1
|
Kang NW, Lin KL, Lin KY, Feng YH, Ho CH, Chen YC, Yang CC. Radiotherapy can significantly improve survival outcomes in patients with muscle-invasive bladder cancer who are unsuitable for cystectomy or chemoradiotherapy. Am J Cancer Res 2025; 15:723-736. [PMID: 40084367 PMCID: PMC11897634 DOI: 10.62347/xlpx5541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/08/2025] [Indexed: 03/16/2025] Open
Abstract
Radical cystectomy and bladder preservation therapy are effective for muscle-invasive bladder cancer (MIBC); however, many patients over 70 are medically unfit for these options. For such patients, radiotherapy serves as a viable alternative. This study compares survival outcomes of radiotherapy versus supportive care in MIBC patients ineligible for cystectomy or bladder preservation with concurrent chemoradiotherapy. Using the Taiwan Cancer Registry and National Health Insurance Research Database (2011-2020), we identified patients with cT2-T4N0-1M0 urinary bladder urothelial carcinoma. Patients were excluded if they had undergone cystectomy or chemotherapy. Patients received either radiotherapy or supportive care, with endpoints of overall survival (OS) and cancer-specific survival (CSS) analyzed by Kaplan-Meier and multivariate Cox regression. Among 485 MIBC patients, 301 (62%) received radiotherapy, and 184 (38%) supportive care. After 13.93 months of median follow-up, radiotherapy significantly improved OS and CSS (P<0.001). Mortality rates were 26.9% for radiotherapy and 76.1% for supportive care at one year, and 59.5% vs. 94.0% at three years. OS and CSS benefits were confirmed for stages II-IV (adjusted hazard ratios: 5.47, 3.23, and 12.44, respectively), with T3, T4, N1, and chronic obstructive pulmonary disease (COPD) predicting worse OS. In conclusion, radiotherapy offers superior survival benefits compared to supportive care in MIBC patients who are unfit for cystectomy or chemoradiotherapy. These findings provide valuable insights for clinicians in making treatment decisions, particularly for elderly or medically unfit patients with early or locally advanced-stage MIBC.
Collapse
Affiliation(s)
- Nai-Wen Kang
- Division of Hematology and Oncology, Department of Internal Medicine, Chi Mei Medical CenterNo. 901, Zhonghua Road, Yung Kang District, Tainan, Taiwan
| | - Kuei-Li Lin
- Department of Radiation Oncology, Chi Mei Medical CenterNo. 901, Zhonghua Road, Yung Kang District, Tainan, Taiwan
| | - Kai-Yuan Lin
- Department of Medical Research, Chi Mei Medical CenterNo. 901, Zhonghua Road, Yung Kang District, Tainan, Taiwan
| | - Yin-Hsun Feng
- Division of Hematology and Oncology, Department of Internal Medicine, Chi Mei Medical CenterNo. 901, Zhonghua Road, Yung Kang District, Tainan, Taiwan
| | - Chung-Han Ho
- Department of Medical Research, Chi Mei Medical CenterNo. 901, Zhonghua Road, Yung Kang District, Tainan, Taiwan
- Department of Information Management, Southern Taiwan University of Science and TechnologyNo. 1, Nantai Street, Yung Kang District, Tainan, Taiwan
- Cancer Center, Taipei Municipal Wanfang Hospital, Taipei Medical UniversityNo. 250, Wuxing Street, Xinyi District, Taipei, Taiwan
| | - Yi-Chen Chen
- Department of Medical Research, Chi Mei Medical CenterNo. 901, Zhonghua Road, Yung Kang District, Tainan, Taiwan
| | - Ching-Chieh Yang
- Department of Radiation Oncology, Chi Mei Medical CenterNo. 901, Zhonghua Road, Yung Kang District, Tainan, Taiwan
- Department of Pharmacy, Chia-Nan University of Pharmacy and ScienceNo. 60, Section 1, Erren Road, Rende District, Tainan, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen UniversityNo. 70, Lien-hai Road, Gushan District, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Shi Z, Mi Y, Zhang L, Zhang W, Zhang W, Shi X, Gao S, Zuo L, Zhang L. Mechanistic study of NUPR1 in bladder cancer development through transcriptional regulation of CCR2. J Cell Physiol 2024; 239:e31412. [PMID: 39149887 DOI: 10.1002/jcp.31412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/16/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Nuclear protein-1 (NUPR1) (also known as p8) is one of the genes associated with transcription factors that participate in various aspects of cancer initiation and development. However, the molecular mechanisms of NUPR1 in bladder cancer (BLCA) remain unclear. We conducted an analysis of the correlation between NUPR1 expression and related genes using the Gene Expression Omnibus (GEO) online database. We employed lentivirus-mediated small interfering RNA (siRNA) to knockdown the expression of NUPR1 in two human BLCA cell lines. In vitro experiments were conducted to validate the impact of NUPR1 interference on BLCA and the influence of NUPR1 on the transcription of chemokine receptor-2 (CCR2). Furthermore, transcription factors for CCR2 were predicted using the PROMO database. Co-immunoprecipitation (Co-IP) and immunofluorescence double staining were used to detect the binding between NUPR1 and CCAAT/enhancer binding protein γ (CEBPG). In vivo and in vitro experiments were conducted to validate that NUPR1 regulates CCR2 transcription through CEBPG. In vitro experiments indicate that the suppression of NUPR1 inhibited BLCA growth. Analysis of the GEO database revealed a positive correlation between the expression of NUPR1 and CCR2. Luciferase experiments confirmed that NUPR1 influences the transcription of CCR2. Online data indicates that CEBPG is a transcription factor for CCR2. Co-IP and immunofluorescence double staining confirmed binding between NUPR1 and CEBPG. Luciferase assays and chromatin immunoprecipitation (ChIP) demonstrate that CEBPG regulates the transcription of CCR2. Additionally, rescue experiments at the cellular level and animal experiments validated the aforementioned mechanism. NUPR1 promotes a promotional role in BLCA, and interference with NUPR1 can inhibit the proliferation and invasive abilities of BLCA. There was a correlation between the expressions of NUPR1 and CCR2, and NUPR1 binds with CEBPG in the cell nucleus. Transcriptional regulation of CCR2 by NUPR1 may be achieved through the involvement of CEBPG.
Collapse
Affiliation(s)
- Zebin Shi
- Department of Urology, The Third Affiliated Hospital of Nanjing Medical University (Changzhou Second People's Hospital), Changzhou, China
| | - Yuanyuan Mi
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Li Zhang
- Department of Urology, The Third Affiliated Hospital of Nanjing Medical University (Changzhou Second People's Hospital), Changzhou, China
| | - Wenxu Zhang
- Department of Urology, The Third Affiliated Hospital of Nanjing Medical University (Changzhou Second People's Hospital), Changzhou, China
| | - Wei Zhang
- Department of Oncology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Xiaokai Shi
- Department of Urology, The Third Affiliated Hospital of Nanjing Medical University (Changzhou Second People's Hospital), Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Shenglin Gao
- Department of Urology, The Third Affiliated Hospital of Nanjing Medical University (Changzhou Second People's Hospital), Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Li Zuo
- Department of Urology, The Third Affiliated Hospital of Nanjing Medical University (Changzhou Second People's Hospital), Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Lifeng Zhang
- Department of Urology, The Third Affiliated Hospital of Nanjing Medical University (Changzhou Second People's Hospital), Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| |
Collapse
|
3
|
Rana Z, Kamran SC, Shetty AC, Sutera P, Song Y, Bazyar S, Solanki AA, Simko JP, Pollack A, McConkey D, Kates M, Siddiqui MM, Hiken J, Earls J, Messina D, Mouw KW, Miyamoto D, Shipley WU, Michaelson MD, Zietman A, Coen JJ, Dahl DM, Jani AB, Souhami L, Chang BK, Lee RJ, Pham H, Marshall DT, Shen X, Pugh SL, Feng FY, Efstathiou JA, Tran PT, Deek MP. Prognostic Significance of Immune Cell Infiltration in Muscle-invasive Bladder Cancer Treated with Definitive Chemoradiation: A Secondary Analysis of RTOG 0524 and RTOG 0712. Eur Urol Oncol 2024; 7:986-989. [PMID: 38641541 PMCID: PMC11427165 DOI: 10.1016/j.euo.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/14/2024] [Accepted: 03/26/2024] [Indexed: 04/21/2024]
Abstract
Chemoradiation therapy (CRT) is a treatment for muscle-invasive bladder cancer (MIBC). Using a novel transcriptomic profiling panel, we validated prognostic immune biomarkers to CRT using 70 pretreatment tumor samples from prospective trials of MIBC (NRG/RTOG 0524 and 0712). Disease-free survival (DFS) and overall survival (OS) were estimated via the Kaplan-Meier method and stratified by genes correlated with immune cell activation. Cox proportional-hazards models were used to assess group differences. Clustering of gene expression profiles revealed that the cluster with high immune cell content was associated with longer DFS (hazard ratio [HR] 0.53, 95% confidence interval [CI] 0.26-1.10; p = 0.071) and OS (HR 0.48, 95% CI 0.24-0.97; p = 0.040) than the cluster with low immune cell content. Higher expression of T-cell infiltration genes (CD8A and ICOS) was associated with longer DFS (HR 0.40, 95% CI 0.21-0.75; p = 0.005) and OS (HR 0.49, 95% CI 0.25-0.94; p = 0.033). Higher IDO1 expression (IFNγ signature) was also associated with longer DFS (HR 0.44, 95% CI 0.24-0.88; p = 0.021) and OS (HR 0.49, 95% CI 0.24-0.99; p = 0.048). These findings should be validated in prospective CRT trials that include biomarkers, particularly for trials incorporating immunotherapy for MIBC. PATIENT SUMMARY: We analyzed patient samples from two clinical trials (NRG/RTOG 0524 and 0712) of chemoradiation for muscle-invasive bladder cancer using a novel method to assess immune cells in the tumor microenvironment. Higher expression of genes associated with immune activation and high overall immune-cell content were associated with better disease-free survival and overall survival for patients treated with chemoradiation.
Collapse
Affiliation(s)
- Zaker Rana
- University of Maryland/Greenebaum Cancer Center, Baltimore, MD, USA
| | - Sophia C Kamran
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Amol C Shetty
- University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Yang Song
- University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | - Alan Pollack
- University of Miami Miller School of Medicine-Sylvester Cancer Center, Miami, FL, USA
| | - David McConkey
- Johns Hopkins University, Baltimore, MD, USA; Sidney Kimmel Cancer Center, Baltimore, MD, USA
| | - Max Kates
- Johns Hopkins University, Baltimore, MD, USA; Sidney Kimmel Cancer Center, Baltimore, MD, USA
| | | | | | - Jon Earls
- CoFactor Genomics, San Francisco, CA, USA
| | | | - Kent W Mouw
- Dana-Farber/Harvard Cancer Center, Boston, MA, USA
| | - David Miyamoto
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | | | | | - Anthony Zietman
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - John J Coen
- Department of Radiation Oncology, GenesisCare USA-Warwick, Warwick, RI, USA
| | - Douglas M Dahl
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Ashesh B Jani
- Emory University Hospital/Winship Cancer Institute, Atlanta, GA, USA
| | - Luis Souhami
- McGill University Health Centre Research Institute, Montreal, Canada
| | - Brian K Chang
- Parkview Regional Medical Center, Fort Wayne, IN, USA
| | | | - Huong Pham
- Virginia Mason Medical Center, Seattle, WA, USA
| | | | - Xinglei Shen
- University of Kansas Cancer Center, Kansas City, KS, USA
| | - Stephanie L Pugh
- NRG Oncology Statistics and Data Management Center, Philadelphia, PA, USA
| | - Felix Y Feng
- UCSF Medical Center-Mission Bay, San Francisco, CA, USA
| | | | - Phuoc T Tran
- University of Maryland/Greenebaum Cancer Center, Baltimore, MD, USA.
| | - Matthew P Deek
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
4
|
Zheng K, Li M. Predicting Survival Signature of Bladder Cancer Related to Cancer-Associated Fibroblast (CAF) Constructed by Intersecting Genes in TCGA and GEO. Mol Biotechnol 2024; 66:2532-2547. [PMID: 37749482 DOI: 10.1007/s12033-023-00892-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023]
Abstract
Bladder cancer was one of the most common carcinomas around the world. However, the mechanism of the disease still remained to be investigated. We expected to establish a prognostic survival model with 9 prognostic genes to predict overall survival (OS) in patients of bladder cancer. The gene expression data of bladder cancer were obtained from TCGA and GEO datasets. TCGA and GEO datasets were used for screening prognostic genes along with developing and validating a 9-gene prognostic survival model by method of weighted gene co-expression network analysis (WGCNA) and LASSO with Cox regression. The relative analysis of evaluate tumor burden mutation (TBM), GO, KEGG, chemotherapy drug and functional pathway were also performed based on CAF-related mRNAs. 151 Overlapping CAF-related genes were distinguished after intersecting differentially expressed genes from 945 genes in TCGA and 491 genes in GEO dataset. 9 Prognostic genes (MSRB2, AGMAT, KLF6, DDAH2, GADD45B, SERPINE2, STMN3, TEAD2, and COMP) were used for construction of prognostic model after LASSO with Cox regression. Receiver operating characteristic (ROC) curves showed a good survival prediction by this model. Functional analysis indicated chemokine, cytokine, ECM interaction, oxidative stress and apoptosis were highly appeared. Potential drugs targeted different CAF-related genes like vemurafenib, irofulven, ghiotepa, and idarubicin were found as well. We constructed a novel 9 CAF-related mRNAs prognostic model and explored the gene expression and potential functional information of related genes, which might be worthy of clinical application. In addition, potential chemotherapy drugs could provide useful insights into the potential clinical treatment of bladder cancer.
Collapse
Affiliation(s)
- Kaifeng Zheng
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, China.
| | - Mengting Li
- Department of Gastroenterology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Niglio SA, Purswani JM, Schiff PB, Lischalk JW, Huang WC, Murray KS, Apolo AB. Organ preservation in muscle-invasive urothelial bladder cancer. Curr Opin Oncol 2024; 36:155-163. [PMID: 38573204 DOI: 10.1097/cco.0000000000001038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
PURPOSE OF REVIEW The most common definitive treatment for muscle-invasive bladder cancer (MIBC) is radical cystectomy. However, removing the bladder and surrounding organs poses risks of morbidity that can reduce quality of life, and raises the risk of death. Treatment strategies that preserve the organs can manage the local tumor and mitigate the risk of distant metastasis. Recent data have demonstrated promising outcomes in several bladder-preservation strategies. RECENT FINDINGS Bladder preservation with trimodality therapy (TMT), combining maximal transurethral resection of the bladder tumor, chemotherapy, and radiotherapy (RT), was often reserved for nonsurgical candidates for radical cystectomy. Recent meta-analyses show that outcomes of TMT and radical cystectomy are similar. More recent bladder-preservation approaches include combining targeted RT (MRI) and immune checkpoint inhibitors (ICIs), ICIs and chemotherapy, and selecting patients based on genomic biomarkers and clinical response to systemic therapies. These are all promising strategies that may circumvent the need for radical cystectomy. SUMMARY MIBC is an aggressive disease with a high rate of systemic progression. Current management includes neoadjuvant cisplatin-based chemotherapy and radical cystectomy with lymph node dissection. Novel alternative strategies, including TMT approaches, combinations with RT, chemotherapy, and/or ICIs, and genomic biomarkers, are in development to further advance bladder-preservation options for patients with MIBC.
