1
|
Chen Z, Gong J, Chen J, Yang L, Hu S, Chen L, Lu H. Clinical outcomes of EGFR-TKI in advanced lung squamous cell carcinoma and EGFR-TKI remodel tumor immune microenvironment. Ann Med 2025; 57:2488109. [PMID: 40193238 PMCID: PMC11980191 DOI: 10.1080/07853890.2025.2488109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/04/2024] [Accepted: 02/28/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND Clinical data is scarce in epidermal growth factor receptor (EGFR)-mutated lung squamous cell carcinoma (LUSC), and the resistance mechanisms to EGFR-tyrosine kinase inhibitor (TKI) is rarely studied. This study aimed to assess the efficacy of EGFR-TKI treatment in EGFR-mutated LUSC patients . METHODS Data of a cohort of 99 LUSC patients who were treated with EGFR-TKI and were followed up to October 31, 2023. RESULTS The objective response rate (ORR) of EGFR-mutated LUSC patients was higher than that of EGFR wild-type patients (44.4% vs 4.4%, p < 0.001). The progression-free survival (PFS) of EGFR-mutated LUSC patients receiving EGFR-TKI treatment was significantly longer than that of EGFR wild-type patients (6.4 months vs. 1.3 months; p < 0.001). Resistance mechanisms to EGFR-TKI in EGFR-mutated LUSC patients included secondary T790M mutations, 19 deletion-insertion mutations, MET amplification, histological transformation, and loss of EGFR mutations. The tumor immune microenvironment (TIME) of EGFR-mutated LUSC showed a downregulation of CD4 (p = 0.047) and CD8 (p = 0.14), and an upregulation of PD-L1 (p = 0.0021) after EGFR-TKI treatment failure. CONCLUSIONS EGFR-mutated LUSC patients receiving EGFR-TKIs treatment had higher ORR and longer PFS than EGFR wild-type LUSC patients.
Collapse
Affiliation(s)
- Zhixin Chen
- Zhejiang Key Laboratory of Diagnosis & Treatment Technology on Thoracic Oncology (lung and esophagus), Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, P.R. China
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, P. R. China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, P. R. China
| | - Jiali Gong
- Department of Hematology and Oncology, Ningbo No. 2 Hospital, Ningbo, P. R. China
| | - Jing Chen
- Zhejiang Key Laboratory of Diagnosis & Treatment Technology on Thoracic Oncology (lung and esophagus), Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, P.R. China
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, P. R. China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, P. R. China
| | - Lan Yang
- Zhejiang Key Laboratory of Diagnosis & Treatment Technology on Thoracic Oncology (lung and esophagus), Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, P.R. China
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, P. R. China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, P. R. China
| | - Shumin Hu
- Zhejiang Key Laboratory of Diagnosis & Treatment Technology on Thoracic Oncology (lung and esophagus), Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, P.R. China
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, P. R. China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, P. R. China
| | - Lingru Chen
- Zhejiang Key Laboratory of Diagnosis & Treatment Technology on Thoracic Oncology (lung and esophagus), Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, P.R. China
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, P. R. China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, P. R. China
| | - Hongyang Lu
- Zhejiang Key Laboratory of Diagnosis & Treatment Technology on Thoracic Oncology (lung and esophagus), Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, P.R. China
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, P. R. China
| |
Collapse
|
2
|
Ji H, Zhang L, Ye L. Exosome, an important transmitter in the drug resistance of non-small cell lung cancer. Front Oncol 2025; 15:1539047. [PMID: 40444086 PMCID: PMC12119617 DOI: 10.3389/fonc.2025.1539047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/28/2025] [Indexed: 06/02/2025] Open
Abstract
Recent studies have promoted new insights into the biology of non-small cell lung cancer (NSCLC) and made considerable progress in the field of treatment, including targeted therapy for driver gene mutations. Immunotherapy (IO) is another breakthrough, which has achieved amazing clinical efficacy. However, the survival status of advanced NSCLC patients is still unsatisfactory. Drug resistance is an urgent problem to be solved in almost all anti-cancer treatment schemes. Nowadays, platinum based chemotherapy remains the standard treatment for patients with driver gene negative advanced NSCLC. Previous studies have shown that the reduction of intracellular accumulation of platinum drugs, DNA damage repair and the enhancement of detoxification effect all lead to platinum resistance. The mechanisms of tyrosine kinase inhibitors (TKIs) resistance include the emergence of secondary mutation, the activation of bypass signal pathways, the abnormality of downstream signal pathways and the transformation of phenotype. The mechanisms of immune checkpoint inhibitors (ICIs) resistance are more complex. A variety of cells, cytokines and metabolites participate in it to form an immunosuppressive microenvironment, resulting in the impairment of effector T cell function. Exosomes are small molecules secreted by a variety of cells. They can carry information such as miRNA, lncRNA, and protein, and play a pivotal role in signal transduction between cells. More and more studies show that exosomes are important transmitters in lung cancer cells, which can transfer drug resistance information from drug-resistant cells to sensitive cells. However, the underling specific mechanisms need to be further explored to find a new breakthrough for overcoming drug resistance of NSCLC.
Collapse
Affiliation(s)
- Hongzhi Ji
- Department of Respiratory, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Li Zhang
- Department of Gastroenterology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Lingyun Ye
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Miyata M, Hayashi H. Current treatment landscape for patients with non-small cell lung cancer with common EGFR mutations. Respir Investig 2025; 63:576-584. [PMID: 40328075 DOI: 10.1016/j.resinv.2025.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/14/2025] [Accepted: 04/22/2025] [Indexed: 05/08/2025]
Abstract
Common EGFR mutations including exon-19 deletions and the L858R point mutation in exon 21 constitute predominant actionable genomic alterations in individuals with non-small cell lung cancer (NSCLC). The introduction of EGFR tyrosine kinase inhibitors (TKIs) has fundamentally changed the treatment landscape for such patients by improving both progression-free survival (PFS) and overall survival (OS). Among EGFR-TKIs, third-generation agents such as osimertinib have shown marked efficacy and favorable safety profiles and have become the standard of care in the first-line setting. The combination of osimertinib with platinum-based chemotherapy has recently been shown to improve PFS compared with osimertinib monotherapy in the FLAURA2 trial. Similarly, the MARIPOSA trial demonstrated clinical benefit of the combination of the EGFR-MET bispecific antibody, amivantamab, with the third-generation EGFR-TKI, lazertinib, further supporting the use of combination therapies as first-line treatment for EGFR-mutated NSCLC. Despite these advances, however, challenges such as brain metastases remain substantial barriers to successful treatment outcomes. Management of patients with such metastases often requires a multidisciplinary approach that integrates systemic treatment with local interventions such as radiation therapy. Finally, circulating tumor DNA has emerged as a promising biomarker for real-time monitoring of treatment response and evolution of drug resistance mechanisms. Analysis of such biomarkers can facilitate dynamic and personalized therapeutic adjustments, potentially improving outcomes. This review provides a comprehensive overview of the latest clinical evidence supporting therapeutic advances in the management of EGFR-mutated NSCLC, emphasizing the importance of tailoring treatment strategies based on tumor biology, patient-specific factors, and evolving therapeutic options.
Collapse
Affiliation(s)
- Masayuki Miyata
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Hidetoshi Hayashi
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka, 589-8511, Japan.
| |
Collapse
|
4
|
Gomez-Randulfe I, Monaca F, Planchard D, Bria E, Califano R. Evolving treatment for advanced non-small cell lung cancer harbouring common EGFR activating mutations. Crit Rev Oncol Hematol 2025; 212:104762. [PMID: 40324662 DOI: 10.1016/j.critrevonc.2025.104762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/26/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025] Open
Abstract
A clinically important subgroup of non-small cell lung cancer (NSCLC) is driven by common mutations in the epidermal growth factor receptor (EGFR). Over the past decade, first-, second-, and third-generation EGFR tyrosine kinase inhibitors (TKIs) have substantially improved clinical outcomes, although acquired resistance inevitably emerges. In particular, the third-generation TKI osimertinib has demonstrated superior progression-free survival (PFS) and overall survival (OS) compared to earlier-generation TKIs in the frontline setting, yet median OS remains approximately three years in pivotal trials. Efforts to extend disease control have led to various upfront intensification strategies, including combining EGFR TKIs with antiangiogenics or chemotherapy (e.g., the FLAURA-2 trial), and pairing novel bispecific antibodies such as amivantamab with third-generation TKIs. Upon progression on third-generation EGFR TKIs, platinum-based chemotherapy remains the standard second-line treatment, albeit with modest response rates. Emerging therapies targeting MET amplification (e.g., savolitinib plus osimertinib), leveraging antibody-drug conjugates (e.g., patritumab deruxtecan), or adding immunotherapy and antiangiogenics have shown preliminary promise in overcoming resistance. Ongoing trials are assessing optimal treatment sequencing and the use of circulating tumor DNA (ctDNA) to guide therapy escalation or de-escalation. Ultimately, the evolving landscape of EGFR-mutant NSCLC underscores the need for refined biomarker-driven approaches and personalized regimens to achieve further gains in survival. In this review, we discuss these strategies in detail, highlighting current evidence and future directions for EGFR-mutant NSCLC treatment.
Collapse
Affiliation(s)
- Igor Gomez-Randulfe
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Federico Monaca
- Department of Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - David Planchard
- Department of Medical Oncology, Thoracic Group, Gustave Roussy, Villejuif, France
| | - Emilio Bria
- Università Cattolica del Sacro Cuore, Rome, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Ospedale Isola Tiberina - Gemelli Isola, Rome, Italy
| | - Raffaele Califano
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK; Division of Cancer Sciences, The University of Manchester, Manchester, UK.
| |
Collapse
|
5
|
Wang S, Xia Y, Qian Y, Pan W, Huang P, Jin N, Li X, Xu C, Liu D, Zhao G, Fang Y, Nicot C, Gao Q. PARP inhibition elicits NK cell-associated immune evasion via potentiating HLA-G expression in tumor. Drug Resist Updat 2025; 81:101247. [PMID: 40328191 DOI: 10.1016/j.drup.2025.101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025]
Abstract
Resistance to poly(ADP-ribose) polymerase inhibitors (PARPi) poses a significant challenge to enhancing the efficacy of cancer treatments. Beyond the cellular mechanisms intrinsic to tumor cells, the modulation of the tumor immune microenvironment is crucial in dictating the responsiveness to pharmacological interventions. Thus, there is a pressing need to elucidate the intricate interplay between PARPi and antitumor immune responses and to develop an optimized combinatorial therapeutic approach. In this study, using matched tumor samples before and after neoadjuvant monotherapy with the PARPi niraparib in a prospective clinical trial (NCT04507841), we observed a significant increase in natural killer (NK) cell infiltration post-treatment. However, this was not accompanied by the expected enhancement in their cytotoxic functions. This observation underscores the necessity to optimize the antitumor potential of NK cells by enhancing their cytotoxic capabilities. Upon exposure to niraparib, tumor cells, particularly those with wild-type EGFR, exhibited a pronounced upregulation of human leukocyte antigen G (HLA-G), an immune checkpoint impeding NK cell functions. Niraparib promotes EGFR internalization, which in turn diminishes AKT/mTOR signaling, leading to the increased transcriptional activity of the transcription factor EB (TFEB) and subsequent enhancement of HLA-G expression. The combination of niraparib with HLA-G blockade not only augmented NK cell-mediated tumor lysis in vitro but also synergistically inhibited tumor growth in humanized patient-derived xenograft models. Collectively, our results shed light on a previously unrecognized immune evasion mechanism and offer a compelling argument for the integration of HLA-G blockade with PARPi in cancer therapy.
Collapse
Affiliation(s)
- Siyuan Wang
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yu Xia
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yiyu Qian
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wen Pan
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pu Huang
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ning Jin
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin Li
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cheng Xu
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dan Liu
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guangnian Zhao
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yong Fang
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Christophe Nicot
- University of Kansas Medical Center, Department of Pathology and Laboratory Medicine, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Qinglei Gao
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
6
|
Miura S, Tanaka H, Misumi T, Yoshioka H, Tokito T, Fukuhara T, Sato Y, Shiraishi Y, Naoki K, Akamatsu H, Yamaguchi O, Yokoyama T, Kuyama S, Nishino K, Furuya N, Kurata T, Kato T, Ikeda S, Horinouchi H, Ichihara E, Mori M, Takiguchi Y, Tanaka K, Goto Y, Okamoto H. Pragmatic Randomized Study of Afatinib Versus Chemotherapy for Patients With Non-Small Cell Lung Cancer With Uncommon Epidermal Growth Factor Receptor Mutations: ACHILLES/TORG1834. J Clin Oncol 2025:JCO2402007. [PMID: 40239133 DOI: 10.1200/jco-24-02007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/20/2025] [Accepted: 03/03/2025] [Indexed: 04/18/2025] Open
Abstract
PURPOSE To our knowledge, the ACHILLES/TORG1834 trial is the first randomized study comparing afatinib and chemotherapy in patients with non-small cell lung cancer (NSCLC) harboring sensitizing uncommon epidermal growth factor receptor (EGFR) mutations. METHODS This randomized, open-label study was performed at 51 Japanese institutions and recruited treatment-naïve patients with nonsquamous NSCLC with uncommon EGFR mutations, excluding exon 20 insertions and T790M mutations. Patients were randomly assigned 2:1 to receive afatinib (30 or 40 mg orally, at the treating physician's discretion) or a combination of platinum (cisplatin or carboplatin) and pemetrexed, followed by pemetrexed maintenance. The primary end point was progression-free survival (PFS). Secondary end points included objective response rate (ORR), overall survival, and safety. A prespecified interim analysis was planned to provide clinically meaningful information promptly, along with a crossover recommendation if necessary. RESULTS A total of 109 patients were enrolled between March 2019 and February 2023. In the interim analysis, the Data and Safety Monitoring Committee recommended early study termination. The median PFS was significantly longer in patients receiving afatinib than in those undergoing chemotherapy (10.6 v 5.7 months; hazard ratio, 0.421 [95% CI, 0.251 to 0.706]; P = .0010). ORRs to afatinib were similar across the overall population and among participants with major uncommon (G719X, L861Q, and S768I), compound, and other mutations (61.7%, 55.8%, 72.7%, and 60.0%, respectively). The most common grade 3 or higher adverse events were diarrhea, paronychia, and rash for afatinib, and appetite loss and nausea for chemotherapy. CONCLUSION Afatinib should be considered the standard initial therapy for patients with NSCLC with sensitizing uncommon EGFR mutations.
