s10528-024-10704-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/16/2024] [Indexed: 02/24/2024]
Abstract
Cell senescence is an anti-cancer strategy following DNA repair and apoptosis, which is associated with the initiation, progression, and treatment of ovarian cancer. The CDK4/6 inhibitor alters cell cycle and induces cell senescence dependent on retinoblastoma (RB) family proteins. Objective Herein, we aimed to explore the effects of Palbociclib (a CDK4/6 inhibitor) on cellular senescence of high-grade serous ovarian cancer (HGSOC). Cell viability and cell cycle were evaluated by cell counting kit-8 and flow cytometry. Cell senescence was analyzed using the SA-β-gal staining assay. The senescence-associated secretory phenotype was assessed using quantitative PCR (qPCR). Senescence-related markers were tested using western blot. The role of Palbociclib in vivo was clarified using xenograft tumor. Acetylation of p53 was evaluated by qPCR and western blot. The results showed that Palbociclib inhibited cell viability, blocked cell cycle at G0/G1 phase, and induced cell senescence. A rescue study indicated that knockdown of p53 reversed the effects on cell cycle and senescence induced by Palbociclib. Moreover, we found that Palbociclib promotes P300-mediated p53 acetylation, thus increasing p53 stability and transcription activity. Moreover, Palbociclib suppressed tumor growth in vivo with increased p53 and acetylated p53 levels. In conclusion, Palbociclib induced cell senescence of HGSOC through P300-mediated p53 acetylation, suggesting that Palbociclib may have the effect of treating HGSOC.
Collapse
Affiliation(s)
- Cong Ye
- Department of Gynecology, Taicang Affiliated Hospital of Soochow University (The First People's Hospital of Taicang), No.58 Changsheng South Road, Taicang, 215400, Jiangsu, China
| | - Yan Cheng
- Department of Gynecology, Taicang Affiliated Hospital of Soochow University (The First People's Hospital of Taicang), No.58 Changsheng South Road, Taicang, 215400, Jiangsu, China
| | - Xiaohong Qian
- Department of Gynecology, Taicang Affiliated Hospital of Soochow University (The First People's Hospital of Taicang), No.58 Changsheng South Road, Taicang, 215400, Jiangsu, China
| | - Bo Zhong
- Department of Gynecology, Taicang Affiliated Hospital of Soochow University (The First People's Hospital of Taicang), No.58 Changsheng South Road, Taicang, 215400, Jiangsu, China
| | - Jinchun Ma
- Department of Gynecology, Taicang Affiliated Hospital of Soochow University (The First People's Hospital of Taicang), No.58 Changsheng South Road, Taicang, 215400, Jiangsu, China
| | - Hongling Guo
- Department of Gynecology, Taicang Affiliated Hospital of Soochow University (The First People's Hospital of Taicang), No.58 Changsheng South Road, Taicang, 215400, Jiangsu, China.
| |
Collapse
|
8
|
Dey Bhowmik A, Shaw P, Gopinatha Pillai MS, Rao G, Dwivedi SKD. Evolving landscape of detection and targeting miRNA/epigenetics for therapeutic strategies in ovarian cancer. Cancer Lett 2024; 611:217357. [PMID: 39615646 PMCID: PMC12119979 DOI: 10.1016/j.canlet.2024.217357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024]
Abstract
Ovarian cancer (OC) accounts for the highest mortality rates among all gynecologic malignancies. The high mortality of OC is often associated with delayed detection, prolonged latency, enhanced metastatic potential, acquired drug resistance, and frequent recurrence. This review comprehensively explores key aspects of OC, including cancer diagnosis, mechanisms of disease resistance, and the pivotal role of epigenetic regulation, particularly by microRNAs (miRs) in cancer progression. We highlight the intricate regulatory mechanisms governing miR expression within the context of OC and the current status of epigenetic advancement in the therapeutic development and clinical trial progression. Through network analysis we elucidate the regulatory interactions between dysregulated miRs in OC and their targets which are involved in different signaling pathways. By exploring these interconnected facets and critical analysis, we endeavor to provide a nuanced understanding of the molecular dynamics underlying OC, its detection and shedding light on potential avenues for miRs and epigenetics-based therapeutic intervention and management strategies.
Collapse
Affiliation(s)
- Arpan Dey Bhowmik
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Pallab Shaw
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Mohan Shankar Gopinatha Pillai
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Geeta Rao
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Shailendra Kumar Dhar Dwivedi
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
9
|
Bedia JS, Huang YW, Gonzalez AD, Gonzalez VD, Funingana IG, Rahil Z, Mike A, Lowber A, Vias M, Ashworth A, Brenton JD, Fantl WJ. Coordinated protein modules define DNA damage responses to carboplatin at single cell resolution in human ovarian carcinoma models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624591. [PMID: 39605494 PMCID: PMC11601625 DOI: 10.1101/2024.11.21.624591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Tubo-ovarian high-grade serous carcinoma (HGSC) is the most lethal gynecological malignancy and frequently responds to platinum-based chemotherapy because of common genetic and somatic impairment of DNA damage repair (DDR) pathways. The mechanisms of clinical platinum resistance are diverse and poorly molecularly defined. Consequently, there are no biomarkers or medicines that improve patient outcomes. Herein we use single cell mass cytometry (CyTOF) to systematically evaluate the phosphorylation and abundance of proteins known to participate in the DNA damage response (DDR). Single cell analyses of highly characterized HGSC cell lines that phenocopy human patients show that cells with comparable levels of intranuclear platinum, a proxy for carboplatin uptake, undergo different cell fates. Unsupervised analyses revealed a continuum of DDR responses. Decompositional methods were used to identify eight distinct protein modules of carboplatin resistance and sensitivity at single cell resolution. CyTOF profiling of primary and secondary platinum-resistance patient models shows that a complex DDR sensitivity module is strongly associated with response, suggesting it as a potential tool to clinically characterize complex drug resistance phenotypes.
Collapse
Affiliation(s)
- Jacob S. Bedia
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ying-Wen Huang
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Veronica D. Gonzalez
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ionut-Gabriel Funingana
- Department of Oncology, University of Cambridge, Cambridgeshire, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, Cambridgeshire, CB2 0RE, UK
- Department of Oncology, Addenbrooke’s Hospital, Cambridge University Hospitals, NHS Foundation Trust, Cambridge, UK
| | - Zainab Rahil
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alyssa Mike
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexis Lowber
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maria Vias
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, Cambridgeshire, CB2 0RE, UK
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 1450 Third Street, San Francisco, CA 94158, USA
| | - James D. Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, Cambridgeshire, CB2 0RE, UK
- Department of Oncology, Addenbrooke’s Hospital, Cambridge University Hospitals, NHS Foundation Trust, Cambridge, UK
| | - Wendy J. Fantl
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Comprehensive Cancer Institute
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
10
|
Roszkowska M. Multilevel Mechanisms of Cancer Drug Resistance. Int J Mol Sci 2024; 25:12402. [PMID: 39596466 PMCID: PMC11594576 DOI: 10.3390/ijms252212402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Cancer drug resistance represents one of the most significant challenges in oncology and manifests through multiple interconnected molecular and cellular mechanisms. Objective: To provide a comprehensive analysis of multilevel processes driving treatment resistance by integrating recent advances in understanding genetic, epigenetic, and microenvironmental factors. This is a systematic review of the recent literature focusing on the mechanisms of cancer drug resistance, including genomic studies, clinical trials, and experimental research. Key findings include the following: (1) Up to 63% of somatic mutations can be heterogeneous within individual tumors, contributing to resistance development; (2) cancer stem cells demonstrate enhanced DNA repair capacity and altered metabolic profiles; (3) the tumor microenvironment, including cancer-associated fibroblasts and immune cell populations, plays a crucial role in promoting resistance; and (4) selective pressure from radiotherapy drives the emergence of radioresistant phenotypes through multiple adaptive mechanisms. Understanding the complex interplay between various resistance mechanisms is essential for developing effective treatment strategies. Future therapeutic approaches should focus on combination strategies that target multiple resistance pathways simultaneously, guided by specific biomarkers.
Collapse
Affiliation(s)
- Malgorzata Roszkowska
- Department of Clinical Neuropsychology, Collegium Medicum, Nicolaus Copernicus University, 85-067 Bydgoszcz, Poland
| |
Collapse
|
11
|
Cheng X, Li P, Jiang R, Meng E, Wu H. ADC: a deadly killer of platinum resistant ovarian cancer. J Ovarian Res 2024; 17:196. [PMID: 39367438 PMCID: PMC11451100 DOI: 10.1186/s13048-024-01523-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024] Open
Abstract
Platinum is a key component of ovarian cancer systemic therapy. However, most patients will eventually face a recurrence, leading to chemotherapy resistance, especially against platinum. For individuals with platinum-resistant ovarian cancer (PROC), treatment options are limited, and their survival prospects are grim. The emergence of antibody-drug conjugates (ADCs) shows promises as a future treatment for PROC. This review synthesizes current research on the effectiveness of ADCs in treating PROC. It encapsulates the advancements and clinical trials of novel ADCs that target specific antigens such as Folate Receptor alpha (FRα), MUC16, NaPi2b, Mesothelin, Dipeptidase 3(DPEP3), and human epidermal growth factor receptor 2 (HER2), as well as tissue factor, highlighting their potential anti-tumor efficacy and used in combination with other therapies. The ADCs landscape in ovarian cancer therapeutics is swiftly evolving, promising more potent and efficacious treatment avenues.
Collapse
Affiliation(s)
- Xu Cheng
- The Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing City, Jiangsu Province, China
| | - Ping Li
- The Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing City, Jiangsu Province, China
| | - Rongqi Jiang
- The Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing City, Jiangsu Province, China
| | - Enqing Meng
- The Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing City, Jiangsu Province, China
| | - Hao Wu
- The Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing City, Jiangsu Province, China.
| |
Collapse
|
12
|
Sheedy A, Burduli N, Prakash A, Gurney M, Hanley S, Prendeville H, Sarkar S, O'Dwyer J, O'Dwyer M, Dolan E. NK cell line modified to express a potent, DR5 specific variant of TRAIL, show enhanced cytotoxicity in ovarian cancer models. Heliyon 2024; 10:e34976. [PMID: 39170449 PMCID: PMC11336271 DOI: 10.1016/j.heliyon.2024.e34976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024] Open
Abstract
Objective Ovarian cancer is a lethal gynaecological malignancy with unsatisfactory 5 year survival rates of 30-50 %. Cell immunotherapy is a promising new cancer treatment where immune cells, such as Natural Killer (NK) cells, are administered to enable the patient to fight cancer through direct cytotoxicity. NK cells orchestrate an adaptive immune response by enabling the release of tumour antigens. NK cell cytotoxicity and effector responses are largely driven by TRAIL engagement. In this study we investigated the cytotoxic potential of a human NK cell line that were modified to express a potent DR5 specific TRAIL variant. We hypothesised that this modification would enhance NK cell cytotoxicity against TRAIL sensitive and resistant ovarian cancer cell lines in vitro. Methods KHYG-1 human NK cells were modified with a TRAIL variant targeting DR5 (TRAILv-KHYG-1). Human ovarian cancer cell lines, OVCAR-3 and SKOV-3, were cultured with modified or non-modified NK cells at different effector:target (E:T) ratios for 4 or 16 h. Apoptosis was assessed by Annexin-APC and 7-AAD and measured using flow cytometry. Apoptotic cells were defined as annexin V 7-AAD double positive. Cytokine expression was measured by multiplex ELISA, and analysed by flow cytometry. Results Modified and non-modified NK cells significantly reduced OVCAR-3 cell viability as compared to OVCAR-3 cells that were cultured alone after 4 and 16 h treatment. OVCAR-3 cell viability was reduced after treatment with 1:1 E:T ratio with TRAILv-KHYG-1 cells after 16 h. On the contrary, neither NK cell line had any effect of SKOV-3 cell viability despite SKOV-3 cells having more DR5 surface expression compared to OVCAR-3 cells. Conclusions TRAILv-KHYG-1 cells significantly reduced OVCAR-3 cell viability as compared to non-modified NK cells. However, no significant reduction in viability was observed when SKOV-3 cell were cultured with either NK cells, despite having more DR5 surface expression compared to OVCAR-3 cells. These data indicate that mechanisms other than DR5 expression drive TRAIL resistance in ovarian cancer.