Collapse
Affiliation(s)
- Scot A Niglio
- Department of Hematology and Medical Oncology, Perlmutter Cancer at NYU Langone Health, New York, New York
| | - Juhi M Purswani
- Department of Radiation Oncology at NYU Langone Health, New York, New York
| | - Peter B Schiff
- Department of Radiation Oncology at NYU Langone Health, New York, New York
| | | | - William C Huang
- Department of Urology, NYU-Langone Health, New York, New York
| | - Katie S Murray
- Department of Urology, NYU-Langone Health, New York, New York
| | - Andrea B Apolo
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Eturi A, Bhasin A, Zarrabi KK, Tester WJ. Predictive and Prognostic Biomarkers and Tumor Antigens for Targeted Therapy in Urothelial Carcinoma. Molecules 2024; 29:1896. [PMID: 38675715 PMCID: PMC11054340 DOI: 10.3390/molecules29081896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/01/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Urothelial carcinoma (UC) is the fourth most prevalent cancer amongst males worldwide. While patients with non-muscle-invasive disease have a favorable prognosis, 25% of UC patients present with locally advanced disease which is associated with a 10-15% 5-year survival rate and poor overall prognosis. Muscle-invasive bladder cancer (MIBC) is associated with about 50% 5 year survival when treated by radical cystectomy or trimodality therapy; stage IV disease is associated with 10-15% 5 year survival. Current therapeutic modalities for MIBC include neoadjuvant chemotherapy, surgery and/or chemoradiation, although patients with relapsed or refractory disease have a poor prognosis. However, the rapid success of immuno-oncology in various hematologic and solid malignancies offers new targets with tremendous therapeutic potential in UC. Historically, there were no predictive biomarkers to guide the clinical management and treatment of UC, and biomarker development was an unmet need. However, recent and ongoing clinical trials have identified several promising tumor biomarkers that have the potential to serve as predictive or prognostic tools in UC. This review provides a comprehensive summary of emerging biomarkers and molecular tumor targets including programmed death ligand 1 (PD-L1), epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2), fibroblast growth factor receptor (FGFR), DNA damage response and repair (DDR) mutations, poly (ADP-ribose) polymerase (PARP) expression and circulating tumor DNA (ctDNA), as well as their clinical utility in UC. We also evaluate recent advancements in precision oncology in UC, while illustrating limiting factors and challenges related to the clinical application of these biomarkers in clinical practice.
Collapse
Affiliation(s)
- Aditya Eturi
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (K.K.Z.); (W.J.T.)
| | - Amman Bhasin
- Department of Internal Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Kevin K. Zarrabi
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (K.K.Z.); (W.J.T.)
| | - William J. Tester
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (K.K.Z.); (W.J.T.)
| |
Collapse
|
7
|
He W, Zeng S, Xu C. Controversy Surrounding Bladder-Sparing Radical Dose Radiotherapy as an Alternative to Radical Cystectomy for Clinically Node-Positive Nonmetastatic Bladder Cancer. J Clin Oncol 2024; 42:614-615. [PMID: 38051990 DOI: 10.1200/jco.23.01920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 12/07/2023] Open
Affiliation(s)
| | - Shuxiong Zeng
- Wei He, MD, Shuxiong Zeng, MD, PhD, and Chuanliang Xu, MD, PhD, Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chuanliang Xu
- Wei He, MD, Shuxiong Zeng, MD, PhD, and Chuanliang Xu, MD, PhD, Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
8
|
Kamran SC, Zhou Y, Otani K, Drumm M, Otani Y, Wu S, Wu CL, Feldman AS, Wszolek M, Lee RJ, Saylor PJ, Lennerz J, Van Allen E, Willers H, Hong TS, Liu Y, Davicioni E, Gibb EA, Shipley WU, Mouw KW, Efstathiou JA, Miyamoto DT. Genomic Tumor Correlates of Clinical Outcomes Following Organ-Sparing Chemoradiation Therapy for Bladder Cancer. Clin Cancer Res 2023; 29:5116-5127. [PMID: 37870965 PMCID: PMC10722135 DOI: 10.1158/1078-0432.ccr-23-0792] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/20/2023] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
PURPOSE There is an urgent need for biomarkers of radiation response in organ-sparing therapies. Bladder preservation with trimodality therapy (TMT), consisting of transurethral tumor resection followed by chemoradiation, is an alternative to radical cystectomy for muscle-invasive bladder cancer (MIBC), but molecular determinants of response are poorly understood. EXPERIMENTAL DESIGN We characterized genomic and transcriptomic features correlated with long-term response in a single institution cohort of patients with MIBC homogeneously treated with TMT. Pretreatment tumors from 76 patients with MIBC underwent whole-exome sequencing; 67 underwent matched transcriptomic profiling. Molecular features were correlated with clinical outcomes including modified bladder-intact event-free survival (mBI-EFS), a composite endpoint that reflects long-term cancer control with bladder preservation. RESULTS With a median follow-up of 74.6 months in alive patients, 37 patients had favorable long-term response to TMT while 39 had unfavorable long-term response. Tumor mutational burden was not associated with outcomes after TMT. DNA damage response gene alterations were associated with improved locoregional control and mBI-EFS. Of these alterations, somatic ERCC2 mutations stood out as significantly associated with favorable long-term outcomes; patients with ERCC2 mutations had significantly improved mBI-EFS [HR, 0.15; 95% confidence interval (CI), 0.06-0.37; P = 0.030] and improved BI-EFS, an endpoint that includes all-cause mortality (HR, 0.33; 95% CI, 0.15-0.68; P = 0.044). ERCC2 mutant bladder cancer cell lines were significantly more sensitive to concurrent cisplatin and radiation treatment in vitro than isogenic ERCC2 wild-type cells. CONCLUSIONS Our data identify ERCC2 mutation as a candidate biomarker associated with sensitivity and long-term response to chemoradiation in MIBC. These findings warrant validation in independent cohorts.
Collapse
Affiliation(s)
- Sophia C. Kamran
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Yuzhen Zhou
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Keisuke Otani
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Michael Drumm
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Yukako Otani
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Shulin Wu
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Chin-Lee Wu
- Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Adam S. Feldman
- Harvard Medical School, Boston, Massachusetts
- Department of Urology, Massachusetts General Hospital, Boston, Massachusetts
| | - Matthew Wszolek
- Harvard Medical School, Boston, Massachusetts
- Department of Urology, Massachusetts General Hospital, Boston, Massachusetts
| | - Richard J. Lee
- Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Philip J. Saylor
- Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Jochen Lennerz
- Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Eliezer Van Allen
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department of Medicine, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Theodore S. Hong
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Yang Liu
- Veracyte, San Francisco, California
| | | | | | - William U. Shipley
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Kent W. Mouw
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jason A. Efstathiou
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - David T. Miyamoto
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts
| |
Collapse
|
9
|
Peng K, Ding D, Wang N, Du T, Wang L, Duan X. ITIH5, as a predictor of prognosis and immunotherapy response for P53-like bladder cancer, is related to cell proliferation and invasion. Mol Omics 2023; 19:714-725. [PMID: 37431189 DOI: 10.1039/d2mo00322h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
p53-like bladder cancer (BLCA) is a bladder cancer subtype that is resistant to cisplatin-based chemotherapy. The ideal treatment modality for such tumors remains poorly defined, and immunotherapy seems to be a potential approach. Therefore, it is significant to understand the risk stratification of p53-like BLCA and identify novel therapeutic targets. ITIH5 is a member of the inter-α-trypsin inhibitory (ITI) gene family, and the effect of ITIH5 on p53-like BLCA remains elusive. In this study, TCGA data and in vitro experiments were used to explore the prognostic value of ITIH5 for p53-like BLCA and its effect on tumor cell proliferation, migration, and invasion. The impact of ITIH5 on the level of immune cell infiltration was explored using seven different algorithms, and the predictive value of ITIH5 on the efficacy of immunotherapy for p53-like BLCA was explored in combination with an independent immunotherapy cohort. The results showed that patients with high ITIH5 expression had a better prognosis, and overexpression of ITIH5 could inhibit the proliferation, migration, and invasion of tumor cells. Two or more algorithms consistently showed that ITIH5 promoted the infiltration of antitumor immune cells, such as B cells, CD4+ T cells, and CD8+ T cells. In addition, ITIH5 expression was positively correlated with the expression levels of many immune checkpoints, and the high ITIH5 expression group showed better response rates to PD-L1 and CTLA-4 therapies. In short, ITIH5 is a predictor of prognosis and the immunotherapy response for p53-like BLCA and is correlated with tumor immunity.
Collapse
Affiliation(s)
- Kun Peng
- Department of Urology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou 450003, China.
| | - Degang Ding
- Department of Urology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou 450003, China.
| | - Ning Wang
- Department of Urology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou 450003, China.
| | - Tao Du
- Department of Urology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou 450003, China.
| | - Lingdian Wang
- Department of Urology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou 450003, China.
| | - Xiaoyu Duan
- Department of Urology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou 450003, China.
| |
Collapse
|
10
|
Dyrskjøt L, Hansel DE, Efstathiou JA, Knowles MA, Galsky MD, Teoh J, Theodorescu D. Bladder cancer. Nat Rev Dis Primers 2023; 9:58. [PMID: 37884563 PMCID: PMC11218610 DOI: 10.1038/s41572-023-00468-9] [Citation(s) in RCA: 140] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/28/2023]
Abstract
Bladder cancer is a global health issue with sex differences in incidence and prognosis. Bladder cancer has distinct molecular subtypes with multiple pathogenic pathways depending on whether the disease is non-muscle invasive or muscle invasive. The mutational burden is higher in muscle-invasive than in non-muscle-invasive disease. Commonly mutated genes include TERT, FGFR3, TP53, PIK3CA, STAG2 and genes involved in chromatin modification. Subtyping of both forms of bladder cancer is likely to change considerably with the advent of single-cell analysis methods. Early detection signifies a better disease prognosis; thus, minimally invasive diagnostic options are needed to improve patient outcomes. Urine-based tests are available for disease diagnosis and surveillance, and analysis of blood-based cell-free DNA is a promising tool for the detection of minimal residual disease and metastatic relapse. Transurethral resection is the cornerstone treatment for non-muscle-invasive bladder cancer and intravesical therapy can further improve oncological outcomes. For muscle-invasive bladder cancer, radical cystectomy with neoadjuvant chemotherapy is the standard of care with evidence supporting trimodality therapy. Immune-checkpoint inhibitors have demonstrated benefit in non-muscle-invasive, muscle-invasive and metastatic bladder cancer. Effective management requires a multidisciplinary approach that considers patient characteristics and molecular disease characteristics.
Collapse
Affiliation(s)
- Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Donna E Hansel
- Division of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason A Efstathiou
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Margaret A Knowles
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, UK
| | - Matthew D Galsky
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeremy Teoh
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Dan Theodorescu
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Khoraminia F, Fuster S, Kanwal N, Olislagers M, Engan K, van Leenders GJLH, Stubbs AP, Akram F, Zuiverloon TCM. Artificial Intelligence in Digital Pathology for Bladder Cancer: Hype or Hope? A Systematic Review. Cancers (Basel) 2023; 15:4518. [PMID: 37760487 PMCID: PMC10526515 DOI: 10.3390/cancers15184518] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Bladder cancer (BC) diagnosis and prediction of prognosis are hindered by subjective pathological evaluation, which may cause misdiagnosis and under-/over-treatment. Computational pathology (CPATH) can identify clinical outcome predictors, offering an objective approach to improve prognosis. However, a systematic review of CPATH in BC literature is lacking. Therefore, we present a comprehensive overview of studies that used CPATH in BC, analyzing 33 out of 2285 identified studies. Most studies analyzed regions of interest to distinguish normal versus tumor tissue and identify tumor grade/stage and tissue types (e.g., urothelium, stroma, and muscle). The cell's nuclear area, shape irregularity, and roundness were the most promising markers to predict recurrence and survival based on selected regions of interest, with >80% accuracy. CPATH identified molecular subtypes by detecting features, e.g., papillary structures, hyperchromatic, and pleomorphic nuclei. Combining clinicopathological and image-derived features improved recurrence and survival prediction. However, due to the lack of outcome interpretability and independent test datasets, robustness and clinical applicability could not be ensured. The current literature demonstrates that CPATH holds the potential to improve BC diagnosis and prediction of prognosis. However, more robust, interpretable, accurate models and larger datasets-representative of clinical scenarios-are needed to address artificial intelligence's reliability, robustness, and black box challenge.
Collapse
Affiliation(s)
- Farbod Khoraminia
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - Saul Fuster
- Department of Electrical Engineering and Computer Science, University of Stavanger, 4021 Stavanger, Norway; (S.F.); (N.K.); (K.E.)
| | - Neel Kanwal
- Department of Electrical Engineering and Computer Science, University of Stavanger, 4021 Stavanger, Norway; (S.F.); (N.K.); (K.E.)
| | - Mitchell Olislagers
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - Kjersti Engan
- Department of Electrical Engineering and Computer Science, University of Stavanger, 4021 Stavanger, Norway; (S.F.); (N.K.); (K.E.)
| | - Geert J. L. H. van Leenders
- Department of Pathology and Clinical Bioinformatics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (G.J.L.H.v.L.); (A.P.S.); (F.A.)
| | - Andrew P. Stubbs
- Department of Pathology and Clinical Bioinformatics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (G.J.L.H.v.L.); (A.P.S.); (F.A.)
| | - Farhan Akram
- Department of Pathology and Clinical Bioinformatics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (G.J.L.H.v.L.); (A.P.S.); (F.A.)
| | - Tahlita C. M. Zuiverloon
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| |
Collapse
|
12
|
Zhou T, Chen H, Wang Y, Wen S, Dao P, Chen M. Key Molecules in Bladder Cancer Affect Patient Prognosis and Immunotherapy Efficacy: Further Exploration for CNTN1 and EMP1. JCO Precis Oncol 2023; 7:e2200630. [PMID: 37437228 DOI: 10.1200/po.22.00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/11/2023] [Accepted: 06/07/2023] [Indexed: 07/14/2023] Open
Abstract
PURPOSE Immunotherapy has been widely used in bladder cancer (BCa) in recent years and has significantly improved the prognosis of patients with BCa. However, further identification of immunotherapy-sensitive individuals to improve the efficacy of immunotherapy remains an important unmet need. MATERIALS AND METHODS The key genes were screened and identified from Gene Expression Omnibus database and The Cancer Genome Atlas database to construct the risk prediction function (risk scores). Real-time polymerase chain reaction, immunohistochemistry, and IMvigor210 data sets were used to verify the roles of key molecules and efficacy of risk scores. The biologic function of CNTN1 and EMP1 was further explored through cell proliferation experiments. RESULTS Five key genes, CNTN1, MAP1A, EMP1, MFAP5, and PTGIS, which were significantly related to the prognosis and immune checkpoint molecules of patients, were screened out. CNTN1 and EMP1 were further experimentally confirmed for their significant tumor-promoting effects. Besides, the constructed risk scores on the basis of these five key genes can accurately predict the prognosis and immunotherapy efficacy of patients with BCa. Interestingly, the high-risk patients identified by the risk scores have significantly worse prognosis and immunotherapy effects than low-risk patients. CONCLUSION The key genes we screened can affect the prognosis of BCa, tumor microenvironment immune infiltration, and the efficacy of immunotherapy. The risk scores tool we constructed will contribute to the development of individualized treatment for BCa.