Collapse
Affiliation(s)
- Satoru Miura
- Department of Internal Medicine, Niigata Cancer Center Hospital, Niigata, Japan
| | - Hiroshi Tanaka
- Department of Internal Medicine, Niigata Cancer Center Hospital, Niigata, Japan
| | - Toshihiro Misumi
- Department of Data Science, National Cancer Center Hospital East, Chiba, Japan
| | - Hiroshige Yoshioka
- Department of Thoracic Oncology, Kansai Medical University Hospital, Osaka, Japan
| | - Takaaki Tokito
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Tatsuro Fukuhara
- Department of Respiratory Medicine, Miyagi Cancer Center, Natori-shi, Japan
| | - Yuki Sato
- Department of Respiratory Medicine, Kobe City Medical Center General Hospital, Kobe-shi, Japan
| | - Yoshimasa Shiraishi
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsuhiko Naoki
- Department of Respiratory Medicine, Kitasato University School of Medicine, Sagamihara-shi, Japan
| | - Hiroaki Akamatsu
- Internal Medicine III, Wakayama Medical University, Wakayama, Japan
| | - Ou Yamaguchi
- Department of Respiratory Medicine, Saitama Medical University International Medical Center, Saitama, Japan
| | - Toshihide Yokoyama
- Department of Respiratory Medicine, Kurashiki Central Hospital, Okayama, Japan
| | - Shoichi Kuyama
- Department of Respiratory Medicine, NHO Iwakuni Clinical Center, Iwakuni-shi, Japan
| | - Kazumi Nishino
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Naoki Furuya
- Division of Respiratory Medicine, Department of Internal Medicine, St Marianna University School of Medicine, Kawasaki-shi, Japan
| | - Takayasu Kurata
- Department of Thoracic Oncology, Kansai Medical University Hospital, Osaka, Japan
| | - Terufumi Kato
- Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama-shi, Japan
| | - Satoshi Ikeda
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, Yokohama-shi, Japan
| | - Hidehito Horinouchi
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Eiki Ichihara
- Center for Clinical Oncology, Okayama University Hospital, Okayama, Japan
| | - Masahide Mori
- Department of Thoracic Oncology, NHO Osaka Toneyama Medical Center, Osaka, Japan
| | - Yuichi Takiguchi
- Department of Medical Oncology, Chiba University Hospital, Chiba, Japan
- Department of Medical Oncology/Respiratory Medicine, Sannoh Hospital, Chiba, Japan
| | - Kentaro Tanaka
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yasuhiro Goto
- Department of Respiratory Medicine, Fujita Health University School of Medicine, Toyoake-shi, Japan
| | - Hiroaki Okamoto
- Department of Respiratory Medicine, Yokohama Municipal Citizen's Hospital, Yokohama-shi, Japan
| |
Collapse
|
7
|
Shi Y, Guo Y, Li X, Wu L, Chen Z, Yang S, Bi M, Zhao Y, Yao W, Yu H, Wang K, Zhao W, Sun M, Zhang L, He Z, Lin Y, Shi J, Zhu B, Wang L, Pan Y, Shi H, Sun S, Wen M, Zhou R, Guo S, Han Z, Yi T, Zhang H, Cang S, Yu Z, Zhong D, Cui J, Fang J, Gao J, Li M, Ma R, Jiang M, Qin J, Shu Y, Ye F, Hu S, Li W, Lu H, Yang M, Yi S, Zhang Y, Fan Y, Ji H, Liu Z, Wang H, Zhou X, Zhang D, Peng J, Shen H, Gao F, Wang T, Zhou A. Rezivertinib versus gefitinib as first-line therapy for patients with EGFR-mutated locally advanced or metastatic non-small-cell lung cancer (REZOR): a multicentre, double-blind, randomised, phase 3 study. THE LANCET. RESPIRATORY MEDICINE 2025; 13:327-337. [PMID: 39914443 DOI: 10.1016/s2213-2600(24)00417-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 03/17/2025]
Abstract
BACKGROUND This study aimed to compare the efficacy and safety of rezivertinib (BPI-7711) and gefitinib as first-line therapies in patients with EGFR-mutated locally advanced or metastatic non-small-cell lung cancer (NSCLC). METHODS This multicentre, double-blind, randomised, phase 3 study (REZOR) included eligible patients from 50 hospitals across China. Those who had been histologically or cytologically confirmed as having NSCLC with EGFR exon 19 deletion or exon 21 Leu858Arg mutation by central laboratory were randomly assigned (1:1) to receive once daily either rezivertinib 180 mg or gefitinib 250 mg, until unacceptable toxicity occurred, disease progression, or other treatment discontinuation criteria were met. Each cycle lasted for 21 days. The primary endpoint was progression-free survival evaluated by masked independent central review (MICR) in the intention-to-treat set. This trial is registered with ClinicalTrials.gov, NCT03866499 and follow-up is ongoing. FINDINGS Between July 15, 2019, and Feb 14, 2022, 695 patients were screened. Among them, 369 eligible patients were randomly assigned to receive either rezivertinib 180 mg/day plus placebo (n=184) or gefitinib 250 mg/day plus placebo (n=185) in a 1:1 ratio; all of eligible participants were included in the intention-to-treat set. Median MICR-assessed progression-free survival was 19·3 months (95% CI 13·8-22·1) in the rezivertinib group and 9·6 months (8·4-11·3) in the gefitinib group (hazard ratio [HR] 0·48, 95% CI 0·36-0·63; p<0·0001) and the prespecified subgroup efficacy analysis showed consistent results. Median duration of exposure was 16·0 months (95% CI 0·0-29·7) in the rezivertinib group and 11·0 months (0·0-28·9) in the gefitinib group. Grade 3 or higher treatment-emergent adverse events (82 [45%] of 184 in the rezivertinib group; 80 [43%] of 185 in the gefitinib group) and treatment-related adverse events (TRAEs; 43 [23%] of 184 in the rezivertinib group; 43 [23%] of 185 in the gefitinib group) were similar in both groups. One patient died from a TRAE in the rezivertinib group, due to pneumonia and interstitial lung disease. INTERPRETATION Our findings suggested that rezivertinib is a potential choice for patients with EGFR-mutated locally advanced or metastatic NSCLC as first-line therapy, owing to the superior overall efficacy and subgroup progression-free survival compared with gefitinib in targeted patients. No new safety signals were identified. FUNDING Beta Pharma (Shanghai) and the China National Science and Technology Major Project for Key New Drug Development.
Collapse
Affiliation(s)
- Yuankai Shi
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Yanzhen Guo
- Department of Medical Oncology, The First Affiliated Hospital of Henan University of Science & Technology, Luoyang, China
| | - Xingya Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin Wu
- Department of Thoracic Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhaohong Chen
- Department of Oncology, People's Hospital of Deyang City, Deyang, China
| | - Sheng Yang
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Minghong Bi
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Yanqiu Zhao
- Respiratory Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Wenxiu Yao
- Department of Medical Oncology, Sichuan Cancer Hospital-Cancer Hospital Affiliated to University of Electronic Science and Technology of China, Chengdu, China
| | - Huiqing Yu
- Department of Geriatric Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Wenhua Zhao
- Department of Internal Medicine for Lung Cancer, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Meili Sun
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Liangming Zhang
- Department of Medical Oncology, Yantai Yuhuangding Hospital, Yantai, China
| | - Zhiyong He
- Thoracic Medical Oncology, Fujian Cancer Hospital, Fuzhou, China
| | - Yingcheng Lin
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Jianhua Shi
- Department of Medical Oncology, Linyi Cancer Hospital, Linyi, China
| | - Bo Zhu
- Department of Oncology, Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Lijun Wang
- Cancer Center, The Second Affiliated Hospital of Xingtai Medical College, Xingtai, China
| | - Yueyin Pan
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Huaqiu Shi
- Department of Medical Oncology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Shenghua Sun
- Department of Respiratory Medicine, Third Xiangya Hospital of Central South University, Changsha, China
| | - Meiling Wen
- Department of Medical Oncology, The First Affiliated Hospital of the University of South China, Hengyang, China
| | - Rui Zhou
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shuliang Guo
- Department of Respiratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhigang Han
- Pulmonary Cancer Medicine, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
| | - Tienan Yi
- Department of Medical Oncology, Xiangyang Central Hospital, Xiangyang, China
| | - Hua Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Shundong Cang
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Zhuang Yu
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - DianSheng Zhong
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiuwei Cui
- Oncology Center, Oncology Department, The First Hospital of Jilin University, Changchun, China
| | - Jian Fang
- Department of Thoracic Oncology, Beijing Cancer Hospital, Beijing, China
| | - Jinghua Gao
- Department of Medical Oncology, Cangzhou Central Hospital, Cangzhou, China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rui Ma
- Department of Thoracic Oncology, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Mingyan Jiang
- Department of Respiratory and Critical Care Medicine, Xiangtan Central Hospital, Xiangtan, China
| | - Jianwen Qin
- Respiratory and Critical Care Department, Tianjin Chest Hospital, Tianjin, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Feng Ye
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Sheng Hu
- Department of Thoracic Oncology, Hubei Cancer Hospital, Wuhan, China
| | - Wen Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Lu
- Department of Oncology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Minglei Yang
- Department of Thoracic Surgery, Ningbo No.2 Hospital, Ningbo, China
| | - Shanyong Yi
- Department of Medical Oncology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yan Zhang
- Department of Medical Oncology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Yun Fan
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Hongbo Ji
- Department of Medical Oncology in Section One, Chifeng Municipal Hospital, Chifeng, China
| | - Zheng Liu
- Department of Oncology, Handan Central Hospital, Handan, China
| | - Haitao Wang
- Department of Medical Oncology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiangdong Zhou
- Department of Respiratory and Critical Care Medicine, The first affiliated Hospital of the Army Medical University of Chinese People's Liberation Army, Chongqing, China
| | - Don Zhang
- Department of Drug Discovery, Beta Pharma, Princeton, NJ, USA
| | - Jirong Peng
- Department of Drug Discovery, Beta Pharma, Princeton, NJ, USA
| | - Haijiao Shen
- Department of Clinical Development, Beta Pharma (Shanghai), Shanghai, China
| | - Feng Gao
- Department of Clinical Development, Beta Pharma (Shanghai), Shanghai, China
| | - Tingting Wang
- Department of Clinical Development, Beta Pharma (Shanghai), Shanghai, China
| | - Anqi Zhou
- Department of Clinical Development, Beta Pharma (Shanghai), Shanghai, China
| |
Collapse
|
8
|
Mei T, Wang T, Xu T, Zhou Q. Comparing the Effectiveness and Safety of First-line Interventions in Patients With Advanced Epidermal Growth Factor Receptor-mutant Non-small Cell Lung Cancer, With Particular Focus on Brain Metastatic Status: A Systematic Review and Network Meta-analysis. Clin Oncol (R Coll Radiol) 2025; 40:103776. [PMID: 39951884 DOI: 10.1016/j.clon.2025.103776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/17/2025]
Abstract
AIMS This network meta-analysis (NMA) aimed to identify the most effective first-line intervention (FLI) for advanced epidermal growth factor receptor (EGFR)-mutated non-small cell lung cancer (NSCLC), particularly in patients with varying brain metastasis (BM) status. MATERIALS AND METHODS Data were collected from randomized controlled trials (RCTs) evaluating first-line EGFR-tyrosine kinase inhibitors (EGFR-TKIs), either alone or in combination, for EGFR-mutated advanced NSCLC (EMAN) patients. The sources included EMBASE, Web of Science, Cochrane Library, PubMed, and relevant conference abstracts from inception until December 2023. RESULTS A total of 37 RCTs, encompassing 24 intervention options, were included in the NMA. Osimertinib combined with chemotherapy (CT) significantly improved progression-free survival (PFS) compared to aumolertinib (HR, 0.61; 95% CI, 0.40-0.93), furmonertinib (HR, 0.64; 95% CI, 0.41-0.98), lazertinib (HR, 0.64; 95% CI, 0.41-0.98), osimertinib alone (HR, 0.62; 95% CI, 0.48-0.80), osimertinib + bevacizumab (HR, 0.72; 95% CI, 0.51-1.00), befotertinib (HR, 0.57; 95% CI, 0.36-0.90), and zorifertinib (HR, 0.61; 95% CI, 0.39-0.93). Further, amivantamab + lazertinib showed slightly better PFS compared to aumolertinib, furmonertinib, zorifertinib, and osimertinib + bevacizumab (HR <1, but P >0.05). Regarding overall survival (OS), amivantamab + lazertinib demonstrated superior results relative to furmonertinib (HR, 0.54; 95% CI, 0.30-0.95) and befotertinib (HR, 0.43; 95% CI, 0.24-0.77). No significant OS differences were observed among osimertinib, osimertinib + bevacizumab, osimertinib + CT, lazertinib, and amivantamab + lazertinib. In BM patients, osimertinib + CT significantly enhanced PFS compared to osimertinib (HR, 0.47; 95% CI, 0.33-0.66), furmonertinib (HR, 0.44; 95% CI, 0.21-0.90), befotertinib (HR, 0.45; 95% CI, 0.21-1.00), and zorifertinib (HR, 0.47; 95% CI, 0.25-0.89). However, no noticeable PFS differences were observed between osimertinib + CT and amivantamab + lazertinib or aumolertinib. Lastly, osimertinib + CT and zorifertinib were associated with higher rates of all-grade adverse events (AEs) and grade ≥3 AEs, respectively. CONCLUSIONS In EMAN patients, osimertinib + CT and amivantamab + lazertinib were associated with optimal PFS and OS, respectively. Among BM patients, osimertinib + CT offered the best PFS benefits. These findings may assist in clinical decision-making and personalized care for EMAN and BM patients. The study is registered on PROSPERO (CRD42024506995).
Collapse
Affiliation(s)
- T Mei
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, China; Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - T Wang
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, China; Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - T Xu
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, China; Department of Thoracic Surgery, The Affiliated Hospital of Southwest Medical University, 25 Taiping street, Jiangyang District, Luzhou, China
| | - Q Zhou
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, China; Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Liu X, Wang P, Liu G. NRI and SIRI are the optimal combinations for prognostic risk stratification in patients with non-small cell lung cancer after EGFR-TKI therapy. Clin Transl Oncol 2025; 27:1529-1538. [PMID: 39304598 PMCID: PMC12000150 DOI: 10.1007/s12094-024-03735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have become the standard treatment for advanced non-small cell lung cancer (NSCLC) with EGFR mutations. However, NSCLC heterogeneity leads to differences in efficacy; thus, potential biomarkers need to be explored to predict the prognosis of patients. Recently, the prognostic importance of pre-treatment malnutrition and systemic inflammatory response in cancer patients has received increasing attention. METHODS In this study, clinical information from 363 NSCLC patients receiving EGFR-TKI treatment at our clinical center was used for analysis. RESULTS High nutritional risk index (NRI) and systemic inflammation response index (SIRI) were significantly associated with poor overall survival (OS) and progression-free survival (PFS) in NSCLC patients (P < 0.05). Importantly, NRI and SIRI were the best combination models for predicting clinical outcomes of NSCLC patients and independent OS and PFS predictors. Moreover, a nomogram model was constructed by combining NRI/SIRI, sex, smoking history, EGFR mutation, TNM stage, and surgery treatment to visually and personally predict the 1-, 2-, 3-, 4-, and 5-year OS of patients with NSCLC. Notably, risk stratification based on the nomogram model was better than that based on the TNM stage. CONCLUSION NRI and SIRI were the best combination models for predicting clinical outcomes of NSCLC patients receiving EGFR-TKI treatment, which may be a novel biomarker for supplement risk stratification in NSCLC patients.
Collapse
Affiliation(s)
- Xia Liu
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
- Department of Oncology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Peipei Wang
- Department of Oncology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong, China.
| | - Guolong Liu
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China.
- Department of Oncology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Uehara Y, Izumi H, Kobayashi IS, Matsumoto S, Hosomi Y, Okuno T, Sugisaka J, Takase N, Taima K, Sasaki S, Teranishi S, Miyamoto S, Mori M, Nakashima C, Asano S, Oi H, Sakai T, Shibata Y, Udagawa H, Sugiyama E, Nosaki K, Umemura S, Zenke Y, Yoh K, Ikeda S, Costa DB, Kobayashi SS, Goto K. Efficacy of EGFR tyrosine kinase inhibitors in patients with non-small cell lung cancer with EGFR exon 19 insertions: clinical-genomic, preclinical analysis through LC-SCRUM-Asia (multi-institutional genomic screening registry). Lung Cancer 2025; 202:108479. [PMID: 40088581 DOI: 10.1016/j.lungcan.2025.108479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/18/2025] [Accepted: 03/01/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND EGFR exon 19 insertions (EGFRex19ins) are rare EGFR mutations. Their clinical-genomic characteristics and outcomes with EGFR-tyrosine kinase inhibitors (TKIs) remain uncertain. METHODS We evaluated the clinical-genomic characteristics and outcomes of EGFR-TKIs for EGFRex19ins in the multi-institutional prospective lung cancer genomic screening project (LC-SCRUM-Asia). We also studied preclinical Ba/F3 models expressing EGFR-K745_E746insIPVAIK (Ba/F3-IPVAIK) to investigate their sensitivity to 1st-, 2nd-, 3rd-generation, and EGFR exon 20 insertion-active TKIs. RESULTS In LC-SCRUM-Asia, 16,204 NSCLC patients were enrolled from March 2015 to December 2023. EGFRex19ins were detected in 13 samples (0.1 % of NSCLC). The median age was 72 years (range, 38-80); most patients were female (77 %), had adenocarcinoma (92 %), and were never-smokers (62 %). Twelve patients (93 %) had EGFR-K745_E746insIPVAIK, while one (7 %) had EGFR-K745_E746insVPVAIK. The most frequent co-mutation was TP53 (62 %); no patients had other driver alterations. Six patients (46 %) tested positive for EGFR exon 19 deletions with PCR-based Cobas EGFR test, likely due to cross-reactivity arising from sequence homology. Twelve patients received EGFR-TKIs; five (42 %) experienced partial response. In the preclinical study, Ba/F3-IPVAIK showed the highest sensitivity to 2nd-generation EGFR-TKIs compared to other EGFR-TKIs. Structural studies supported these consistent results. When broken down by EGFR-TKI generations, response rates for 1st-, 2nd-, and 3rd-generation TKIs were 50 % (1/2), 80 % (4/5), and 0 % (0/5), respectively. The median PFS for 1st-, 2nd-, and 3rd-generation TKIs were 8.7 (95 % CI, 7.4-NR), 14.7 (95 % CI, 8.0-NR), and 4.4 (95 % CI, 3.4-NR) months, respectively. CONCLUSION Our preclinical, structural, and clinical findings indicate 2nd-generation EGFR-TKIs are more effective for EGFRex19ins compared to other TKIs.
Collapse
Affiliation(s)
- Yuji Uehara
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan; Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan; Department of Precision Cancer Medicine, Center for Innovative Cancer Treatment, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroki Izumi
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan.
| | - Ikei S Kobayashi
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Shingo Matsumoto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yukio Hosomi
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Takae Okuno
- Division of Medical Oncology & Respiratory Medicine, Department of Internal Medicine, Shimane University Faculty of Medicine, Izumo, Japan
| | - Jun Sugisaka
- Department of Pulmonary Medicine, Sendai Kousei Hospital, Sendai, Japan
| | - Naoto Takase
- Department of Medical Oncology, Takarazuka City Hospital, Takarazuka, Japan
| | - Kageaki Taima
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shinichi Sasaki
- Department of Respiratory Medicine, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Shuhei Teranishi
- Respiratory Disease Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Shingo Miyamoto
- Department of Medical Oncology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Masahide Mori
- Department of Thoracic Oncology, NHO Osaka Toneyama Medical Center, Toyonaka, Japan
| | - Chiho Nakashima
- Division of Hematology, Respiratory Medicine and Oncology, Faculty of Medicine, Saga University, Saga, Japan
| | - Shuichi Asano
- Department of Respirology, Japan Community Health Care Organization Chukyo Hospital, Nagoya, Japan
| | - Hajime Oi
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Tetsuya Sakai
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yuji Shibata
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hibiki Udagawa
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Eri Sugiyama
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kaname Nosaki
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Shigeki Umemura
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yoshitaka Zenke
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kiyotaka Yoh
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Sadakatsu Ikeda
- Department of Precision Cancer Medicine, Center for Innovative Cancer Treatment, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daniel B Costa
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Susumu S Kobayashi
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan.
| | - Koichi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
11
|
Galeș LN, Păun MA, Butnariu I, Simion L, Manolescu LSC, Trifănescu OG, Anghel RM. Next-Generation Sequencing in Oncology-A Guiding Compass for Targeted Therapy and Emerging Applications. Int J Mol Sci 2025; 26:3123. [PMID: 40243903 PMCID: PMC11988731 DOI: 10.3390/ijms26073123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Multigene sequencing technologies provide a foundation for targeted therapy and precision oncology by identifying actionable alterations and enabling the development of treatments that substantially improve clinical outcomes. This review emphasizes the importance of having a molecular compass guiding treatment decision-making through the multitude of alterations and genetic mutations, showcasing why NGS plays a pivotal role in modern oncology.