Collapse
Affiliation(s)
- A.M. Sheedy
- Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Ireland
- CÚRAM, Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - N. Burduli
- Apoptosis Research Centre, University of Galway, Galway, Ireland
- Center for Hematology Regenerative Medicine (HERM), Karolinska Institutet, Stockholm, Sweden
| | - A. Prakash
- Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Ireland
| | - M. Gurney
- Apoptosis Research Centre, University of Galway, Galway, Ireland
| | - S. Hanley
- Flow Cytometry Core Facility, University of Galway, Galway, Ireland
| | - H. Prendeville
- Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Ireland
| | - S. Sarkar
- ONK Therapeutics Inc, Galway, Ireland
| | - J. O'Dwyer
- Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Ireland
| | - M. O'Dwyer
- Apoptosis Research Centre, University of Galway, Galway, Ireland
- ONK Therapeutics Inc, Galway, Ireland
| | - E.B. Dolan
- Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Ireland
- CÚRAM, Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| |
Collapse
|
13
|
Guo QY, Song JN, Chen YM, Yuan HN, Xue WS, Sun Y, Niu XL, Wang Y, Chen X. IL-6 regulates epithelial ovarian cancer EMT, invasion, and metastasis by modulating Let-7c and miR-200c through the STAT3/HIF-1α pathway. Med Oncol 2024; 41:155. [PMID: 38744773 DOI: 10.1007/s12032-024-02328-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/06/2024] [Indexed: 05/16/2024]
Abstract
Interleukin-6 (IL-6) and hypoxia-inducible factor-1α (HIF-1α) play important roles in epithelial-mesenchymal transformation (EMT) and tumor development. Previous studies have demonstrated that IL-6 promotes EMT, invasion, and metastasis in epithelial ovarian cancer (EOC) cells by activating the STAT3/HIF-1α pathway. MicroRNA (miRNA) is non-coding small RNAs that also play an important role in tumor development. Notably, Let-7 and miR-200 families are prominently altered in EOC. However, whether IL-6 regulates the expression of Let-7 and miR-200 families through the STAT3/HIF-1α signaling to induce EMT in EOC remains poorly understood. In this study, we conducted in vitro and in vivo investigations using two EOC cell lines, SKOV3, and OVCAR3 cells. Our findings demonstrate that IL-6 down-regulates the mRNA levels of Let-7c and miR-200c while up-regulating their target genes HMGA2 and ZEB1 through the STAT3/HIF-1α signaling in EOC cells and in vivo. Additionally, to explore the regulatory role of HIF-1α on miRNAs, both exogenous HIF blockers YC-1 and endogenous high expression or inhibition of HIF-1α can be utilized. Both approaches can confirm that the downstream molecule HIF-1α inhibits the expression and function of Let-7c and miR-200c. Further mechanistic research revealed that the overexpression of Let-7c or miR-200c can reverse the malignant evolution of EOC cells induced by IL-6, including EMT, invasion, and metastasis. Consequently, our results suggest that IL-6 regulates the expression of Let-7c and miR-200c through the STAT3/HIF-1α pathway, thereby promoting EMT, invasion, and metastasis in EOC cells.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Mice
- Carcinoma, Ovarian Epithelial/pathology
- Carcinoma, Ovarian Epithelial/genetics
- Carcinoma, Ovarian Epithelial/metabolism
- Cell Line, Tumor
- Epithelial-Mesenchymal Transition/genetics
- Gene Expression Regulation, Neoplastic
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Interleukin-6/metabolism
- Interleukin-6/genetics
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- Neoplasm Invasiveness/genetics
- Neoplasm Metastasis
- Neoplasms, Glandular and Epithelial/pathology
- Neoplasms, Glandular and Epithelial/genetics
- Neoplasms, Glandular and Epithelial/metabolism
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Signal Transduction
- STAT3 Transcription Factor/metabolism
- STAT3 Transcription Factor/genetics
Collapse
Affiliation(s)
- Qiao Yun Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No.10 Poyang Lake Road, Jinghai District, Tianjin, 301617, China
- School of Pharmacy and Biological Technology, Tianjin Medical College, Tianjin, 300222, China
| | - Jiang Nan Song
- Department of Gynaecology and Obstetrics, Characteristic Medical Center of Chinese People's Armed Police Force, No.220, Chenglin Road, Dongli District, Tianjin, 300162, China
- Department of Gynecology and Obstetrics, Chinese People's Liberation Army General Hospital, Beijing, 100080, China
| | - Yu Meng Chen
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Hai Ning Yuan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No.10 Poyang Lake Road, Jinghai District, Tianjin, 301617, China
| | - Wen Shu Xue
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No.10 Poyang Lake Road, Jinghai District, Tianjin, 301617, China
| | - Yang Sun
- Department of Gynaecology and Obstetrics, Characteristic Medical Center of Chinese People's Armed Police Force, No.220, Chenglin Road, Dongli District, Tianjin, 300162, China
| | - Xiu Long Niu
- Institute of Prevention and Treatment of Dermatosis in Alpine Environment of Plateau, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, 300162, China
| | - Yue Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No.10 Poyang Lake Road, Jinghai District, Tianjin, 301617, China.
| | - Xiao Chen
- Department of Gynaecology and Obstetrics, Characteristic Medical Center of Chinese People's Armed Police Force, No.220, Chenglin Road, Dongli District, Tianjin, 300162, China
| |
Collapse
|
14
|
Gaebler D, Hachey SJ, Hughes CCW. Microphysiological systems as models for immunologically 'cold' tumors. Front Cell Dev Biol 2024; 12:1389012. [PMID: 38711620 PMCID: PMC11070549 DOI: 10.3389/fcell.2024.1389012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/25/2024] [Indexed: 05/08/2024] Open
Abstract
The tumor microenvironment (TME) is a diverse milieu of cells including cancerous and non-cancerous cells such as fibroblasts, pericytes, endothelial cells and immune cells. The intricate cellular interactions within the TME hold a central role in shaping the dynamics of cancer progression, influencing pivotal aspects such as tumor initiation, growth, invasion, response to therapeutic interventions, and the emergence of drug resistance. In immunologically 'cold' tumors, the TME is marked by a scarcity of infiltrating immune cells, limited antigen presentation in the absence of potent immune-stimulating signals, and an abundance of immunosuppressive factors. While strategies targeting the TME as a therapeutic avenue in 'cold' tumors have emerged, there is a pressing need for novel approaches that faithfully replicate the complex cellular and non-cellular interactions in order to develop targeted therapies that can effectively stimulate immune responses and improve therapeutic outcomes in patients. Microfluidic devices offer distinct advantages over traditional in vitro 3D co-culture models and in vivo animal models, as they better recapitulate key characteristics of the TME and allow for precise, controlled insights into the dynamic interplay between various immune, stromal and cancerous cell types at any timepoint. This review aims to underscore the pivotal role of microfluidic systems in advancing our understanding of the TME and presents current microfluidic model systems that aim to dissect tumor-stromal, tumor-immune and immune-stromal cellular interactions in various 'cold' tumors. Understanding the intricacies of the TME in 'cold' tumors is crucial for devising effective targeted therapies to reinvigorate immune responses and overcome the challenges of current immunotherapy approaches.
Collapse
Affiliation(s)
- Daniela Gaebler
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Stephanie J. Hachey
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Christopher C. W. Hughes
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
15
|
Kim B, Kim G, Kim H, Song YS, Jung J. Modulation of Cisplatin Sensitivity through TRPML1-Mediated Lysosomal Exocytosis in Ovarian Cancer Cells: A Comprehensive Metabolomic Approach. Cells 2024; 13:115. [PMID: 38247807 PMCID: PMC10814698 DOI: 10.3390/cells13020115] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND The lysosome has emerged as a promising target for overcoming chemoresistance, owing to its role in facilitating the lysosomal sequestration of drugs. The lysosomal calcium channel TRPML1 not only influences lysosomal biogenesis but also coordinates both endocytosis and exocytosis. This study explored the modulation of cisplatin sensitivity by regulating TRPML1-mediated lysosomal exocytosis and identified the metabolomic profile altered by TRPML1 inhibition. METHODS We used four types of ovarian cancer cells: two cancer cell lines (OVCAR8 and TOV21G) and two patient-derived ovarian cancer cells. Metabolomic analyses were conducted to identify altered metabolites by TRPML1 inhibition. RESULTS Lysosomal exocytosis in response to cisplatin was observed in resistant cancer cells, whereas the phenomenon was absent in sensitive cancer cells. Through the pharmacological intervention of TRPML1, lysosomal exocytosis was interrupted, leading to the sensitization of resistant cancer cells to cisplatin treatment. To assess the impact of lysosomal exocytosis on chemoresistance, we conducted an untargeted metabolomic analysis on cisplatin-resistant ovarian cancer cells with TRPML1 inhibition. Among the 1446 differentially identified metabolites, we focused on 84 significant metabolites. Metabolite set analysis revealed their involvement in diverse pathways. CONCLUSIONS These findings collectively have the potential to enhance our understanding of the interplay between lysosomal exocytosis and chemoresistance, providing valuable insights for the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Boyun Kim
- Department of SmartBio, College of Life and Health Science, Kyungsung University, Busan 48434, Republic of Korea; (B.K.); (G.K.)
| | - Gaeun Kim
- Department of SmartBio, College of Life and Health Science, Kyungsung University, Busan 48434, Republic of Korea; (B.K.); (G.K.)
| | - Heeyeon Kim
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; (H.K.); (Y.S.S.)
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Yong Sang Song
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; (H.K.); (Y.S.S.)
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Jewon Jung
- Department of SmartBio, College of Life and Health Science, Kyungsung University, Busan 48434, Republic of Korea; (B.K.); (G.K.)
| |
Collapse
|
16
|
Almeida-Nunes DL, Silvestre R, Dinis-Oliveira RJ, Ricardo S. Enhancing Immunotherapy in Ovarian Cancer: The Emerging Role of Metformin and Statins. Int J Mol Sci 2023; 25:323. [PMID: 38203494 PMCID: PMC10779012 DOI: 10.3390/ijms25010323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Ovarian cancer metastization is accompanied by the development of malignant ascites, which are associated with poor prognosis. The acellular fraction of this ascitic fluid contains tumor-promoting soluble factors, bioactive lipids, cytokines, and extracellular vesicles, all of which communicate with the tumor cells within this peritoneal fluid. Metabolomic profiling of ovarian cancer ascites has revealed significant differences in the pathways of fatty acids, cholesterol, glucose, and insulin. The proteins involved in these pathways promote tumor growth, resistance to chemotherapy, and immune evasion. Unveiling the key role of this liquid tumor microenvironment is crucial for discovering more efficient treatment options. This review focuses on the cholesterol and insulin pathways in ovarian cancer, identifying statins and metformin as viable treatment options when combined with standard chemotherapy. These findings are supported by clinical trials showing improved overall survival with these combinations. Additionally, statins and metformin are associated with the reversal of T-cell exhaustion, positioning these drugs as potential combinatory strategies to improve immunotherapy outcomes in ovarian cancer patients.
Collapse
Affiliation(s)
- Diana Luísa Almeida-Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135 Porto, Portugal;
- 1H-TOXRUN—One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal;
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- 1H-TOXRUN—One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal;
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4169-007 Porto, Portugal
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4169-007 Porto, Portugal
- FOREN—Forensic Science Experts, 1400-136 Lisboa, Portugal
| | - Sara Ricardo
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135 Porto, Portugal;
- 1H-TOXRUN—One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal;
- Faculty of Medicine, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
17
|
Ruan D, Wen J, Fang F, Lei Y, Zhao Z, Miao Y. Ferroptosis in epithelial ovarian cancer: a burgeoning target with extraordinary therapeutic potential. Cell Death Discov 2023; 9:434. [PMID: 38040696 PMCID: PMC10692128 DOI: 10.1038/s41420-023-01721-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/15/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is universally acknowledged as a terrifying women killer for its high mortality. Recent research advances support that ferroptosis, an emerging iron-dependent type of regulated cell death (RCD) triggered by the excessive accumulation of lipid peroxides probably possesses extraordinary therapeutic potential in EOC therapy. Herein, we firstly provide a very concise introduction of ferroptosis. Special emphasis will be put on the ferroptosis's vital role in EOC, primarily covering its role in tumorigenesis and progression of EOC, the capability of reversing chemotherapy resistance, and the research and development of related therapeutic strategies. Furthermore, the construction of ferroptosis-related prognostic prediction systems, and mechanisms of ferroptosis resistance in EOC are also discussed. Finally, we propose and highlight several important yet unanswered problems and some future research directions in this field.
Collapse
Affiliation(s)
- Danhua Ruan
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, West China Campus, Sichuan University, Chengdu, 610041, Sichuan Province, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Jirui Wen
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Fei Fang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Yuqin Lei
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, West China Campus, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Zhiwei Zhao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| | - Yali Miao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, West China Campus, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
18
|
Abdelmaksoud NM, Abulsoud AI, Doghish AS, Abdelghany TM. From resistance to resilience: Uncovering chemotherapeutic resistance mechanisms; insights from established models. Biochim Biophys Acta Rev Cancer 2023; 1878:188993. [PMID: 37813202 DOI: 10.1016/j.bbcan.2023.188993] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
Despite the tremendous advances in cancer treatment, resistance to chemotherapeutic agents impedes higher success rates and accounts for major relapses in cancer therapy. Moreover, the resistance of cancer cells to chemotherapy is linked to low efficacy and high recurrence of cancer. To stand up against chemotherapy resistance, different models of chemotherapy resistance have been established to study various molecular mechanisms of chemotherapy resistance. Consequently, this review is going to discuss different models of induction of chemotherapy resistance, highlighting the most common mechanisms of cancer resistance against different chemotherapeutic agents, including overexpression of efflux pumps, drug inactivation, epigenetic modulation, and epithelial-mesenchymal transition. This review aims to open a new avenue for researchers to lower the resistance to the existing chemotherapeutic agents, develop new therapeutic agents with low resistance potential, and establish possible prognostic markers for chemotherapy resistance.
Collapse
Affiliation(s)
- Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020 El Salam, 11785 Cairo, Egypt.
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020 El Salam, 11785 Cairo, Egypt; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Tamer M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020 El Salam, 11785 Cairo, Egypt.
| |
Collapse
|
19
|
Köbel M, Yang RZ, Kang EY, Al-Shamma Z, Cook LS, Kinloch M, Carey MS, Hopkins L, Nelson GS, McManus KJ, Vizeacoumar FS, Vizeacoumar FJ, Freywald A, Fu Y, Reuss DE, Lee CH. Survey of NF1 inactivation by surrogate immunohistochemistry in ovarian carcinomas. Gynecol Oncol 2023; 178:80-88. [PMID: 37820398 DOI: 10.1016/j.ygyno.2023.09.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023]
Abstract
OBJECTIVE Inhibition of the MAPK pathway by MEK inhibitors (MEKi) is currently a therapeutic standard in several cancer types, including ovarian low-grade serous carcinoma (LGSC). A common MAPK pathway alteration in tubo-ovarian high-grade serous carcinoma (HGSC) is the genomic inactivation of neurofibromin 1 (NF1). The primary objectives of our study were to survey the prevalence of NF1 inactivation in the principal ovarian carcinoma histotype as well as to evaluate its associations with clinico-pathological parameters and key biomarkers including BRCA1/2 status in HGSC. METHODS A recently commercialized NF1 antibody (clone NFC) was orthogonally validated on an automated immunohistochemistry (IHC) platform and IHC was performed on tissue microarrays containing 2140 ovarian carcinoma cases. Expression was interpreted as loss/inactivated (complete or subclonal) versus normal/retained. RESULTS Loss of NF1 expression was detected in 250/1429 (17.4%) HGSC including 11% with subclonal loss. Survival of NF1-inactivated HGSC patients was intermediate between favorable BRCA1/2 mutated HGSC and unfavorable CCNE1 high-level amplified HGSC. NF1 inactivation was mutually exclusive with CCNE1 high-level amplifications, co-occurred with RB1 loss and occurred at similar frequencies in BRCA1/2 mutated versus wild-type HGSC. NF1 loss was found in 21/286 (7.3%) endometrioid carcinomas with a favorable prognostic association (p = 0.048), and in 4/64 (5.9%) LGSC, mutually exclusive with other driver events. CONCLUSIONS NF1 inactivation occurs in a significant subset of BRCA1/2 wild-type HGSC and a subset of LGSC. While the functional effects of NF1 inactivation need to be further characterized, this signifies a potential therapeutic opportunity to explore targeting NF1 inactivation in these tumors.