Collapse
Affiliation(s)
- Tailai Zhou
- Department of Urology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Hengxin Chen
- Department of Urology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Yinzhao Wang
- Department of Urology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Sijie Wen
- Department of Urology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Pinghong Dao
- Department of Urology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Minfeng Chen
- Department of Urology, Xiangya Hospital Central South University, Changsha, Hunan, China
| |
Collapse
|
13
|
Earland N, Chen K, Semenkovich NP, Chauhan PS, Zevallos JP, Chaudhuri AA. Emerging Roles of Circulating Tumor DNA for Increased Precision and Personalization in Radiation Oncology. Semin Radiat Oncol 2023; 33:262-278. [PMID: 37331781 DOI: 10.1016/j.semradonc.2023.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Recent breakthroughs in circulating tumor DNA (ctDNA) technologies present a compelling opportunity to combine this emerging liquid biopsy approach with the field of radiogenomics, the study of how tumor genomics correlate with radiotherapy response and radiotoxicity. Canonically, ctDNA levels reflect metastatic tumor burden, although newer ultrasensitive technologies can be used after curative-intent radiotherapy of localized disease to assess ctDNA for minimal residual disease (MRD) detection or for post-treatment surveillance. Furthermore, several studies have demonstrated the potential utility of ctDNA analysis across various cancer types managed with radiotherapy or chemoradiotherapy, including sarcoma and cancers of the head and neck, lung, colon, rectum, bladder, and prostate . Additionally, because peripheral blood mononuclear cells are routinely collected alongside ctDNA to filter out mutations associated with clonal hematopoiesis, these cells are also available for single nucleotide polymorphism analysis and could potentially be used to detect patients at high risk for radiotoxicity. Lastly, future ctDNA assays will be utilized to better assess locoregional MRD in order to more precisely guide adjuvant radiotherapy after surgery in cases of localized disease, and guide ablative radiotherapy in cases of oligometastatic disease.
Collapse
Affiliation(s)
- Noah Earland
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO
| | - Kevin Chen
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO
| | - Nicholas P Semenkovich
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Pradeep S Chauhan
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO
| | - Jose P Zevallos
- Department of Otolaryngology, University of Pittsburgh Medical School, Pittsburgh, PA
| | - Aadel A Chaudhuri
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO; Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, MO; Department of Genetics, Washington University School of Medicine, St. Louis, MO; Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO; Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO.
| |
Collapse
|
14
|
Zlotta AR, Ballas LK, Niemierko A, Lajkosz K, Kuk C, Miranda G, Drumm M, Mari A, Thio E, Fleshner NE, Kulkarni GS, Jewett MAS, Bristow RG, Catton C, Berlin A, Sridhar SS, Schuckman A, Feldman AS, Wszolek M, Dahl DM, Lee RJ, Saylor PJ, Michaelson MD, Miyamoto DT, Zietman A, Shipley W, Chung P, Daneshmand S, Efstathiou JA. Radical cystectomy versus trimodality therapy for muscle-invasive bladder cancer: a multi-institutional propensity score matched and weighted analysis. Lancet Oncol 2023; 24:669-681. [PMID: 37187202 DOI: 10.1016/s1470-2045(23)00170-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/23/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Previous randomised controlled trials comparing bladder preservation with radical cystectomy for muscle-invasive bladder cancer closed due to insufficient accrual. Given that no further trials are foreseen, we aimed to use propensity scores to compare trimodality therapy (maximal transurethral resection of bladder tumour followed by concurrent chemoradiation) with radical cystectomy. METHODS This retrospective analysis included 722 patients with clinical stage T2-T4N0M0 muscle-invasive urothelial carcinoma of the bladder (440 underwent radical cystectomy, 282 received trimodality therapy) who would have been eligible for both approaches, treated at three university centres in the USA and Canada between Jan 1, 2005, and Dec 31, 2017. All patients had solitary tumours less than 7 cm, no or unilateral hydronephrosis, and no extensive or multifocal carcinoma in situ. The 440 cases of radical cystectomy represent 29% of all radical cystectomies performed during the study period at the contributing institutions. The primary endpoint was metastasis-free survival. Secondary endpoints included overall survival, cancer-specific survival, and disease-free survival. Differences in survival outcomes by treatment were analysed using propensity scores incorporated in propensity score matching (PSM) using logistic regression and 3:1 matching with replacement and inverse probability treatment weighting (IPTW). FINDINGS In the PSM analysis, the 3:1 matched cohort comprised 1119 patients (837 radical cystectomy, 282 trimodality therapy). After matching, age (71·4 years [IQR 66·0-77·1] for radical cystectomy vs 71·6 years [64·0-78·9] for trimodality therapy), sex (213 [25%] vs 68 [24%] female; 624 [75%] vs 214 [76%] male), cT2 stage (755 [90%] vs 255 [90%]), presence of hydronephrosis (97 [12%] vs 27 [10%]), and receipt of neoadjuvant or adjuvant chemotherapy (492 [59%] vs 159 [56%]) were similar between groups. Median follow-up was 4·38 years (IQR 1·6-6·7) versus 4·88 years (2·8-7·7), respectively. 5-year metastasis-free survival was 74% (95% CI 70-78) for radical cystectomy and 75% (70-80) for trimodality therapy with IPTW and 74% (70-77) and 74% (68-79) with PSM. There was no difference in metastasis-free survival either with IPTW (subdistribution hazard ratio [SHR] 0·89 [95% CI 0·67-1·20]; p=0·40) or PSM (SHR 0·93 [0·71-1·24]; p=0·64). 5-year cancer-specific survival for radical cystectomy versus trimodality therapy was 81% (95% CI 77-85) versus 84% (79-89) with IPTW and 83% (80-86) versus 85% (80-89) with PSM. 5-year disease-free survival was 73% (95% CI 69-77) versus 74% (69-79) with IPTW and 76% (72-80) versus 76% (71-81) with PSM. There were no differences in cancer-specific survival (IPTW: SHR 0·72 [95% CI 0·50-1·04]; p=0·071; PSM: SHR 0·73 [0·52-1·02]; p=0·057) and disease-free survival (IPTW: SHR 0·87 [0·65-1·16]; p=0·35; PSM: SHR 0·88 [0·67-1·16]; p=0·37) between radical cystectomy and trimodality therapy. Overall survival favoured trimodality therapy (IPTW: 66% [95% CI 61-71] vs 73% [68-78]; hazard ratio [HR] 0·70 [95% CI 0·53-0·92]; p=0·010; PSM: 72% [69-75] vs 77% [72-81]; HR 0·75 [0·58-0·97]; p=0·0078). Outcomes for radical cystectomy and trimodality therapy were not statistically different among centres for cancer-specific survival and metastasis-free survival (p=0·22-0·90). Salvage cystectomy was done in 38 (13%) trimodality therapy patients. Pathological stage in the 440 radical cystectomy patients was pT2 in 124 (28%), pT3-4 in 194 (44%), and 114 (26%) node positive. The median number of nodes removed was 39, the soft tissue positive margin rate was 1% (n=5), and the perioperative mortality rate was 2·5% (n=11). INTERPRETATION This multi-institutional study provides the best evidence to date showing similar oncological outcomes between radical cystectomy and trimodality therapy for select patients with muscle-invasive bladder cancer. These results support that trimodality therapy, in the setting of multidisciplinary shared decision making, should be offered to all suitable candidates with muscle-invasive bladder cancer and not only to patients with significant comorbidities for whom surgery is not an option. FUNDING Sinai Health Foundation, Princess Margaret Cancer Foundation, Massachusetts General Hospital.
Collapse
Affiliation(s)
- Alexandre R Zlotta
- Divisions of Urology and Surgical Oncology, Department of Surgery, Mount Sinai Hospital, Sinai Health System, University of Toronto, Toronto, ON, Canada; Divisions of Urology and Surgical Oncology, Department of Surgery, University Health Network, University of Toronto, Toronto, ON, Canada.
| | - Leslie K Ballas
- Department of Radiation Oncology, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Andrzej Niemierko
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Katherine Lajkosz
- Department of Biostatistics, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Cynthia Kuk
- Divisions of Urology and Surgical Oncology, Department of Surgery, Mount Sinai Hospital, Sinai Health System, University of Toronto, Toronto, ON, Canada; Divisions of Urology and Surgical Oncology, Department of Surgery, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Gus Miranda
- Department of Radiation Oncology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael Drumm
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrea Mari
- Unit of Oncologic Minimally-Invasive Urology and Andrology, Department of Experimental and Clinical Medicine, Careggi Hospital, University of Florence, Florence, Italy
| | - Ethan Thio
- Department of Radiation Oncology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Neil E Fleshner
- Divisions of Urology and Surgical Oncology, Department of Surgery, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Girish S Kulkarni
- Divisions of Urology and Surgical Oncology, Department of Surgery, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Michael A S Jewett
- Divisions of Urology and Surgical Oncology, Department of Surgery, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Robert G Bristow
- Manchester Cancer Research Centre and University of Manchester, Manchester, UK
| | - Charles Catton
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Alejandro Berlin
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Srikala S Sridhar
- Department of Medical Oncology, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Anne Schuckman
- Aresty Department of Urology, Kenneth Norris Jr Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Adam S Feldman
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew Wszolek
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Douglas M Dahl
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard J Lee
- MGH Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Philip J Saylor
- MGH Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - M Dror Michaelson
- MGH Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David T Miyamoto
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anthony Zietman
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - William Shipley
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter Chung
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Siamak Daneshmand
- Aresty Department of Urology, Kenneth Norris Jr Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jason A Efstathiou
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Wang W, Huang G, Lin H, Ren L, Fu L, Mao X. Label-free LC-MS/MS proteomics analyses reveal CLIC1 as a predictive biomarker for bladder cancer staging and prognosis. Front Oncol 2023; 12:1102392. [PMID: 36727059 PMCID: PMC9885092 DOI: 10.3389/fonc.2022.1102392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/22/2022] [Indexed: 01/18/2023] Open
Abstract
Introduction Bladder cancer (BC) is a significant carcinoma of the urinary system that has a high incidence of morbidity and death owing to the challenges in accurately identifying people with early-stage BC and the lack of effective treatment options for those with advanced BC. Thus, there is a need to define new markers of prognosis and prediction. Methods In this study, we have performed a comprehensive proteomics experiment by label-free quantitative proteomics to compare the proteome changes in the serum of normal people and bladder cancer patients-the successful quantification of 2064 Quantifiable proteins in total. A quantitative analysis was conducted to determine the extent of changes in protein species' relative intensity and reproducibility. There were 43 upregulated proteins and 36 downregulated proteins discovered in non-muscle invasive bladder cancer and normal individuals. Sixty-four of these proteins were elevated, and 51 were downregulated in muscle-invasive and non-muscle-invasive bladder cancer, respectively. Functional roles of differentially expressed proteins were annotated using Gene Ontology (GO) and Clusters of Orthologous Groups of Proteins (COG). To analyze the functions and pathways enriched by differentially expressed proteins, GO enrichment analysis, protein domain analysis, and KEGG pathway analysis were performed. The proteome differences were examined and visualized using radar plots, heat maps, bubble plots, and Venn diagrams. Results As a result of combining the Venn diagram with protein-protein interactions (PPIs), Chloride intracellular channel 1 (CLIC1) was identified as the primary protein. Using the Gene Set Cancer Analysis (GSCA) website, the influence of CLIC1 on immune infiltration was analyzed. A negative correlation between CD8 naive and CLIC1 levels was found. For validation, immunohistochemical (IHC), qPCR, and western blotting (WB) were performed.Further, we found that CLIC1 was associated with a poor prognosis of bladder cancer in survival analysis. Discussion Our research screened CLIC1 as a tumor-promoting protein in bladder cancer for the first time using serum mass spectrometry. And CLIC1 associated with tumor stage, and immune infiltrate. The prognostic biomarker and therapeutic target CLIC1 may be new for bladder cancer patients.
Collapse
Affiliation(s)
- Weifeng Wang
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guankai Huang
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hansen Lin
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lei Ren
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liangmin Fu
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaopeng Mao
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Zhang Z, Chen P, Yun J. Comprehensive analysis of a novel RNA modifications-related model in the prognostic characterization, immune landscape and drug therapy of bladder cancer. Front Genet 2023; 14:1156095. [PMID: 37124622 PMCID: PMC10131083 DOI: 10.3389/fgene.2023.1156095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Background: Bladder cancer (BCa) is the leading reason for death among genitourinary malignancies. RNA modifications in tumors closely link to the immune microenvironment. Our study aimed to propose a promising model associated with the "writer" enzymes of five primary RNA adenosine modifications (including m6A, m6Am, m1A, APA, and A-to-I editing), thus characterizing the clinical outcome, immune landscape and therapeutic efficacy of BCa. Methods: Unsupervised clustering was employed to categorize BCa into different RNA modification patterns based on gene expression profiles of 34 RNA modification "writers". The RNA modification "writers" score (RMS) signature composed of RNA phenotype-associated differentially expressed genes (DEGs) was established using the least absolute shrinkage and selection operator (LASSO), which was evaluated in meta-GEO (including eight independent GEO datasets) training cohort and the TCGA-BLCA validation cohort. The hub genes in the RMS model were determined via weighted gene co-expression network analysis (WGCNA) and were further validated using human specimen. The potential applicability of the RMS model in predicting the therapeutic responsiveness was assessed through the Genomics of Drug Sensitivity in Cancer database and multiple immunotherapy datasets. Results: Two distinct RNA modification patterns were determined among 1,410 BCa samples from a meta-GEO cohort, showing radically varying clinical outcomes and biological characteristics. The RMS model comprising 14 RNA modification phenotype-associated prognostic DEGs positively correlated with the unsatisfactory outcome of BCa patients in meta-GEO training cohort (HR = 3.00, 95% CI = 2.19-4.12) and TCGA-BLCA validation cohort (HR = 1.53, 95% CI = 1.13-2.09). The infiltration of immunosuppressive cells and the activation of EMT, angiogenesis, IL-6/JAK/STAT3 signaling were markedly enriched in RMS-high group. A nomogram exhibited high prognostic prediction accuracy, with a concordance index of 0.785. The therapeutic effect of chemotherapeutic agents and antibody-drug conjugates was significantly different between RMS-low and -high groups. The combination of the RMS model and conventional characteristics (TMB, TNB and PD-L1) achieved an optimal AUC value of 0.828 in differentiating responders from non-responders to immunotherapy. Conclusion: We conferred the first landscape of five forms of RNA modifications in BCa and emphasized the excellent power of an RNA modifications-related model in evaluating BCa prognosis and immune landscape.