Collapse
Affiliation(s)
- Laurenția Nicoleta Galeș
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (L.N.G.)
- Department of Medical Oncology II, “Prof. Dr. Al. Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
| | - Mihai-Andrei Păun
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (L.N.G.)
| | - Ioana Butnariu
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (L.N.G.)
- Department of Neurology, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Laurentiu Simion
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (L.N.G.)
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Loredana Sabina Cornelia Manolescu
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (L.N.G.)
- Clinical Laboratory of Medical Microbiology, “Marius Nasta” Institute of Pneumology, 050159 Bucharest, Romania
- Department of Microbiology, Parasitology and Virology, Faculty of Midwives and Nursing, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Oana Gabriela Trifănescu
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (L.N.G.)
- Department of Radiotherapy II, “Prof. Dr. Al. Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
| | - Rodica Maricela Anghel
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (L.N.G.)
- Department of Radiotherapy II, “Prof. Dr. Al. Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
| |
Collapse
|
12
|
Romaniello D, Morselli A, Marrocco I. Strategies to Overcome Resistance to Osimertinib in EGFR-Mutated Lung Cancer. Int J Mol Sci 2025; 26:2957. [PMID: 40243603 PMCID: PMC11988377 DOI: 10.3390/ijms26072957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/22/2025] [Accepted: 03/23/2025] [Indexed: 04/18/2025] Open
Abstract
Non-small-cell lung cancer (NSCLC) represents the most common type of lung cancer. The majority of patients with lung cancer characterized by activating mutations in the epidermal growth factor receptor (EGFR), benefit from therapies entailing tyrosine kinase inhibitors (TKIs). In this regard, osimertinib, a third-generation EGFR TKI, has greatly improved the outcome for patients with EGFR-mutated lung cancer. The AURA and FLAURA trials displayed the superiority of the third-generation TKI in both first- and second-line settings, making it the drug of choice for treating patients with EGFR-mutated lung cancer. Unfortunately, the onset of resistance is almost inevitable. On-target mechanisms of resistance include new mutations (e.g., C797S) in the kinase domain of EGFR, while among the off-target mechanisms, amplification of MET or HER2, mutations in downstream signaling molecules, oncogenic fusions, and phenotypic changes (e.g., EMT) have been described. This review focuses on the strategies that are currently being investigated, in preclinical and clinical settings, to overcome resistance to osimertinib, including the use of fourth-generation TKIs, PROTACs, bispecific antibodies, and ADCs, as monotherapy and as part of combination therapies.
Collapse
Affiliation(s)
- Donatella Romaniello
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (D.R.); (A.M.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Alessandra Morselli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (D.R.); (A.M.)
| | - Ilaria Marrocco
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
13
|
Wang QA, Tsai IL, Lin CY, Su PL, Lin CC, Chang JWC, Huang CY, Fang YF, Chang CF, Kuo CHS, Hsu PC, Yang CT, Wu CE. Multivariable model for predicting 5-year survival in patients with EGFR-mutated non-small cell lung cancer treated with EGFR tyrosine kinase inhibitors: a retrospective study. Ther Adv Med Oncol 2025; 17:17588359251321901. [PMID: 40093976 PMCID: PMC11907550 DOI: 10.1177/17588359251321901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/04/2025] [Indexed: 03/19/2025] Open
Abstract
Background Non-small-cell lung cancer (NSCLC) is the leading cause of cancer-related mortality worldwide. In Asian populations, epidermal growth factor receptor (EGFR) mutations are particularly prevalent, leading to the development of EGFR tyrosine kinase inhibitors (TKIs) to improve patient outcomes. While extensive research has been conducted on the prognosis of patients receiving EGFR-TKIs, the estimation of 5-year survival in this population remains an underexplored area. Objectives This study aimed to provide real-world evidence and conduct a comprehensive analysis of the determinants influencing the 5-year survival rate in patients with EGFR-mutated NSCLC. Considering the factors identified in this study, a scoring system was developed to predict the likelihood of patients achieving this goal. Design A retrospective cohort study utilizing a training cohort of 1,873 patients and a validation cohort of 484 patients. Methods A logistic regression model was constructed to evaluate the weighting of factors and develop a scoring system. The Kaplan-Meier model estimated the overall survival probability, and patients were categorized into four risk groups based on their likelihood of five-year survival. The prediction performance of both the training and validation cohorts was evaluated using the area under the curve (AUC), accuracy, precision, sensitivity, specificity, and F1-score. Results Results indicated that age > 65 years; performance score of 2-4; metastasis to the liver, brain, bone, or pleura; and poor disease control were associated with a decreased likelihood of 5-year survival. The estimated 5-year survival rate was 23.4% (odds ratio [OR]: 20.56; 95% confidence interval [CI]: 9.06-46.64; p < 0.0001), 16.1% (OR: 12.88; 95% CI: 5.82-28.49; p < 0.0001), 7.2% (OR: 5.23; 95% CI: 2.36-11.60; p < 0.0001), and 1.5% (OR: reference) for the low-risk, intermediate-risk, high-risk, and very-high-risk groups, respectively. The validation cohort further confirmed these findings, showing survival probabilities of 52.6% (OR: 96.67; 95% CI: 11.07-844.23; p < 0.0001), 21.3% (OR: 23.49; 95% CI: 3.13-176.46; p = 0.002), 14.9% (OR: 15.21; 95% CI: 2.03-114.25; p = 0.008), and 1.1% (OR: reference) for the low-risk, intermediate-risk, high-risk, and very-high-risk groups, respectively. The training cohort demonstrated an AUC of 0.79 (95% CI: 0.75-0.82) and a model quality score of 0.75, indicating good predictive performance. Calibration plots demonstrated a good fit for the scoring system. For the external validation cohort, the AUC, precision, sensitivity, and specificity were 0.71, 0.74, 0.35, 0.33, respectively. The model achieved an F1-score of 0.47, reflecting adequate performance in predicting 5-year survival probabilities. Conclusion This study identified critical prognostic factors and developed a validated scoring system for estimating 5-year survival in patients with EGFR-mutated NSCLC receiving EGFR-TKIs. While the model demonstrated robust predictive performance within the study cohort, broader applicability beyond Taiwan may require further refinements and alternative study designs.
Collapse
Affiliation(s)
- Qi-An Wang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - I-Lin Tsai
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Yu Lin
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Lan Su
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Chung Lin
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - John Wen-Cheng Chang
- Division of Hematology-Oncology, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chen-Yang Huang
- Division of Hematology-Oncology, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yueh-Fu Fang
- Division of Thoracic Oncology, Department of Thoracic Medicine, Linkou Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Fu Chang
- Division of Hematology-Oncology, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Hsi Scott Kuo
- Division of Thoracic Oncology, Department of Thoracic Medicine, Linkou Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ping-Chih Hsu
- Division of Thoracic Oncology, Department of Thoracic Medicine, Linkou Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Ta Yang
- Division of Thoracic Oncology, Department of Thoracic Medicine, Linkou Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chiao-En Wu
- Division of Hematology-Oncology, Department of Internal Medicine, New Taipei Municipal TuCheng Hospital, New Taipei City 236043, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
14
|
Shi J, Liu X, Gao M, Yu J, Chai T, Jiang Y, Li J, Zhang Y, Wu L. Adverse event profiles of EGFR-TKI: network meta-analysis and disproportionality analysis of the FAERS database. Front Pharmacol 2025; 16:1519849. [PMID: 40135231 PMCID: PMC11933087 DOI: 10.3389/fphar.2025.1519849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Background Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors (EGFR-TKIs) in clinical use show promise but can cause AEs, impacting patients' wellbeing and increasing costs. Methods This study utilized two methods: network meta-analysis (NMA) and disproportionality analysis (DA). For NMA, we searched PubMed, Embase, Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov up to 10 September 2024, for phase II/III RCTs comparing EGFR-TKI monotherapy with chemotherapy or other EGFR-TKIs. Using STATA 18.0, we calculated odds ratios (ORs) with 95% confidence intervals (CIs) and assessed heterogeneity via Chi-squared and I2 tests. Adverse events (AEs) were ranked using the surface under the cumulative ranking curve (SUCRA). For DA, we analyzed FAERS data (January 2004-June 2024), evaluating AE signals with reporting odds ratios (RORs) and 95% CIs; signals were considered significant if the ROR and its 95% CI lower bound exceeded 1. Primary outcomes for NMA included all-grade AEs, grade ≥3 AEs, specific AEs, and AE-related mortality. For DA, outcomes included EGFR-TKI as the primary AE cause, time from treatment to AE, and AE-related mortality. Results NMA: 48% of EGFR-TKI patients experienced AEs, with 32.7% being severe. Afatinib showed highest toxicity; Icotinib was safest. Osimertinib was associated with highest risks of leukopenia (8%) and thrombocytopenia (9%). DA: Osimertinib had strongest links to cardiac diseases and blood/lymphatic disorders. Gefitinib had the strongest signal for interstitial lung diseases; Erlotinib for anorexia. Most AEs occurred within 30 days, but cardiac disorders had a median onset of 41 days. Osimertinib had the highest AE-related mortality, with cardiac disorders leading in fatalities. Conclusion This study used NMA and DA to explore EGFR-TKI-related AEs. Drugs varied in AE profiles, mostly mild, but Osimertinib and Dacomitinib were associated with more severe events. Osimertinib carried a high cardiac risk, delayed onset, and high mortality. Thus, comprehensive patient assessment and close monitoring are crucial with EGFR-TKI use.
Collapse
Affiliation(s)
- Jing Shi
- Xinjiang Medical University, Urumqi, China
- Department of Oncology Cardiology, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, China
| | - Xinya Liu
- Xinjiang Medical University, Urumqi, China
- The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Mengjiao Gao
- Department of Oncology Cardiology, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, China
| | - Jian Yu
- Xinjiang Medical University, Urumqi, China
| | - Ting Chai
- Department of Oncology Cardiology, Xinjiang Cardiovascular and Cerebrovascular Hospital, Urumqi, China
| | - Yun Jiang
- Department of Oncology Cardiology, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, China
| | - Jiawei Li
- Department of Oncology Cardiology, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, China
| | - Yuanming Zhang
- Department of Oncology Cardiology, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, China
| | - Li Wu
- Department of Oncology Cardiology, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
15
|
Wei JR, Lu MY, Wei TH, Fleishman JS, Yu H, Chen XL, Kong XT, Sun SL, Li NG, Yang Y, Ni HW. Overcoming cancer therapy resistance: From drug innovation to therapeutics. Drug Resist Updat 2025; 81:101229. [PMID: 40081221 DOI: 10.1016/j.drup.2025.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
One of the major limitations of cancer therapy is the emergence of drug resistance. This review amis to provide a focused analysis of the multifactorial mechanisms underlying therapy resistance,with an emphasis on actionable insights for developing novel therapeutic strategies. It concisely outlines key factors contributing to therapy resistance, including drug delivery barriers, cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), cancer heterogeneity, tumor microenvironment (TME), genetic mutations, and alterlations in gene expression. Additionally, we explore how tumors evade targeted therapies through pathway-specific mechanisms that restore disrupted signaling pathways. The review critically evaluates innovative strategies designed to sensitize resistant tumor cells, such as targeted protein dedgradation, antibody-drug conjugates, structure-based drug design, allosteric drugs, multitarget drugs, nanomedicine and others We also highlight the importance of understanding the pharmacological actions of these agents and their integration into treatment regimens. By synthesizing current knowledge and identifying gaps in our understanding, this review aims to guide future research and improve patient outcomes in cancer therapy.
Collapse
Affiliation(s)
- Jin-Rui Wei
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China; The First Clinical College of Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Meng-Yi Lu
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Tian-Hua Wei
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Joshua S Fleishman
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Hui Yu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Xiao-Li Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Xiang-Tu Kong
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ye Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Hai-Wen Ni
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
16
|
Nie X, Zou M, Song C, Zhang P, Ma D, Cui D, Cheng G, Li L. Survival impact and risk factors of skeletal muscle loss during first-line EGFR-TKIs therapy in advanced lung adenocarcinoma patients. BMC Cancer 2025; 25:393. [PMID: 40038684 PMCID: PMC11881361 DOI: 10.1186/s12885-025-13775-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/19/2025] [Indexed: 03/06/2025] Open
Abstract
PURPOSE The impact of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) on muscle mass in individuals with advanced lung cancer has yet to be fully delineated. This study aimed to examine the dynamics of skeletal muscle mass during EGFR-TKIs targeted therapy, elucidate its clinical relevance, and explore the potential mechanisms. METHODS We retrospectively recruited 104 patients with EGFR-mutant advanced lung adenocarcinoma who received icotinib or afatinib as first-line treatment. Skeletal muscle changes were assessed by abdominal CT obtained before and during treatment with EGFR-TKIs. The mean interval (± SD) between two CT scans was 109 days (± 16 days). Targeted panel sequencing of tumor tissue was used to detect genetic alterations. Functional enrichment analysis of genes interacting with EGFR-TKIs and muscle loss was performed to elucidate the potential toxicological mechanisms. RESULTS A total of 42 (40.4%) patients experienced muscle loss during targeted therapy. Genetic analysis indicated muscle loss group had a higher proportion of MDM2 amplification and PIK3CA alterations (p = 0.011 & p = 0.045, respectively).Patients with baseline low muscle density and experienced ≥ Grade 2 diarrhea had higher rate of muscle loss (p = 0.005 & p < 0.001, respectively). Multivariate analysis revealed that muscle loss was independently associated with shorter PFS (hazard ratio [HR] 1.86, 95% confidence interval [CI]: 1.09 ∼ 3.18; p = 0.023). Besides, we found genes associated with icotinib, afatinib and muscle loss were significantly enriched in MAPK signaling pathway and calcium signaling pathway. CONCLUSIONS This study highlights the high prevalence and detrimental impact of muscle loss during EGFR-TKIs treatment.
Collapse
Affiliation(s)
- Xin Nie
- Department of Medical Oncology Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 Dahua Lu, Dongdan, Dongcheng District, Beijing, 100730, China
| | - Mingzhu Zou
- Department of Radiology Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chenhui Song
- Chongqing Kingbiotech Corporation, Beijing, China
| | - Ping Zhang
- Department of Medical Oncology Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 Dahua Lu, Dongdan, Dongcheng District, Beijing, 100730, China
| | - Di Ma
- Department of Medical Oncology Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 Dahua Lu, Dongdan, Dongcheng District, Beijing, 100730, China
| | - Di Cui
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Gang Cheng
- Department of Medical Oncology Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 Dahua Lu, Dongdan, Dongcheng District, Beijing, 100730, China
| | - Lin Li
- Department of Medical Oncology Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 Dahua Lu, Dongdan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
17
|
Liu JY, Wang SZ, Yuan HQ, Li JL, Xing PY. Patients with non‑small cell lung cancer with the exon 21 L858R mutation: From distinct mechanisms to epidermal growth factor receptor tyrosine kinase inhibitor treatments (Review). Oncol Lett 2025; 29:109. [PMID: 39776649 PMCID: PMC11704875 DOI: 10.3892/ol.2024.14855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/01/2024] [Indexed: 01/11/2025] Open
Abstract
The most common oncogenic driver in non-small cell lung cancer (NSCLC) is epidermal growth factor receptor (EGFR) gene mutations, which are more common in Asian (30-50%) than in Caucasian (10-15%) populations. Exon 19 deletion (ex19del) and exon 21 L858R (ex21 L858R) mutations account for ~45 and 40% of all EGFR mutations, respectively. Moreover, EGFR-tyrosine kinase inhibitors (TKIs) may be more effective and improve the quality of life of patients with NSCLC more than chemotherapy regimens. By contrast, patients with the ex21 L858R mutation may have a lower sensitivity and duration of response to EGFR-TKIs as well as a shorter survival compared with those with the ex19del mutation. However, current guidelines classify ex21 L858R and ex19del as the same condition and recommend the same treatment strategy for both. Aiming for precision medicine, the present review introduces and compares different EGFR-TKIs for the ex21 L858R mutation to assess more personalized treatment options for the population with this mutation.