Collapse
Affiliation(s)
- Martin Köbel
- Department of Pathology, University of Calgary, Calgary, Alberta, Canada.
| | - Rui Zhe Yang
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Eun Young Kang
- Department of Pathology, University of Calgary, Calgary, Alberta, Canada
| | - Zainab Al-Shamma
- Department of Pathology, University of Calgary, Calgary, Alberta, Canada
| | - Linda S Cook
- Department of CSPH-Epidemiology, University of Colorado-Anschutz, Aurora, CO, USA
| | - Mary Kinloch
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Mark S Carey
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laura Hopkins
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatchewan, Canada; Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada
| | - Gregg S Nelson
- Department of Oncology, Division of Gynecologic Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kirk J McManus
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada; Paul Albrechtsen Research Institute CancerCare, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Frederick S Vizeacoumar
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Franco J Vizeacoumar
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatchewan, Canada; Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada
| | - Andrew Freywald
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - YangXin Fu
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - David E Reuss
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Cheng-Han Lee
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
20
|
Azzalini E, Stanta G, Canzonieri V, Bonin S. Overview of Tumor Heterogeneity in High-Grade Serous Ovarian Cancers. Int J Mol Sci 2023; 24:15077. [PMID: 37894756 PMCID: PMC10606847 DOI: 10.3390/ijms242015077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Ovarian cancers encompass a group of neoplasms originating from germinal tissues and exhibiting distinct clinical, pathological, and molecular features. Among these, epithelial ovarian cancers (EOCs) are the most prevalent, comprising five distinct tumor histotypes. Notably, high-grade serous ovarian cancers (HGSOCs) represent the majority, accounting for over 70% of EOC cases. Due to their silent and asymptomatic behavior, HGSOCs are generally diagnosed in advanced stages with an evolved and complex genomic state, characterized by high intratumor heterogeneity (ITH) due to chromosomal instability that distinguishes HGSOCs. Histologically, these cancers exhibit significant morphological diversity both within and between tumors. The histologic patterns associated with solid, endometrioid, and transitional (SET) and classic subtypes of HGSOCs offer prognostic insights and may indicate specific molecular profiles. The evolution of HGSOC from primary to metastasis is typically characterized by clonal ITH, involving shared or divergent mutations in neoplastic sub-clones within primary and metastatic sites. Disease progression and therapy resistance are also influenced by non-clonal ITH, related to interactions with the tumor microenvironment and further genomic changes. Notably, significant alterations occur in nonmalignant cells, including cancer-associated fibroblast and immune cells, during tumor progression. This review provides an overview of the complex nature of HGSOC, encompassing its various aspects of intratumor heterogeneity, histological patterns, and its dynamic evolution during progression and therapy resistance.
Collapse
Affiliation(s)
- Eros Azzalini
- Department of Medical Sciences (DSM), University of Trieste, 34149 Trieste, Italy; (E.A.); (G.S.); (V.C.)
| | - Giorgio Stanta
- Department of Medical Sciences (DSM), University of Trieste, 34149 Trieste, Italy; (E.A.); (G.S.); (V.C.)
| | - Vincenzo Canzonieri
- Department of Medical Sciences (DSM), University of Trieste, 34149 Trieste, Italy; (E.A.); (G.S.); (V.C.)
- Pathology Unit, Centro di Riferimento Oncologico (CRO) IRCCS, Aviano-National Cancer Institute, 33081 Pordenone, Italy
| | - Serena Bonin
- Department of Medical Sciences (DSM), University of Trieste, 34149 Trieste, Italy; (E.A.); (G.S.); (V.C.)
| |
Collapse
|
21
|
Richardson DL, Eskander RN, O'Malley DM. Advances in Ovarian Cancer Care and Unmet Treatment Needs for Patients With Platinum Resistance: A Narrative Review. JAMA Oncol 2023; 9:851-859. [PMID: 37079311 DOI: 10.1001/jamaoncol.2023.0197] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Importance Platinum-based chemotherapy has been the standard of care for ovarian cancer for the past 3 decades. Although most patients respond to platinum-based treatment, emergence of platinum resistance in recurrent ovarian cancer is inevitable during the disease course. Outcomes for patients with platinum-resistant ovarian cancer are poor, and options remain limited, highlighting a substantial unmet need for new treatment options. Observations This review summarizes the current and evolving treatment landscape for platinum-resistant ovarian cancer with a focus on the development of novel compounds. Biologic and targeted therapies such as bevacizumab and poly (ADP-ribose) polymerase (PARP) inhibitors-originally approved in the platinum-resistant setting but since withdrawn-are now used in the up-front or platinum-sensitive setting, prolonging the duration of platinum sensitivity and delaying the use of nonplatinum options. The greater use of maintenance therapy and the emphasis on using platinum beyond first-line treatment has most likely been associated with a greater number of lines of platinum therapy before a patient is designated as having platinum-resistant ovarian cancer. In this contemporary setting, recent trials in platinum-resistant ovarian cancer have mostly had negative outcomes, with none having a clinically significant effect on progression-free or overall survival since the approval of bevacizumab in combination with chemotherapy. Nonetheless, a multitude of new therapies are under evaluation; preliminary results are encouraging. A focus on biomarker-directed treatment and patient selection may provide greater success in identifying novel therapies for treating platinum-resistant ovarian cancer. Conclusions and Relevance Although many clinical trials in platinum-resistant ovarian cancer have had negative outcomes, these failures provide insights into how clinical trial design, biomarker-directed therapy, and patient selection could facilitate future successes in platinum-resistant ovarian cancer treatment.
Collapse
Affiliation(s)
- Debra L Richardson
- Division of Gynecologic Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Ramez N Eskander
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Gynecologic Oncology, University of California San Diego Moores Cancer Center, UC San Diego Health, La Jolla
| | - David M O'Malley
- Division of Gynecologic Oncology, The Ohio State University Wexner Medical Center and The James Comprehensive Cancer Center, Columbus
| |
Collapse
|
22
|
Cunnea P, Curry EW, Christie EL, Nixon K, Kwok CH, Pandey A, Wulandari R, Thol K, Ploski J, Morera-Albert C, McQuaid S, Lozano-Kuehne J, Clark JJ, Krell J, Stronach EA, McNeish IA, Bowtell DDL, Fotopoulou C. Spatial and temporal intra-tumoral heterogeneity in advanced HGSOC: Implications for surgical and clinical outcomes. Cell Rep Med 2023:101055. [PMID: 37220750 DOI: 10.1016/j.xcrm.2023.101055] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/02/2022] [Accepted: 04/28/2023] [Indexed: 05/25/2023]
Abstract
Limited evidence exists on the impact of spatial and temporal heterogeneity of high-grade serous ovarian cancer (HGSOC) on tumor evolution, clinical outcomes, and surgical operability. We perform systematic multi-site tumor mapping at presentation and matched relapse from 49 high-tumor-burden patients, operated up front. From SNP array-derived copy-number data, we categorize dendrograms representing tumor clonal evolution as sympodial or dichotomous, noting most chemo-resistant patients favor simpler sympodial evolution. Three distinct tumor evolutionary patterns from primary to relapse are identified, demonstrating recurrent disease may emerge from pre-existing or newly detected clones. Crucially, we identify spatial heterogeneity for clinically actionable homologous recombination deficiency scores and for poor prognosis biomarkers CCNE1 and MYC. Copy-number signature, phenotypic, proteomic, and proliferative-index heterogeneity further highlight HGSOC complexity. This study explores HGSOC evolution and dissemination across space and time, its impact on optimal surgical cytoreductive effort and clinical outcomes, and its consequences for clinical decision-making.
Collapse
Affiliation(s)
- Paula Cunnea
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK.
| | - Edward W Curry
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Elizabeth L Christie
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Katherine Nixon
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Chun Hei Kwok
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Ahwan Pandey
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Ratri Wulandari
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Kerstin Thol
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Jennifer Ploski
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Cristina Morera-Albert
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | | | - Jingky Lozano-Kuehne
- Experimental Cancer Medicine Centre, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - James J Clark
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Jonathan Krell
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Euan A Stronach
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Iain A McNeish
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - David D L Bowtell
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Christina Fotopoulou
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK; West London Gynaecological Cancer Centre, Imperial College NHS Trust, London W12 0HS, UK.
| |
Collapse
|
23
|
Zhao X, Liu Z, Chen T. Potential Role of Vaginal Microbiota in Ovarian Cancer Carcinogenesis, Progression and Treatment. Pharmaceutics 2023; 15:pharmaceutics15030948. [PMID: 36986809 PMCID: PMC10056320 DOI: 10.3390/pharmaceutics15030948] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Ovarian cancer represents one of the most challenging gynecologic cancers which still has numerous unknowns on the underlying pathogenesis. In addition to the verified contributors such as genomic predisposition and medical history in the carcinogenesis, emerging evidence points out the potential role of vaginal microbiota in ovarian cancer. Recent studies have underlined the presence of vaginal microbial dysbiosis in cancer cases. Increasing research also indicates the potential correlations between vaginal microbes and cancer carcinogenesis, progression and treatment. Currently, compared with other gynecologic cancers, reports on the roles of vaginal microbiota in ovarian cancer remain scarce and fragmentary. Therefore, in this review, we summarize the roles of vaginal microbiota in various gynecologic diseases, particularly focusing on the potential mechanisms and possible applications of vaginal microbiota in ovarian cancer, giving insight into the involvement of vaginal microbiota in gynecologic cancer treatment.
Collapse
Affiliation(s)
- Xiumiao Zhao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Zhaoxia Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Correspondence: (Z.L.); (T.C.)
| | - Tingtao Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
- Correspondence: (Z.L.); (T.C.)
| |
Collapse
|
24
|
Safety Analysis of Bevacizumab in Ovarian Cancer Patients. J Clin Med 2023; 12:jcm12052065. [PMID: 36902852 PMCID: PMC10003828 DOI: 10.3390/jcm12052065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Bevacizumab (BEV) is beneficial for ovarian cancer patients, but the real world's patient settings differ from those in clinical trials. This study tries to illustrate adverse events in the Taiwanese population. Patients with epithelial ovarian cancer treated with BEV at Kaohsiung Chang Gung Memorial Hospital between 2009 and 2019 were retrospectively reviewed. The receiver operating characteristic curve was adopted to identify the cutoff dose and the presence of BEV-related toxicities. A total of 79 patients receiving BEV in neoadjuvant, frontline, or salvage settings were enrolled. The median follow-up time was 36.2 months. Twenty patients (25.3%) had "De novo" hypertension or the worsening of a preexisting one. Twelve patients (15.2%) had "De novo" proteinuria. Five patients (6.3%) had thromboembolic events/hemorrhage. Four patients (5.1%) had gastrointestinal perforation (GIP), and one patient (1.3%) had wound-healing complications. Patients with BEV-related GIP had at least two risk factors for developing GIP, most of which were conservatively managed. This study revealed a compatible but distinct safety profile from those reported in clinical trials. The presence of BEV-related changes in blood pressure showed a dose-dependent trend. Most of the BEV-related toxicities were managed individually. Patients with potential risks for developing BEV-related GIP should use BEV with caution.
Collapse
|
25
|
Chesnokov MS, Yadav A, Chefetz I. Optimized Transcriptional Signature for Evaluation of MEK/ERK Pathway Baseline Activity and Long-Term Modulations in Ovarian Cancer. Int J Mol Sci 2022; 23:13365. [PMID: 36362153 PMCID: PMC9654336 DOI: 10.3390/ijms232113365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Ovarian cancer is the most aggressive and lethal of all gynecologic malignancies. The high activity of the MEK/ERK signaling pathway is tightly associated with tumor growth, high recurrence rate, and treatment resistance. Several transcriptional signatures were proposed recently for evaluation of MEK/ERK activity in tumor tissue. In the present study, we validated the performance of a robust multi-cancer MPAS 10-gene signature in various experimental models and publicly available sets of ovarian cancer samples. Expression of four MPAS genes (PHLDA1, DUSP4, EPHA2, and SPRY4) displayed reproducible responses to MEK/ERK activity modulations across several experimental models in vitro and in vivo. Levels of PHLDA1, DUSP4, and EPHA2 expression were also significantly associated with baseline levels of MEK/ERK pathway activity in multiple human ovarian cancer cell lines and ovarian cancer patient samples available from the TCGA database. Initial platinum therapy resistance and advanced age at diagnosis were independently associated with poor overall patient survival. Taken together, our results demonstrate that the performance of transcriptional signatures is significantly affected by tissue specificity and aspects of particular experimental models. We therefore propose that gene expression signatures derived from comprehensive multi-cancer studies should be always validated for each cancer type.