Collapse
Affiliation(s)
- Ziying Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Peng Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jingping Yun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- *Correspondence: Jingping Yun,
| |
Collapse
|
17
|
MiRNA-139-3p inhibits malignant progression in urothelial carcinoma of the bladder via targeting KIF18B and inactivating Wnt/beta-catenin pathway. Pharmacogenet Genomics 2023; 33:1-9. [PMID: 36441170 DOI: 10.1097/fpc.0000000000000485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Bladder cancer is a highly prevalent disease worldwide. We aimed to investigate the effect of miRNA/mRNA signaling on bladder urothelial carcinoma (BUC). METHODS MiRNA-139-3p wasselected from The Cancer Genome Atlas database, and its downstream target gene was predicted. The correlation between miRNA-139-3p and intersected mRNAs was analyzed. The mRNA expression levels of miRNA-139-3p and KIF18B in BUC were assayed via quantitative real-time polymerase chain reaction. Effects of miRNA-139-3p on cell proliferation, invasion, migration and cell cycle were detected via Cell Counting Kit-8, colony formation, transwell, wound healing and flow cytometry assays, respectively. Binding relationship between miRNA-139-3p and KIF18B was verified by dual-luciferase reporter gene detection. The protein expression levels of KIF18B, β-catenin and Cyclin D1 were detected by Western blot. Rescue assays were performed for verifying the interaction among miRNA-139-3p, KIF18B and Wnt/β-catenin signaling pathway, which revealed effects of miRNA-139-3p/KIF18B on BUC cells. RESULTS MiRNA-139-3p was remarkably underexpressed, and KIF18B was dramatically overexpressed in BUC cells, respectively. It was also demonstrated that overexpressing miRNA-139-3p could prominently inhibit proliferation, invasion and migration of BUC, and block BUC cells at G0-G1 phase. Afterwards, we found that miRNA-139-3p could bind to KIF18B mRNA 3'UTR, and miRNA-139-3p had a negative regulatory effect with KIF18B. Subsequent experimental results presented that overexpressing KIF18B could reverse inhibitory effect of overexpressing miRNA-139-3p on BUC. Finally, this study also ascertained that miRNA-139-3p/KIF18B could repress oncogenic effects of BUC via modulating Wnt/β-catenin signaling pathway. CONCLUSION MiRNA-139-3p/KIF18B/Wnt/β-catenin could significantly inhibit the malignant progression of BUC, and its targeting mechanism might provide an effective therapeutic target for BUC patients.
Collapse
|
18
|
Magliocco AM, Moughan J, Miyamoto DT, Simko J, Shipley WU, Gray PJ, Hagan MP, Parliament M, Tester WJ, Zietman AL, McCarthy S, Saeed-Vafa D, Xiong Y, Ayral T, Hartford AC, Patel A, Rosenthal SA, Chafe S, Greenberg R, Schwartz MA, Augspurger ME, Keech JA, Winter KA, Feng FY, Efstathiou JA. Analysis of MRE11 and Mortality Among Adults With Muscle-Invasive Bladder Cancer Managed With Trimodality Therapy. JAMA Netw Open 2022; 5:e2242378. [PMID: 36383379 PMCID: PMC9669810 DOI: 10.1001/jamanetworkopen.2022.42378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
IMPORTANCE Bladder-preserving trimodality therapy can be an effective alternative to radical cystectomy for treatment of muscle-invasive bladder cancer (MIBC), but biomarkers are needed to guide optimal patient selection. The DNA repair protein MRE11 is a candidate response biomarker that has not been validated in prospective cohorts using standardized measurement approaches. OBJECTIVE To evaluate MRE11 expression as a prognostic biomarker in MIBC patients receiving trimodality therapy using automated quantitative image analysis. DESIGN, SETTING, AND PARTICIPANTS This prognostic study analyzed patients with MIBC pooled from 6 prospective phase I/II, II, or III trials of trimodality therapy (Radiation Therapy Oncology Group [RTOG] 8802, 8903, 9506, 9706, 9906, and 0233) across 37 participating institutions in North America from 1988 to 2007. Eligible patients had nonmetastatic MIBC and were enrolled in 1 of the 6 trimodality therapy clinical trials. Analyses were completed August 2020. EXPOSURES Trimodality therapy with transurethral bladder tumor resection and cisplatin-based chemoradiation therapy. MAIN OUTCOMES AND MEASURES MRE11 expression and association with disease-specific (bladder cancer) mortality (DSM), defined as death from bladder cancer. Pretreatment tumor tissues were processed for immunofluorescence with anti-MRE11 antibody and analyzed using automated quantitative image analysis to calculate a normalized score for MRE11 based on nuclear-to-cytoplasmic (NC) signal ratio. RESULTS Of 465 patients from 6 trials, 168 patients had available tissue, of which 135 were analyzable for MRE11 expression (median age of 65 years [minimum-maximum, 34-90 years]; 111 [82.2%] men). Median (minimum-maximum) follow-up for alive patients was 5.0 (0.6-11.7) years. Median (Q1-Q3) MRE11 NC signal ratio was 2.41 (1.49-3.34). Patients with an MRE11 NC ratio above 1.49 (ie, above first quartile) had a significantly lower DSM (HR, 0.50; 95% CI, 0.26-0.93; P = .03). The 4-year DSM was 41.0% (95% CI, 23.2%-58.0%) for patients with an MRE11 NC signal ratio of 1.49 or lower vs 21.0% (95% CI, 13.4%-29.8%) for a ratio above 1.49. MRE11 NC signal ratio was not significantly associated with overall survival (HR, 0.84; 95% CI, 0.49-1.44). CONCLUSIONS AND RELEVANCE Higher MRE11 NC signal ratios were associated with better DSM after trimodality therapy. Lower MRE11 NC signal ratios identified a poor prognosis subgroup that may benefit from intensification of therapy.
Collapse
Affiliation(s)
| | - Jennifer Moughan
- NRG Oncology Statistics and Data Management Center/ACR, Philadelphia, Pennsylvania
| | - David T. Miyamoto
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jeff Simko
- Department of Radiation Oncology, University of California, San Francisco
| | - William U. Shipley
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Phillip J. Gray
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael P. Hagan
- Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, Virginia
| | | | | | - Anthony L. Zietman
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | - Yin Xiong
- H. Lee Moffitt Cancer Center, Tampa, Florida
| | | | | | - Ashish Patel
- MD Anderson Cancer Center at Cooper, Camden, New Jersey
| | | | - Susan Chafe
- Cross Cancer Institute, Edmonton, Alberta, Canada
| | | | | | | | - John A. Keech
- MultiCare Gig Harbor Medical Park, Gig Harbor, Washington
| | - Kathryn A. Winter
- NRG Oncology Statistics and Data Management Center/ACR, Philadelphia, Pennsylvania
| | - Felix Y. Feng
- Department of Radiation Oncology, University of California, San Francisco
| | - Jason A. Efstathiou
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
19
|
Huang Z, Wang G, Wu Y, Yang T, Shao L, Yang B, Li P, Li J. N6-methyladenosine-related lncRNAs in combination with computational histopathology and radiomics predict the prognosis of bladder cancer. Transl Oncol 2022; 27:101581. [PMID: 36327698 PMCID: PMC9637817 DOI: 10.1016/j.tranon.2022.101581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVES Identification of m6A- related lncRNAs associated with BC diagnosis and prognosis. METHODS From the TCGA database, we obtained transcriptome data and corresponding clinical information (including histopathological and CT imaging data) for 408 patients. And bioinformatics, computational histopathology, and radiomics were used to identify and analyze diagnostic and prognostic biomarkers of m6A-related lncRNAs in BC. RESULTS 3 significantly high-expressed m6A-related lncRNAs were significantly associated with the prognosis of BC. The BC samples were divided into two subgroups based on the expression of the 3 lncRNAs. The overall survival of patients in cluster 2 was significantly lower than that in cluster 1. The immune landscape results showed that the expression of PD-L1, T cells follicular helper, NK cells resting, and mast cells activated in cluster 2 were significantly higher, and naive B cells, plasma cells, T cells regulatory (Tregs), and mast cells resting were significantly lower. Computational histopathology results showed a significantly higher percentage of tumor-infiltrating lymphocytes (TILs) in cluster 2. The radiomics results show that the 3 eigenvalues of diagnostics image-original minimum, diagnostics image-original maximum, and original GLCM inverse variance are significantly higher in cluster 2. High expression of 2 bridge genes in the PPI network of 30 key immune genes predicts poorer disease-free survival, while immunohistochemistry showed that their expression levels were significantly higher in high-grade BC than in low-grade BC and normal tissue. CONCLUSION Based on the results of immune landscape, computational histopathology, and radiomics, these 3 m6A-related lncRNAs may be diagnostic and prognostic biomarkers for BC.
Collapse
Affiliation(s)
- Ziye Huang
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian-Mian Avenue, Kunming, Yunnan, 650101, P.R. China
| | - Guang Wang
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian-Mian Avenue, Kunming, Yunnan, 650101, P.R. China
| | - Yuyun Wu
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian-Mian Avenue, Kunming, Yunnan, 650101, P.R. China
| | - Tongxin Yang
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian-Mian Avenue, Kunming, Yunnan, 650101, P.R. China
| | - Lishi Shao
- The Department of Imageology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian-Mian Avenue, Kunming, Yunnan, 650101, P.R. China
| | - Bowei Yang
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian-Mian Avenue, Kunming, Yunnan, 650101, P.R. China
| | - Pei Li
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian-Mian Avenue, Kunming, Yunnan, 650101, P.R. China,Corresponding author.
| | - Jiongming Li
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian-Mian Avenue, Kunming, Yunnan, 650101, P.R. China,Corresponding author.
| |
Collapse
|
20
|
Yang J, Xu J, Gao Q, Wu F, Han W, Yu C, Shi Y, Qiu Y, Chen Y, Zhou X. Identification of adenylate cyclase 2 methylation in bladder cancer with implications for prognosis and immunosuppressive microenvironment. Front Oncol 2022; 12:1025195. [PMID: 36313639 PMCID: PMC9614257 DOI: 10.3389/fonc.2022.1025195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/20/2022] [Indexed: 11/19/2022] Open
Abstract
Background The incidence and mortality of bladder cancer (BCa) are increasing, while the existing diagnostic methods have limitations. Therefore, for early detection and response prediction, it is crucial to improve the prognosis and treatment strategies. However, with existing diagnostic methods, detecting BCa in the early stage is challenging. Hence, novel biomarkers are urgently needed to improve early diagnosis and treatment efficiency. Methods The gene expression profile and gene methylation profile dataset were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs), differentially methylated genes (DMGs), and methylation-regulated differentially expressed genes (MeDEGs) were gradually identified. A cancer genome map was obtained using online gene expression profile interaction analysis, and survival implications were produced using Kaplan-Meier survival analysis. GSEA was employed to predict the marker pathways where DEGs were significantly involved. The study used bisulfite PCR amplification combined with bisulfite amplicon sequencing (BSAS) to screen for methylation analysis of multiple candidate regions of the adenylate cyclase 2 (ADCY2) based on the sequence design of specific gene regions and CpG islands. Results In this study, DEGs and DMGs with significantly up- or down-regulated expression were selected. The intersection method was used to screen the MeDEGs. The interaction network group in STRING was then visualized using Cytoscape, and the PPI network was constructed to identify the key genes. The key genes were then analyzed using functional enrichment. To compare the relationship between key genes and the prognosis of BCa patients, we further investigated ADCY2 and found that ADCY2 can be a potential clinical biomarker in BCa prognosis and immunotherapy response prediction. In human BCa 5637 and MGH1 cells, we developed and verified the effectiveness of ADCY2 primers using BSAS technology. The findings revealed that the expression of ADCY2 is highly regulated by the methylation of the promoter regions. Conclusion This study revealed that increased expression of ADCY2 was significantly correlated with increased tumor heterogeneity, predicting worse survival and immunotherapy response in BCa patients.
Collapse
Affiliation(s)
- Jianfeng Yang
- Department of Surgery, Shangnan Branch of Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jin Xu
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Qian Gao
- Wound Treatment Center Affiliated Xinhua Hospital of Medicine College of Shanghai Jiaotong University, Shanghai, China
| | - Fan Wu
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Han
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Chao Yu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Youyang Shi
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunhua Qiu
- Department of Surgery, Shangnan Branch of Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanbiao Chen
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xiqiu Zhou
- Department of Surgery, Shangnan Branch of Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
21
|
Yu Y, Zeng H, Jin K, You R, Liu Z, Zhang H, Liu C, Su X, Yan S, Chang Y, Liu L, Xu L, Xu J, Zhu Y, Wang Z. Immune inactivation by neuropilin-1 predicts clinical outcome and therapeutic benefit in muscle-invasive bladder cancer. Cancer Immunol Immunother 2022; 71:2117-2126. [DOI: 10.1007/s00262-022-03153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/07/2022] [Indexed: 10/19/2022]
|
22
|
Yang Y, Wang J, Huang W, Wan G, Xia M, Chen D, Zhang Y, Wang Y, Guo F, Tan J, Liang H, Du B, Yu L, Tan W, Duan X, Yuan Q. Integrated Urinalysis Devices Based on Interface-Engineered Field-Effect Transistor Biosensors Incorporated With Electronic Circuits. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203224. [PMID: 35853614 DOI: 10.1002/adma.202203224] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Urinalysis is attractive in non-invasive early diagnosis of bladder cancer compared with clinical gold standard cystoscopy. However, the trace bladder tumor biomarkers in urine and the particularly complex urine environment pose significant challenges for urinalysis. Here, a clinically adoptable urinalysis device that integrates molecular-specificity indium gallium zinc oxide field-effect transistor (IGZO FET) biosensor arrays, a device control panel, and an internet terminal for directly analyzing five bladder-tumor-associated proteins in clinical urine samples, is reported for bladder cancer diagnosis and classification. The IGZO FET biosensors with engineered sensing interfaces provide high sensitivity and selectivity for identification of trace proteins in the complex urine environment. Integrating with a machine-learning algorithm, this device can identify bladder cancer with an accuracy of 95.0% in a cohort of 197 patients and 75 non-bladder cancer individuals, distinguishing cancer stages with an overall accuracy of 90.0% and assessing bladder cancer recurrence after surgical treatment. The non-invasive urinalysis device defines a robust technology for remote healthcare and personalized medicine.