Collapse
Affiliation(s)
- Jia-Yu Liu
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Shou-Zheng Wang
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101125, P.R. China
| | - Han-Qi Yuan
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Jun-Ling Li
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Pu-Yuan Xing
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| |
Collapse
|
18
|
Yin J, Huang J, Ren M, Tang R, Xie L, Xue J. A Bayesian network meta-analysis of EGFR-tyrosine kinase inhibitor treatments in patients with EGFR mutation-positive non-small cell lung cancer. CANCER PATHOGENESIS AND THERAPY 2025; 3:135-146. [PMID: 40182124 PMCID: PMC11963207 DOI: 10.1016/j.cpt.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 04/05/2025]
Abstract
Background To date, no direct comparisons have been performed to compare the effectiveness of all epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) against EGFR mutation-positive non-small cell lung cancer (NSCLC). This study aimed to investigate the efficacy and safety of EGFR-TKIs in patients with EGFR mutation-positive NSCLC. Methods We conducted a network meta-analysis of randomized controlled trials comparing osimertinib, lazertinib, aumolertinib, befotertinib, furmonertinib, dacomitinib, afatinib, erlotinib, gefitinib, icotinib, and chemotherapy. Pooled estimations of progression-free survival (PFS), overall survival (OS), objective response rate (ORR), and toxicity (grade ≥ 3 adverse events) were performed within the Bayesian framework. Results Twenty-three trials involving 11 treatments were included. All EGFR-TKIs improved PFS relative to chemotherapy, except for icotinib (hazard ratio [HR] = 0.61, 95% confidence interval [CI]: 0.26-1.44). All EGFR-TKIs demonstrated significant ORR benefits over chemotherapy. Osimertinib seemed to prolong PFS compared with icotinib (HR = 0.29, 95% CI: 0.1-0.86), gefitinib (HR = 0.39, 95% CI: 0.21-0.74), and erlotinib (HR = 0.53, 95% CI: 0.29-1.0). In addition, osimertinib showed favorable superiority in improving OS compared with chemotherapy (HR = 0.6, 95% CI: 0.43-0.82), gefitinib (HR = 0.61, 95% CI: 0.45-0.83), erlotinib (HR = 0.65, 95% CI: 0.48-0.89), and afatinib (HR = 0.65, 95% CI: 0.44-0.94). Among these regimens, afatinib showed the highest ORR (cumulative probability: 96.96%). Icotinib was associated with minimal toxicity among the EGFR-TKIs, followed by furmonertinib and osimertinib. Moreover, the toxicity spectra differed among the EGFR-TKIs. Subgroup analyses of patients with two common types of EGFR mutations indicated that furmonertinib possessed the greatest PFS benefit in patients with exon 19 deletion, and lazertinib showed the greatest PFS benefit in patients with Leu858Arg mutation. We also identified differences between EGFR-TKIs in prolonging PFS in patients with brain metastasis. Conclusions Osimertinib is the first choice of treatment with considerable efficacy and safety for EGFR mutation-positive NSCLC. The treatments associated with the best PFS in patients with exon 19 deletions and Leu858Arg mutations were furmonertinib and lazertinib, respectively.
Collapse
Affiliation(s)
- Jianqiong Yin
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jing Huang
- Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Min Ren
- Abdominal Oncology Ward, Division of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Rui Tang
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Linshen Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jianxin Xue
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
19
|
Lee CY, Lee SW, Hsu YC. Drug Resistance in Late-Stage Epidermal Growth Factor Receptor (EGFR)-Mutant Non-Small Cell Lung Cancer Patients After First-Line Treatment with Tyrosine Kinase Inhibitors. Int J Mol Sci 2025; 26:2042. [PMID: 40076686 PMCID: PMC11900297 DOI: 10.3390/ijms26052042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/06/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
The development of tyrosine kinase inhibitors (TKIs) for late-stage epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC) represented a drastic change in the treatment of late-stage lung cancer. Drug resistance develops after a certain period of first-line TKI treatment, which has led to decades of changing treatment guidelines for EGFR-mutant NSCLC. This study discussed the potential mechanisms of drug resistance against first-line TKI treatment and potential successive treatment strategies. Next-generation sequencing (NGS) may play a role in the evaluation of drug resistance in first-line TKI treatment. Emerging combination regimens and ongoing trials were discussed. Potential future strategies for treatment and for the management of drug resistance were proposed in this study.
Collapse
Affiliation(s)
- Ching-Yi Lee
- Department of Internal Medicine, Tao Yuan General Hospital, Taoyuan 33004, Taiwan;
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 320317, Taiwan
- Department of Nursing, Yuanpei University of Medical Technology, Hsinchu 30015, Taiwan
| | - Shih-Wei Lee
- Department of Internal Medicine, Tao Yuan General Hospital, Taoyuan 33004, Taiwan;
- Department of Nursing, Yuanpei University of Medical Technology, Hsinchu 30015, Taiwan
| | - Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 320317, Taiwan
- Center for Astronautical Physics and Engineering, National Central University, Taoyuan 320317, Taiwan
- Department of Medical Research, Cathay General Hospital, Taipei 106438, Taiwan
| |
Collapse
|
20
|
Hasan N, Nagasaka M. Amivantamab plus lazertinib vs. osimertinib in first-line EGFR-mutant advanced non-small cell lung cancer. Expert Rev Respir Med 2025:1-10. [PMID: 39965618 DOI: 10.1080/17476348.2025.2467338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/18/2025] [Accepted: 02/11/2025] [Indexed: 02/20/2025]
Abstract
INTRODUCTION The first-line treatment landscape for patients with NSCLC harboring sensitizing EGFR mutations is rapidly evolving. Initially, osimertinib was the one and only option over earlier generation EGFR inhibitors based on the positive PFS and OS results from the FLAURA study. AREAS COVERED This paper reviews and compares the pivotal studies that led to the approval of combination treatment with a focus on the efficacy and safety of amivantamab plus lazertinib in the front-line setting. The literature reviewed in this paper primarily includes key studies published in well-established journals and oncological conferences, such as ASCO, ESMO, and NEJM, between 2018 and 2024. EXPERT OPINION Recent advancements, including the results of FLAURA-2 and MARIPOSA, have introduced combination therapies that demonstrate enhanced efficacy.
Collapse
Affiliation(s)
- Nazmul Hasan
- University of California Irvine School of Medicine, Orange, CA, USA
| | - Misako Nagasaka
- University of California Irvine School of Medicine, Orange, CA, USA
| |
Collapse
|
21
|
Tang T, Luo J, Zhang D, Lu Y, Liao W, Zhang J. Innovative design and potential applications of covalent strategy in drug discovery. Eur J Med Chem 2025; 284:117202. [PMID: 39756145 DOI: 10.1016/j.ejmech.2024.117202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/07/2025]
Abstract
Covalent inhibitors provide persistent inhibition while maintaining excellent selectivity and efficacy by creating stable covalent connections with specific amino acids in target proteins. This technique enables the precise inhibition of previously undruggable targets, lowering the frequency of administration and potentially bypassing drug resistance. Because of these advantages, covalent inhibitors have tremendous potential in treating cancer, inflammation, and infectious illnesses, making them extremely important in modern pharmacological research. Covalent inhibitors targeting EGFR, BTK, and KRAS (G12X), which overcome drug resistance and off-target, non-"medicinal" difficulties, as well as covalent inhibitors targeting SARS-CoV-2 Mpro, have paved the way for the development of new antiviral medicines. Furthermore, the use of covalent methods in drug discovery procedures, such as covalent PROTACs, covalent molecular gels, covalent probes, CoLDR, and Dual-targeted covalent inhibitors, preserves these tactics' inherent features while incorporating the advantages of covalent inhibitors. This synthesis opens up new therapeutic opportunities. This review comprehensively examines the use of covalent techniques in drug discovery, emphasizing their transformational potential for future drug development.
Collapse
Affiliation(s)
- Tianyong Tang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxiang Luo
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Dan Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yang Lu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Wen Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
22
|
Kenmotsu H. Combination of Osimertinib and Vascular Endothelial Growth Factor Receptor Inhibitors for EGFR-Mutated Non-Small Cell Lung Cancer: Old or New Regimen? J Clin Oncol 2025; 43:369-372. [PMID: 39393033 DOI: 10.1200/jco-24-01921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 10/13/2024] Open
Affiliation(s)
- Hirotsugu Kenmotsu
- Division of Thoracic Oncology, Shizuoka Cancer Center, Nagaizumi-cho, Sunto-gun, Japan
| |
Collapse
|
23
|
Decoster L, Camidge DR, Fletcher JA, Addeo A, Greystoke A, Kantilal K, Game LB, Kanesvaran R, Gomes F. Targeted therapy for older patients with an oncogene driven non-small cell lung cancer: Recommendations from a SIOG expert group. Lung Cancer 2025; 200:108087. [PMID: 39826441 DOI: 10.1016/j.lungcan.2025.108087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
Lung cancer is mostly a disease of aging with approximately half of newly diagnosed patients being 70 years or older. Treatment decisions in this population pose unique challenges because of their heterogeneity with regards to daily functioning, cognition, organ function, comorbidities and polypharmacy, their underrepresentation in clinical trials and the impact of treatment on patient-centered outcomes, particularly in frail patients. The advent of targeted therapies and immunotherapy has revolutionized the management of advanced non-small cell lung cancer (NSCLC). Molecular profiling has allowed for the identification of actionable genomic alterations and targeted therapies have become standard of care for oncogene-driven NSCLC, significantly improving prognosis and quality of life. However, the data on the efficacy and tolerability of these treatments in older patients remain sparse. This review, conducted by the International Society of Geriatric Oncology (SIOG) NSCLC task force, examines the available literature on the use of targeted therapies in patients aged 70 years or older with oncogene-driven NSCLC. The task force's expert recommendations aim to guide treatment decisions for older patients with oncogene driven NSCLC.
Collapse
Affiliation(s)
- L Decoster
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Department of Medical Oncology, Translational Oncology Research Center (TORC), Team Laboratory for Medical and Molecular Oncology (LMMO), Laarbeeklaan 101 1090 Brussels, Belgium.
| | - D R Camidge
- Division of Medical Oncology, University of Colorado, Aurora, CO 80220, USA
| | - J A Fletcher
- Division of Cancer Services, Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, Queensland 4102, Australia; Centre for Health Services Research, Faculty of Medicine, The University of Queensland, 199 Ipswich Road, Woolloongabba, Queensland 4102, Australia
| | - A Addeo
- Oncology Department, University Hospital Geneva 1205 Geneva Switzerland
| | - A Greystoke
- Institute of Clinical and Translational Medicine, NU Cancer, Newcastle University, Newcastle Upon Tyne NE7 7DN, UK
| | - K Kantilal
- University Hospitals Sussex NHS Foundation Trust, Royal Sussex County Hospital, Pharmacy Department, Brighton BN2 5BE, UK
| | - L Bigay Game
- Department of Pneumology & Thoracic Oncology, CHU Toulouse-Hôpital Larrey, Toulouse, France
| | - R Kanesvaran
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - F Gomes
- Medical Oncology Department, The Christie NHS Foundation Trust, M20 4BX Manchester, UK
| |
Collapse
|
24
|
Zhou F, Guo H, Xia Y, Le X, Tan DSW, Ramalingam SS, Zhou C. The changing treatment landscape of EGFR-mutant non-small-cell lung cancer. Nat Rev Clin Oncol 2025; 22:95-116. [PMID: 39614090 DOI: 10.1038/s41571-024-00971-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2024] [Indexed: 12/01/2024]
Abstract
The discovery of the association between EGFR mutations and the efficacy of EGFR tyrosine-kinase inhibitors (TKIs) has revolutionized the treatment paradigm for patients with non-small-cell lung cancer (NSCLC). Currently, third-generation EGFR TKIs, which are often characterized by potent central nervous system penetrance, are the standard-of-care first-line treatment for advanced-stage EGFR-mutant NSCLC. Rational combinations of third-generation EGFR TKIs with anti-angiogenic drugs, chemotherapy, the EGFR-MET bispecific antibody amivantamab or local tumour ablation are being investigated as strategies to delay drug resistance and increase clinical benefit. Furthermore, EGFR TKIs are being evaluated in patients with early stage or locally advanced EGFR-mutant NSCLC, with the ambitious aim of achieving cancer cure. Despite the inevitable challenge of acquired resistance, emerging treatments such as new TKIs, antibody-drug conjugates, new immunotherapeutic approaches and targeted protein degraders have shown considerable promise in patients with progression of EGFR-mutant NSCLC on or after treatment with EGFR TKIs. In this Review, we describe the current first-line treatment options for EGFR-mutant NSCLC, provide an overview of the mechanisms of acquired resistance to third-generation EGFR TKIs and explore novel promising treatment strategies. We also highlight potential avenues for future research that are aimed at improving the survival outcomes of patients with this disease.
Collapse
Affiliation(s)
- Fei Zhou
- Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haoyue Guo
- Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yang Xia
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuning Le
- Department of Thoracic Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel S W Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Duke-NUS Medical School, Singapore, Singapore
| | - Suresh S Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA, USA
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
25
|
Popat S, Januszewski A, O'Brien M, Ahmad T, Lewanski C, Dernedde U, Jankowska P, Mulatero C, Shah R, Hicks J, Geldart T, Cominos M, Gray G, Spicer J, Bell K, Roitt S, Morris C, Ngai Y, Hughes L, Hackshaw A, Wilson W. Long term efficacy of first-line afatinib and the clinical utility of ctDNA monitoring in patients with suspected or confirmed EGFR mutant non-small cell lung cancer who were unsuitable for chemotherapy. Br J Cancer 2025; 132:245-252. [PMID: 39639088 PMCID: PMC11790930 DOI: 10.1038/s41416-024-02901-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Here we present long-term outcomes of first line afatinib in comorbid patients with suspected or confirmed EGFR mutant NSCLC otherwise considered unsuitable for chemotherapy, and the clinical utility of serial ctDNA monitoring. METHODS TIMELY (NCT01415011) was a multicentre, single arm, phase II trial conducted in the UK. Patients aged ≥18 were treated with daily oral afatinib (40 mg) until disease progression or unacceptable toxicity. Blood samples for ctDNA analysis were obtained at baseline and 12-weekly until treatment discontinuation. The primary endpoint was PFS. RESULTS Thirty-nine patients were enrolled between March 2013 and August 2015. Median follow-up was 98 months (range 69-101). Median PFS was 7.9 months (95% CI 4.6-10.5). Seven patients (18%) continued afatinib beyond 18 months, 3 beyond 36 months and 2 were still on treatment at last follow-up 101 months post-treatment initiation. Analysis of baseline ctDNA samples identified 8 EGFR mutant cases that were not identified by tissue genotyping and ctDNA clearance was associated with improved PFS and OS. CONCLUSION Afatinib is a viable treatment option for tissue or ctDNA-detected EGFR mutant NSCLC comorbid patients, with a proportion achieving long-term clinical benefit. Plasma ctDNA testing improved EGFR mutant identification and its clearance predicted improved PFS and OS.
Collapse
Affiliation(s)
- Sanjay Popat
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Adam Januszewski
- Imperial College London and St Bartholomew's Hospital NHS Trust, London, UK
| | - Mary O'Brien
- The Royal Marsden NHS Foundation Trust, London, UK
- Imperial College London, London, UK
| | - Tanya Ahmad
- Royal Free London NHS Foundation Trust and University College London Hospitals NHS Foundation Trust, London, UK
| | | | - Ulrike Dernedde
- James Paget University Hospitals NHS Foundation Trust, Great Yarmouth, UK
| | | | | | - Riyaz Shah
- Maidstone and Tunbridge Wells NHS Trust, Maidstone, UK
| | | | - Tom Geldart
- University Hospital Dorset NHS Foundation Trust, Poole, UK
| | - Mathilda Cominos
- East Kent Hospitals University NHS Foundation Trust, Canterbury, UK
| | - Gill Gray
- Norfolk and Norwich University Hospitals, Norwich, UK
| | | | - Karen Bell
- Beatson West of Scotland Cancer Centre, Glasgow, UK
| | | | | | | | | | | | | |
Collapse
|
26
|
Zhang M, Sun L. First-line treatment for advanced or metastatic EGFR mutation-positive non-squamous non-small cell lung cancer: a network meta-analysis. Front Oncol 2025; 14:1498518. [PMID: 39882445 PMCID: PMC11774708 DOI: 10.3389/fonc.2024.1498518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/27/2024] [Indexed: 01/31/2025] Open
Abstract
Background Several head-to-head meta-analyses have compared the efficacy and safety of different first-line treatments in patients with EGFR mutation-positive (M+) advanced or metastatic non-squamous non-small cell lung cancer (nsq-NSCLC). However, there is a lack of comprehensive evaluation encompassing multiple treatment strategies. Our objective is to conduct a network meta-analysis that includes various treatment modalities, enabling both direct and indirect comparisons for a more thorough assessment. Methods We conducted a search of PubMed, Embase, Cochrane Library, and Web of Science databases from inception until May 8, 2024, to identify eligible randomized controlled trials (RCTs). The primary endpoints were progression-free survival (PFS) and overall survival (OS), while secondary outcomes included objective response rate (ORR) and grade 3 or higher adverse events (≥3AEs). Stata 15.0 and R 4.3.2 software were utilized for the network meta-analysis. Results A total of 30 RCTs, comprising 8654 participants, were included. The study encompassed the following 19 treatments: Chemotherapy; Afatinib; Afatinib + Cetuximab; Apatinib + Gefitinib; Befotertinib; Cetuximab + Chemotherapy; Erlotinib; Erlotinib + Bevacizumab; Erlotinib + Chemotherapy; Gefitinib; Gefitinib + Chemotherapy; Gefitinib + Olaparib; Icotinib; Icotinib + Chemotherapy; Lazertinib; Naquotinib; Osimertinib; Osimertinib + Bevacizumab; Osimertinib + Chemotherapy. The network meta-analysis results indicated that, in terms of PFS, Osimertinib + Chemotherapy (SUCRAs: 93.4%) and Osimertinib (SUCRAs: 84.61%) were the most effective. Regarding OS, Lazertinib (SUCRAs: 89.72%), Gefitinib (SUCRAs: 72.07%), and Osimertinib + Chemotherapy (SUCRAs: 70.74%) emerged as the top three options. Afatinib (SUCRAs: 92.27%) was associated with the best ORR improvement. For ≥3AEs, Afatinib (SUCRAs: 74.93%) and Osimertinib (SUCRAs: 69.42%) were likely the best choices. Conclusion Current evidence suggests that, considering both survival and safety, Osimertinib stands out as the preferred first-line treatment for untreated EGFR M + advanced or metastatic nsq-NSCLC. Notably, the combination of Osimertinib with chemotherapy demonstrated superior survival benefits. However, due to the limitations in the number and quality of included studies, these conclusions await further validation through more high-quality research. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42024562981, identifier CRD42024562981.