Collapse
Affiliation(s)
| | - Anil Yadav
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Ilana Chefetz
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Masonic Cancer Center, Minneapolis, MN 55455, USA
- Stem Cell Institute, Minneapolis, MN 55455, USA
| |
Collapse
|
26
|
Bound NT, Vandenberg CJ, Kartikasari AER, Plebanski M, Scott CL. Improving PARP inhibitor efficacy in high-grade serous ovarian carcinoma: A focus on the immune system. Front Genet 2022; 13:886170. [PMID: 36159999 PMCID: PMC9505691 DOI: 10.3389/fgene.2022.886170] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/05/2022] [Indexed: 12/03/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) is a genomically unstable malignancy responsible for over 70% of all deaths due to ovarian cancer. With roughly 50% of all HGSOC harboring defects in the homologous recombination (HR) DNA repair pathway (e.g., BRCA1/2 mutations), the introduction of poly ADP-ribose polymerase inhibitors (PARPi) has dramatically improved outcomes for women with HR defective HGSOC. By blocking the repair of single-stranded DNA damage in cancer cells already lacking high-fidelity HR pathways, PARPi causes the accumulation of double-stranded DNA breaks, leading to cell death. Thus, this synthetic lethality results in PARPi selectively targeting cancer cells, resulting in impressive efficacy. Despite this, resistance to PARPi commonly develops through diverse mechanisms, such as the acquisition of secondary BRCA1/2 mutations. Perhaps less well documented is that PARPi can impact both the tumour microenvironment and the immune response, through upregulation of the stimulator of interferon genes (STING) pathway, upregulation of immune checkpoints such as PD-L1, and by stimulating the production of pro-inflammatory cytokines. Whilst targeted immunotherapies have not yet found their place in the clinic for HGSOC, the evidence above, as well as ongoing studies exploring the synergistic effects of PARPi with immune agents, including immune checkpoint inhibitors, suggests potential for targeting the immune response in HGSOC. Additionally, combining PARPi with epigenetic-modulating drugs may improve PARPi efficacy, by inducing a BRCA-defective phenotype to sensitise resistant cancer cells to PARPi. Finally, invigorating an immune response during PARPi therapy may engage anti-cancer immune responses that potentiate efficacy and mitigate the development of PARPi resistance. Here, we will review the emerging PARPi literature with a focus on PARPi effects on the immune response in HGSOC, as well as the potential of epigenetic combination therapies. We highlight the potential of transforming HGSOC from a lethal to a chronic disease and increasing the likelihood of cure.
Collapse
Affiliation(s)
- Nirashaa T. Bound
- Cancer Biology and Stem Cells, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Cancer Ageing and Vaccines (CAVA), Translational Immunology & Nanotechnology Research Program, School of Health & Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Cassandra J. Vandenberg
- Cancer Biology and Stem Cells, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Apriliana E. R. Kartikasari
- Cancer Ageing and Vaccines (CAVA), Translational Immunology & Nanotechnology Research Program, School of Health & Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Magdalena Plebanski
- Cancer Ageing and Vaccines (CAVA), Translational Immunology & Nanotechnology Research Program, School of Health & Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Clare L. Scott
- Cancer Biology and Stem Cells, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Peter MacCallum Cancer Centre, Parkville, VIC, Australia
- Royal Women’s Hospital, Parkville, VIC, Australia
| |
Collapse
|
27
|
Achimas-Cadariu P, Kubelac P, Irimie A, Berindan-Neagoe I, Rühli F. Evolutionary perspectives, heterogeneity and ovarian cancer: a complicated tale from past to present. J Ovarian Res 2022; 15:67. [PMID: 35659345 PMCID: PMC9164402 DOI: 10.1186/s13048-022-01004-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 05/24/2022] [Indexed: 11/21/2022] Open
Abstract
Ovarian cancer is composed of a complex system of cells best described by features such as clonal evolution, spatial and temporal genetic heterogeneity, and development of drug resistance, thus making it the most lethal gynecologic cancer. Seminal work on cancer as an evolutionary process has a long history; however, recent cost-effective large-scale molecular profiling has started to provide novel insights coupled with the development of mathematical algorithms. In the current review, we have systematically searched for articles that focused on the clonal evolution of ovarian cancer to offer the whole landscape of research that has been done and highlight future research avenues given its characteristic features and connections to evolutionary biology.
Collapse
Affiliation(s)
- Patriciu Achimas-Cadariu
- Department of Surgery, The Oncology Institute 'Prof. Dr. Ion Chiricuta', 34-36 Republicii street, 400015 , Cluj-Napoca, Romania. .,Department of Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| | - Paul Kubelac
- Department of Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Medical Oncology, The Oncology Institute 'Prof. Dr. Ion Chiricuta', Cluj-Napoca, Romania
| | - Alexandru Irimie
- Department of Surgery, The Oncology Institute 'Prof. Dr. Ion Chiricuta', 34-36 Republicii street, 400015 , Cluj-Napoca, Romania.,Department of Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Centre for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Research Center for Advanced Medicine Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, The Oncology Institute 'Prof. Dr. Ion Chiricuta', Cluj-Napoca, Romania
| | - Frank Rühli
- Institute of Evolutionary Medicine, Zurich, Switzerland
| |
Collapse
|
28
|
Rinne N, Christie EL, Ardasheva A, Kwok CH, Demchenko N, Low C, Tralau-Stewart C, Fotopoulou C, Cunnea P. Targeting the PI3K/AKT/mTOR pathway in epithelial ovarian cancer, therapeutic treatment options for platinum-resistant ovarian cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 4:573-595. [PMID: 35582310 PMCID: PMC9019160 DOI: 10.20517/cdr.2021.05] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/05/2021] [Accepted: 03/16/2021] [Indexed: 12/24/2022]
Abstract
The survival rates for women with ovarian cancer have shown scant improvement in recent years, with a 5-year survival rate of less than 40% for women diagnosed with advanced ovarian cancer. High-grade serous ovarian cancer (HGSOC) is the most lethal subtype where the majority of women develop recurrent disease and chemotherapy resistance, despite over 70%-80% of patients initially responding to platinum-based chemotherapy. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway regulates many vital processes such as cell growth, survival and metabolism. However, this pathway is frequently dysregulated in cancers including different subtypes of ovarian cancer, through amplification or somatic mutations of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), amplification of AKT isoforms, or deletion or inactivation of PTEN. Further evidence indicates a role for the PI3K/AKT/mTOR pathway in the development of chemotherapy resistance in ovarian cancer. Thus, targeting key nodes of the PI3K/AKT/mTOR pathway is a potential therapeutic prospect. In this review, we outline dysregulation of PI3K signaling in ovarian cancer, with a particular emphasis on HGSOC and platinum-resistant disease. We review pre-clinical evidence for inhibitors of the main components of the PI3K pathway and highlight past, current and upcoming trials in ovarian cancers for different inhibitors of the pathway. Whilst no inhibitors of the PI3K/AKT/mTOR pathway have thus far advanced to the clinic for the treatment of ovarian cancer, several promising compounds which have the potential to restore platinum sensitivity and improve clinical outcomes for patients are under evaluation and in various phases of clinical trials.
Collapse
Affiliation(s)
- Natasha Rinne
- Department of Surgery & Cancer, Imperial College London, Hammersmith campus, London W12 0NN, UK
| | | | - Anastasia Ardasheva
- Department of Surgery & Cancer, Imperial College London, Hammersmith campus, London W12 0NN, UK
| | - Chun Hei Kwok
- Department of Surgery & Cancer, Imperial College London, Hammersmith campus, London W12 0NN, UK
| | - Nikita Demchenko
- Department of Surgery & Cancer, Imperial College London, Hammersmith campus, London W12 0NN, UK
| | - Caroline Low
- Department of Metabolism Digestion & Reproduction, Imperial College London, London W12 0NN, UK
| | - Catherine Tralau-Stewart
- Takeda Academic Innovation, Center for External Innovation, Takeda California, San Diego, CA 92121, USA
| | - Christina Fotopoulou
- Department of Surgery & Cancer, Imperial College London, Hammersmith campus, London W12 0NN, UK
| | - Paula Cunnea
- Department of Surgery & Cancer, Imperial College London, Hammersmith campus, London W12 0NN, UK
| |
Collapse
|
29
|
DNA Repair Protein HELQ and XAB2 as Chemoresponse and Prognosis Biomarkers in Ascites Tumor Cells of High-Grade Serous Ovarian Cancer. JOURNAL OF ONCOLOGY 2022; 2022:7521934. [PMID: 35392433 PMCID: PMC8983184 DOI: 10.1155/2022/7521934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/10/2022] [Indexed: 11/18/2022]
Abstract
Nucleotide excision repair (NER) is an important mediator for responsiveness of platinum-based chemotherapy. Our study is aimed at investigating the NER-related genes expression in ascites tumor cells and its application in the prediction of chemoresponse in high-grade serous ovarian cancer (HGSC) patients. The relationship between 16 NER-related genes and the prognosis of ovarian cancer was analyzed in the TCGA database. NER-related genes including HELQ and XAB2 expressions were determined via immunocytochemistry in ascites cell samples from 92 ovarian cancer patients prior to primary cytoreduction surgery. Kaplan-Meier analysis and Cox model were used to investigate the association between NER-related gene expression and prognosis/chemotherapeutic response. Predicting models were constructed using a training cohort of 60 patients and validated in a validation cohort of 32 patients. We found that high expression of HELQ and XAB2 in the training cohort was associated with poor prognosis (for HELQ, P = 0.001, HR = 2.83, 95% CI: 1.46-5.49; for XAB2, P = 0.008, HR = 2.38, 95% CI: 1.23-4.63) and platinum resistance (for HELQ, P < 0.001; for XAB2, P = 0.006). In the validation cohort, the combination of HELQ and XAB2 (AUC = 0.863) showed the highest AUC. The expression levels of HELQ (RR 5.7, 95% CI 1.7-19.2) and XAB2 (RR 3.2, 95% CI 0.9-10.8) in ascites tumor cells were positively correlated to the risk of platinum resistance. In summary, we revealed that the expression levels of HELQ and XAB2 are candidate predictors for primary chemotherapy responsiveness and prognosis in HGSC. Ascites cytology is applicable as a promising method for chemosensitivity prediction in HGSC.
Collapse
|
30
|
Kim JY, Bahar E, Lee JY, Chang S, Kim SH, Park EY, Do SI, Yoon H, Kim HS. ARL6IP5 reduces cisplatin-resistance by suppressing DNA repair and promoting apoptosis pathways in ovarian carcinoma. Cell Death Dis 2022; 13:239. [PMID: 35293383 PMCID: PMC8924236 DOI: 10.1038/s41419-022-04568-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 12/31/2021] [Accepted: 01/20/2022] [Indexed: 11/18/2022]
Abstract
Ovarian carcinoma (OC) is the most lethal gynecological malignancy due to frequent recurrence resulting from cisplatin-resistance. ARL6IP5 is a novel gene implicated to suppress cisplatin-resistance by activating apoptosis and inhibiting DNA repair through XRCC1 and PARP1. We investigated the clinicopathological and prognostic significance of the immunohistochemical ARL6IP5 expression on 79 post-chemotherapy OC patient tissue samples; in vitro, the effect of ARL6IP5 overexpression (OE) and knockdown (KD) on cancer hallmark functions and the effect of ARL6IP5 on the expression of DNA repair and apoptosis-related proteins were observed in OC cells and their cisplatin-resistant (CisR) counterparts. ARL6IP5 expression was significantly associated with chemotherapeutic response and was an independent prognosticator of progression-free and overall survival of high-grade serous OC patients. ARL6IP5-OE decreased cellular proliferation, invasion, migration, adhesion, and increased apoptosis (p < 0.05); the opposite was observed for ARL6IP5-KD. Notably, ARL6IP5-OE reduced cisplatin-resistance of both OC and CisR OC cells, while ARL6IP5-KD increased cisplatin-resistance (p < 0.05). ARL6IP5-OE suppressed the expressions of DNA repair proteins and increased those of pro-apoptotic proteins; the opposite was observed for ARL6IP5-KD. The recombinant ARL6IP5 protein (rARL6IP5) had the greatest apoptotic effect among cisplatin and olaparib, in both OC and CisR OC cells; moreover, rARL6IP5 was the only single agent in CisR OC cells to retain higher apoptotic efficacy compared with control (p < 0.05), indicating that the apoptotic pathway influenced by rARL6IP5 remained effective in CisR OC cells compared to cisplatin and olaparib. In conclusion, we demonstrated that ARL6IP5 is an independent prognosticator of OC patients with cellular functions of a tumor-suppressor, possibly influencing the development of cisplatin-resistance and progression of OC cells through regulation of DNA repair and apoptosis. rARL6IP5 had significantly greater apoptotic efficacy compared to conventional chemotherapeutic agents in both OC and CisR OC cells, suggesting that ARL6IP5 may be a valuable novel chemotherapeutic against CisR OC.