Collapse
Affiliation(s)
- Yanbing Yang
- Department of Cardiology, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, School of Computer Science, Wuhan University, Wuhan, 430072, China
| | - Jingfeng Wang
- Department of Cardiology, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, School of Computer Science, Wuhan University, Wuhan, 430072, China
| | - Wanting Huang
- Department of Cardiology, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, School of Computer Science, Wuhan University, Wuhan, 430072, China
| | - Guojia Wan
- Department of Cardiology, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, School of Computer Science, Wuhan University, Wuhan, 430072, China
| | - Miaomiao Xia
- Department of Cardiology, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, School of Computer Science, Wuhan University, Wuhan, 430072, China
| | - Duo Chen
- Department of Cardiology, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, School of Computer Science, Wuhan University, Wuhan, 430072, China
| | - Yun Zhang
- Department of Cardiology, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, School of Computer Science, Wuhan University, Wuhan, 430072, China
| | - Yiming Wang
- Department of Cardiology, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, School of Computer Science, Wuhan University, Wuhan, 430072, China
| | - Fuding Guo
- Department of Cardiology, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, School of Computer Science, Wuhan University, Wuhan, 430072, China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Huageng Liang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bo Du
- Department of Cardiology, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, School of Computer Science, Wuhan University, Wuhan, 430072, China
| | - Lilei Yu
- Department of Cardiology, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, School of Computer Science, Wuhan University, Wuhan, 430072, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095-1569, USA
| | - Quan Yuan
- Department of Cardiology, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, School of Computer Science, Wuhan University, Wuhan, 430072, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
23
|
The value of BCL2 and CK20 expression in predicting behavioral patterns of bladder cancer, a cross sectional study. Ann Med Surg (Lond) 2022; 81:104372. [PMID: 36147098 PMCID: PMC9486630 DOI: 10.1016/j.amsu.2022.104372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
Abstract
Background Several biomarkers have been investigated to predict the biological behavior and prognosis of patients with bladder cancer. We evaluated the role of two important markers including BCL2 and CK20 in evaluating the biological behavior of bladder tumors. Methods This cross-sectional study was performed on 30 patients suffering from one of the neoplasms of the bladder. To evaluate the expression of BCL2 and CK20 markers, the neoplastic tissue sample was initially extracted and immunohistochemistry staining was employed. Results The positivity of CK20 and BCL2 in the patients’ specimens was found to be 53.3% and 10.0%, respectively. There was no association between CK20 and BCL2 expressions and tumor size, tumor stage, or tumor-related vascular invasion, but BCL2 expression was shown to be higher in the low-grade specimens, while the expression rate of CK20 was found to be significantly higher in high grade samples. Conclusion Evaluation of the expression of CK20 and BCL2 markers can be very valuable in predicting bladder tumor grade. Bladder cancer is the most common malignant tumor in the urinary tract and is the ninth most common cancer in the world. Identification of proliferative activity in tumors may be useful for predicting its biological behavior. Evaluation of the expression of CK20 and BCL2 markers can be very valuable in predicting bladder tumor grade.
Collapse
|
24
|
Kobayashi K, Matsumoto H, Misumi T, Ito H, Hirata H, Nagao K, Matsuyama H. The efficacy of trimodal chemoradiotherapy with gemcitabine and cisplatin as a bladder-preserving strategy for the treatment of muscle-invasive bladder cancer: a single-arm phase II study. Jpn J Clin Oncol 2022; 52:1201-1207. [PMID: 35675636 DOI: 10.1093/jjco/hyac095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/22/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE Radical cystectomy remains the standard treatment for muscle-invasive bladder cancer; however, a substantial number of patients with muscle-invasive bladder cancer are not appropriate candidates to radical cystectomy due to co-morbidities or anxiety regarding bladder preservation. Trimodal bladder-sparing therapy is an intelligent and attractive treatment option for such patients. We established a novel treatment strategy using trimodal treatment with gemcitabine and cisplatin. METHODS Patients diagnosed with muscle-invasive bladder cancer by transurethral resection of bladder tumor and who wished for bladder preservation were recruited. The regimens were gemcitabine 300 mg/m2 and cisplatin 30 mg/m2 in day 1 and concomitant irradiation 1.8 Gy/Fr, five fractions per week. Irradiation was administered to the true pelvis up to 36 Gy and was then boosted to the entire bladder until a total of 54 Gy. Transurethral resection of bladder tumor was also performed after chemoradiotherapy to evaluate pathological response to treatment. We evaluated treatment efficacy and survival, safety of chemoradiotherapy with gemcitabine and cisplatin. RESULTS Thirty-eight patients were enrolled, and three patients were excluded. Pathological complete response after chemoradiotherapy was observed in 31 patients, and the 5-year bladder-intact metastasis-free survival rate was 76%. The 5-year cancer-specific and overall survival rates for chemoradiotherapy were 85 and 75%, respectively, which were not significantly different from those for radical cystectomy (73 and 71%, respectively). Grade 3/4 adverse events included neutropenia (63%), anemia (18%) and thrombocytopenia (37%); however, treatment-related deaths were not observed. CONCLUSIONS Chemoradiotherapy using gemcitabine and cisplatin for muscle-invasive bladder cancer is effective for local cancer control and shows no significant difference in oncological prognosis compared with radical cystectomy.
Collapse
Affiliation(s)
- Keita Kobayashi
- Department of Urology, Graduate School of Medicine, Ymaguchi University, Ube sity, Yamaguchi, Japan
| | - Hiroaki Matsumoto
- Department of Urology, Graduate School of Medicine, Ymaguchi University, Ube sity, Yamaguchi, Japan
| | - Taku Misumi
- Department of Urology, Graduate School of Medicine, Ymaguchi University, Ube sity, Yamaguchi, Japan
| | - Hideaki Ito
- Department of Urology, Graduate School of Medicine, Ymaguchi University, Ube sity, Yamaguchi, Japan
| | - Hiroshi Hirata
- Department of Urology, Graduate School of Medicine, Ymaguchi University, Ube sity, Yamaguchi, Japan
| | - Kazuhiro Nagao
- Department of Urology, Shuto General Hospital, Yanai city, Yamaguchi, Japan
| | - Hideyasu Matsuyama
- Department of Urology, Graduate School of Medicine, Ymaguchi University, Ube sity, Yamaguchi, Japan
| |
Collapse
|
25
|
Xiong Y, Pang M, Du Y, Yu X, Yuan J, Liu W, Wang L, Liu X. The LINC01929/miR-6875-5p/ADAMTS12 Axis in the ceRNA Network Regulates the Development of Advanced Bladder Cancer. Front Oncol 2022; 12:856560. [PMID: 35646642 PMCID: PMC9133480 DOI: 10.3389/fonc.2022.856560] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
Considering its speedy development and extremely low 5-year overall survival rate worldwide, bladder cancer (BCa) is one of the most common and highly malignant tumors. Increasing evidence suggests that protein-coding mRNAs and non-coding RNAs, including long non-coding RNAs (lncRNAs) and micro RNAs (miRNAs), play an essential role in regulating the biological processes of cancer. To investigate the molecular regulation associated with poor prognosis during advanced BCa development, we constructed a competitive endogenous RNA (ceRNA) network. Using transcriptome profiles from The Cancer Genome Atlas and Gene Expression Omnibus databases, we performed differential expression (DE) analysis, weighted gene co-expression network analysis, functional enrichment analysis, survival analysis, prediction of miRNA targeting, and Pearson correlation analysis. Through layers of selection, 8 lncRNAs-28 mRNAs and 8 miRNAs-28 mRNAs pairs shared similar expression patterns, constituting a core ceRNA regulatory network related to the invasion, progression, and metastasis of advanced clinical stage (ACS) BCa. Subsequently, we conducted real time qPCR, western blotting, and immunohistochemistry to validate expression trend bioinformatics analysis on 3, 2, and 3 differentially expressed mRNAs, lncRNAs, and miRNAs, respectively. The most significantly differentially expressed LINC01929, miR-6875-5p and ADAMTS12 were selected for in vitro experiments to assess the functional role of the LINC01929/miR-6875-5p/ADAMTS12 axis. RNA pull-down, luciferase assays, and rescue assays were performed to examine the binding of LINC01929 and miR-6875-5p. Increasing trends in COL6A1, CDH11, ADAMTS12, LINC01705, and LINC01929 expression variation were verified as consistent with previous DE analysis results in ACS-BCa, compared with low clinical stage (LCS) BCa. Expression trends in parts of these RNAs, such as hsa-miR-6875-5p, hsa-miR-6784-5p, COL6A1, and CDH11, were measured in accordance with DE analysis in LCS-BCa, compared with normal bladder urothelium. Through experimental validation, the cancer-promoting molecule ADAMST12 was found to play a key role in the development of advanced BCa. Functionally, ADAMTS12 knockdown inhibited the progression of bladder cancer. Overexpression of LINC01929 promoted bladder cancer development, while overexpression of miR-6785-5p inhibited bladder cancer development. Mechanistically, LINC01929 acted as a sponge for miR-6785-5p and partially reversed the role of miR-6785-5p. Our findings provide an elucidation of the molecular mechanism by which advanced bladder cancer highly expressed LINC01929 upregulates ADAMTS12 expression through competitive adsorption of miR-6875-5p. It provides a new target for the prognosis and diagnosis of advanced bladder cancer.
Collapse
Affiliation(s)
- YuFeng Xiong
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - MingRui Pang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Du
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xi Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - JingPing Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wen Liu
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - XiuHeng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
26
|
CD103 +CD8 + tissue-resident memory T cell infiltration predicts clinical outcome and adjuvant therapeutic benefit in muscle-invasive bladder cancer. Br J Cancer 2022; 126:1581-1588. [PMID: 35165401 PMCID: PMC9130137 DOI: 10.1038/s41416-022-01725-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/20/2022] [Accepted: 01/28/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND CD103+CD8+ tissue-resident memory T (TRM) cells, associated with better overall survival among various malignancies, are thought to activate anti-tumour immune response and affect therapeutic sensitivity including both immunotherapy and adjuvant chemotherapy (ACT). METHODS Totally 650 muscle-invasive bladder cancer (MIBC) patients from three independent cohorts were included in this study for survival and cisplatin-based ACT response analysis. Another public data set consisting of 195 patients from IMvigor210 trial receiving PD-L1 blockade were involved in the assessment of immunotherapeutic response. Fifty-nine fresh tumour tissues were used to evaluate immune infiltration of CD103+CD8+ TRM cells. RESULTS Patients with high CD103+CD8+ TRM cells infiltration, but not CD8+ T cells, are more likely to benefit from immunotherapy and ACT. The presence of TRM cells is highly associated with an enhanced IFNγ-enriched and T cell-inflamed anti-tumour microenvironment. Elevated CD103+CD8+ TRM cells infiltration correlated with superior ACT response in mismatch repair (MMR), homologous recombination (HR), PIK3CA/AKT and RAS/RAF pathway proficient or histone modification and cell cycle pathway deficient patients. CONCLUSIONS CD103+CD8+ TRM cells played a crucial role in anti-tumour immunity and served as an ideal prognostic biomarker. It could be treated as a superior companion predictor for treatment response to PD-L1 inhibitor and ACT within MIBC patients.
Collapse
|
27
|
Zhong W, Qu H, Yao B, Wang D, Qiu J. Analysis of a Long Non-coding RNA associated Signature to Predict Survival in Patients with Bladder Cancer. Cureus 2022; 14:e24818. [PMID: 35693359 PMCID: PMC9172899 DOI: 10.7759/cureus.24818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2022] [Indexed: 12/24/2022] Open
|
28
|
Yan S, Zeng H, Jin K, Shao F, Liu Z, Chang Y, Wang Y, Zhu Y, Wang Z, Xu L, Xu J. NKG2A and PD-L1 expression panel predicts clinical benefits from adjuvant chemotherapy and PD-L1 blockade in muscle-invasive bladder cancer. J Immunother Cancer 2022; 10:jitc-2022-004569. [PMID: 35523436 PMCID: PMC9073407 DOI: 10.1136/jitc-2022-004569] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 12/11/2022] Open
Abstract
Background Programmed cell death ligand-1 (PD-L1) expression as a single biomarker for immune checkpoint blockade (ICB) was controversial. NKG2A was a PD1/PD-L1 axis-related immunity-dependent factor. NKG2A and PD-L1 expression as a combinatorial biomarker might improve the prediction of PD-L1 in patients with muscle-invasive bladder cancer (MIBC). Methods Three independent cohorts were enrolled in our study. 195 patients with bladder-derived metastatic urothelial carcinoma on PD-L1 inhibitor treatment from the IMvigor210 trial were enrolled. 124 MIBC patients from Zhongshan Hospital and 391 patients with MIBC from The Cancer Genome Atlas database were included in this study. The PD-L1/NKG2A-based risk stratification was validated in three independent cohorts, and its association with response to ICB and adjuvant chemotherapy (ACT), immune contexture and molecular features was evaluated. Histologic staining and genomic algorithm were performed to detect characteristics of NKG2A and PD-L1 expression and infiltration of immune cells. Results We identified NKG2AhiPD-L1hi patients could benefit more from cisplatin-based ACT and PD-L1 inhibitor. Further analyses revealed NKG2A and PD-L1 expression panel was linked to an immune-active tumor microenvironment with highly immune effector cells and effector molecules. In addition, NKG2A and PD-L1 expression panel was intrinsically correlated with genomic alterations related to therapeutic response in MIBC. Conclusions NKG2A and PD-L1 expression panel was associated with an immune inflamed microenvironment and acted as a combinatorial biomarker to predict the therapeutic response to ACT and PD-L1 blockade in MIBC.
Collapse
Affiliation(s)
- Sen Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Han Zeng
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kaifeng Jin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Fei Shao
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaopei Liu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yuan Chang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yiwei Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zewei Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Le Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Oncogenic E3 ubiquitin ligase NEDD4 binds to KLF8 and regulates the microRNA-132/NRF2 axis in bladder cancer. Exp Mol Med 2022; 54:47-60. [PMID: 35031788 PMCID: PMC8814007 DOI: 10.1038/s12276-021-00663-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 05/06/2021] [Accepted: 06/14/2021] [Indexed: 11/09/2022] Open
Abstract
The neuronally expressed developmentally downregulated 4 (NEDD4) gene encodes a ubiquitin ligase that targets the epithelial sodium channel for degradation and has been implicated in tumor growth in various cancers. Hence, in this study, we intended to characterize the functional relevance of the NEDD4-mediated Kruppel-like factor 8/microRNA-132/nuclear factor E2-related factor 2 (KLF8/miR-132/NRF2) axis in the development of bladder cancer. NEDD4 and KLF8 were overexpressed in bladder cancer tissues and were associated with poorer patient survival rates. In bladder cancer cells, NEDD4 intensified the stability and transcriptional activity of KLF8 through ubiquitination to augment cell viability and migratory ability. Our investigations revealed that NEDD4 promotes the binding of KLF8 to the miR-132 promoter region and inhibits the expression of miR-132. KLF8 inhibited the expression of miR-132 to augment the viability and migratory ability of bladder cancer cells. Furthermore, miR-132 downregulated the expression of NRF2 to restrict the viability and migratory ability of bladder cancer cells. In addition, in vivo findings verified that NEDD4 regulates the KLF8/miR-132/NRF2 axis by accelerating tumor growth and lung metastasis. In conclusion, this study highlights NEDD4 as a potential therapeutic target against tumor recurrence and metastasis in bladder cancer.