Collapse
Affiliation(s)
| | - Lan Sun
- Department of Oncology, Bishan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
27
|
de Moraes FCA, de Oliveira Rodrigues ALS, Pasqualotto E, Cassemiro JF, Choque JWL, Burbano RMR. Ethnic disparities in survival and progression among EGFR-mutated adenocarcinoma of lung cancer patients treated with tyrosine kinase inhibitors: a systematic review and meta-analysis. Clin Transl Oncol 2025:10.1007/s12094-024-03843-4. [PMID: 39797945 DOI: 10.1007/s12094-024-03843-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND The benefit of treatment with tyrosine kinase inhibitors targeting the epidermal growth factor receptor (EGFR-TKI) for lung adenocarcinoma (ADC), stratified by ethnicity, has not yet been fully elucidated. METHODS We searched PubMed, Embase, and Cochrane databases for studies that investigated EGFR-TKI for lung ADC. We computed hazard ratios (HRs) or risk ratios (RRs) for binary endpoints, with 95% confidence intervals (CIs). We used DerSimonian and Laird random-effect models for all endpoints. Heterogeneity was assessed using I2 statistics. R, version 4.2.3, was used for statistical analyses. RESULTS A total of 18 studies, comprising 4,497 patients with lung ADC randomized to TKIs or chemotherapy alone. TKIs significantly improved OS (HR 0.91; 95% CI 0.88-0.95), PFS (HR 0.60; 95% CI 0.38-0.97), and ORR (HR 0.34; 95% CI 0.25-0.48) in Asian patients, compared with the chemotherapy alone. In Caucasian patients, TKIs significantly improved PFS compared with chemotherapy alone (HR 0.34; 95% CI 0.25-0.48) and ORR(RR 2.35; 95% CI: 1.05-5.28). TKIs significantly reduced any adverse events of any grade in patients with mixed ethnicity (RR 0.86; 95% CI 0.76-0.98) and any adverse events of grade ≥ 3 in Caucasian patients (RR 0.67; 95% CI 0.51-0.89). CONCLUSIONS This is the first meta-analysis to reveal the ethnic influence on the outcomes of oncologic treatments for patients with lung ADC. In collaboration with in-depth molecular characterization, these data will allow the creation of a clinical-pathological predictive model to increase the magnitude of the expected benefit for patients from different ethnic groups.
Collapse
Affiliation(s)
| | | | - Eric Pasqualotto
- Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | | | | | | |
Collapse
|
28
|
Torresan S, Bortolot M, De Carlo E, Bertoli E, Stanzione B, Del Conte A, Spina M, Bearz A. Matters of the Heart: Cardiotoxicity Related to Target Therapy in Oncogene-Addicted Non-Small Cell Lung Cancer. Int J Mol Sci 2025; 26:554. [PMID: 39859270 PMCID: PMC11765312 DOI: 10.3390/ijms26020554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
The treatment of Non Small Cell Lung Cancer (NSCLC) has been revolutionised by the introduction of targeted therapies. With the improvement of response and frequently of overall survival, however, a whole new set of adverse events emerged. In fact, due to the peculiar mechanism of action of each one of the tyrosine kinase inhibitors and other targeted therapies, every drug has its own specific safety profile. In addition, this safety profile could not fully emerge from clinical trials data, as patients in clinical practice usually have more comorbidities and frailties. Cardiotoxicity is a well-known and established adverse event of anti-cancer therapies. However, only recently it has become a central topic for targeted therapies in NSCLC, due to the unknown real range and frequency. Management of this toxicity begins with prevention, and must balance the need of continuing an effective anticancer treatment versus low risk of even fatal events and the preservation of long-term quality of life. The aim of this review is to summarise the current knowledge focusing on currently used targeted therapies in NSCLC.
Collapse
Affiliation(s)
- Sara Torresan
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico, 33081 Aviano, Italy
- Department of Medicine (DME), University of Udine, 33100 Udine, Italy
| | - Martina Bortolot
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico, 33081 Aviano, Italy
- Department of Medicine (DME), University of Udine, 33100 Udine, Italy
| | - Elisa De Carlo
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico, 33081 Aviano, Italy
| | - Elisa Bertoli
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico, 33081 Aviano, Italy
| | - Brigida Stanzione
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico, 33081 Aviano, Italy
| | - Alessandro Del Conte
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico, 33081 Aviano, Italy
| | - Michele Spina
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico, 33081 Aviano, Italy
| | - Alessandra Bearz
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico, 33081 Aviano, Italy
| |
Collapse
|
29
|
Liao C, Bai L, He T, Liang Q, Hu D, Lei S, He Y, Wang Y. Efficacy and Safety of Chemotherapy or EGFR-TKIs as First-Line Therapy in NSCLC Patients Harboring Non-Ex 20 Ins Uncommon EGFR Mutations: A Retrospective Study in China. Cancer Med 2025; 14:e70542. [PMID: 39739938 DOI: 10.1002/cam4.70542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Uncommon EGFR mutations are a kind of heterogeneous group of mutations with various responses to EGFR-TKIs and are often excluded from most prospective clinical trials. In this real-world retrospective study, we retrospectively compared the efficacy and safety of chemotherapy or various generations of EGFR-TKIs as first-line therapy in NSCLC Chinese patients harboring non-ex 20 ins uncommon EGFR mutations. METHODS We enrolled 139 NSCLC patients with non-ex 20 ins uncommon EGFR mutations in this study retrospectively. Patients' clinical characteristics and the efficacy and safety of different first-line therapies were analyzed and compared. RESULTS Our data reviewed that for first-line therapy, NSCLC patients harboring non-ex 20 ins uncommon EGFR mutations benefited more from EGFR-TKIs compared with chemotherapy. Afatinib performed with great efficacy for the majority of non-ex 20 ins uncommon EGFR mutations (N = 43, ORR = 41.86%, mPFS = 13.5 months, mOS = 20.8 months), especially in L861Q mutation (mPFS = 18.4 months). Osimertinib also demonstrated efficacy in patients harboring non-ex 20 ins uncommon EGFR mutations (N = 36, ORR = 27.78%, mPFS = 10.0 months, mOS = 21.0 months), especially in those without L861Q and G719X mutations (mPFS = 12.1 months). When treated with afatinib, patients harboring non-ex 20 ins uncommon EGFR mutations should pay attention to the management of safety, especially for gastrointestinal-related AE and rash, while osimertinib was safer. CONCLUSION Taking into account both efficacy and safety, afatinib and osimertinib are better choices than chemotherapy and first-generation EGFR-TKIs for NSCLC patients with non-ex 20 ins uncommon EGFR mutations. L861Q showed a trend toward a better response to afatinib, while in those without L861Q and G719X mutations, osimertinib might be a better choice. Safety also should be a concern when choosing EGFR-TKI for treatment, patients should pay attention to the management of safety when using afatinib while osimertinib is safer.
Collapse
Affiliation(s)
- Chen Liao
- Department of Respiratory and Critical Care Medicine, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Li Bai
- Department of Respiratory and Critical Care Medicine, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Tingting He
- Department of Respiratory and Critical Care Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Qingle Liang
- Department of Clinical Laboratory Medicine, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Defeng Hu
- Department of Respiratory and Critical Care Medicine, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Shipeng Lei
- Department of Respiratory and Critical Care Medicine, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Yong He
- Department of Respiratory and Critical Care Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Yubo Wang
- Department of Respiratory and Critical Care Medicine, Chongqing University Jiangjin Hospital, Chongqing, China
| |
Collapse
|
30
|
Zhang W, Zhang X, Zhao W, Guo Z, Liu X, Ye L, Chen Z, Xu K, Liu Y, Wang H, Zhao L, Zhang Q, Li Y, Chen X, He Y. What is the optimal first-line regimen for advanced non-small cell lung cancer patients with epidermal growth factor receptor mutation: a systematic review and network meta-analysis. BMC Pulm Med 2024; 24:620. [PMID: 39695621 DOI: 10.1186/s12890-024-03438-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
OBJECTIVES There are currently various tyrosine kinase inhibitor (TKI)-based regimens available, and it can be challenging for clinicians to determine the most effective and safe option due to the lack of direct comparisons between these regimens. In this study, we conducted a network meta-analysis comparing the efficacy and safety of distinct regimens to determine the optimal regimen for patients with EGFR-mutated non-small cell lung cancer, thereby facilitating clinical decision-making. MATERIALS AND METHODS The PubMed, Embase, Cochrane Library databases and international conference databases were comprehensively searched from their inception to 02 April 2024 for collecting data regarding efficacy and safety from eligible randomized controlled trials (RCTs). Following literature screening and data extraction, a NMA was conducted to compare the efficacy and safety among 21 regimens with a random-effects consistency model in a Bayesian framework using a Markov Chain Monte Carlo simulation technique within the GEMTC package. RESULTS A total of 35 RCTs were included, involving 9718 individuals and 21 regimens. Compared with other interventions, combination therapies based on third-generation TKIs, especially osimertinib plus ramucirumab, showed the most favorable PFS prolongation in overall patients. Consistently, subgroup analyses showed that third-generation TKIs-based combination regimens were superior to other regimens in most prespecified subgroups with distinct clinicopathological characteristics. In terms of overall survival, despite the combination regimens based on third-generation TKIs also showing relatively superior outcomes, erlotinib plus chemotherapy and gefitinib plus chemotherapy were ranked more favorably. In terms of safety profile, combination therapies based on third-generation TKIs did not significantly increase the incidence of grade 3 or higher adverse events compared with other regimens. CONCLUSION Our study concluded that combination regimens based on third-generation TKIs (osimertinib plus ramucirumab, osimertinib plus chemotherapy, osimertinib plus bevacizumab, amivantamab plus lazertinib and aumolertinib plus apatinib) could be the new and clinically preferable first-line, standard of care for EGFR-mutated advanced non-small cell lung cancer. TRIAL REGISTRATION The protocol was registered in the Prospective Register of Systematic Reviews (PROSPERO CRD42023480596).
Collapse
Affiliation(s)
- Wengang Zhang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Xinyu Zhang
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Wencheng Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Zhiyi Guo
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Xinyue Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Li Ye
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Zhimin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Kandi Xu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Yujin Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Lishu Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Qianqian Zhang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Yujie Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Xuyang Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| |
Collapse
|
31
|
Huang L, Kong W, Luo Y, Xie H, Liu J, Zhang X, Zhang G. Predicting epidermal growth factor receptor mutation status of lung adenocarcinoma based on PET/CT images using deep learning. Front Oncol 2024; 14:1458374. [PMID: 39735601 PMCID: PMC11671303 DOI: 10.3389/fonc.2024.1458374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/20/2024] [Indexed: 12/31/2024] Open
Abstract
Background The aim of this study is to develop deep learning models based on 18F-fluorodeoxyglucose positron emission tomography/computed tomographic (18F-FDG PET/CT) images for predicting individual epidermal growth factor receptor (EGFR) mutation status in lung adenocarcinoma (LUAD). Methods We enrolled 430 patients with non-small-cell lung cancer from two institutions in this study. The advanced Inception V3 model to predict EGFR mutations based on PET/CT images and developed CT, PET, and PET + CT models was used. Additionally, each patient's clinical characteristics (age, sex, and smoking history) and 18 CT features were recorded and analyzed. Univariate and multivariate regression analyses identified the independent risk factors for EGFR mutations, and a clinical model was established. The performance using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, recall, and F1-value was evaluated. The DeLong test was used to compare the predictive performance across various models. Results Among these four models, deep learning models based on CT and PET + CT exhibit the same predictive performance, followed by PET and the clinical model. The AUC values for CT, PET, PET + CT, and clinical models in the training set are 0.933 (95% CI, 0.922-0.943), 0.895 (95% CI, 0.882-0.907), 0.931 (95% CI, 0.921-0.942), and 0.740 (95% CI, 0.685-0.796), respectively; whereas those in the testing set are:0.921 (95% CI, 0.904-0.938), 0.876 (95% CI, 0.855-0.897), 0.921 (95% CI, 0.904-0.937), and 0.721 (95% CI, 0.629-0.814), respectively. The DeLong test results confirm that all deep learning models are superior to clinical one. Conclusion The PET/CT images based on trained CNNs effectively predict EGFR and non-EGFR mutations in LUAD. The deep learning predictive models could guide treatment options.
Collapse
Affiliation(s)
- Lele Huang
- Department of Nuclear Medicine, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Weifang Kong
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yongjun Luo
- Department of Nuclear Medicine, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Hongjun Xie
- Department of Nuclear Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiangyan Liu
- Department of Nuclear Medicine, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Xin Zhang
- Department of Pharmaceuticals Diagnosis, GE Healthcare, Beijing, China
| | - Guojin Zhang
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
32
|
Pang LL, Zhuang WT, Li JJ, Li B, Huang YH, Liao J, Li MD, Zhang L, Fang WF. Specifying the choice of EGFR-TKI based on brain metastatic status for advanced NSCLC with EGFR p.L861Q mutation. Neoplasia 2024; 58:101073. [PMID: 39427513 PMCID: PMC11533552 DOI: 10.1016/j.neo.2024.101073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND In-depth insight into the genomic features of the uncommon EGFR p.L861Q mutant NSCLC is scarcely performed, and no consensus on the preferred treatment strategy has been established. Moreover, the therapeutic implications of EGFR-TKI stratified by clinical and molecular features remained largely unknown. METHODS A multi-center NGS database comprising 44,993 NSCLC samples was utilized for the genomic landscape profiling of EGFR p.L861Q mutation. Furthermore, a real-world cohort of 207 patients harboring EGFR p.L861Q mutation with complete treatment history was curated for comprehensive clinical analysis. RESULTS L861Q is prevalent in approximately 2.1% of EGFR-mutated NSCLC and is typically co-mutated with EGFR p.G719X on the same allele (20%) and exhibits co-occurrent EGFR copy number amplification in approximately 17% of cases. In the first-line setting, afatinib and third-generation EGFR-TKI have been shown to yield notably superior treatment outcomes compared to first-generation EGFR-TKI (1st vs.2nd vs.3rd generations, ORR: 15.8% vs.56.5% vs.46.7%, P=0.01; median PFS: 6.4 vs.13.5 vs.15.1 months, P=0.002). This finding consistently held for patients without CNS metastases (1st vs.2nd vs.3rd generations, median PFS:6.0 vs.18.2 vs.14.1 months, P=0.003). In contrast, third-generation EGFR-TKI demonstrated superior efficacy compared to afatinib or first-generation TKI among the subgroup of brain metastasis (Pooled 1st/2nd-generation vs.3rd-generation TKI, brain ORR:0.00% vs.33.33%; median PFS:7.9 vs.19.3 months, P=0.021). Additional concurrent EGFR mutations or EGFR amplification did not yield a discernible impact on the efficacy of EGFR-TKI. CONCLUSIONS The present study comprehensively elucidates the molecular features of EGFR p.L861Q mutation and underscores the optimal therapeutic choice of first-line EGFR-TKI based on brain metastatic status.