Collapse
|
31
|
Fakhri S, Moradi SZ, Yarmohammadi A, Narimani F, Wallace CE, Bishayee A. Modulation of TLR/NF-κB/NLRP Signaling by Bioactive Phytocompounds: A Promising Strategy to Augment Cancer Chemotherapy and Immunotherapy. Front Oncol 2022; 12:834072. [PMID: 35299751 PMCID: PMC8921560 DOI: 10.3389/fonc.2022.834072] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Background Tumors often progress to a more aggressive phenotype to resist drugs. Multiple dysregulated pathways are behind this tumor behavior which is known as cancer chemoresistance. Thus, there is an emerging need to discover pivotal signaling pathways involved in the resistance to chemotherapeutic agents and cancer immunotherapy. Reports indicate the critical role of the toll-like receptor (TLR)/nuclear factor-κB (NF-κB)/Nod-like receptor pyrin domain-containing (NLRP) pathway in cancer initiation, progression, and development. Therefore, targeting TLR/NF-κB/NLRP signaling is a promising strategy to augment cancer chemotherapy and immunotherapy and to combat chemoresistance. Considering the potential of phytochemicals in the regulation of multiple dysregulated pathways during cancer initiation, promotion, and progression, such compounds could be suitable candidates against cancer chemoresistance. Objectives This is the first comprehensive and systematic review regarding the role of phytochemicals in the mitigation of chemoresistance by regulating the TLR/NF-κB/NLRP signaling pathway in chemotherapy and immunotherapy. Methods A comprehensive and systematic review was designed based on Web of Science, PubMed, Scopus, and Cochrane electronic databases. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed to include papers on TLR/NF-κB/NLRP and chemotherapy/immunotherapy/chemoresistance by phytochemicals. Results Phytochemicals are promising multi-targeting candidates against the TLR/NF-κB/NLRP signaling pathway and interconnected mediators. Employing phenolic compounds, alkaloids, terpenoids, and sulfur compounds could be a promising strategy for managing cancer chemoresistance through the modulation of the TLR/NF-κB/NLRP signaling pathway. Novel delivery systems of phytochemicals in cancer chemotherapy/immunotherapy are also highlighted. Conclusion Targeting TLR/NF-κB/NLRP signaling with bioactive phytocompounds reverses chemoresistance and improves the outcome for chemotherapy and immunotherapy in both preclinical and clinical stages.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Akram Yarmohammadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Narimani
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Carly E. Wallace
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| |
Collapse
|
32
|
Ginkgolic Acid (GA) Inhibits the Growth of OCa by Inhibiting lncRNA MALAT1/JAK2 Axis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2021:5481271. [PMID: 34987594 PMCID: PMC8720594 DOI: 10.1155/2021/5481271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/14/2021] [Indexed: 12/02/2022]
Abstract
Objective We aimed to observe the impact of ginkgolic acid (GA) on the proliferation and metastasis ability of ovarian cancer (OCa) cells and to further explore whether GA affects the malignant progress of OCa via regulating the lncRNA MALAT1/JAK2 axis. Methods OCa cells SKOV3 and CAOV3 were administered with 1 ng/ml GA, 5 ng/ml GA, 10 ng/ml GA, 20 ng/ml GA, and DSMO as control, respectively. The cell proliferation and migration ability of the abovementioned cells in each group were measured by CCK-8 test and Transwell experiments. The expression levels of lncRNA MALAT1 and JAK2 protein were examined by qRT-PCR and western blot, respectively. Subsequently, in OCa cells treated with GA, lncRNA MALAT1 overexpression vector was transfected to continue to detect the proliferation activity and migration ability of each treatment group. Finally, the regulation of GA on activity of lncRNA MALAT1/JAK2 axis in OCa cells was further explored in nude mice. Results Our data showed that the proliferation inhibition rate of cells at each ginkgolic acid concentration was higher than that of the control group (P < 0.05), suggesting that GA has an inhibitory influence on the proliferation of OCa cells, in a dose-dependent way. GA was able to inhibit the proliferation rate and migration ability of OCa cells. Administration of ginkgolic acid downregulated the levels of lncRNA MALAT1 and JAK2 protein. Overexpression of lncRNA MALAT1 partially reversed the inhibited OCa proliferative capacity caused by GA treatment. Consistent with the results observed in vitro, we also found that the OCa tumor weight and volume of nude mice injected with lncRNA MALAT1 overexpression vector were enhanced and JAK2 protein level increased remarkably in comparison to the ginkgolic acid group. Conclusions In summary, GA may exert its inhibitory effect on the proliferative and migratory capacities of OCa cells through suppressing the activity of lncRNA MALAT1/JAK2 axis.
Collapse
|
33
|
Funingana IG, Reinius MAV, Petrillo A, Ang JE, Brenton JD. Can integrative biomarker approaches improve prediction of platinum and PARP inhibitor response in ovarian cancer? Semin Cancer Biol 2021; 77:67-82. [PMID: 33607245 DOI: 10.1016/j.semcancer.2021.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 12/28/2022]
Abstract
Epithelial ovarian carcinoma (EOC) encompasses distinct histological, molecular and genomic entities that determine intrinsic sensitivity to platinum-based chemotherapy. Current management of each subtype is determined by factors including tumour grade and stage, but only a small number of biomarkers can predict treatment response. The recent incorporation of PARP inhibitors into routine clinical practice has underscored the need to personalise ovarian cancer treatment based on tumour biology. In this article, we review the strengths and limitations of predictive biomarkers in current clinical practice and highlight integrative strategies that may inform the development of future personalised medicine programs and composite biomarkers.
Collapse
Affiliation(s)
- Ionut-Gabriel Funingana
- Department of Oncology, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK; Department of Oncology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Marika A V Reinius
- Department of Oncology, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK; Department of Oncology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Angelica Petrillo
- Medical Oncology Unit, Ospedale del Mare, Naples, Italy; University of Study of Campania "L.Vanvitelli", Naples, Italy.
| | - Joo Ern Ang
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK; Department of Oncology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - James D Brenton
- Department of Oncology, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK; Department of Oncology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
34
|
Leng Y, Zhao C, Yan G, Xu S, Yang Y, Gong T, Li X, Li C. Ghrelin enhances cisplatin sensitivity in HO-8910 PM human ovarian cancer cells. J Ovarian Res 2021; 14:162. [PMID: 34789301 PMCID: PMC8597245 DOI: 10.1186/s13048-021-00907-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Resistance to platinum-based chemotherapy is one of the crucial problems in ovarian cancer treatment. Ghrelin, a widely distributed peptide hormone, participates in a series of cancer progression. The aim of this study is to determine whether ghrelin influences the sensitivity of ovarian cancer to cisplatin, and to demonstrate the underlying mechanism. METHODS The anti-tumor effects of ghrelin and cisplatin were evaluated with human ovarian cancer cells HO-8910 PM in vitro or in vivo. Cell apoptosis and cell cycle were analyzed via flow cytometry assay. The signaling pathway and the expression of cell cycle protein were analyzed with Western Blot. RESULTS Our results showed that treatment with ghrelin specifically inhibited cell proliferation of HO-8910 PM and sensitized these cells to cisplatin via S phase cell cycle arrest, and enhanced the inhibitory effect of cisplatin on tumor growth of HO-8910 PM derived xenografts in vivo. Treatment with ghrelin inhibited the expression of p-Erk1/2 and p-p38, which was opposite the effect of cisplatin. However, under the treatment of ghrelin, cisplatin treatment exhibited a stronger effect on inhibiting P21 expression, upregulating p-CDK1 and cyclin B1 expression, and blocking cell cycle progression. Mechanistically, ghrelin promoted S phase cell cycle arrest and upregulated p-CDK1 and cyclin B1 expression induced by cisplatin via inhibition of p38. CONCLUSION This study revealed a specifically inhibitory effect of ghrelin on platinum-resistance via suppressing p-P38 and subsequently promoting p-CDK1 mediated cell cycle arrest in HO-8910 PM.
Collapse
Affiliation(s)
- Yun Leng
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, China.,School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 518101, China.,School of Medicine, Xiamen University, Xiamen, 361100, China
| | - Can Zhao
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, China
| | - Guoliang Yan
- School of Medicine, Xiamen University, Xiamen, 361100, China
| | - Shuangyue Xu
- School of Medicine, Xiamen University, Xiamen, 361100, China
| | - Yinggui Yang
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, China
| | - Ting Gong
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, China
| | - Xin Li
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, China.
| | - Chenglin Li
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, China. .,School of Medicine, Xiamen University, Xiamen, 361100, China.
| |
Collapse
|
35
|
Bilbao M, Katz C, Kass SL, Smith D, Hunter K, Warshal D, Aikins JK, Ostrovsky O. Epigenetic Therapy Augments Classic Chemotherapy in Suppressing the Growth of 3D High-Grade Serous Ovarian Cancer Spheroids over an Extended Period of Time. Biomolecules 2021; 11:1711. [PMID: 34827710 PMCID: PMC8615646 DOI: 10.3390/biom11111711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 01/20/2023] Open
Abstract
Recurrent high-grade serous ovarian cancer (HGSC) is clinically very challenging and prematurely shortens patients' lives. Recurrent ovarian cancer is characterized by high tumor heterogeneity; therefore, it is susceptible to epigenetic therapy in classic 2D tissue culture and rodent models. Unfortunately, this success has not translated well into clinical trials. Utilizing a 3D spheroid model over a period of weeks, we were able to compare the efficacy of classic chemotherapy and epigenetic therapy on recurrent ovarian cancer cells. Unexpectedly, in our model, a single dose of paclitaxel alone caused the exponential growth of recurrent high-grade serous epithelial ovarian cancer over a period of weeks. In contrast, this effect is not only opposite under treatment with panobinostat, but panobinostat reverses the repopulation of cancer cells following paclitaxel treatment. In our model, we also demonstrate differences in the drug-treatment sensitivity of classic chemotherapy and epigenetic therapy. Moreover, 3D-derived ovarian cancer cells demonstrate induced proliferation, migration, invasion, cancer colony formation and chemoresistance properties after just a single exposure to classic chemotherapy. To the best of our knowledge, this is the first evidence demonstrating a critical contrast between short and prolonged post-treatment outcomes following classic chemotherapy and epigenetic therapy in recurrent high-grade serous ovarian cancer in 3D culture.
Collapse
Affiliation(s)
- Michelle Bilbao
- Virtua Gynecologic Oncology, Virtua Health, Voorhees, NJ 08043, USA;
| | - Chelsea Katz
- Department of Obstetrics and Gynecology, Cooper University Health Care, Camden, NJ 08103, USA; (C.K.); (S.L.K.)
| | - Stephanie L. Kass
- Department of Obstetrics and Gynecology, Cooper University Health Care, Camden, NJ 08103, USA; (C.K.); (S.L.K.)
| | - Devon Smith
- Department of Obstetrics and Gynecology, Division of Urogynecology, Cooper University Health Care, Camden, NJ 08103, USA;
| | - Krystal Hunter
- Department of Statistics, Cooper Research Institute, Cooper University Health Care, Camden, NJ 08103, USA;
| | - David Warshal
- Department of Gynecologic Oncology, MD Anderson Cancer Center at Cooper, Cooper University Health Care, Camden, NJ 08103, USA;
| | - James K. Aikins
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA;
| | - Olga Ostrovsky
- Department of Surgery, Division of Surgical Research, Cooper University Health Care, Camden, NJ 08103, USA
| |
Collapse
|
36
|
Liontos M, Andrikopoulou A, Koutsoukos K, Markellos C, Skafida E, Fiste O, Kaparelou M, Thomakos N, Haidopoulos D, Rodolakis A, Dimopoulos MA, Zagouri F. Neutrophil-to-lymphocyte ratio and chemotherapy response score as prognostic markers in ovarian cancer patients treated with neoadjuvant chemotherapy. J Ovarian Res 2021; 14:148. [PMID: 34724958 PMCID: PMC8561989 DOI: 10.1186/s13048-021-00902-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/13/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Neoadjuvant chemotherapy (NACT) followed by interval debulking surgery (IDS) is the recommended approach in patients with advanced epithelial ovarian cancer (EOC). However, most patients eventually relapse despite the initial high response rate to chemotherapy. Neutrophil-to-lymphocyte ratio is a well-known biomarker that reflects severe inflammation, critical illness, and mortality in various diseases. Chemotherapy response score (CRS) and neutrophil-to-lymphocyte ratio (NLR) have been identified as potential biomarkers of platinum resistance and disease prognosis. We retrospectively evaluated 132 patients with stage IIIc or IV ovarian/fallopian tube/primary peritoneal cancer who had received NACT followed by IDS from 01/01/2003 to 31/12/2018. CRS was assessed on omental specimens collected from IDS according to ICCR guidelines. RESULTS Median age was 64.57 years (SD: 9.72; range 39.2-87.1). Most ovarian tumors were serous epithelial (90.9%; 120/132). An elevated NLR (defined as > 3) was observed in 72% (95/132) of patients in contrast with 28% (37/132) of patients characterized by low NLR status. Median PFS (mPFS) and median overall survival (mOS) were 13.05 months (95% CI: 11.42-14.67)) and 34.69 months (95% CI: 23.26-46.12) respectively. In univariate analysis, CRS3 score was significantly associated with prolonged mPFS (CRS1/2: 12.79 months vs CRS3: 17.7 months; P = 0.008). CRS score was not associated with mOS (P = 0.876). High NLR was not significantly associated with mPFS (P = 0.128), however it was significantly associated with poor mOS (P = 0.012). In multivariate analysis, only performance of surgery maintained its statistical significance with both PFS (P = 0.001) and OS (P = 0.008). CONCLUSION NLR could serve as a useful predictor of OS but not PFS in ovarian cancer patients receiving NACT. In accordance with our previous study, CRS score at omentum was found to be associated with PFS but not OS in ovarian cancer patients treated with NACT and IDS.
Collapse
Affiliation(s)
- M Liontos
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - A Andrikopoulou
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - K Koutsoukos
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - C Markellos
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - E Skafida
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - O Fiste
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - M Kaparelou
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - N Thomakos
- Department of Obstetrics and Gynecology, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - D Haidopoulos
- Department of Obstetrics and Gynecology, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - A Rodolakis
- Department of Obstetrics and Gynecology, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - M A Dimopoulos
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - F Zagouri
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
37
|
Xu XL, Deng SL, Lian ZX, Yu K. Resveratrol Targets a Variety of Oncogenic and Oncosuppressive Signaling for Ovarian Cancer Prevention and Treatment. Antioxidants (Basel) 2021; 10:antiox10111718. [PMID: 34829589 PMCID: PMC8614917 DOI: 10.3390/antiox10111718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Ovarian cancer is a heterogeneous disease and is also the major cause of death among women from gynecologic malignancies. A combination of surgery and chemotherapy is the major therapy for ovarian cancer. Unfortunately, despite good response rates to initial surgery and chemotherapy, most patients relapse and have a generally poor survival rate. The present research sheds light on the therapeutic effects of multiple natural products in patients with ovarian cancer. Notably, these natural ingredients do not have adverse effects on healthy cells and tissues, indicating that natural products can serve as a safe alternative therapy for ovarian cancer. Trans-3,4,5′-Trihydroxystibene (resveratrol) is a natural product that is commonly found in the human diet and that has been shown to have anticancer effects on various human cancer cells. This review summarizes current knowledge regarding the progress of resveratrol against tumor cell proliferation, metastasis, apoptosis induction, autophagy, sensitization, and antioxidation as well as anti-inflammation. It also provides information regarding the role of resveratrol analogues in ovarian cancer. A better understanding of the role of resveratrol in ovarian cancer may provide a new array for the prevention and therapy of ovarian cancer.