Collapse
|
30
|
Co-expression of cancer-testis antigens of MAGE-A6 and MAGE-A11 is associated with tumor aggressiveness in patients with bladder cancer. Sci Rep 2022; 12:599. [PMID: 35022469 PMCID: PMC8755713 DOI: 10.1038/s41598-021-04510-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Melanoma antigen gene (MAGE)-A6 and MAGE-A11 are two of the most cancer-testis antigens overexpressed in various types of cancers. However, the clinical and prognosis value of MAGE-A6 and MAGE-A11 co-expression in the pathophysiology of the bladder is unknown. Three studies were selected from GEO databases in order to introduce the common genes that are involved in bladder cancer. Then immunohistochemical analysis for staining pattern and clinicopathological significance of suggested markers, MAGE-A6 and MAGE-A11, were performed in 199 and 213 paraffin-embedded bladder cancer with long adjacent normal tissues, respectively. A significant and positive correlation was found between both nuclear and cytoplasmic expressions of MAGE-A6 as well as expression of cytoplasmic MAGE-A11 with histological grade, PT stage, lamina propria invasion, and LP/ muscularis (L/M) involvement (all of the p-values in terms of H-score were < 0.0001). Additionally, significant differences were found between both nuclear and cytoplasmic MAGE-A6/MAGE-A11 phenotypes with tumor size (P = 0.007, P = 0.043, respectively), different histological grades, PT stage, LP involvement, and L/M involvement (all of the p-values for both phenotypes were < 0.0001). The current study added the value of these novel markers to the bladder cancer clinical settlement that might be considered as an admirable target for immunotherapy.
Collapse
|
31
|
Gómez Caamaño A, García Vicente AM, Maroto P, Rodríguez Antolín A, Sanz J, Vera González MA, Climent MÁ. Management of Localized Muscle-Invasive Bladder Cancer from a Multidisciplinary Perspective: Current Position of the Spanish Oncology Genitourinary (SOGUG) Working Group. Curr Oncol 2021; 28:5084-5100. [PMID: 34940067 PMCID: PMC8700266 DOI: 10.3390/curroncol28060428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 11/30/2022] Open
Abstract
This review presents challenges and recommendations on different aspects related to the management of patients with localized muscle-invasive bladder cancer (MIBC), which were discussed by a group of experts of a Spanish Oncology Genitourinary (SOGUG) Working Group within the framework of the Genitourinary Alliance project (12GU). It is necessary to clearly define which patients are candidates for radical cystectomy and which are candidates for undergoing bladder-sparing procedures. In older patients, it is necessary to include a geriatric assessment and evaluation of comorbidities. The pathological report should include a classification of the histopathological variant of MIBC, particularly the identification of subtypes with prognostic, molecular and therapeutic implications. Improvement of clinical staging, better definition of prognostic groups based on molecular subtypes, and identification of biomarkers potentially associated with maximum benefit from neoadjuvant chemotherapy are areas for further research. A current challenge in the management of MIBC is improving the selection of patients likely to be candidates for immunotherapy with checkpoint inhibitors in the neoadjuvant setting. Optimization of FDG-PET/CT reliability in staging of MIBC and the selection of patients is necessary, as well as the design of prospective studies aimed to compare the value of different imaging techniques in parallel.
Collapse
Affiliation(s)
- Antonio Gómez Caamaño
- Department of Radiation Oncology, Hospital Clínico Universitario de Santiago, 15706 Santiago de Compostela, Spain
| | | | | | | | - Julián Sanz
- Clínica Universidad de Navarra, 31008 Pamplona, Spain;
| | | | - Miguel Ángel Climent
- Medical Oncology Service, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain;
| | | |
Collapse
|
32
|
Lu M, Zhan H, Liu B, Li D, Li W, Chen X, Zhou X. N6-methyladenosine-related non-coding RNAs are potential prognostic and immunotherapeutic responsiveness biomarkers for bladder cancer. EPMA J 2021; 12:589-604. [PMID: 34950253 PMCID: PMC8648947 DOI: 10.1007/s13167-021-00259-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/30/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Bladder cancer (BC) is a commonly occurring malignant tumor of the urinary system, demonstrating high global morbidity and mortality rates. BC currently lacks widely accepted biomarkers and its predictive, preventive, and personalized medicine (PPPM) is still unsatisfactory. N6-methyladenosine (m6A) modification and non-coding RNAs (ncRNAs) have been shown to be effective prognostic and immunotherapeutic responsiveness biomarkers and contribute to PPPM for various tumors. However, their role in BC remains unclear. METHODS m6A-related ncRNAs (lncRNAs and miRNAs) were identified through a comprehensive analysis of TCGA, starBase, and m6A2Target databases. Using TCGA dataset (training set), univariate and least absolute shrinkage and selection operator (LASSO) regression analyses were performed to develop an m6A-related ncRNA-based prognostic risk model. Kaplan-Meier analysis of overall survival (OS) and receiver operating characteristic (ROC) curves were used to verify the prognostic evaluation power of the risk model in the GSE154261 dataset (testing set) from Gene Expression Omnibus (GEO). A nomogram containing independent prognostic factors was developed. Differences in BC clinical characteristics, m6A regulators, m6A-related ncRNAs, gene expression patterns, and differentially expressed genes (DEGs)-associated molecular networks between the high- and low-risk groups in TCGA dataset were also analyzed. Additionally, the potential applicability of the risk model in the prediction of immunotherapeutic responsiveness was evaluated based on the "IMvigor210CoreBiologies" data set. RESULTS We identified 183 m6A-related ncRNAs, of which 14 were related to OS. LASSO regression analysis was further used to develop a prognostic risk model that included 10 m6A-related ncRNAs (BAALC-AS1, MIR324, MIR191, MIR25, AC023509.1, AL021707.1, AC026362.1, GATA2-AS1, AC012065.2, and HCP5). The risk model showed an excellent prognostic evaluation performance in both TCGA and GSE154261 datasets, with ROC curve areas under the curve (AUC) of 0.62 and 0.83, respectively. A nomogram containing 3 independent prognostic factors (risk score, age, and clinical stage) was developed and was found to demonstrate high prognostic prediction accuracy (AUC = 0.83). Moreover, the risk model could also predict BC progression. A higher risk score indicated a higher pathological grade and clinical stage. We identified 1058 DEGs between the high- and low-risk groups in TCGA dataset; these DEGs were involved in 3 molecular network systems, i.e., cellular immune response, cell adhesion, and cellular biological metabolism. Furthermore, the expression levels of 8 m6A regulators and 12 m6A-related ncRNAs were significantly different between the two groups. Finally, this risk model could be used to predict immunotherapeutic responses. CONCLUSION Our study is the first to explore the potential application value of m6A-related ncRNAs in BC. The m6A-related ncRNA-based risk model demonstrated excellent performance in predicting prognosis and immunotherapeutic responsiveness. Based on this model, in addition to identifying high-risk patients early to provide them with focused attention and targeted prevention, we can also select beneficiaries of immunotherapy to deliver personalized medical services. Furthermore, the m6A-related ncRNAs could elucidate the molecular mechanisms of BC and lead to a new direction for the improvement of PPPM for BC. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13167-021-00259-w.
Collapse
Affiliation(s)
- Miaolong Lu
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 W Tianhe Rd, Guangzhou, Guangdong 510630 People’s Republic of China
| | - Hailun Zhan
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 W Tianhe Rd, Guangzhou, Guangdong 510630 People’s Republic of China
| | - Bolong Liu
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 W Tianhe Rd, Guangzhou, Guangdong 510630 People’s Republic of China
| | - Dongyang Li
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 W Tianhe Rd, Guangzhou, Guangdong 510630 People’s Republic of China
| | - Wenbiao Li
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 W Tianhe Rd, Guangzhou, Guangdong 510630 People’s Republic of China
| | - Xuelian Chen
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 W Tianhe Rd, Guangzhou, Guangdong 510630 People’s Republic of China
| | - Xiangfu Zhou
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 W Tianhe Rd, Guangzhou, Guangdong 510630 People’s Republic of China
| |
Collapse
|
33
|
Fu J, Wang Y. Identification of a Novel Pyroptosis-Related Gene Signature for Predicting Prognosis in Bladder Cancer. Cancer Invest 2021; 40:134-150. [PMID: 34644219 DOI: 10.1080/07357907.2021.1991944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bladder cancer (BC) has an unpredictable prognosis. Pyroptosis is a novel form of programmed cell death. However, whether the pyroptosis-related genes have a prognostic value remains unknown. In this study, we downloaded the mRNA expression and clinical data of BC patients and used the LASSO Cox analysis was employed to build a signature. High-risk patients had a significantly lower overall survival (OS) (p < .0001). Single-sample gene set enrichment analysis (ssGSEA) indicated that the tumor immune microenvironment was different between the two risk groups. In conclusion, a pyroptosis-related signature can be used for OS prediction of patients with BCs.
Collapse
Affiliation(s)
- Jianhan Fu
- Department of Urology, Second Xiangya Hospital, Changsha, China
| | - Yinhuai Wang
- School of Medicine, Central South University Xiangya, Changsha, China
| |
Collapse
|
34
|
Tan G, Wu A, Li Z, Chen G, Wu Y, Huang S, Chen X, Li G. Bioinformatics analysis based on immune-autophagy-related lncRNAs combined with immune infiltration in bladder cancer. Transl Androl Urol 2021; 10:3440-3455. [PMID: 34532269 PMCID: PMC8421818 DOI: 10.21037/tau-21-560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
Background To construct a prognostic model based on immune-autophagy-related long noncoding RNA (IArlncRNAs), mainly to predict the overall survival rate (OS) of bladder cancer patients and investigate its possible mechanisms. Methods Transcriptome and clinical data were obtained from The Cancer Genome Atlas (TCGA) database. We identified the IArlncRNA by co-expression analysis, differential expression analysis, and Venn analysis. Then, we identified the independent prognostic IArlncRNAs by univariate Cox regression, LASSO regression, and multivariate Cox regression analysis. Moreover, we constructed the prognostic model based on the independent prognostic IArlncRNAs and clinical features. The proportion of 22 immune cell subtypes was analyzed by the CIBERSORT algorithm. Besides, we identified the differential proportion of 22 immune cell subtypes between the high- and low-risk groups. In addition, we identified the correlation between immune-infiltrating cells (screened by univariate Cox regression and multivariate Cox regression analysis) and IArlncRNAs by Pearson correlation analysis. Finally, we estimated the half-maximal inhibitory concentration (IC50) of chemotherapeutic drugs in patients with bladder cancer based on the pRRophetic algorithm. Results Four IArlncRNAs were identified as independent prognostic factors, including AL136084.3, AC006270.1, Z84484.1, and AL513218.1. The OS of patients in the high-risk group was significantly worse compared to the low-risk group. The nomogram showed an excellent predictive effect with the C-index of 0.64. The calibration chart showed a good actual vs. predicted probability. B cells naïve, T cells CD8, T cells CD4 memory resting, T cells follicular helper, macrophages M1, dendritic resting and activated cells had higher infiltrations in the low-risk group and lower infiltration of macrophages M2. The fraction of macrophages M2 was positively associated with AL136084.3. The fraction of T cells CD8 was positively associated with Z84484.1. The fraction of M + macrophages M0 was negatively associated with Z84484.1. Further, we identified the differential IC50 of 24 chemotherapeutic drugs between the high- and low-risk groups. Conclusions The prognostic model based on 4 IArlncRNAs showed an excellent predictive effect. Furthermore, we reasonably speculated that IArlncRNAs are directly or indirectly involved in the immune regulation of the tumor microenvironment (TME), as well as autophagy.
Collapse
Affiliation(s)
- Guobin Tan
- Department of Urology, Maoming People's Hospital, Maoming, China
| | - Aiming Wu
- Department of Urology, Maoming People's Hospital, Maoming, China
| | - Zhiqin Li
- Department of Urology, Maoming People's Hospital, Maoming, China
| | - Guangming Chen
- Department of Urology, Maoming People's Hospital, Maoming, China
| | - Yonglu Wu
- Department of Urology, Maoming People's Hospital, Maoming, China
| | - Shuitong Huang
- Department of Urology, Maoming People's Hospital, Maoming, China
| | - Xianxi Chen
- Department of Urology, Maoming People's Hospital, Maoming, China
| | - Guanjun Li
- Department of Urology, Maoming People's Hospital, Maoming, China
| |
Collapse
|
35
|
Kai-Xin L, Cheng C, Rui L, Zheng-Wei S, Wen-Wen T, Peng X. Roles of lncRNA MAGI2-AS3 in human cancers. Biomed Pharmacother 2021; 141:111812. [PMID: 34126355 DOI: 10.1016/j.biopha.2021.111812] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/04/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are noncoding RNAs more than 200 nucleotides in length. A growing number of reports indicate that lncRNAs play a key role in multiple cancers by serving as oncogenes or tumor suppressor genes. MAGI2 antisense RNA 3 (MAGI2-AS3) is ubiquitously expressed in human cancers, and the level of MAGI2-AS3 expression is associated with the progression and prognosis of cancers. Moreover, dysregulation of MAGI2-AS3 has been found to regulate cancer cell proliferation, cell death, invasion and metastasis and treatment resistance by serving as a competing endogenous RNA (ceRNA), epigenomic regulator, and transcriptional regulator. Moreover, increasing evidence shows that MAGI2-AS3 may be a potential biomarker for cancer prognosis and a potential target for cancer therapy. In this review, we summarize current research on the functions, mechanisms and clinical significance of the lncRNA MAGI2-AS3 in cancer development.
Collapse
Affiliation(s)
- Liu Kai-Xin
- Honghui-hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Cheng Cheng
- Gansu Provincial Maternal and Child Health Hospital, Lanzhou 730000, China
| | - Li Rui
- Honghui-hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Shi Zheng-Wei
- Honghui-hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Tan Wen-Wen
- Department of Bone Disease and Oncology, Honghui Hospital, Xi'an Jiaotong University, Shaanxi 710054, China
| | - Xu Peng
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Shaanxi 710054, China.
| |
Collapse
|
36
|
Geng H, Zhou Q, Guo W, Lu L, Bi L, Wang Y, Min J, Yu D, Liang Z. Exosomes in bladder cancer: novel biomarkers and targets. J Zhejiang Univ Sci B 2021; 22:341-347. [PMID: 33973417 PMCID: PMC8110466 DOI: 10.1631/jzus.b2000711] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/30/2020] [Indexed: 01/19/2023]
Abstract
Exosomes are nanometer-sized vesicles that contain various types of biologically active components, including proteins, nucleic acids, carbohydrates, and lipids, which vary with the type and physiological state of the cell. In recent years, several studies have showed that exosomes can provide new non-invasive diagnostic and prognostic biomarkers in patients affected by cancers, including bladder cancer (BC), and the lipid bilayer membrane structure makes exosomes as promising delivery vehicles for therapeutic applications. Exosomes have the characteristics of high abundance, high stability, tissue specificity, and wide distribution in body fluids, and are secreted as various types by cells in different states, thereby possessing great potential as biomarkers for BC. Herein, we briefly summarize the functions and roles of exosomes in the occurrence and development of BC and the current progress of research on exosomes in BC, while focusing on potential clinical applications of the diagnosis, treatment, and prognosis of BC.