Collapse
Affiliation(s)
- Lan-Lan Pang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Wei-Tao Zhuang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Jun-Jun Li
- Burning Rock Biotech, Guangdong, Guangzhou 510300, People's Republic of China
| | - Bing Li
- Burning Rock Biotech, Guangdong, Guangzhou 510300, People's Republic of China
| | - Yi-Hua Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Jun Liao
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Meng-Di Li
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Li Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Wen-Feng Fang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China.
| |
Collapse
|
33
|
Hernandez-Martinez JM, Guijosa A, Flores-Estrada D, Cruz-Rico G, Turcott J, Hernández-Pedro N, Caballé-Perez E, Cardona AF, Arrieta O. Real-World Survival Outcomes in Non-Small Cell Lung Cancer: The Impact of Genomic Testing and Targeted Therapies in a Latin American Middle-Income Country. JCO Glob Oncol 2024; 10:e2400338. [PMID: 39637345 DOI: 10.1200/go-24-00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/22/2024] [Accepted: 10/16/2024] [Indexed: 12/07/2024] Open
Abstract
PURPOSE Targeted therapies are indicated for patients with non-small cell lung cancer (NSCLC) and driver tumor mutations. However, real-world studies on the survival benefits of these agents are limited. This study aimed to evaluate the effect of targeted therapies matched to a genomic alteration on the survival of patients with NSCLC. METHODS This retrospective study included 446 patients with advanced NSCLC who underwent next-generation sequencing between 2016 and 2023 at the Instituto Nacional de Cancerología in Mexico. The primary outcomes were progression-free survival (PFS) and overall survival (OS). RESULTS For the entire cohort, the PFS and OS were 10.71 months (95% CI, 9.35 to 12.06) and 47.77 months (95% CI, 29.67 to 65.86). PFS was significantly longer in patients with actionable mutations treated with targeted therapies (19.41 months [95% CI, 14.27 to 24.55]; P < .001) than in patients without actionable mutations (6.4 months [95% CI, 4.4 to 8.4]) or not treated with targeted therapies (6.6 months [95% CI, 5.3 to 7.89]). Similarly, OS was significantly longer in patients with actionable mutations treated with targeted therapies (89.69 months [95% CI, 45.54 to 133.84]; P < .001) than in patients without actionable mutations (17.11 months [95% CI, 8.65 to 25.57]) or not treated with targeted therapies (22.3 months [95% CI, 12.48 to 32.1]). Survival gains were driven by significant improvements in PFS and OS in patients with EGFR and ALK mutations. CONCLUSION This real-world data analysis demonstrated that targeted therapies improve the survival of patients with NSCLC with actionable mutations, which supports a recommendation for widening access to broad-based genomic testing and targeted therapies.
Collapse
Affiliation(s)
- Juan-Manuel Hernandez-Martinez
- Laboratorio de Medicina Personalizada de la Unidad de Oncología Torácica, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
- Thoracic Oncology Unit, Department of Thoracic Oncology, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
- CONAHCYT-Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Alberto Guijosa
- Thoracic Oncology Unit, Department of Thoracic Oncology, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Diana Flores-Estrada
- Thoracic Oncology Unit, Department of Thoracic Oncology, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Graciela Cruz-Rico
- Thoracic Oncology Unit, Department of Thoracic Oncology, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Jenny Turcott
- Thoracic Oncology Unit, Department of Thoracic Oncology, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Norma Hernández-Pedro
- Laboratorio de Medicina Personalizada de la Unidad de Oncología Torácica, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
- Thoracic Oncology Unit, Department of Thoracic Oncology, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Enrique Caballé-Perez
- Laboratorio de Medicina Personalizada de la Unidad de Oncología Torácica, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
- Thoracic Oncology Unit, Department of Thoracic Oncology, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Andrés F Cardona
- Direction of Research and Education, Luis Carlos Sarmiento Angulo Cancer Treatment and Research Center (CTIC), Bogotá, Colombia
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (FOX-G/ONCOLGroup), Universidad El Bosque, Bogotá, Colombia
| | - Oscar Arrieta
- Laboratorio de Medicina Personalizada de la Unidad de Oncología Torácica, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
- Thoracic Oncology Unit, Department of Thoracic Oncology, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| |
Collapse
|
34
|
Takashima K, Wakabayashi H, Murakami Y, Saiki A, Matsuzawa Y. Prognostic Factors in Japanese EGFR Mutation-Positive Non-Small-Cell Lung Cancer: A Real-World Single-Center Retrospective Cohort Study. Drugs Real World Outcomes 2024; 11:603-615. [PMID: 39198334 PMCID: PMC11589054 DOI: 10.1007/s40801-024-00449-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND The prognosis of patients with epidermal growth factor receptor (EGFR) mutation-positive lung cancer has improved significantly since the advent of EGFR tyrosine kinase inhibitors (EGFR-TKIs). We aimed to investigate the relationship between patient characteristics, EGFR genotype, therapeutic agents, and the prognosis of the patients with EGFR mutation-positive lung cancer. METHODS This retrospective cohort study analyzed 198 Japanese patients with unresectable EGFR mutation-positive lung cancer who were treated with EGFR-TKIs at Toho University Sakura Medical Center from April 2006 to December 2021. Factors associated with overall survival (OS) were analyzed using Cox proportional hazards analysis. RESULTS Patients who received osimertinib had a significantly longer OS than did those not receiving it (median OS, 36.2 versus 20.7 months; p < 0.001).There were significant differences in OS between patients with EGFR mutation who received osimertinib as first-line treatment, T790M-positive patients who received osimertinib as second- or later-line treatment, and those who did not receive it (median OS, 28.2 versus 40.2 versus 20.7 months; p = 0.003). However, in T790M-negative patients, no significant difference in OS was noted between those who did and did not receive osimertinib as post-treatment (median OS, 28.0 versus 40.0 months; p = 0.619). Multivariate Cox proportional hazards analysis showed that osimertinib treatment was associated with longer OS (hazard ratio, 0.480; 95% confidence interval, 0.326-0.707; p < 0.001). CONCLUSION The patients who were T790M-positive in the first-line treatment with first or second-generation EGFR-TKIs and were given osimertinib as the second or later line treatment had a better prognosis than the patients who were T790M-negative in the first-line treatment with first or second-generation EGFR-TKIs and could not receive osimertinib.
Collapse
Affiliation(s)
- Kenta Takashima
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University Graduate School of Medicine, Ota-ku, Tokyo, Japan
| | - Hiroki Wakabayashi
- Department of Internal Medicine, Toho University Sakura Medical Center, 564-1 Shimoshidu, Sakura-shi, Chiba, 285-8741, Japan.
| | - Yu Murakami
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University Graduate School of Medicine, Ota-ku, Tokyo, Japan
| | - Atsuhito Saiki
- Department of Internal Medicine, Toho University Sakura Medical Center, 564-1 Shimoshidu, Sakura-shi, Chiba, 285-8741, Japan
| | - Yasuo Matsuzawa
- Department of Internal Medicine, Toho University Sakura Medical Center, 564-1 Shimoshidu, Sakura-shi, Chiba, 285-8741, Japan
| |
Collapse
|
35
|
Masciale V, Banchelli F, Grisendi G, Samarelli AV, Raineri G, Rossi T, Zanoni M, Cortesi M, Bandini S, Ulivi P, Martinelli G, Stella F, Dominici M, Aramini B. The molecular features of lung cancer stem cells in dedifferentiation process-driven epigenetic alterations. J Biol Chem 2024; 300:107994. [PMID: 39547513 PMCID: PMC11714729 DOI: 10.1016/j.jbc.2024.107994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Cancer stem cells (CSCs) may be dedifferentiated somatic cells following oncogenic processes, representing a subpopulation of cells able to promote tumor growth with their capacities for proliferation and self-renewal, inducing lineage heterogeneity, which may be a main cause of resistance to therapies. It has been shown that the "less differentiated process" may have an impact on tumor plasticity, particularly when non-CSCs may dedifferentiate and become CSC-like. Bidirectional interconversion between CSCs and non-CSCs has been reported in other solid tumors, where the inflammatory stroma promotes cell reprogramming by enhancing Wnt signaling through nuclear factor kappa B activation in association with intracellular signaling, which may induce cells' pluripotency, the oncogenic transformation can be considered another important aspect in the acquisition of "new" development programs with oncogenic features. During cell reprogramming, mutations represent an initial step toward dedifferentiation, in which tumor cells switch from a partially or terminally differentiated stage to a less differentiated stage that is mainly manifested by re-entry into the cell cycle, acquisition of a stem cell-like phenotype, and expression of stem cell markers. This phenomenon typically shows up as a change in the form, function, and pattern of gene and protein expression, and more specifically, in CSCs. This review would highlight the main epigenetic alterations, major signaling pathways and driver mutations in which CSCs, in tumors and specifically, in lung cancer, could be involved, acting as key elements in the differentiation/dedifferentiation process. This would highlight the main molecular mechanisms which need to be considered for more tailored therapies.
Collapse
Affiliation(s)
- Valentina Masciale
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Federico Banchelli
- Department of Statistical Sciences "Paolo Fortunati", Alma Mater Studiorum- University of Bologna, Bologna, Italy
| | - Giulia Grisendi
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Anna Valeria Samarelli
- Laboratory of and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Giulia Raineri
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Tania Rossi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michele Zanoni
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michela Cortesi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Sara Bandini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Martinelli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Franco Stella
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy; Division of Oncology, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena, Italy
| | - Beatrice Aramini
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy.
| |
Collapse
|
36
|
Yang C, Qu J, Wu J, Cai S, Liu W, Deng Y, Meng Y, Zheng L, Zhang L, Wang L, Guo X. Single-cell dissection reveals immunosuppressive F13A1+ macrophage as a hallmark for multiple primary lung cancers. Clin Transl Med 2024; 14:e70091. [PMID: 39601163 PMCID: PMC11600049 DOI: 10.1002/ctm2.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The increasing prevalence of multiple primarylung cancers (MPLCs) presents challenges to current diagnostic and clinicalmanagement approaches. However, the molecular mechanisms driving MPLCdevelopment and distinguishing it from solitary primary lung cancers (SPLCs)remain largely unexplored. METHODS We performed a comparative single-cell RNAsequencing (scRNA-seq) analysis on tumour and adjacent para-tumour tissues fromMPLC and SPLC patients to comparatively evaluate their immunological landscapes.Additionally, multiplex immunofluorescence (mIF) staining and independentvalidation datasets were used to confirm findings. RESULTS MPLCs and SPLCs share significant similarities in genetic, transcriptomic and immune profiles, suggesting common therapeutic strategies such as EGFR-TKIs andICIs. Notably, an immunosuppressive macrophage subtype, F13A1+ Macrophage (Mϕ), is specifically enriched in MPLCs. This subtype overexpresses M2 macrophagemarkers and exhibits up-regulation of SPP1-CD44/CCL13-ACKR1 interactions, indicatingits role in shaping the immunosuppressive tumour microenvironment and promotingtumour growth in MPLCs. CONCLUSIONS This study unveils shared molecular mechanismsbetween MPLCs and SPLCs, while identifying MPLC-specific cellular and molecularfeatures, such as the role of F13A1+ macrophages. The findings provide novelinsights into MPLC pathogenesis, supporting the development of targetedtherapeutic strategies. KEY POINTS Comparative scRNA-seq analysis reveals significant similarities in genetic, transcriptomicand immune profiles between MPLCs and SPLCs. Identification of a unique immunosuppressive F13A1+ macrophage subtype, preferentially enriched in MPLCs, linked to immune evasion and tumourprogression. SPP1-CD44/CCL13-ACKR1 interactions are crucial in MPLC tumour microenvironment, indicating potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Chenglin Yang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| | - Jiahao Qu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
- Southern University of Science and TechnologyShenzhen CityGuangdong ProvinceChina
| | - Jingting Wu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| | - Songhua Cai
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| | - Wenyi Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| | - Youjun Deng
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| | - Yiran Meng
- Department of R&DHangzhou Repugene Technology Co., Ltd.HangzhouChina
| | - Liuqing Zheng
- Department of R&DHangzhou Repugene Technology Co., Ltd.HangzhouChina
| | - Lishen Zhang
- Department of R&DHangzhou Repugene Technology Co., Ltd.HangzhouChina
| | - Li Wang
- Department of R&DHangzhou Repugene Technology Co., Ltd.HangzhouChina
| | - Xiaotong Guo
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| |
Collapse
|
37
|
Chen CP, Hung TH, Hsu PC, Yeh CN, Huang WK, Pan YR, Hsiao YT, Lo CH, Wu CE. Synergistic effects of MK-1775 and gemcitabine on cytotoxicity in non-small cell lung cancer. Heliyon 2024; 10:e40299. [PMID: 39605823 PMCID: PMC11600051 DOI: 10.1016/j.heliyon.2024.e40299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/29/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Background Non-small cell lung cancer (NSCLC) remains a leading cause of cancer-related mortality. Chemotherapy is crucial in NSCLC treatment, and targeting Wee1 kinase, a key regulator of the G2/M cell cycle checkpoint, may enhance the efficacy of cytotoxic agents. This study investigates the potential of the Wee1 inhibitor MK-1775 in combination with gemcitabine and pemetrexed to enhance cytotoxicity in NSCLC cell lines. Methods Human NSCLC cell lines H1975, HCC827, A549, and H460 were treated with MK-1775 and chemotherapeutic agents, both alone and in combination. Growth inhibitory effects were assessed using the CCK8 assay. Apoptotic markers were evaluated via Western blotting, and cell cycle distribution was analyzed using FACS. In vivo efficacy was assessed using xenograft mouse models with H1975 and H460 cells, monitoring tumor growth and treatment toxicity. Results MK-1775 combined with gemcitabine or pemetrexed significantly decreased cell survival rates and IC50 values in A549 and HCC827 cell lines. Increased levels of phosphorylated cdc2, γ-H2AX, and PARP indicated enhanced apoptosis. Cell cycle analysis revealed G2/M phase arrest in p53-mutant HCC827 and H1975 cells treated with MK-1775 and gemcitabine. In xenograft models, the combination significantly inhibited tumor growth without significant toxicity. Conclusions MK-1775 enhances the cytotoxic effects of gemcitabine and pemetrexed in NSCLC cell lines and effectively inhibits tumor growth in vivo. These findings suggest that Wee1 inhibition by MK-1775, combined with chemotherapy, represents a promising therapeutic strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Chiao-Ping Chen
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tsai-Hsien Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ping-Chih Hsu
- Division of Thoracic Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Nan Yeh
- Liver Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of General Surgery, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Kuan Huang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yi-Ru Pan
- Liver Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of General Surgery, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Tien Hsiao
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chih-Hong Lo
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chiao-En Wu
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei City, Taiwan
| |
Collapse
|
38
|
Liu A, Wang X, Wang L, Zhuang H, Xiong L, Gan X, Wang Q, Tao G. EGFR-TKIs or EGFR-TKIs combination treatments for untreated advanced EGFR-mutated NSCLC: a network meta-analysis. BMC Cancer 2024; 24:1390. [PMID: 39533233 PMCID: PMC11555867 DOI: 10.1186/s12885-024-13168-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) and EGFR-TKI combination treatments have become the standard first-line treatments for EGFR-mutated non-small cell lung cancer (NSCLC) patients. However, the best option has yet to be determined. This study compares the efficacy and safety of various first-line EGFR-TKI monotherapies and combination treatments for advanced EGFR-mutated NSCLC. METHODS We searched PubMed, Embase, the Cochrane Central Register of Controlled Clinical Trials databases, and several international conferences to identify randomized controlled trials reporting on first-line EGFR-TKI treatments for patients with advanced EGFR-mutated NSCLC. The study quality was assessed using the revised tool for risk of bias in randomized trials. The efficacy and safety outcomes of the included treatments were compared by network meta-analysis based on a frequentist approach. RESULTS We identified 26 trials (8,359 patients) investigating 14 treatment groups, including first, second, and third-generation EGFR-TKIs and their combination treatments. Osimertinib plus chemotherapy and lazertinib plus amivantamab showed the highest efficacy in improving progression-free survival. New third-generation EGFR-TKIs demonstrated comparable efficacy to osimertinib alone but did not surpass it. Subgroup analyses revealed slight variation in treatment efficacy based on mutation types and patient demographics. Combination treatments were associated with a higher incidence of adverse events. CONCLUSION These results reveal that osimertinib plus chemotherapy and lazertinib plus amivantamab are superior first-line options for patients with advanced EGFR-mutated NSCLC. However, these combinations are associated with higher adverse event rates.
Collapse
Affiliation(s)
- Ao Liu
- Department of Respiratory Medicine, Chengdu BOE Hospital, Chengdu, Sichuan Province, 610000, China.
| | - Xiaoming Wang
- Department of Respiratory Medicine, Chengdu BOE Hospital, Chengdu, Sichuan Province, 610000, China
| | - Lian Wang
- Department of Respiratory Medicine, Chengdu BOE Hospital, Chengdu, Sichuan Province, 610000, China
| | - Han Zhuang
- Department of Respiratory Medicine, Chengdu BOE Hospital, Chengdu, Sichuan Province, 610000, China
| | - Liubo Xiong
- Department of Respiratory Medicine, Chengdu BOE Hospital, Chengdu, Sichuan Province, 610000, China
| | - Xiao Gan
- Department of Respiratory Medicine, Chengdu BOE Hospital, Chengdu, Sichuan Province, 610000, China
| | - Qian Wang
- Department of Respiratory Medicine, Chengdu BOE Hospital, Chengdu, Sichuan Province, 610000, China
| | - Guanyu Tao
- Department of Respiratory Medicine, Chengdu BOE Hospital, Chengdu, Sichuan Province, 610000, China
| |
Collapse
|
39
|
Jiang Z, Gu Z, Yu X, Cheng T, Liu B. Research progress on the role of bypass activation mechanisms in resistance to tyrosine kinase inhibitors in non-small cell lung cancer. Front Oncol 2024; 14:1447678. [PMID: 39582541 PMCID: PMC11581962 DOI: 10.3389/fonc.2024.1447678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/25/2024] [Indexed: 11/26/2024] Open
Abstract
The clinical application of small molecule tyrosine kinase inhibitors (TKIs) has significantly improved the quality of life and prognosis of patients with non-small cell lung cancer (NSCLC) carrying driver genes. However, resistance to TKI treatment is inevitable. Bypass signal activation is one of the important reasons for TKI resistance. Although TKI drugs inhibit downstream signaling pathways of driver genes, key signaling pathways within tumor cells can still be persistently activated through bypass routes such as MET gene amplification, EGFR gene amplification, and AXL activation. This continuous activation maintains tumor cell growth and proliferation, leading to TKI resistance. The fundamental strategy to treat TKI resistance mediated by bypass activation involves simultaneously inhibiting the activated bypass signals and the original driver gene signaling pathways. Some clinical trials based on this combined treatment approach have yielded promising preliminary results, offering more treatment options for NSCLC patients with TKI resistance. Additionally, early identification of resistance mechanisms through liquid biopsy, personalized targeted therapy against these mechanisms, and preemptive targeting of drug-tolerant persistent cells may provide NSCLC patients with more sustained and effective treatment.