Collapse
Affiliation(s)
- Xue-Ling Xu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Shou-Long Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China; or
| | - Zheng-Xing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
- Correspondence: (Z.-X.L.); (K.Y.)
| | - Kun Yu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
- Correspondence: (Z.-X.L.); (K.Y.)
| |
Collapse
|
38
|
Zheng H, Shu T, Zhu S, Zhang C, Gao M, Zhang N, Wang H, Yuan J, Tai Z, Xia X, Yi Y, Li J, Guan Y, Xiang Y, Gao Y. Construction and Validation of a Platinum Sensitivity Predictive Model With Multiple Genomic Variations for Epithelial Ovarian Cancer. Front Oncol 2021; 11:725264. [PMID: 34604063 PMCID: PMC8481766 DOI: 10.3389/fonc.2021.725264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Platinum-based chemotherapy is still the standard of care after cytoreductive surgery in the first-line treatment for epithelial ovarian cancer. This study aims to integrate novel biomarkers for predicting platinum sensitivity in EOC after initial cytoreductive surgery precisely. To this end, 60 patients were recruited from September 2014 to October 2019. Based on the duration of progress-free survival, 44 and 16 patients were assigned to platinum-sensitive and platinum-resistant group, respectively. Next generation sequencing was performed to dissect the genomic features of ovarian tumors obtained from surgery. Multiple genomic variations were compared between two groups, including single-nucleotide variant, single base or indel signature, loss of heterozygosity (LOH), whole-genome duplication (WGD), and others. The results demonstrated that patients with characteristics including positive SBS10a signature (p < 0.05), or FAM175A LOH (p < 0.01), or negative WGD (p < 0.01) were significantly enriched in platinum-sensitive group. Consistently, patients with positive SBS10a signature (15.8 vs. 10.1 months, p < 0.05), or FAM175A LOH (16.5 vs. 9.2 months, p < 0.05), or negative WGD (16.5 vs. 9.1 months, p < 0.05) have significantly longer PFS than those without these genetic features. By integrating these three biomarkers, a lasso regression model was employed to train and test for all patients, with the AUC value 0.864 in platinum sensitivity prediction. Notably, 388 ovarian cancer patients from TCGA dataset were leveraged as independent validation cohort with AUC value 0.808, suggesting the favorable performance and reliability of this model.
Collapse
Affiliation(s)
- Hong Zheng
- Department of Gynecologic Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Tong Shu
- Department of Gynecologic Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Shan Zhu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | - Min Gao
- Department of Gynecologic Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Nan Zhang
- Department of Gynecologic Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hongguo Wang
- Department of Gynecologic Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jie Yuan
- Geneplus-Shenzhen, Shenzhen, China
| | | | | | - Yuting Yi
- Geneplus-Beijing, Beijing, China.,Department of Computer Science and Technology, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Jin Li
- Geneplus-Beijing, Beijing, China
| | - Yanfang Guan
- Geneplus-Beijing, Beijing, China.,Department of Computer Science and Technology, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Yang Xiang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunong Gao
- Department of Gynecologic Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
39
|
Quinn MCJ, McCue K, Shi W, Johnatty SE, Beesley J, Civitarese A, O'Mara TA, Glubb DM, Tyrer JP, Armasu SM, Ong JS, Gharahkhani P, Lu Y, Gao B, Patch AM, Fasching PA, Beckmann MW, Lambrechts D, Vergote I, Velez Edwards DR, Beeghly-Fadiel A, Benitez J, Garcia MJ, Goodman MT, Dörk T, Dürst M, Modugno F, Moysich K, du Bois A, Pfisterer J, Bauman K, Karlan BY, Lester J, Cunningham JM, Larson MC, McCauley BM, Kjaer SK, Jensen A, Hogdall CK, Hogdall E, Schildkraut JM, Riggan MJ, Berchuck A, Cramer DW, Terry KL, Bjorge L, Webb PM, Friedlander M, Pejovic T, Moffitt M, Glasspool R, May T, Ene GEV, Huntsman DG, Woo M, Carney ME, Hinsley S, Heitz F, Fereday S, Kennedy CJ, Edwards SL, Winham SJ, deFazio A, Pharoah PDP, Goode EL, MacGregor S, Chenevix-Trench G. Identification of a Locus Near ULK1 Associated With Progression-Free Survival in Ovarian Cancer. Cancer Epidemiol Biomarkers Prev 2021; 30:1669-1680. [PMID: 34162658 PMCID: PMC8419101 DOI: 10.1158/1055-9965.epi-20-1817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/28/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Many loci have been found to be associated with risk of epithelial ovarian cancer (EOC). However, although there is considerable variation in progression-free survival (PFS), no loci have been found to be associated with outcome at genome-wide levels of significance. METHODS We carried out a genome-wide association study (GWAS) of PFS in 2,352 women with EOC who had undergone cytoreductive surgery and standard carboplatin/paclitaxel chemotherapy. RESULTS We found seven SNPs at 12q24.33 associated with PFS (P < 5 × 10-8), the top SNP being rs10794418 (HR = 1.24; 95% CI, 1.15-1.34; P = 1.47 × 10-8). High expression of a nearby gene, ULK1, is associated with shorter PFS in EOC, and with poor prognosis in other cancers. SNP rs10794418 is also associated with expression of ULK1 in ovarian tumors, with the allele associated with shorter PFS being associated with higher expression, and chromatin interactions were detected between the ULK1 promoter and associated SNPs in serous and endometrioid EOC cell lines. ULK1 knockout ovarian cancer cell lines showed significantly increased sensitivity to carboplatin in vitro. CONCLUSIONS The locus at 12q24.33 represents one of the first genome-wide significant loci for survival for any cancer. ULK1 is a plausible candidate for the target of this association. IMPACT This finding provides insight into genetic markers associated with EOC outcome and potential treatment options.See related commentary by Peres and Monteiro, p. 1604.
Collapse
Affiliation(s)
- Michael C J Quinn
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Karen McCue
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Wei Shi
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Sharon E Johnatty
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jonathan Beesley
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Andrew Civitarese
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Tracy A O'Mara
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Dylan M Glubb
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jonathan P Tyrer
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, United Kingdom
| | - Sebastian M Armasu
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Jue-Sheng Ong
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Puya Gharahkhani
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Yi Lu
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Bo Gao
- Crown Princess Mary Cancer Care Centre, Westmead Hospital, Sydney, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Ann-Marie Patch
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Peter A Fasching
- Division of Hematology and Oncology, Department of Medicine, University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, California
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Diether Lambrechts
- VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Ignace Vergote
- Division of Gynecologic Oncology, Department of Obstetrics and Gynaecology and Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Digna R Velez Edwards
- Department of Obstetrics and Gynecology, Vanderbilt Epidemiology Center, Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Alicia Beeghly-Fadiel
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Javier Benitez
- Human Genetics Group, Spanish National Cancer Centre (CNIO), and Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain
| | - Maria J Garcia
- Human Genetics Group, Spanish National Cancer Centre (CNIO), and Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain
- Computational Oncology Group, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Marc T Goodman
- Cancer Prevention and Control, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Biomedical Sciences, Community and Population Health Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Matthias Dürst
- Department of Gynecology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Francesmary Modugno
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
- Womens Cancer Research Center, Magee-Womens Research Institute and Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Kirsten Moysich
- Division of Cancer Prevention and Population Sciences, Cancer Pathology & Prevention, Roswell Park Cancer Institute, Buffalo, New York
| | - Andreas du Bois
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Essen, Germany
- Department of Gynecology and Gynecologic Oncology, Dr. Horst Schmidt Kliniken Wiesbaden, Wiesbaden, Germany
| | | | | | - Beth Y Karlan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Jenny Lester
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Julie M Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Melissa C Larson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Bryan M McCauley
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Susanne K Kjaer
- Department of Gynecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Allan Jensen
- Department of Lifestyle, Reproduction and Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Claus K Hogdall
- Department of Gynecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Estrid Hogdall
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Lifestyle, Reproduction and Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Joellen M Schildkraut
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Marjorie J Riggan
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina
| | - Daniel W Cramer
- Obstetrics and Gynecology Epidemiology Center, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kathryn L Terry
- Obstetrics and Gynecology Epidemiology Center, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - Line Bjorge
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Michael Friedlander
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Tanja Pejovic
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Melissa Moffitt
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Rosalind Glasspool
- Beatson West of Scotland Cancer Centre and University of Glasgow, Glasgow, United Kingdom
| | - Taymaa May
- Division of Gynecologic Oncology, Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada
| | - Gabrielle E V Ene
- Division of Gynecologic Oncology, Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada
| | - David G Huntsman
- British Columbia's Ovarian Cancer Research (OVCARE) Program, Vancouver General Hospital, BC Cancer Agency and University of British Columbia, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Obstetrics and Gynaecology, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Michelle Woo
- British Columbia's Ovarian Cancer Research (OVCARE) Program, Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Michael E Carney
- Department of Obstetrics and Gynecology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Samantha Hinsley
- Cancer Research UK Glasgow Clinical Trials Unit, University of Glasgow, Glasgow, United Kingdom
| | - Florian Heitz
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Essen, Germany
- Department of Gynecology and Gynecologic Oncology, Dr. Horst Schmidt Kliniken Wiesbaden, Wiesbaden, Germany
- Department for Gynecology with the Center for Oncologic Surgery Charité Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Sian Fereday
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Catherine J Kennedy
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
| | - Stacey L Edwards
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Stacey J Winham
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | | | - Paul D P Pharoah
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, United Kingdom
- Strangeways Research Laboratory, Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Worts Causeway, Cambridge, United Kingdom
| | - Ellen L Goode
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Stuart MacGregor
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
40
|
Angeles MA, Cabarrou B, Gil-Moreno A, Pérez-Benavente A, Spagnolo E, Rychlik A, Martínez-Gómez C, Guyon F, Zapardiel I, Querleu D, Illac C, Migliorelli F, Bétrian S, Ferron G, Hernández A, Martinez A. Effect of tumor burden and radical surgery on survival difference between upfront, early interval or delayed cytoreductive surgery in ovarian cancer. J Gynecol Oncol 2021; 32:e78. [PMID: 34431252 PMCID: PMC8550927 DOI: 10.3802/jgo.2021.32.e78] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/02/2021] [Accepted: 06/15/2021] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE We sought to evaluate the impact on survival of tumor burden and surgical complexity in relation to the number of cycles of neoadjuvant chemotherapy (NACT) in patients with advanced ovarian cancer (OC) with minimal (CC-1) or no residual disease (CC-0). METHODS This retrospective study included patients with International Federation of Gynaecology and Obstetrics IIIC-IV stage OC who underwent debulking surgery at 4 high-volume institutions between January 2008 and December 2015. We assessed the overall survival (OS) of primary debulking surgery (PDS group), early interval debulking surgery after 3-4 cycles of NACT (early IDS group) and delayed debulking surgery after 6 cycles (DDS group) with CC-0 or CC-1 according to peritoneal cancer index (PCI) and Aletti score. RESULTS Five hundred forty-nine women were included: 175 (31.9%) had PDS, 224 (40.8%) early IDS and 150 (27.3%) DDS. Regardless of Aletti score, median OS after PDS was significantly higher than after early IDS or DDS, but the survival difference was higher in women with an Aletti score <8. Among patients with PCI ≤10, median OS after PDS was significantly higher than after early IDS or DDS. In women with PCI >10, there were no differences between PDS and early IDS, but DDS was associated with decreased OS. CONCLUSION The benefit of complete PDS compared with NACT was maximal in patients with a low complexity score. In patients with low tumor burden, there was a survival benefit of PDS over early IDS or DDS. In women with high tumor load, DDS impaired the oncological outcome.