Collapse
Affiliation(s)
- Hao Geng
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Qingchen Zhou
- Department of Urology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Wenhao Guo
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Ling Lu
- Department of Child Healthcare, Women and Children Health Hospital of Zhenjiang, Zhenjiang 212001, China
| | - Liangkuan Bi
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Yi Wang
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Jie Min
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Dexin Yu
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230032, China.
| | - Zhaofeng Liang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
37
|
Kamran SC, Efstathiou JA. Current State of Personalized Genitourinary Cancer Radiotherapy in the Era of Precision Medicine. Front Oncol 2021; 11:675311. [PMID: 34026653 PMCID: PMC8139515 DOI: 10.3389/fonc.2021.675311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Radiation therapy plays a crucial role for the management of genitourinary malignancies, with technological advancements that have led to improvements in outcomes and decrease in treatment toxicities. However, better risk-stratification and identification of patients for appropriate treatments is necessary. Recent advancements in imaging and novel genomic techniques can provide additional individualized tumor and patient information to further inform and guide treatment decisions for genitourinary cancer patients. In addition, the development and use of targeted molecular therapies based on tumor biology can result in individualized treatment recommendations. In this review, we discuss the advances in precision oncology techniques along with current applications for personalized genitourinary cancer management. We also highlight the opportunities and challenges when applying precision medicine principles to the field of radiation oncology. The identification, development and validation of biomarkers has the potential to personalize radiation therapy for genitourinary malignancies so that we may improve treatment outcomes, decrease radiation-specific toxicities, and lead to better long-term quality of life for GU cancer survivors.
Collapse
Affiliation(s)
- Sophia C. Kamran
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | |
Collapse
|
38
|
Barani M, Hosseinikhah SM, Rahdar A, Farhoudi L, Arshad R, Cucchiarini M, Pandey S. Nanotechnology in Bladder Cancer: Diagnosis and Treatment. Cancers (Basel) 2021; 13:2214. [PMID: 34063088 PMCID: PMC8125468 DOI: 10.3390/cancers13092214] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Bladder cancer (BC) is the second most common cancer of the urinary tract in men and the fourth most common cancer in women, and its incidence rises with age. There are many conventional methods for diagnosis and treatment of BC. There are some current biomarkers and clinical tests for the diagnosis and treatment of BC. For example, radiotherapy combined with chemotherapy and surgical, but residual tumor cells mostly cause tumor recurrence. In addition, chemotherapy after transurethral resection causes high side effects, and lack of selectivity, and low sensitivity in sensing. Therefore, it is essential to improve new procedures for the diagnosis and treatment of BC. Nanotechnology has recently sparked an interest in a variety of areas, including medicine, chemistry, physics, and biology. Nanoparticles (NP) have been used in tumor therapies as appropriate tools for enhancing drug delivery efficacy and enabling therapeutic performance. It is noteworthy, nanomaterial could be reduced the limitation of conventional cancer diagnosis and treatments. Since, the major disadvantages of therapeutic drugs are their insolubility in an aqueous solvent, for instance, paclitaxel (PTX) is one of the important therapeutic agents utilized to treating BC, due to its ability to prevent cancer cell growth. However, its major problem is the poor solubility, which has confirmed to be a challenge when improving stable formulations for BC treatment. In order to reduce this challenge, anti-cancer drugs can be loaded into NPs that can improve water solubility. In our review, we state several nanosystem, which can effective and useful for the diagnosis, treatment of BC. We investigate the function of metal NPs, polymeric NPs, liposomes, and exosomes accompanied therapeutic agents for BC Therapy, and then focused on the potential of nanotechnology to improve conventional approaches in sensing.
Collapse
Affiliation(s)
- Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran;
| | - Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran; (S.M.H.); (L.F.)
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 98613-35856, Iran
| | - Leila Farhoudi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran; (S.M.H.); (L.F.)
| | - Rabia Arshad
- Department of Pharmacy, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
- Particulate Matter Research Center, Research Institute of Industrial Science & Technology (RIST), 187-12, Geumho-ro, Gwangyang-si 57801, Korea
| |
Collapse
|
39
|
Qu G, Liu Z, Yang G, Xu Y, Xiang M, Tang C. Development of a prognostic index and screening of prognosis related genes based on an immunogenomic landscape analysis of bladder cancer. Aging (Albany NY) 2021; 13:12099-12112. [PMID: 33888644 PMCID: PMC8109062 DOI: 10.18632/aging.202917] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/23/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Bladder cancer (BLCA) is one of the most common urinary tract malignant tumors. It is associated with poor outcomes, and its etiology and pathogenesis are not fully understood. There is great hope for immunotherapy in treating many malignant tumors; therefore, it is worthwhile to explore the use of immunotherapy for BLCA. METHODS Gene expression profiles and clinical information were obtained from The Cancer Genome Atlas (TCGA), and immune-related genes (IRGs) were downloaded from the Immunology Database and Analysis Portal. Differentially-expressed and survival-associated IRGs in patients with BLCA were identified using computational algorithms and Cox regression analysis. We also performed functional enrichment analysis. Based on IRGs, we employed multivariate Cox analysis to develop a new prognostic index. RESULTS We identified 261 IRGs that were differentially expressed between BLCA tissue and adjacent tissue, 30 of which were significantly associated with the overall survival (all P<0.01). According to multivariate Cox analysis, nine survival-related IRGs (MMP9, PDGFRA, AHNAK, OAS1, OLR1, RAC3, IGF1, PGF, and SH3BP2) were high-risk genes. We developed a prognostic index based on these IRGs and found it accurately predicted BLCA outcomes associated with the TNM stage. Intriguingly, the IRG-based prognostic index reflected infiltration of macrophages. CONCLUSIONS An independent IRG-based prognostic index provides a practical approach for assessing patients' immune status and prognosis with BLCA. This index independently predicted outcomes of BLCA.
Collapse
Affiliation(s)
- GenYi Qu
- Department of Urology, Zhuzhou Central Hospital, Zhuzhou 412007, China
| | - Zhengsheng Liu
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Guang Yang
- Department of Urology, Zhuzhou Central Hospital, Zhuzhou 412007, China
| | - Yong Xu
- Department of Urology, Zhuzhou Central Hospital, Zhuzhou 412007, China
| | - Maolin Xiang
- Department of Urology, Zhuzhou Central Hospital, Zhuzhou 412007, China
| | - Cheng Tang
- Department of Urology, Zhuzhou Central Hospital, Zhuzhou 412007, China
| |
Collapse
|
40
|
Solanki AA, Venkatesulu BP, Efstathiou JA. Will the Use of Biomarkers Improve Bladder Cancer Radiotherapy Delivery? Clin Oncol (R Coll Radiol) 2021; 33:e264-e273. [PMID: 33867226 DOI: 10.1016/j.clon.2021.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022]
Abstract
Advances in the field of cancer biology and molecular techniques have led to a better understanding of the molecular underpinnings driving cancer development and outcomes. Simultaneously, advances in imaging have allowed for improved sensitivity in initial staging, radiotherapy planning and follow-up of numerous cancers. These two phenomena have led to the development of biomarkers that can guide therapy in multiple malignancies. In bladder cancer, there is extensive ongoing research into the identification of biomarkers that can help tailor personalised approaches for treatment based on the intrinsic tumour biology. However, the delivery of bladder cancer radiotherapy as part of trimodality therapy currently has a paucity of biomarkers to guide treatment. Here we summarise the existing literature and ongoing investigations into potential predictive and prognostic molecular and imaging biomarkers that may one day guide selection for utilisation of radiotherapy as part of trimodality therapy, guide selection of the radiosensitising agent, guide radiation dose and target, and guide surveillance for recurrence after trimodality therapy.
Collapse
Affiliation(s)
- A A Solanki
- Department of Radiation Oncology, Stritch School of Medicine Loyola University Chicago, Loyola University Medical Center, Maywood, Illinois, USA.
| | - B P Venkatesulu
- Department of Radiation Oncology, Stritch School of Medicine Loyola University Chicago, Loyola University Medical Center, Maywood, Illinois, USA
| | - J A Efstathiou
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
41
|
Xiong Y, Ju L, Yuan L, Chen L, Wang G, Xu H, Peng T, Luo Y, Xiao Y, Wang X. KNSTRN promotes tumorigenesis and gemcitabine resistance by activating AKT in bladder cancer. Oncogene 2021; 40:1595-1608. [PMID: 33452459 DOI: 10.1038/s41388-020-01634-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 01/29/2023]
Abstract
KNSTRN is a component of the mitotic spindle, which was rarely investigated in tumorigenesis. AKT plays an essential role in tumorigenesis by modulating the phosphorylation of various substrates. The activation of AKT is regulated by PTEN and PIP3. Here, we prove KNSTRN is positively correlated with malignancy of bladder cancer and KNSTRN activates AKT phosphorylation at Thr308 and Ser473. More importantly, our study reveals that both KNSTRN and PTEN interact with PH domain of AKT at cell membrane. The amount of KNSTRN interacted with AKT is negatively related to PTEN. Furthermore, PIP3 pull-down assay proves that KNSTRN promoted AKT movement to PIP3. These data suggest KNSTRN may activate AKT phosphorylation by promoting AKT movement to PIP3 and alleviating PTEN suppression. Based on the activation of AKT phosphorylation, our study demonstrates that KNSTRN promotes bladder cancer metastasis and gemcitabine resistance in vitro and in vivo. Meanwhile, the effect of KNSTRN on tumorigenesis and gemcitabine resistance could be restored by AKT specific inhibitor MK2206 or AKT overexpression. In conclusion, we identify an oncogene KNSTRN that promotes tumorigenesis and gemcitabine resistance by activating AKT phosphorylation and may serve as a therapeutic target in bladder cancer.
Collapse
Affiliation(s)
- Yaoyi Xiong
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetic Resource Preservation Center of Hubei Province, Wuhan, China.,Research Center of Wuhan for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Lushun Yuan
- Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Liang Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetic Resource Preservation Center of Hubei Province, Wuhan, China.,Research Center of Wuhan for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Huimin Xu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tianchen Peng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yongwen Luo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China. .,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China. .,Human Genetic Resource Preservation Center of Hubei Province, Wuhan, China. .,Research Center of Wuhan for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China. .,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China. .,Research Center of Wuhan for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China. .,Medical Research Institute, Wuhan University, Wuhan, China.
| |
Collapse
|
42
|
Wang X, Zhang R, Wu T, Shi Y, Zhou X, Tang D, Yu W, So EC, Wu X, Pan Z, Tian J. Successive treatment with naltrexone induces epithelial-mesenchymal transition and facilitates the malignant biological behaviors of bladder cancer cells. Acta Biochim Biophys Sin (Shanghai) 2021; 53:238-248. [PMID: 33410473 DOI: 10.1093/abbs/gmaa169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Indexed: 12/31/2022] Open
Abstract
Naltrexone is widely used for alleviating opioid-related side effects in cancer patients. However, the effects of naltrexone on cancer progression are controversial in the literature. The present study was carried out to investigate the effects of successive treatment with clinically relevant doses of naltrexone on the malignant biological behaviors of bladder cancer cells. The human bladder cancer T24 cells and mouse bladder cancer MB49 cells were treated with naltrexone. Cell proliferation, migration, and invasion abilities were analyzed. Morphological changes of the cells were confirmed by F-actin immunofluorescence staining. Epithelial-mesenchymal transition (EMT)-related markers and transcriptional factors, as well as activation of the phosphatidylinositol 3 kinase (PI3K)/AKT signaling pathway, were analyzed. Results showed that, compared with the control group, successive treatment with naltrexone significantly promoted the proliferation and decreased the apoptosis of bladder cancer cells, together with increase in cell migration and invasion ability. Continuous treatment with naltrexone also significantly reduced the expression of epithelial markers (E-cadherin and cytokeratin 19), increased the expression of mesenchymal markers (N-cadherin and vimentin) and EMT-inducing transcription factors (Snail and Slug), and further shifted the morphological phenotype of bladder cancer cells to a mesenchymal phenotype. The PI3K/AKT signaling pathway was activated by successive treatment with naltrexone. Notably, incubation with the specific PI3K inhibitor LY294002 together with naltrexone reversed the naltrexone-induced EMT progression. In conclusion, successive treatment with naltrexone may be favorable for the progression of bladder tumors by activating the PI3K/AKT signaling pathway and inducing EMT. Long-term exposure to naltrexone should be used cautiously in patients with bladder cancer.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200127, China
| | - Ruirui Zhang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200127, China
| | - Tong Wu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200127, China
| | - Yumiao Shi
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200127, China
| | - Xiao Zhou
- Department of Intensive Care, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200127, China
| | - Dan Tang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200127, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200127, China
| | - Edmund Cheung So
- Department of Anesthesia, An Nan Hospital, China Medical University, Tainan 709010
| | - Xiaodan Wu
- Department of Anesthesiology, Fujian Provincial Hospital, Fujian Provincial Clinical Medical College, Fujian Medical University, Fuzhou 350001, China
| | - Zhiying Pan
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200127, China
| | - Jie Tian
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200127, China
| |
Collapse
|
43
|
He H, Wu S, Ai K, Xu R, Zhong Z, Wang Y, Zhang L, Zhao X, Zhu X. LncRNA ZNF503-AS1 acts as a tumor suppressor in bladder cancer by up-regulating Ca 2+ concentration via transcription factor GATA6. Cell Oncol (Dordr) 2021; 44:219-233. [PMID: 33001357 DOI: 10.1007/s13402-020-00563-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Ca2+ homeostasis plays a pivotal role in regulating proliferation and apoptosis during cancer development. This study intended to examine the potential tumor-suppressing role of ZNF503 antisense RNA 1 (ZNF503-AS1) in bladder cancer, which may be implicated in the regulation of Ca2+ homeostasis. METHODS Differentially expressed long non-coding RNAs (lncRNAs) related to bladder cancer were identified using microarray analysis, followed by the verification of transcription factors to which they bind. The relationship between ZNF503-AS1, GATA6 and SLC8A1 was assessed using dual luciferase reporter, RIP and ChIP assays. The expression levels of ZNF503-AS1, GATA6 and SLC8A1 were modulated to examine their effects on the tumorigenic potential, intracellular Ca2+ concentration and Ca2+-ATPase activity in bladder cancer cells. The in vivo tumorigenic ability was validated in nude mice. RESULTS Microarray-based expression profile analysis of the GEO GSE61615 dataset revealed that the expression of ZNF503-AS1 was decreased in bladder cancer. Subsequently, we found that ZNF503-AS1 can bind to the transcription factor GATA6 to up-regulate the expression of SLC8A1. ZNF503-AS1 and SLC8A1 were found to be down-regulated in both primary bladder cancer tissues and cells. Exogenous overexpression of ZNF503-AS1 or SLC8A1 attenuated bladder cancer cell proliferation, invasion and migration, but promoted their apoptosis, accompanied by decreased Ca2+-ATPase activities and increased intracellular Ca2+ concentrations. Additional in vivo experiments validated the inhibitory effect of ZNF503-AS1 overexpression on the tumorigenic capacity of bladder cancer cells in nude mice. CONCLUSION ZNF503-AS1 can recruit transcription factor GATA6 to up-regulate SLC8A1 expression, thereby increasing the intracellular Ca2+ concentration and repressing the proliferation, invasion and migration, and enhancing the apoptosis of bladder cancer cells.