Collapse
Affiliation(s)
- Ziyang Jiang
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihan Gu
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaomin Yu
- Department of Emergency Medicine, West China Hospital, Sichuan University, West China School of Nursing, Sichuan University, Chengdu, China
- Institute of Disaster Medicine, Sichuan University, Chengdu, China
- Nursing Key Laboratory of Sichuan Province, West China Hospital, Chengdu, China
| | - Tao Cheng
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bofu Liu
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
40
|
Priantti JN, Fujiwara Y, Aquino de Moraes FC, Michelon I, Castro C, Leighl NB, Cavalcante L, Addeo A, Bar J, Horita N, Cortellini A, Nassar AH, Vilbert M, Naqash AR. Safety and Efficacy of Osimertinib in Patients With Non-Small-Cell Lung Cancer and Uncommon Tumoral Epidermal Growth Factor Receptor Mutations: A Systematic Review and Single-Arm Meta-Analysis. JCO Precis Oncol 2024; 8:e2400331. [PMID: 39576954 DOI: 10.1200/po.24.00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/12/2024] [Accepted: 10/11/2024] [Indexed: 11/24/2024] Open
Abstract
PURPOSE The activity of osimertinib is not fully characterized in non-small-cell lung cancer (NSCLC) with uncommon epidermal growth factor receptor (EGFR) mutations. Therefore, we conducted a systematic review and meta-analysis to assess the safety and efficacy of osimertinib in patients with NSCLC harboring uncommon somatic EGFR mutations. METHODS PubMed, Embase, and the Cochrane Library were searched for eligible studies reporting the efficacy and safety of osimertinib in NSCLC with uncommon EGFR mutations defined as any mutations other than exon 19 deletion, L858R and T790M mutations, and exon 20 insertion, except when in compound. Then, we performed a meta-analysis to pool survival outcomes and antitumoral activity, including intracranial (ic) response and adverse events. RESULTS Fifteen studies comprising 594 patients were included. The most frequently observed uncommon solitary mutations were G719X in 25% (81/327) of patients and L861Q in 21% (69/327). The most common compound mutations were G719X with T790M in 12% (23/192) of patients and G719X with S768I in 11% (22/192). Pooled analysis showed an objective response rate (ORR) of 51.30% (95% CI, 45.80 to 56.81), a disease control rate (DCR) of 90.11% (95% CI, 86.27 to 92.96), a median progression-free survival of 9.71 months (95% CI, 7.96 to 11.86), and a median overall survival of 16.79 months (95% CI, 9.93 to 28.39). icORR was 45.96% (95% CI, 30.18 to 62.17), and icDCR was 95.76% (95% CI, 69.84 to 100). Osimertinib was well tolerated with a frequency of grade 3 or more adverse events of 21.77% (95% CI, 6.24 to 43.33). CONCLUSION Osimertinib demonstrated robust response in NSCLC harboring uncommon EGFR mutations, without unanticipated safety concerns.
Collapse
Affiliation(s)
- Jonathan N Priantti
- Department of Internal Medicine, School of Medicine, Federal University of Amazonas-UFAM, Manaus, Brazil
| | - Yu Fujiwara
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | | | | | | | - Natasha B Leighl
- Department of Medical Oncology and Hematology, University Health Network, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Ludimila Cavalcante
- Department of Hematology/Oncology, University of Virginia Comprehensive Cancer Center, Charlottesville, VA
| | - Alfredo Addeo
- Department of Oncology, University Hospital HUG, Geneva, Switzerland
| | - Jair Bar
- Sheba Medical Center, Ramat Gan, Israel
| | - Nobuyuki Horita
- Chemotherapy Center, Yokohama City University Hospital, Yokohama, Japan
| | - Alessio Cortellini
- Operative Research Unit of Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Amin H Nassar
- Department of Hematology/ Oncology, Yale New Haven Hospital, New Haven, CT
| | - Maysa Vilbert
- Massachusetts General Hospital Cancer Center, Boston, MA
| | - Abdul Rafeh Naqash
- Medical Oncology/TSET Phase 1 Program, Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK
| |
Collapse
|
41
|
Hata A, Katakami N, Takase N, Kibata K, Yamanaka Y, Tamiya M, Mori M, Kijima T, Morita S, Sakai K, Nishio K. Afatinib plus bevacizumab combination after osimertinib resistance in advanced EGFR-mutant non-small cell lung cancer: Phase II ABCD-study. Lung Cancer 2024; 197:107988. [PMID: 39393258 DOI: 10.1016/j.lungcan.2024.107988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
INTRODUCTION Many clinical studies showed a synergy of epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) and vascular endothelial growth factor inhibitors. We hypothesized afatinib plus bevacizumab exerts clinical potency after developing various osimertinib resistant mechanisms. METHODS EGFR-mutant non-small cell lung cancer patients were enrolled after osimertinib resistance. Afatinib at 30-40 mg/day and bevacizumab at 15 mg/kg tri-weekly were administered until progression. Plasma/histologic rebiopsied samples after osimertinib failure were analyzed to examine resistant mechanisms: gene alterations/copy-number gain using cancer personalized profiling by deep sequencing. RESULTS Between January 2018 and October 2020, 28 patients were enrolled. Response and disease control rates were 17.9 % and 78.6 %, respectively. Median duration of response was 9.0 (range, 4.2-22.3) months. Median progression-free and overall survivals were 2.7 and 9.3 months, respectively. Twenty-eight (100 %) plasma and/or 21 (75 %) histologic rebiopsies identified: 17 (61 %) TP53; 15 (54 %) T790M; 9 (32 %) uncommon EGFR; 9 (32 %) MET; 6 (21 %) C797S; 3 (11 %) BRAF; 2 (7 %) HER2; 2 (7 %) KRAS; and 2 (7 %) PI3K mutations. One (17 %) of 6 C797S patients showed complete response. Three (33 %) of 9 uncommon EGFR-mutated patients achieved radiographic response. Neither 15 T790M-positive nor 6 EGFR downstream signaling mutations: BRAF; KRAS; or PI3K-positive patients responded, but 5 (38 %) of 13 T790M-negative patients responded. Adverse events ≥ grade 3 and incidence ≥ 5 % were: hypertension (29 %); proteinuria (7 %); and diarrhea (7 %). There were neither treatment-related death nor interstitial lung disease. CONCLUSIONS Selected population could obtain clinical benefit from afatinib plus bevacizumab, based on rebiopsy results after osimertinib resistance.
Collapse
Affiliation(s)
- Akito Hata
- Division of Thoracic Oncology, Kobe Minimally Invasive Cancer Center, Japan.
| | | | - Naoto Takase
- Department of Medical Oncology, Takarazuka City Hospital, Japan
| | - Kayoko Kibata
- Department of Respiratory Medicine, First Department of Internal Medicine, Kansai Medical University, Japan
| | - Yuta Yamanaka
- Department of Respiratory Medicine, First Department of Internal Medicine, Kansai Medical University, Japan
| | - Motohiro Tamiya
- Department of Thoracic Oncology, Osaka International Cancer Institute, Japan
| | - Masahide Mori
- Department of Thoracic Oncology, National Hospital Organization Osaka Toneyama Medical Center, Japan
| | - Takashi Kijima
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Japan
| | - Satoshi Morita
- Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University, Faculty of Medicine, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University, Faculty of Medicine, Japan
| |
Collapse
|
42
|
Malhotra J, Kim ES. How to Keep Up With Molecular Testing and Targeted Therapies in Lung Cancer. JCO Oncol Pract 2024; 20:1471-1480. [PMID: 39531842 DOI: 10.1200/op.24.00230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/08/2024] [Accepted: 06/26/2024] [Indexed: 11/16/2024] Open
Abstract
Until the early 2000s, advanced or metastatic non-small cell lung cancer (NSCLC) was treated as a single disease with all histologic subtypes treated alike with standard chemotherapy agents. Over the past two decades, the treatment paradigms for advanced NSCLC have changed dramatically with the discovery of multiple targeted therapies that are now approved for the treatment of NSCLC tumors with specific oncogene drivers or molecular alterations. Molecular testing has become integrated and critical for the clinical management of advanced NSCLC. The discovery and success of these targeted therapies have reshaped the classification of NSCLC on the basis of molecular classification and enabled a personalized approach in thoracic oncology. In this review, we discuss recent developments in the molecular profiling of NSCLC, and approved and emerging targeted therapies for the treatment of NSCLC.
Collapse
Affiliation(s)
| | - Edward S Kim
- City of Hope National Medical Center, Duarte, CA
| |
Collapse
|
43
|
Kenmotsu H, Sakai K, Mori K, Kato T, Sugawara S, Kirita K, Yoneshima Y, Azuma K, Nishino K, Teraoka S, Koyama R, Masuda K, Hayashi H, Toyozawa R, Miura S, Sato Y, Nakagawa K, Yamamoto N, Nishio K, Takahashi T. Final Analysis Data and Exploratory Biomarker Analysis of a Randomized Phase 2 Study of Osimertinib Plus Bevacizumab Versus Osimertinib Monotherapy for Untreated Patients With Nonsquamous NSCLC Harboring EGFR Mutations: The WJOG9717L Study. JTO Clin Res Rep 2024; 5:100716. [PMID: 39399795 PMCID: PMC11470244 DOI: 10.1016/j.jtocrr.2024.100716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction EGFR tyrosine kinase inhibitors have been the standard treatment for patients with NSCLC who have sensitive EGFR mutations. This study revealed final analysis survival data, biomarkers, and resistance mechanisms of osimertinib plus bevacizumab or osimertinib monotherapy in previously untreated patients with advanced EGFR-positive nonsquamous NSCLC. Methods We previously reported the primary results of a randomized, open-label, phase 2 study comparing osimertinib plus bevacizumab with osimertinib monotherapy for this population. In this exploratory analysis using tissue and plasma samples, we evaluated gene profiles at baseline and disease progression or the last dose using targeted deep sequencing. Results The median progression-free survival (PFS) by the blinded independent central reviewer was 22.1 months for the osimertinib plus bevacizumab arm and 20.2 months for the osimertinib arm (hazard ratio [HR] = 0.864, 95% confidence interval [CI]: 0.549-1.359). The 3-year overall survival was not different between the two arms (osimertinib plus bevacizumab: 57.1%; osimertinib monotherapy: 65.0%; HR 1.271, 95% CI: 0.727-2.223). A total of 94 patients had assessable plasma samples at baseline, and 40 had assessable pretreatment tissue samples. EGFR mutations (76.6%) and TP53 mutations (44.7%) were detected in plasma samples at baseline. In patients with plasma TP53 mutations (n = 42), the median PFS by blinded independent central reviewer was 19.8 months for the osimertinib plus bevacizumab arm and 20.2 months for the osimertinib arm (HR = 1.107, 95% CI: 0.534-2.297). Conclusions There was also no significant difference in the PFS between the two arms, even in patients with TP53 mutations.
Collapse
Affiliation(s)
- Hirotsugu Kenmotsu
- Division of Thoracic Oncology, Shizuoka Cancer Center, Nagaizumi-cho, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Keita Mori
- Clinical Research Center, Shizuoka Cancer Center Nagaizumi-cho, Japan
| | - Terufumi Kato
- Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Shunichi Sugawara
- Department of Pulmonary Medicine, Sendai Kousei Hospital, Miyagi, Japan
| | - Keisuke Kirita
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yasuto Yoneshima
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichi Azuma
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Kazumi Nishino
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Shunsuke Teraoka
- Internal Medicine III, Wakayama Medical University, Wakayama, Japan
| | - Ryo Koyama
- Department of Respiratory Medicine, Juntendo University, Tokyo, Japan
| | - Ken Masuda
- Department of Respiratory Medicine, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Hidetoshi Hayashi
- Department of Medical Oncology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Ryo Toyozawa
- Department of Thoracic Oncology, NHO Kyushu Cancer Center, Fukuoka, Japan
| | - Satoru Miura
- Department of Internal Medicine, Niigata Cancer Center Hospital, Niigata, Japan
| | - Yuki Sato
- Department of Respiratory Medicine, Kobe City Medical Center General Hospital, Hyogo, Japan
| | - Kazuhiko Nakagawa
- Department of Medical Oncology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | | | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Toshiaki Takahashi
- Division of Thoracic Oncology, Shizuoka Cancer Center, Nagaizumi-cho, Japan
| |
Collapse
|
44
|
Xiong Y, Wang L, Zhang W, Meng Y, Wang Y, Shen M, Zhou L, Li R, Lv Y, Wang S, Ren X, Liu L. First-line treatment with gefitinib in combination with bevacizumab and chemotherapy in advanced non-squamous NSCLC with EGFR-mutation. BMC Cancer 2024; 24:1326. [PMID: 39472861 PMCID: PMC11520869 DOI: 10.1186/s12885-024-13084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND The safety and efficacy of combination of gefitinib with chemotherapy and bevacizumab in treatment patients with epidermal growth factor receptor (EGFR) mutations are currently unknown. This study was designed to evaluate the safety and preliminary efficacy of a combination therapy consisting of gefitinib, bevacizumab, pemetrexed, and carboplatin in patients with advanced non-squamous non-small cell lung cancer (NSCLC) harboring EGFR mutations. METHODS Eligible patients with EGFR-mutated advanced non-squamous NSCLC were recruited and received gefitinib combination with bevacizumab plus pemetrexed and carboplatin treatment. The primary endpoints were safety and progression-free survival (PFS). Secondary endpoints included objective response rate (ORR), disease control rate (DCR), duration of response (DOR), and overall survival (OS). RESULTS From June 2019 to June 2021, 20 patients were enrolled in this study. The median follow-up was 33.8 months (95% CI, 31.0-36.6). Grade ≥ 3 adverse events was 65%, including neutropenia (30%), thrombocytopenia (20%), nausea (20%), skin rash (20%), bleeding (10%), and increased ALT (10%). There was no death related to toxicity occurred. The median PFS was 28 months (95% CI, 20.4-35.6). the ORR was 95% (95% CI, 75.1-99.9%), the DCR was 100% (95% CI, 83.2-100%), and the median DOR was 26.4 months (95% CI, 18.9-33.9). The median OS has not been reached. CONCLUSION The results of this study demonstrate that the four-drug combination regimen, led by gefitinib, is manageable and tolerated and effective for patients with EGFR-mutated advanced non-squamous NSCLC.
Collapse
Affiliation(s)
- Yanjuan Xiong
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Lu Wang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Department of Oncology, Jiujiang No.1 People's Hospital, Jiujiang, Jiangxi, China
| | - Weihong Zhang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Yuan Meng
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Yang Wang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Meng Shen
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Li Zhou
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Runmei Li
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Yingge Lv
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Shengguang Wang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| | - Xiubao Ren
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.
- Department of Biotherapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China.
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China.
| | - Liang Liu
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.
- Department of Biotherapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China.
| |
Collapse
|
45
|
Shong LYW, Deng JY, Kwok HH, Lee NCM, Tseng SCZ, Ng LY, Yee WKS, Lam DCL. Detection of EGFR mutations in patients with suspected lung cancer using paired tissue-plasma testing: a prospective comparative study with plasma ddPCR assay. Sci Rep 2024; 14:25701. [PMID: 39465302 PMCID: PMC11514293 DOI: 10.1038/s41598-024-76890-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024] Open
Abstract
Detecting EGFR mutations in plasma using droplet digital PCR (ddPCR) assay offers a promising diagnostic tool for lung cancer patients. The performance of plasma-based ddPCR assay relative to traditional EGFR mutation testing in tissue biopsies among Asian patients with suspected lung cancer remains underexplored. Consecutive patients admitted for diagnostic workup for suspected lung cancer were recruited. Peripheral blood samples were collected on the same day of tissue biopsies. Tissue samples were subjected to EGFR mutation analysis via real-time PCR, whereas plasma samples were processed for ddPCR assay to evaluate for EGFR mutation status. The tissue re-biopsy rate was 43.8% while 0.7% of patients failed blood taking. Despite repeat biopsy, 15.2% of patients could not achieve histological diagnosis. Of the 202 patients newly diagnosed with lung cancer, EGFR mutations were detected in 13.4% of plasma samples, compared to 44.3% in tissue samples. Plasma ddPCR for EGFR mutations detection were barely detectable in stages I and II non-small cell lung cancer (NSCLC), but the sensitivity was 25.0%, 56.3%, and 75.0% in stages III, IVA, and IVB NSCLC, respectively. Plasma EGFR mutations were highly specific among all stages of lung cancer. Concordance rates of plasma ddPCR assay also rose with more advanced stages, recorded at 41.9% for stages I and II, 71.9% for stage III, 86.3% for stage IV. In stage IV lung cancer, the false negative rate for the plasma ddPCR assay was 34.4%, whereas that for the tissue testing was 19.2% due to insufficient tissue samples. Plasma-based EGFR genotyping using ddPCR is a non-invasive method that offers early diagnosis and serves as a valuable adjunct to tissue-based testing for patients with advanced-stage lung cancer. However, its usefulness is limited in the context of early-stage lung cancer, indicating a need for further research to improve its accuracy in these patients.