Collapse
Affiliation(s)
- Martina Aida Angeles
- Department of Surgical Oncology, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse Oncopole (IUCT-Oncopole), Toulouse, France
| | - Bastien Cabarrou
- Biostatistics Unit, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse Oncopole (IUCT-Oncopole), Toulouse, France
| | - Antonio Gil-Moreno
- Department of Gynaecological Oncology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Asunción Pérez-Benavente
- Department of Gynaecological Oncology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Emanuela Spagnolo
- Gynecologic Oncology Unit, La Paz University Hospital, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Agnieszka Rychlik
- Department of Gynaecologic Oncology, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Carlos Martínez-Gómez
- Department of Surgical Oncology, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse Oncopole (IUCT-Oncopole), Toulouse, France.,INSERM CRCT 1, Toulouse, France
| | - Frédéric Guyon
- Department of Surgical Oncology, Institut Bergonié, Bordeaux, France
| | - Ignacio Zapardiel
- Gynecologic Oncology Unit, La Paz University Hospital, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Denis Querleu
- Honorary Professor of the University of Toulouse, France
| | - Claire Illac
- Department of Anatomopathology, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse Oncopole (IUCT-Oncopole), Toulouse, France
| | - Federico Migliorelli
- Department of Gynaecology and Obstetrics, Centre Hospitalier Intercommunal des Vallées de l'Ariège, St Jean de Verges, France
| | - Sarah Bétrian
- Department of Medical Oncology, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse Oncopole (IUCT-Oncopole), Toulouse, France
| | - Gwénaël Ferron
- Department of Surgical Oncology, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse Oncopole (IUCT-Oncopole), Toulouse, France.,INSERM CRCT 19, Toulouse, France
| | - Alicia Hernández
- Gynecologic Oncology Unit, La Paz University Hospital, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Alejandra Martinez
- Department of Surgical Oncology, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse Oncopole (IUCT-Oncopole), Toulouse, France.,INSERM CRCT 1, Toulouse, France.
| |
Collapse
|
41
|
Nunes SC, Ramos C, Santos I, Mendes C, Silva F, Vicente JB, Pereira SA, Félix A, Gonçalves LG, Serpa J. Cysteine Boosts Fitness Under Hypoxia-Mimicked Conditions in Ovarian Cancer by Metabolic Reprogramming. Front Cell Dev Biol 2021; 9:722412. [PMID: 34458274 PMCID: PMC8386479 DOI: 10.3389/fcell.2021.722412] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/13/2021] [Indexed: 01/20/2023] Open
Abstract
Among gynecologic malignancies, ovarian cancer is the third most prevalent and the most common cause of death, especially due to diagnosis at an advanced stage together with resistance to therapy. As a solid tumor grows, cancer cells in the microenvironment are exposed to regions of hypoxia, a selective pressure prompting tumor progression and chemoresistance. We have previously shown that cysteine contributes to the adaptation to this hypoxic microenvironment, but the mechanisms by which cysteine protects ovarian cancer cells from hypoxia-induced death are still to be unveiled. Herein, we hypothesized that cysteine contribution relies on cellular metabolism reprogramming and energy production, being cysteine itself a metabolic source. Our results strongly supported a role of xCT symporter in energy production that requires cysteine metabolism instead of hydrogen sulfide (H2S) per se. Cysteine degradation depends on the action of the H2S-synthesizing enzymes cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and/or 3-mercaptopyruvate sulfurtransferase (MpST; together with cysteine aminotransferase, CAT). In normoxia, CBS and CSE inhibition had a mild impact on cysteine-sustained ATP production, pointing out the relevance of CAT + MpST pathway. However, in hypoxia, the concomitant inhibition of CBS and CSE had a stronger impact on ATP synthesis, thus also supporting a role of their hydrogen sulfide and/or cysteine persulfide-synthesizing activity in this stressful condition. However, the relative contributions of each of these enzymes (CBS/CSE/MpST) on cysteine-derived ATP synthesis under hypoxia remains unclear, due to the lack of specific inhibitors. Strikingly, NMR analysis strongly supported a role of cysteine in the whole cellular metabolism rewiring under hypoxia. Additionally, the use of cysteine to supply biosynthesis and bioenergetics was reinforced, bringing cysteine to the plateau of a main carbon sources in cancer. Collectively, this work supports that sulfur and carbon metabolism reprogramming underlies the adaptation to hypoxic microenvironment promoted by cysteine in ovarian cancer.
Collapse
Affiliation(s)
- Sofia C. Nunes
- Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | - Cristiano Ramos
- Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | - Inês Santos
- Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | - Cindy Mendes
- Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | - Fernanda Silva
- Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | - João B. Vicente
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sofia A. Pereira
- Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Ana Félix
- Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | - Luís G. Gonçalves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Jacinta Serpa
- Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| |
Collapse
|
42
|
Chan DW, Lam WY, Chen F, Yung MMH, Chan YS, Chan WS, He F, Liu SS, Chan KKL, Li B, Ngan HYS. Genome-wide DNA methylome analysis identifies methylation signatures associated with survival and drug resistance of ovarian cancers. Clin Epigenetics 2021; 13:142. [PMID: 34294135 PMCID: PMC8296615 DOI: 10.1186/s13148-021-01130-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND In contrast to stable genetic events, epigenetic changes are highly plastic and play crucial roles in tumor evolution and development. Epithelial ovarian cancer (EOC) is a highly heterogeneous disease that is generally associated with poor prognosis and treatment failure. Profiling epigenome-wide DNA methylation status is therefore essential to better characterize the impact of epigenetic alterations on the heterogeneity of EOC. METHODS An epigenome-wide association study was conducted to evaluate global DNA methylation in a retrospective cohort of 80 mixed subtypes of primary ovarian cancers and 30 patients with high-grade serous ovarian carcinoma (HGSOC). Three demethylating agents, azacytidine, decitabine, and thioguanine, were tested their anti-cancer and anti-chemoresistant effects on HGSOC cells. RESULTS Global DNA hypermethylation was significantly associated with high-grade tumors, platinum resistance, and poor prognosis. We determined that 9313 differentially methylated probes (DMPs) were enriched in their relative gene regions of 4938 genes involved in small GTPases and were significantly correlated with the PI3K-AKT, MAPK, RAS, and WNT oncogenic pathways. On the other hand, global DNA hypermethylation was preferentially associated with recurrent HGSOC. A total of 2969 DMPs corresponding to 1471 genes were involved in olfactory transduction, and calcium and cAMP signaling. Co-treatment with demethylating agents showed significant growth retardation in ovarian cancer cells through differential inductions, such as cell apoptosis by azacytidine or G2/M cell cycle arrest by decitabine and thioguanine. Notably, azacytidine and decitabine, though not thioguanine, synergistically enhanced cisplatin-mediated cytotoxicity in HGSOC cells. CONCLUSIONS This study demonstrates the significant association of global hypermethylation with poor prognosis and drug resistance in high-grade EOC and highlights the potential of demethylating agents in cancer treatment.
Collapse
Affiliation(s)
- David W Chan
- Department of Obstetrics and Gynaecology, L747 Laboratory Block, LKS Faculty of Medicine, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, People's Republic of China.
| | - Wai-Yip Lam
- Lee's Pharmaceutical (HK) Ltd, 1/F Building 20E, Phase 3, Hong Kong Science Park, Shatin, Hong Kong, People's Republic of China
| | - Fushun Chen
- Department of Obstetrics and Gynaecology, L747 Laboratory Block, LKS Faculty of Medicine, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, People's Republic of China
| | - Mingo M H Yung
- Department of Obstetrics and Gynaecology, L747 Laboratory Block, LKS Faculty of Medicine, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, People's Republic of China
| | - Yau-Sang Chan
- Department of Obstetrics and Gynaecology, L747 Laboratory Block, LKS Faculty of Medicine, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, People's Republic of China
| | - Wai-Sun Chan
- Department of Obstetrics and Gynaecology, L747 Laboratory Block, LKS Faculty of Medicine, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, People's Republic of China
| | - Fangfang He
- Department of Obstetrics and Gynaecology, L747 Laboratory Block, LKS Faculty of Medicine, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, People's Republic of China
| | - Stephanie S Liu
- Department of Obstetrics and Gynaecology, L747 Laboratory Block, LKS Faculty of Medicine, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, People's Republic of China
| | - Karen K L Chan
- Department of Obstetrics and Gynaecology, L747 Laboratory Block, LKS Faculty of Medicine, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, People's Republic of China
| | - Benjamin Li
- Lee's Pharmaceutical (HK) Ltd, 1/F Building 20E, Phase 3, Hong Kong Science Park, Shatin, Hong Kong, People's Republic of China
| | - Hextan Y S Ngan
- Department of Obstetrics and Gynaecology, L747 Laboratory Block, LKS Faculty of Medicine, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, People's Republic of China. .,Department of Obstetrics and Gynaecology, 6/F Professorial Block, Queen Mary Hospital, Pokfulam, Hong Kong, People's Republic of China.
| |
Collapse
|
43
|
O GS, R DD, V AT, I AI, P GT. The Plasticity of Circulating Tumor Cells in Ovarian Cancer During Platinum-containing Chemotherapy. Curr Cancer Drug Targets 2021; 21:965-974. [PMID: 34288839 DOI: 10.2174/1568009621666210720141229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Circulating tumor cells (CTCs) are a potential source of metastases and relapses. The data on the ovarian cancer (OC) CTCs molecular characteristics are limited. OBJECTIVE To assess the TGFβ, CXCL2, VEGFA and ERCC1 expression in two OC CTC subpopulations before and during chemotherapy (CT), and its relation to clinical characteristics. METHODS Two CTCs subpopulations (EpCAM+CK18+E-cadherin+; EpCAM+CK18+Vimentin+) were enriched using immunomagnetic separation before treatment and after 3 cycles of platinum-containing CT. Expression of mRNA was assessed using RT-qPCR. RESULTS The study included 31 I-IV stage OC patients. During CT, TGFβ levels increased in both fractions (p=0.054) compared with the initial levels. ERCC1 expression in E-cadherin+ CTCs was higher during neoadjuvant than adjuvant CT (p=0.004). CXCL2 level in E-cadherin+ CTCs increased (p=0.038) during neoadjuvant CT compared with the initial. TGF-β expression in vimentin+ CTCs during CT was negatively correlated to disease stage (p=0.003). Principal component analysis before CT revealed a component combining VEGFA, TGFβ, CXCL2, and a component with ERCC1 and VEGFA; during CT, component 1 contained ERCC1 and VEGFA, component 2 - TGFβ and CXCL2 in both fractions. Increased ERCC1 expression in E-cadherin+ CTCs during CT was associated with decreased progression-free survival (PFS) (HR 1.11 (95% CI 1.03-1.21, p=0.009) in multivariate analysis. CONCLUSION EpCAM+ OC CTCs are phenotypically heterogeneous, which may reflect variability in their metastatic potential. CT changes the molecular characteristics of CTCs. Expression of TGFβ in EpCAM+ CTCs increases during CT. High ERCC1 expression in EpCAM+CK18+E-cadherin+ CTCs during CT is associated with decreased PFS in OC.
Collapse
Affiliation(s)
- Gening Snezhanna O
- Department of Human Physiology and Pathophysiology, Faculty of Medicine, Ulyanovsk State University, Ulyanovsk, Russian Federation
| | - Dolgova Dinara R
- Department of Human Physiology and Pathophysiology, Faculty of Medicine, Ulyanovsk State University, Ulyanovsk, Russian Federation
| | - Abakumova Tatyana V
- Department of Human Physiology and Pathophysiology, Faculty of Medicine, Ulyanovsk State University, Ulyanovsk, Russian Federation
| | - Antoneeva Inna I
- Department of Gynecology, Regional Clinical Oncology Center, Ulyanovsk, Russian Federation
| | - Gening Tatyana P
- Department of Human Physiology and Pathophysiology, Faculty of Medicine, Ulyanovsk State University, Ulyanovsk, Russian Federation
| |
Collapse
|
44
|
Wyciszkiewicz A, Lach MS, Wróblewska JP, Michalak M, Suchorska WM, Kalinowska A, Michalak S. The involvement of small heat shock protein in chemoresistance in ovarian cancer - in vitro study. EXCLI JOURNAL 2021; 20:935-947. [PMID: 34177409 PMCID: PMC8222634 DOI: 10.17179/excli2021-3706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/17/2021] [Indexed: 11/12/2022]
Abstract
Ovarian cancer is the most deadly gynecologic malignancy worldwide. Although the primary response to chemotherapy is high, the majority of patients will develop resistance against applied treatment. In this study, we focused on resistance to cisplatin, a first-line drug used for the treatment of ovarian cancer. The mechanism of the resistance development process is widely described, but there is a lack of information about the involvement of members of small heat shock proteins (HSPs) and their transport via exosomes. In this study, we used two cell lines: A2780 and SKOV3, and their cisplatin-resistance variants: A2780 CDDP and SKOV3 CDDP. We have shown that the expression of three small HSPs (HSPB5, HSPB6, and HSPB8) in cisplatin-resistant cell lines differs from their sensitive counterparts. Further, we isolated exosomes and determined the small HSPs in their cargo. In A2780 WT we observed a low amount of HSPB5 and HSPB6. We did not observe the expression of small HSPs in the SKOV3 cell line in both sensitive and resistant variants. Our data suggest the involvement of small HSPs in drug resistance of ovarian cancer and their presence is not related to exosomal transport. Analysis of the biological consequences of the imbalance of small HSPs expression in cisplatin resistance needs further investigation.
Collapse
Affiliation(s)
- Aleksandra Wyciszkiewicz
- Department of Neurology, Division of Neurochemistry and Neuropathology, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland
| | - Michal S Lach
- Radiobiology Laboratory, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznań, Poland.,Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15, 61-866 Poznań, Poland
| | - Joanna P Wróblewska
- Department of Tumor Pathology and Prophylaxis, Poznań University of Medical Sciences, Garbary 15, 61-866 Poznań, Poland.,Department of Oncologic Pathology, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznań, Poland
| | - Marcin Michalak
- Surgical, Oncological, and Endoscopic Gynaecology Department, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
| | - Wiktoria M Suchorska
- Radiobiology Laboratory, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznań, Poland.,Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15, 61-866 Poznań, Poland
| | - Alicja Kalinowska
- Department of Neurology, Division of Neurochemistry and Neuropathology, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland
| | - Slawomir Michalak
- Department of Neurology, Division of Neurochemistry and Neuropathology, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland
| |
Collapse
|
45
|
Nath A, Cosgrove PA, Mirsafian H, Christie EL, Pflieger L, Copeland B, Majumdar S, Cristea MC, Han ES, Lee SJ, Wang EW, Fereday S, Traficante N, Salgia R, Werner T, Cohen AL, Moos P, Chang JT, Bowtell DDL, Bild AH. Evolution of core archetypal phenotypes in progressive high grade serous ovarian cancer. Nat Commun 2021; 12:3039. [PMID: 34031395 PMCID: PMC8144406 DOI: 10.1038/s41467-021-23171-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/08/2021] [Indexed: 12/16/2022] Open
Abstract
The evolution of resistance in high-grade serous ovarian cancer (HGSOC) cells following chemotherapy is only partially understood. To understand the selection of factors driving heterogeneity before and through adaptation to treatment, we profile single-cell RNA-sequencing (scRNA-seq) transcriptomes of HGSOC tumors collected longitudinally during therapy. We analyze scRNA-seq data from two independent patient cohorts to reveal that HGSOC is driven by three archetypal phenotypes, defined as oncogenic states that describe the majority of the transcriptome variation. Using a multi-task learning approach to identify the biological tasks of each archetype, we identify metabolism and proliferation, cellular defense response, and DNA repair signaling as consistent cell states found across patients. Our analysis demonstrates a shift in favor of the metabolism and proliferation archetype versus cellular defense response archetype in cancer cells that received multiple lines of treatment. While archetypes are not consistently associated with specific whole-genome driver mutations, they are closely associated with subclonal populations at the single-cell level, indicating that subclones within a tumor often specialize in unique biological tasks. Our study reveals the core archetypes found in progressive HGSOC and shows consistent enrichment of subclones with the metabolism and proliferation archetype as resistance is acquired to multiple lines of therapy.