Collapse
Affiliation(s)
- Haiqing He
- Department of Urology, The Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Shuiqing Wu
- Department of Urology, The Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Kai Ai
- Department of Urology, The Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Ran Xu
- Department of Urology, The Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Zhaohui Zhong
- Department of Urology, The Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Lei Zhang
- Department of Urology, The Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Xiaokun Zhao
- Department of Urology, The Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, 410011, Hunan Province, People's Republic of China.
| | - Xuan Zhu
- Department of Urology, The Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, 410011, Hunan Province, People's Republic of China.
| |
Collapse
|
44
|
Tran L, Xiao JF, Agarwal N, Duex JE, Theodorescu D. Advances in bladder cancer biology and therapy. Nat Rev Cancer 2021; 21:104-121. [PMID: 33268841 PMCID: PMC10112195 DOI: 10.1038/s41568-020-00313-1] [Citation(s) in RCA: 398] [Impact Index Per Article: 99.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 12/26/2022]
Abstract
The field of research in bladder cancer has seen significant advances in recent years. Next-generation sequencing has identified the genes most mutated in bladder cancer. This wealth of information allowed the definition of driver mutations, and identification of actionable therapeutic targets, as well as a clearer picture of patient prognosis and therapeutic direction. In a similar vein, our understanding of the cellular aspects of bladder cancer has grown. The identification of the cellular geography and the populations of different cell types and quantifications of normal and abnormal cell types in tumours provide a better prediction of therapeutic response. Non-invasive methods of diagnosis, including liquid biopsies, have seen major advances as well. These methods will likely find considerable utility in assessing minimal residual disease following treatment and for early-stage diagnosis. A significant therapeutic impact on patients with bladder cancer is found in the use of immune checkpoint inhibitor therapeutics. These therapeutics have been shown to cure some patients with bladder cancer and significantly decrease adverse events. These developments provide patients with better monitoring opportunities, unique therapeutic options and greater hope for prolonged survival.
Collapse
Affiliation(s)
- Linda Tran
- Department of Surgery (Urology), Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Jin-Fen Xiao
- Department of Surgery (Urology), Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Neeraj Agarwal
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
- Department of Medicine (Hematology/Oncology), Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jason E Duex
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Dan Theodorescu
- Department of Surgery (Urology), Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA.
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
45
|
Jin K, Qiu S, Jin D, Zhou X, Zheng X, Li J, Liao X, Yang L, Wei Q. Development of prognostic signature based on immune-related genes in muscle-invasive bladder cancer: bioinformatics analysis of TCGA database. Aging (Albany NY) 2021; 13:1859-1871. [PMID: 33465047 PMCID: PMC7880322 DOI: 10.18632/aging.103787] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/14/2020] [Indexed: 02/05/2023]
Abstract
Background: Muscle-invasive bladder cancer (MIBC) with high tumor stages accounts for most bladder cancer patient mortality. Platinum-based chemotherapy provides insufficient survival benefits; however, immunotherapy is a promising option for MIBC. Results: There were 31 differentially expressed IRGs that significantly correlated with the clinical outcomes of MIBC patients. A prognostic signature based on 12 IRGs (MMP9, RBP7, ADIPOQ, AHNAK, OAS1, RAC3, SLIT2, EDNRA, IL34, PDGFD, PPY, IL17RD) performed moderately in prognostic predictions with area under the curve (AUC) equal to 0.76. The high-risk patient group presented worse survival outcomes (hazard ratio 1.197, 95% confidence interval 1.103–1.299, p < 0.001). Furthermore, immune cell infiltration analysis showed increased tumor infiltration of macrophages in the high-risk group. Conclusion: This novel prognostic signature can effectively divide MIBC patients into different risk groups, allowing for intensive treatment of high-risk individuals who have worse predicted survival outcomes. Methods: Bioinformatics analyses were conducted using the Cancer Genome Atlas (TCGA) database. Differentially expressed genes and survival-associated immune-related genes (IRGs) were analyzed through a computational algorithm and Cox regression. The potential mechanisms of IRG expression were explored with transcription factors, and a prognosis classification based on IRG expression was developed to stratify patients into distinct risk groups.
Collapse
Affiliation(s)
- Kun Jin
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shi Qiu
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Center of Biomedical Big Data, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Di Jin
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xianghong Zhou
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaonan Zheng
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiakun Li
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xinyang Liao
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu Yang
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiang Wei
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
46
|
Polo-Alonso E, Kuk C, Guruli G, Paul AK, Thalmann G, Kamat A, Solsona E, Thalmann G, Urdaneta AI, Zlotta AR, Mir MC. Trimodal therapy in muscle invasive bladder cancer management. MINERVA UROL NEFROL 2020; 72:650-662. [PMID: 33263367 DOI: 10.23736/s0393-2249.20.04018-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Radical cystectomy (RC) is the current mainstay for muscle-invasive bladder cancer (MIBC). Concerns regarding morbidity, mortality and quality of life have favored the introduction of bladder sparing strategies. Trimodal therapy, combining transurethral resection, chemotherapy and radiotherapy is the current standard of care for bladder preservation strategies in selected patients with MIBC. EVIDENCE ACQUISITION A comprehensive search of the Medline and Embase databases was performed. A total of 19 studies were included in a systematic review of bladder sparing strategies in MIBC management was carried out following the preferred reporting items for systematic reviews and meta-analysis (PRISMA). EVIDENCE SYNTHESIS The overall median complete response rate after trimodal therapy (TMT) was 77% (55-93). Salvage cystectomy rate with TMT was 17% on average (8-30). For TMT, the 5-year cancer-specific survival and overall survival rates range from 42-82% and 32-74%, respectively. Currently data supporting neoadjuvant or adjuvant chemotherapy in bladder sparing approaches are emerging, but robust definitive conclusions are still lacking. Gastrointestinal toxicity rates are low around 4% (0.5-16), whereas genitourinary toxicity rates reached 8% (1-24). Quality of life outcomes are still underreported. CONCLUSIONS Published data and clinical experience strongly support trimodal therapy as an acceptable bladder sparing strategy in terms of oncological outcomes and quality of life in selected patients with MIBC. A strong need exists for specialized centers, to increase awareness among urologists, to discuss these options with patients and to stress the increased participation of patients and their families in treatment path decision-making.
Collapse
Affiliation(s)
- Elvira Polo-Alonso
- Department of Urology, Instituto Valenciano de Oncologia (IVO), Valencia, Spain
| | - Cynthia Kuk
- Division of Urology, Departments of Surgical Oncology, Princess Margaret Cancer Center, University of Toronto, Toronto, ON, Canada.,Division of Urology, Department of Surgery, Mount Sinai Hospital, Toronto, ON, Canada
| | - Georgi Guruli
- Division of Urology, Virginia Commonwealth University, Richmond, VA, USA
| | - Asit K Paul
- Division of Hematology, Oncology and Palliative Care Unit, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - George Thalmann
- Division of Hematology, Oncology and Palliative Care Unit, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Ashish Kamat
- Department of Urology, Anderson Cancer Center, Houston, TX, USA
| | - Eduardo Solsona
- Department of Urology, Instituto Valenciano de Oncologia (IVO), Valencia, Spain
| | - George Thalmann
- Department of Urology, University Hospital of Bern, Bern, Switzerland
| | - Alfredo I Urdaneta
- Division of Hematology, Oncology and Palliative Care Unit, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Alexandre R Zlotta
- Division of Urology, Departments of Surgical Oncology, Princess Margaret Cancer Center, University of Toronto, Toronto, ON, Canada.,Division of Urology, Department of Surgery, Mount Sinai Hospital, Toronto, ON, Canada
| | - Maria C Mir
- Department of Urology, Instituto Valenciano de Oncologia (IVO), Valencia, Spain -
| |
Collapse
|
47
|
Tholomier C, Souhami L, Kassouf W. Bladder-sparing protocols in the treatment of muscle-invasive bladder cancer. Transl Androl Urol 2020; 9:2920-2937. [PMID: 33457265 PMCID: PMC7807363 DOI: 10.21037/tau.2020.02.10] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/29/2019] [Indexed: 01/06/2023] Open
Abstract
Bladder-sparing protocols (BSP) have been gaining widespread popularity as an attractive alternative to radical cystectomy (RC) for muscle-invasive bladder cancer. Unimodal therapies are inferior to multimodal regimens. The most promising regimen is trimodal therapy (TMT), which is a combination of maximal transurethral resection of bladder tumor (TURBT), radiotherapy, and chemotherapy. In appropriately selected patients (low volume unifocal T2 disease, complete TURBT, no hydronephrosis and no carcinoma-in-situ), comparable oncological outcomes to RC have been reported in large retrospective studies, with a potential improvement in overall quality of life (QOL). TMT also offers the possibility for definitive therapy for patients who are not surgically fit to undergo RC. Routine biopsy of previous tumor resection is recommended to assess response. Prompt salvage RC is required in non-responders and for recurrent muscle-invasive disease, while non-muscle-invasive recurrence can be managed conservatively with TURBT +/- intravesical BCG. Long-term follow-up consisting of routine cystoscopy, urine cytology, and cross-section imaging is required. Further studies are warranted to better define the role of neoadjuvant or adjuvant chemotherapy in the setting of TMT. Finally, future research on predictive markers of response to TMT and on the integration of immunotherapy in bladder sparing protocols is ongoing and is highly promising.
Collapse
Affiliation(s)
- Côme Tholomier
- Department of Surgery, Division of Urology, McGill University, McGill University Health Centre, Montréal, Québec, Canada
| | - Luis Souhami
- Department of Radiation Oncology, McGill University, McGill University Health Centre, Montréal, Québec, Canada
| | - Wassim Kassouf
- Department of Surgery, Division of Urology, McGill University, McGill University Health Centre, Montréal, Québec, Canada
| |
Collapse
|
48
|
LncRNA MAGI2-AS3 inhibits bladder cancer progression by targeting the miR-31-5p/TNS1 axis. Aging (Albany NY) 2020; 12:25547-25563. [PMID: 33231563 PMCID: PMC7803496 DOI: 10.18632/aging.104162] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/29/2020] [Indexed: 12/14/2022]
Abstract
In this study, we performed bioinformatics analysis to identify the competing endogenous RNAs (ceRNAs) that regulate bladder cancer (BCa) progression. RNA-sequencing data analysis identified 2451 differentially expressed mRNAs, 174 differentially expressed lncRNAs, and 186 microRNAs (miRNAs) in BCa tissues (n=414) compared to the normal urothelial tissues (n=19) from the TGCA database. CeRNA network analysis of the differentially expressed lncRNAs and mRNAs showed strong positive correlation between lncRNA MAGI2-AS3 and Tensin 1 (TNS1) mRNA in BCa tissues. Bioinformatics analysis also showed that both MAGI2-AS3 and TNS1 mRNA sequences contain miR-31-5p binding sites. Furthermore, we observed significantly lower MAGI2-AS3 and TNS1 mRNA expression and higher miR-31-5p expression in the BCa tissues and cell lines (T24 and J82) compared with their corresponding controls. Functional and biochemical experiments in BCa cell lines including luciferase reporter assays showed that MAGI2-AS3 upregulated TNS1 by sponging miR-31-5p. Transwell assays showed that the MAGI2-AS3/miR-31-5p/TNS1 axis regulated migration and invasion ability of BCa cell lines. Moreover, immunohistochemical staining of paired BCa and normal urothelial tissues showed that low expression of TNS1 correlated with advanced tumor (T) stages and lymph node metastasis in BCa. In conclusion, our study demonstrates that the MAGI2-AS3/miR-31-5p/TNS1 axis regulates BCa progression.
Collapse
|
49
|
Wang L, Li H, Qiao Q, Ge Y, Ma L, Wang Q. Circular RNA circSEMA5A promotes bladder cancer progression by upregulating ENO1 and SEMA5A expression. Aging (Albany NY) 2020; 12:21674-21686. [PMID: 33176280 PMCID: PMC7695386 DOI: 10.18632/aging.103971] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Bladder cancer (BC) is one of the most commonly diagnosed urologic carcinomas, with high recurrence and death rates. Circular RNAs (circRNAs) are a class of noncoding RNAs which are anomalously expressed in cancers and involved in the progression of cancers. In this study, we found that circSEMA5A was upregulated in BC tissues and cell lines. The overexpressed circSEMA5A was correlated with malignant characteristics of BC. In vitro data indicated that circSEMA5A promoted proliferation, suppressed apoptosis, facilitated migration, accelerated invasion, enhanced angiogenesis and promotes glycolysis of BC. Mechanistically, circSEMA5A served as a miRNA sponge for miR-330-5p to upregulates Enolase 1 (ENO1) expression and facilitated the activation of Akt and β-catenin signaling pathways. Then, we showed that circSEMA5A exerted its biological functions partially via miR-330-5p/ENO1 signaling. Moreover, circSEMA5A raised SEMA5A expression by recruiting EIF4A3 to enhance the mRNA stability of SEMA5A, and thereby accelerated BC angiogenesis. To sum up, circSEMA5A is upregulated in BC and facilitates BC progression by mediating miR-330-5p/ENO1 signaling and upregulating SEMA5A expression.
Collapse
Affiliation(s)
- Lei Wang
- Department of Urology, Xinxiang Central Hospital, Xinxiang, Henan, China
| | - Haoran Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Qingdong Qiao
- Department of Urology, Xinxiang Central Hospital, Xinxiang, Henan, China
| | - Yukun Ge
- Department of Urology, Xinxiang Central Hospital, Xinxiang, Henan, China
| | - Ling Ma
- Department of Urology, Xinxiang Central Hospital, Xinxiang, Henan, China
| | - Qiang Wang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
50
|
Black PC, Efstathiou J. Setting the stage for bladder preservation. Urol Oncol 2020; 39:209-212. [PMID: 33008753 DOI: 10.1016/j.urolonc.2020.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/02/2020] [Indexed: 01/05/2023]
Abstract
There is an underutilization of potentially curative treatments for patients with muscle-invasive bladder cancer. Contemporary trimodality bladder-preservation therapy - which includes a maximally safe transurethral resection of the bladder tumor followed by concurrent chemoradiation and close cystoscopic surveillance with salvage cystectomy reserved for invasive tumor recurrence - can help fulfill this unmet need. Over the past few decades, cumulative published data from prospective clinical trials and large institutional series have established trimodality therapy (TMT) for select patients as a safe and effective alternative to upfront cystectomy. Indeed, TMT is now supported as an accepted option for muscle-invasive bladder cancer patients by numerous clinical guidelines. Following TMT, the vast majority of long-term survivors maintain their native bladders, which tend to function well with relatively low rates of long-term toxicity and good long-term quality of life. There is the potential to further improve outcomes by optimizing systemic therapy integration and by validating predictive biomarkers for improved patient and treatment selection. TMT offers a unique opportunity for urologic surgeons, radiation oncologists and medical oncologists to work hand-in-hand in a multidisciplinary effort to deliver such therapy optimally, to support its research, to promote informed decision-making and ultimately to preserve the autonomy of patients with bladder cancer. The third annual meeting of the Johns Hopkins Greenberg Bladder Cancer Institute/American Urological Association Translational Research Collaboration allowed bladder cancer experts to meet and advance this mission.
Collapse
Affiliation(s)
- Peter C Black
- Department of Urologic Sciences, University of British Columbia, Vancouver, Canada.
| | - Jason Efstathiou
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|