Collapse
Affiliation(s)
- Lynn Yim-Wah Shong
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
- Department of Medicine, Queen Mary Hospital, Hong Kong SAR, P. R. China
| | - Jun-Yang Deng
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Hoi-Hin Kwok
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | | | | | - Lai-Yun Ng
- Department of Medicine and Geriatrics, Kwong Wah Hospital, Hong Kong SAR, P. R. China
| | - Wilson Kwok-Sang Yee
- Department of Medicine and Geriatrics, Kwong Wah Hospital, Hong Kong SAR, P. R. China
| | - David Chi-Leung Lam
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China.
| |
Collapse
|
46
|
Tong Y, Wan X, Yin C, Lei T, Gao S, Li Y, Du X. In-depth exploration of the focus issues of TKI combined with radiotherapy for EGFR-mutant lung adenocarcinoma patients with brain metastasis: a systematic analysis based on literature metrology, meta-analysis, and real-world observational data. BMC Cancer 2024; 24:1305. [PMID: 39443874 PMCID: PMC11515526 DOI: 10.1186/s12885-024-13071-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND There is a growing interest in utilizing a combination of brain radiotherapy (RT) and tyrosine kinase inhibitors (TKIs) for patients diagnosed with brain metastases (BM) in epidermal growth factor receptor (EGFR) mutation-positive lung adenocarcinoma (LAC). The current status of this treatment strategy remains a subject of debate. METHODS We initiated our study by conducting a comprehensive literature search using the SCI-expanded database of Web of Science Core Collection (WoSCC). We utilized the VOSPviewer software to analyze various aspects of the research, including the year of publication, authorship, keywords, and country.Subsequently, we performed an extensive and systematic literature search on popular online databases. Our primary outcome measures were overall survival (OS) and intracranial progression-free survival (iPFS), both quantified by hazard ratios (HRs). Additionally, for data verification, we included data from patients in non-small cell lung cancer with brain metastasis who underwent therapeutic intervention at the Cancer Prevention and Treatment Center of Sun Yat-sen University and the Radiotherapy Department of Hanzhong Central Hospital between August 2012 and November 2021. RESULTS The bibliometric analysis revealed an increasing trend in research focused on the combination of RT and TKIs for the management of lung cancer brain metastases over the previous decade. Then, nine studies consistent with the research direction were included for meta-analysis. The meta-analysis showed that the OS (HR = 0.81, 95% confidence interval: 0.69-0.94; P = 0.007) and iPFS (HR = 0.71, 95% confidence interval: 0.61-0.82; P < 0.001) of the combination therapy were significantly prolonged. Finally, 168 EGFR-mutated BM advanced LAC patients in the real world were verified, and the median iPFS of the combination therapy (n = 88 and EGFR-TKIs alone (n = 80) were 16.0 and 9.0 months, respectively, (P < 0.001). The median OS was 29.0 and 27.0 months, respectively, with no dramatic difference (P = 0.188). CONCLUSIONS Research on EGFR-mutant LAC brain metastasis has turned towards exploring optimal treatment strategies for this condition. Our meta-analysis and real-world data analysis consistently demonstrate that combination therapy offers a substantial improvement in patient survival compared to EGFR-TKI monotherapy. Notably, among patients undergoing salvage radiotherapy (RT), our subgroup analysis reveals that those initially treated with third-generation TKIs experience more significant benefits than those treated with first- or second-generation TKIs.
Collapse
Affiliation(s)
- Yalan Tong
- Radiotherapy Department, Hanzhong Central Hospital, Hanzhong, Shanxi, 723000, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Xiaosha Wan
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110000, People's Republic of China
| | - Chang Yin
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110000, People's Republic of China
| | - Ting Lei
- Oncology Department, The Second Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People's Republic of China
| | - Shan Gao
- Radiotherapy Department, Hanzhong Central Hospital, Hanzhong, Shanxi, 723000, People's Republic of China.
| | - Yinghua Li
- Oncology Department, The Second Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People's Republic of China.
| | - Xiaojing Du
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
47
|
Hong Y, Zhuang W, Lai J, Xu H, He Y, Lin J, Shi Q, Chen S, Huang Z, Chen S, Lu D, Lin G, Huang Y. Plasma EGFR mutation ctDNA dynamics in patients with advanced EGFR-mutated NSCLC treated with Icotinib: phase 2 multicenter trial result. Sci Rep 2024; 14:23115. [PMID: 39367090 PMCID: PMC11452669 DOI: 10.1038/s41598-024-73749-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024] Open
Abstract
Plasma epidermal growth factor receptor mutation (EGFRm) circulating tumor DNA (ctDNA) dynamics exhibit promise in predicting outcomes in patients with EGFRm-advanced non-small cell lung cancer (NSCLC). However, there remains limited trial-level data on integrating ctDNA monitoring into clinical practice. We performed a prospective, multicenter trial to investigate the relationship between EGFRm ctDNA dynamic changes and clinical outcomes in NSCLC patients with EGFRm. Ninety-eight treatment-naive EGFRm-advanced NSCLC patients were recruited and administered icotinib until disease progression. Plasma samples were collected at baseline and four weeks after icotinib administration. ctDNA was analyzed using a droplet-digital polymerase chain reaction. At baseline, 71.4% of patients had detectable EGFRm ctDNA. Among them, 45.9% of patients' ctDNA became undetectable within four weeks of treatment. These patients demonstrated significantly longer progression-free survival (PFS) and overall survival (OS) than those with detectable ctDNA after treatment (P = 0.004 and < 0.001, respectively) and were comparable to those with undetectable ctDNA at both baseline and four weeks. ctDNA detectable at four weeks emerged as a poor independent risk factor for PFS and OS. Patients whose ctDNA became undetectable after treatment had outcomes similar to those with initially undetectable ctDNA, underscoring the predictive value of ctDNA dynamics in treatment efficacy.Registry and the Registration No. of the study/trial: ChiCTR-DDD-17013131. Date of registration: 2017-10-27.
Collapse
Affiliation(s)
- Yaping Hong
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420 Fuma Road, Jin'an District, 350014, Fuzhou, China
- Fujian Key Laboratory of Translational Cancer Medicine, 350014, Fuzhou, China
| | - Wu Zhuang
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420 Fuma Road, Jin'an District, 350014, Fuzhou, China
- Fujian Key Laboratory of Translational Cancer Medicine, 350014, Fuzhou, China
| | - Jinhuo Lai
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Haipeng Xu
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420 Fuma Road, Jin'an District, 350014, Fuzhou, China
- Fujian Key Laboratory of Translational Cancer Medicine, 350014, Fuzhou, China
| | - Yueming He
- Department of Respiratory Medicine, Quanzhou First Hospital, Quanzhou, Fujian, China
| | - Jinlan Lin
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420 Fuma Road, Jin'an District, 350014, Fuzhou, China
- Fujian Key Laboratory of Translational Cancer Medicine, 350014, Fuzhou, China
| | - Qin Shi
- Department of Medical Oncology, Fuzhou Pulmonary Hospital of Fujian, Fuzhou, Fujian, China
| | - Shengjia Chen
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420 Fuma Road, Jin'an District, 350014, Fuzhou, China
- Fujian Key Laboratory of Translational Cancer Medicine, 350014, Fuzhou, China
| | - Zhangzhou Huang
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420 Fuma Road, Jin'an District, 350014, Fuzhou, China
- Fujian Key Laboratory of Translational Cancer Medicine, 350014, Fuzhou, China
| | - Shijie Chen
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420 Fuma Road, Jin'an District, 350014, Fuzhou, China
- Fujian Key Laboratory of Translational Cancer Medicine, 350014, Fuzhou, China
| | - Dongzhu Lu
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420 Fuma Road, Jin'an District, 350014, Fuzhou, China
- Fujian Key Laboratory of Translational Cancer Medicine, 350014, Fuzhou, China
| | - Gen Lin
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420 Fuma Road, Jin'an District, 350014, Fuzhou, China.
- Fujian Key Laboratory of Translational Cancer Medicine, 350014, Fuzhou, China.
| | - Yunjian Huang
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420 Fuma Road, Jin'an District, 350014, Fuzhou, China.
- Fujian Key Laboratory of Translational Cancer Medicine, 350014, Fuzhou, China.
| |
Collapse
|
48
|
Batra U, Sharma M, Jain P, Narayan S, Jain A, Soni S, Nathany S. Indian experience of Afatinib for EGFR mutation-positive advanced lung adenocarcinoma a real-world retrospective study. Indian J Cancer 2024; 61:671-675. [PMID: 39960693 DOI: 10.4103/ijc.ijc_893_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 02/07/2021] [Indexed: 05/09/2025]
Abstract
INTRODUCTION Afatinib, a second-generation EGFR TKI, was approved in 2015 for the treatment of metastatic NSCLC in India. We aimed to evaluate the clinical outcomes of Afatinib therapy in a real-world setting. PATIENTS AND METHODS Electronic medical records of 43 patients who received Afatinib for advanced EGFR-mutant advanced NSCLC were retrospectively reviewed. In total, 43 patients were analyzed of whom 31 received Afatinib in first-line therapy. RESULTS The patient population was younger than Lux-Lung 3. Median PFS was 15.03 months with 95% CI (7.8-18.3 months). At 14% maturity OS was not reached. However, 95% CI lower limit was 34.9 months. The most common adverse reactions were skin rash and diarrhea which were managed with dose alteration without compromising efficacy. CONCLUSION Currently, there are multiple first-line strategies to manage advanced NSCLC in India including EGFR TKIs. To the best of our knowledge, this is the first real-world study published from India which looks into the efficacy of Afatinib in advanced NSCLC. Afatinib showed a manageable safety profile and comparable efficacy in real-world practice compared with those described in previous studies.
Collapse
Affiliation(s)
- Ullas Batra
- Department of Medical Oncology, Rajiv Gandhi Cancer Institute and Research Centre, Delhi, India
| | - Mansi Sharma
- Department of Medical Oncology, Rajiv Gandhi Cancer Institute and Research Centre, Delhi, India
| | - Parveen Jain
- Department of Medical Oncology, Rajiv Gandhi Cancer Institute and Research Centre, Delhi, India
| | - Satya Narayan
- Department of Medical Oncology, Rajiv Gandhi Cancer Institute and Research Centre, Delhi, India
| | - Arpit Jain
- Department of Medical Oncology, Rajiv Gandhi Cancer Institute and Research Centre, Delhi, India
| | - Satyajeet Soni
- Department of Medical Oncology, Rajiv Gandhi Cancer Institute and Research Centre, Delhi, India
| | - Shrinidhi Nathany
- Molecular Diagnostics, Rajiv Gandhi Cancer Institute and Research Centre, Delhi, India
| |
Collapse
|
49
|
Yoh K, Azuma K, Hayashi H, Nishio M, Chikamori K, Ichihara E, Watanabe Y, Asato T, Kitagawa T, Fram RJ, Ohe Y. A phase 2 study of mobocertinib as first-line treatment in Japanese patients with non-small cell lung cancer harboring EGFR exon 20 insertion mutations. Int J Clin Oncol 2024; 29:1461-1474. [PMID: 39190099 PMCID: PMC11420270 DOI: 10.1007/s10147-024-02588-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/15/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Mobocertinib is a novel, synthetic, orally administered tyrosine kinase inhibitor that inhibits many activated forms of epidermal growth factor receptor (EGFR), including those containing exon 20 insertion (ex20ins) mutations. This study aimed to assess the efficacy of mobocertinib in Japanese patients with locally advanced or metastatic non-small cell lung cancer (NSCLC) harboring EGFR ex20ins mutations. METHODS This was a phase 2, open-label study. Patients with NSCLC harboring EGFR ex20ins mutations who had not had previous systemic treatment received mobocertinib 160 mg once daily. The primary endpoint was the confirmed objective response rate. A planned interim analysis was completed for the first 14 patients with a centrally confirmed EGFR ex20ins mutation, with enrollment stopped if the number of patients with an objective response was five or fewer. RESULTS In total, 33 patients were enrolled into the study (63.6% women; median age: 66 years). At the interim analysis, the objective response rate evaluated by a central independent review committee was 28.6% (4/14, 90% confidence interval: 10.4-54.0); therefore, enrollment was stopped for futility. In the full analysis set, the objective response rate was 18.2% (6/33, 95% confidence interval: 7.0-35.5); of the six responders, one patient (3.0%) had a complete response and five patients (15.2%) had partial responses. The most common treatment-related adverse events were diarrhea, paronychia, stomatitis, and nausea. CONCLUSION Although study enrollment was terminated early owing to futility, our results showed modest activity of mobocertinib in Japanese patients with NSCLC with EGFR ex20ins mutations with no additional safety concerns.
Collapse
Affiliation(s)
- Kiyotaka Yoh
- Department of Thoracic Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa-Shi, Chiba, 277-8577, Japan
| | - Koichi Azuma
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, 67, Asahi-Machi, Kurume, Fukuoka, 830-0011, Japan
| | - Hidetoshi Hayashi
- Faculty of Medicine, Department of Medical Oncology, Kindai University, 377-2 Ōnohigashi,, Ōsakasayama-Shi, Ōsaka-Fu, 589-0014, Japan
| | - Makoto Nishio
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto, Tokyo, 135-8550, Japan
| | - Kenichi Chikamori
- Department of Medical Oncology, National Hospital Organization Yamaguchi-Ube Medical Center, 685 Higashi Kiwa, Ube, Yamaguchi, 755-0241, Japan
| | - Eiki Ichihara
- Center for Clinical Oncology, Okayama University Hospital, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Yasutaka Watanabe
- Department of Thoracic Oncology, Saitama Cancer Center, 780 Komuro, Inamachi, Kitaadachi-Gun, Saitama, 362-0806, Japan
| | - Takayuki Asato
- Oncology Clinical Research Department, Oncology Therapeutic Area Unit for Japan and Asia, Takeda Pharmaceutical Company Limited, 1-1, Doshomachi 4-Chome, Chuo-Ku, Osaka, 540-8645, Japan
| | - Tadayuki Kitagawa
- Biostatistics, Japan Development Center, Takeda Pharmaceutical Company Limited, 1-1, Doshomachi 4-Chome, Chuo-Ku, Osaka, 540-8645, Japan
| | - Robert J Fram
- Takeda Development Center Americas, Inc, 40 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Yuichiro Ohe
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
50
|
Ni H, Wang Z, Tang Y, Lu J, Zhu Z, Qiu Y, Chen Z, Wang Z. Tyrosine kinase inhibitors in the treatment of leptomeningeal carcinomatosis. Cell Biol Int 2024; 48:1450-1462. [PMID: 39136350 DOI: 10.1002/cbin.12230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/28/2024] [Accepted: 07/31/2024] [Indexed: 10/19/2024]
Abstract
Leptomeningeal carcinomatosis (LMC) is a devastating complication of advanced cancers, such as lung cancer and breast cancer, which is usually indicative of a poor prognosis. The current treatments for LMC include palliative care, with others aiming to prolong survival and relieve neurological symptoms. Traditional treatments for LMC include radiotherapy, systemic chemotherapy, and intrathecal injection. Furthermore, the application of molecularly targeted agents, such as antiepidermal growth factor receptor (anti-EGFR), antihuman epidermal growth factor receptor 2 (anti-HER2), and anti-PD-1 monoclonal antibody, have prolonged the survival of LMC patients. Targeted therapy with tyrosine kinase inhibitors has also been proven to be an effective treatment. Tyrosine kinases can be overactive or expressed at high levels in some cancer cells; therefore, the use of tyrosine kinase inhibitors may prevent the activation of tumor-related pathways, preventing cancer cell growth. The EGFR family are cell surface receptors directly related to tumor occurrence with tyrosine kinase activity; it is the most widely used target for tyrosine kinase inhibitors in the treatment of LMC. In this review, we introduced the clinical manifestation and diagnostic criteria of LMC, clarified the treatment mechanism of tyrosine kinase inhibitors for LMC with mutations in EGFR, HER2, or anaplastic lymphoma kinase, reviewed the current application of various generation tyrosine kinase inhibitors in patients with LMC, and discussed new clinical trials and the future directions of tyrosine kinase inhibitor therapy.
Collapse
Affiliation(s)
- Hanyu Ni
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Zilan Wang
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yanbing Tang
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Jiaye Lu
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zixiang Zhu
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Youjia Qiu
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhouqing Chen
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhong Wang
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|