Collapse
Affiliation(s)
- Aritro Nath
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | - Patrick A Cosgrove
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | - Hoda Mirsafian
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | - Elizabeth L Christie
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Lance Pflieger
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | - Benjamin Copeland
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | - Sumana Majumdar
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | - Mihaela C Cristea
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | - Ernest S Han
- Division of Gynecologic Oncology, Department of Surgery, City of Hope, Duarte, CA, USA
| | - Stephen J Lee
- Division of Gynecologic Oncology, Department of Surgery, City of Hope, Duarte, CA, USA
| | - Edward W Wang
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | - Sian Fereday
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Nadia Traficante
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | - Theresa Werner
- Division of Oncology, Department of Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Adam L Cohen
- Division of Oncology, Department of Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Philip Moos
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - David D L Bowtell
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia.
| | - Andrea H Bild
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA.
| |
Collapse
|
46
|
Silva VL, Saxena J, Nicolini F, Hoare JI, Metcalf S, Martin SA, Lockley M. Chloroxine overrides DNA damage tolerance to restore platinum sensitivity in high-grade serous ovarian cancer. Cell Death Dis 2021; 12:395. [PMID: 33854036 PMCID: PMC8047034 DOI: 10.1038/s41419-021-03665-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022]
Abstract
High-grade serous cancer (HGSC) accounts for ~67% of all ovarian cancer deaths. Although initially sensitive to platinum chemotherapy, resistance is inevitable and there is an unmet clinical need for novel therapies that can circumvent this event. We performed a drug screen with 1177 FDA-approved drugs and identified the hydroxyquinoline drug, chloroxine. In extensive validation experiments, chloroxine restored sensitivity to both cisplatin and carboplatin, demonstrating broad synergy in our range of experimental models of platinum-resistant HGSC. Synergy was independent of chloroxine's predicted ionophore activity and did not relate to platinum uptake as measured by atomic absorption spectroscopy. Further mechanistic investigation revealed that chloroxine overrides DNA damage tolerance in platinum-resistant HGSC. Co-treatment with carboplatin and chloroxine (but not either drug alone) caused an increase in γH2AX expression, followed by a reduction in platinum-induced RAD51 foci. Moreover, this unrepaired DNA damage was associated with p53 stabilisation, cell cycle re-entry and triggering of caspase 3/7-mediated cell death. Finally, in our platinum-resistant, intraperitoneal in vivo model, treatment with carboplatin alone resulted in a transient tumour response followed by tumour regrowth. In contrast, treatment with chloroxine and carboplatin combined, was able to maintain tumour volume at baseline for over 4 months. In conclusion, our novel results show that chloroxine facilitates platinum-induced DNA damage to restore platinum sensitivity in HGSC. Since chloroxine is already licensed, this exciting combination therapy could now be rapidly translated for patient benefit.
Collapse
Affiliation(s)
- Vera L Silva
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jayeta Saxena
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Francesco Nicolini
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Joseph I Hoare
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Stephen Metcalf
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Sarah A Martin
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Michelle Lockley
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK.
- Department of Gynaecological Oncology, Cancer Services, University College London Hospital, London, UK.
| |
Collapse
|
47
|
Chesnokov MS, Khan I, Park Y, Ezell J, Mehta G, Yousif A, Hong LJ, Buckanovich RJ, Takahashi A, Chefetz I. The MEK1/2 Pathway as a Therapeutic Target in High-Grade Serous Ovarian Carcinoma. Cancers (Basel) 2021; 13:1369. [PMID: 33803586 PMCID: PMC8003094 DOI: 10.3390/cancers13061369] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 02/02/2023] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) is the deadliest of gynecological cancers due to its high recurrence rate and acquired chemoresistance. RAS/MEK/ERK pathway activation is linked to cell proliferation and therapeutic resistance, but the role of MEK1/2-ERK1/2 pathway in HGSOC is poorly investigated. We evaluated MEK1/2 pathway activity in clinical HGSOC samples and ovarian cancer cell lines using immunohistochemistry, immunoblotting, and RT-qPCR. HGSOC cell lines were used to assess immediate and lasting effects of MEK1/2 inhibition with trametinib in vitro. Trametinib effect on tumor growth in vivo was investigated using mouse xenografts. MEK1/2 pathway is hyperactivated in HGSOC and is further stimulated by cisplatin treatment. Trametinib treatment causes cell cycle arrest in G1/0-phase and reduces tumor growth rate in vivo but does not induce cell death or reduce fraction of CD133+ stem-like cells, while increasing expression of stemness-associated genes instead. Transient trametinib treatment causes long-term increase in a subpopulation of cells with high aldehyde dehydrogenase (ALDH)1 activity that can survive and grow in non-adherent conditions. We conclude that MEK1/2 inhibition may be a promising approach to suppress ovarian cancer growth as a maintenance therapy. Promotion of stem-like properties upon MEK1/2 inhibition suggests a possible mechanism of resistance, so a combination with CSC-targeting drugs should be considered.
Collapse
Affiliation(s)
- Mikhail S. Chesnokov
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; (M.S.C.); (I.K.); (A.Y.); (A.T.)
| | - Imran Khan
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; (M.S.C.); (I.K.); (A.Y.); (A.T.)
| | - Yeonjung Park
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (Y.P.); (J.E.); (R.J.B.)
| | - Jessica Ezell
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (Y.P.); (J.E.); (R.J.B.)
| | - Geeta Mehta
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Abdelrahman Yousif
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; (M.S.C.); (I.K.); (A.Y.); (A.T.)
| | - Linda J. Hong
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA;
| | - Ronald J. Buckanovich
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (Y.P.); (J.E.); (R.J.B.)
- Division of Hematology Oncology, Department of Internal Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Akimasa Takahashi
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; (M.S.C.); (I.K.); (A.Y.); (A.T.)
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Shiga 5202152, Japan
| | - Ilana Chefetz
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; (M.S.C.); (I.K.); (A.Y.); (A.T.)
- Masonic Cancer Center, Minneapolis, MN 55455, USA
- Stem Cell Institute, Minneapolis, MN 55455, USA
| |
Collapse
|
48
|
Gong TT, He XH, Gao S, Wu QJ. Application of machine learning in prediction of Chemotherapy resistant of Ovarian Cancer based on Gut Microbiota. J Cancer 2021; 12:2877-2885. [PMID: 33854588 PMCID: PMC8040891 DOI: 10.7150/jca.46621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 03/03/2021] [Indexed: 01/04/2023] Open
Abstract
Background: Ovarian cancer (OC) has the highest mortality among gynecological malignancies, and resistance to chemotherapy drugs is common. We aim to develop a machine learning approach based on gut microbiota to predict the chemotherapy resistance of OC. Methods: The study included patients diagnosed with OC by pathology and treated with platinum and paclitaxel in Shengjing Hospital of China Medical University between 2017 and 2018. Fecal samples were collected from patients, and 16S rRNA sequencing was used to analyze the differences in gut microbiota between OC patients with and without chemotherapy resistance. Nine machine learning classifiers were used to derive the chemotherapy resistance of OC from gut microbiota. Results: A total of 77 chemoresistant OC patients and 97 chemosensitive OC patients were enrolled. The gut microbiota diversity was higher in OC patients with chemotherapy resistance. There were statistically significant differences between the two groups in Shannon indexes (P <0.05) and Simpson indexes (P <0.05). Machine learning techniques can predict the chemoresistance of OC, and the random forest showed the best performance among all models. The area under the ROC curve for RF model was 0.909. Conclusions: The diversity of gut microbiota was higher in OC patients with chemotherapy resistance. Further studies are warranted to validate our findings based on machine learning techniques.
Collapse
Affiliation(s)
- Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin-Hui He
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Song Gao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi-Jun Wu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
49
|
Färkkilä A, Rodríguez A, Oikkonen J, Gulhan DC, Nguyen H, Domínguez J, Ramos S, Mills CE, Pérez-Villatoro F, Lazaro JB, Zhou J, Clairmont CS, Moreau LA, Park PJ, Sorger PK, Hautaniemi S, Frias S, D'Andrea AD. Heterogeneity and Clonal Evolution of Acquired PARP Inhibitor Resistance in TP53- and BRCA1-Deficient Cells. Cancer Res 2021; 81:2774-2787. [PMID: 33514515 DOI: 10.1158/0008-5472.can-20-2912] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/17/2020] [Accepted: 01/25/2021] [Indexed: 12/13/2022]
Abstract
Homologous recombination (HR)-deficient cancers are sensitive to poly-ADP ribose polymerase inhibitors (PARPi), which have shown clinical efficacy in the treatment of high-grade serous cancers (HGSC). However, the majority of patients will relapse, and acquired PARPi resistance is emerging as a pressing clinical problem. Here we generated seven single-cell clones with acquired PARPi resistance derived from a PARPi-sensitive TP53 -/- and BRCA1 -/- epithelial cell line generated using CRISPR/Cas9. These clones showed diverse resistance mechanisms, and some clones presented with multiple mechanisms of resistance at the same time. Genomic analysis of the clones revealed unique transcriptional and mutational profiles and increased genomic instability in comparison with a PARPi-sensitive cell line. Clonal evolutionary analyses suggested that acquired PARPi resistance arose via clonal selection from an intrinsically unstable and heterogenous cell population in the sensitive cell line, which contained preexisting drug-tolerant cells. Similarly, clonal and spatial heterogeneity in tumor biopsies from a clinical patient with BRCA1-mutant HGSC with acquired PARPi resistance was observed. In an imaging-based drug screening, the clones showed heterogenous responses to targeted therapeutic agents, indicating that not all PARPi-resistant clones can be targeted with just one therapy. Furthermore, PARPi-resistant clones showed mechanism-dependent vulnerabilities to the selected agents, demonstrating that a deeper understanding on the mechanisms of resistance could lead to improved targeting and biomarkers for HGSC with acquired PARPi resistance. SIGNIFICANCE: This study shows that BRCA1-deficient cells can give rise to multiple genomically and functionally heterogenous PARPi-resistant clones, which are associated with various vulnerabilities that can be targeted in a mechanism-specific manner.
Collapse
Affiliation(s)
- Anniina Färkkilä
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Research Program in Systems Oncology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Alfredo Rodríguez
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Jaana Oikkonen
- Research Program in Systems Oncology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | | - Huy Nguyen
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Julieta Domínguez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Sandra Ramos
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México, México
| | - Caitlin E Mills
- Laboratory of Systems Pharmacology, Harvard Medical School, Massachusetts
| | - Fernando Pérez-Villatoro
- Research Program in Systems Oncology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jean-Bernard Lazaro
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Jia Zhou
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Connor S Clairmont
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Lisa A Moreau
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | | | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Massachusetts
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sara Frias
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México.,Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México, México
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
50
|
Salminen L, Gidwani K, Grènman S, Carpén O, Hietanen S, Pettersson K, Huhtinen K, Hynninen J. HE4 in the evaluation of tumor load and prognostic stratification of high grade serous ovarian carcinoma. Acta Oncol 2020; 59:1461-1468. [PMID: 33030975 DOI: 10.1080/0284186x.2020.1827157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Human epididymis protein 4 (HE4) is a validated, complementary biomarker to cancer antigen 125 (CA125) for high grade serous ovarian carcinoma (HGSC). Currently, there are insufficient data on the utility of longitudinal HE4 measurement during HGSC treatment and follow up. We set to provide a comprehensive analysis on the kinetics and prognostic performance of HE4 with serial measurements during HGSC treatment and follow up. METHODS This prospective study included 143 patients with advanced HGSC (ClinicalTrials.gov identifier: NCT01276574). Serum CA125 and HE4 were measured at baseline, before each cycle of chemotherapy and during follow up until first progression. Baseline biomarker values were compared to the tumor load assessed during surgery and to residual disease. Biomarker nadir values and concentrations at progression were correlated to survival. RESULTS The baseline HE4 concentration distinguished patients with a high tumor load from patients with a low tumor load assessed during surgery (p<.0001). The baseline CA125 level was not associated with tumor load to a similar extent (p=.067). At progression, the HE4 level was an independent predictor of worse survival in the multivariate analysis (p=.002). All patients that were alive 3 years post-progression had a serum HE4 concentration below 199.20 pmol/l at the 1st recurrence. CONCLUSION HE4 is a feasible biomarker in the treatment monitoring and prognostic stratification of patients with HGSC. Specifically, the serum level of HE4 at first relapse was associated with the survival of patients and it may be a useful complementary tool in the selection of second line treatments. This is to the best of our knowledge the first time this finding has been reported.
Collapse
Affiliation(s)
- Liina Salminen
- Department of Obstetrics and Gynecology, Turku University Hospital and University of Turku, Turku, Finland
| | - Kamlesh Gidwani
- Department of Biochemistry/Biotechnology, University of Turku, Turku, Finland
| | - Seija Grènman
- Department of Obstetrics and Gynecology, Turku University Hospital and University of Turku, Turku, Finland
| | - Olli Carpén
- Institute of Biomedicine and Western Finland Cancer Centre (FICAN), University of Turku, Turku, Finland
- Medicum, Research Program in Systems Oncology and HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sakari Hietanen
- Department of Obstetrics and Gynecology, Turku University Hospital and University of Turku, Turku, Finland
| | - Kim Pettersson
- Department of Biochemistry/Biotechnology, University of Turku, Turku, Finland
| | - Kaisa Huhtinen
- Institute of Biomedicine and Western Finland Cancer Centre (FICAN), University of Turku, Turku, Finland
| | - Johanna Hynninen
- Department of Obstetrics and Gynecology, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|