1
|
Caffino L, Targa G, Mottarlini F, Thielens S, Rizzi B, Villers A, Ris L, Gainetdinov RR, Leo D, Fumagalli F. Memantine-induced functional rewiring of the glutamate synapse in the striatum of dopamine transporter knockout rats. Br J Pharmacol 2025; 182:1377-1393. [PMID: 39653030 DOI: 10.1111/bph.17403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/27/2024] [Accepted: 10/29/2024] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND AND PURPOSE Slow-acting biogenic amines, such as dopamine, are known to modulate fast neurotransmitters e.g. glutamate. In the striatum, dopamine (DA) interacts with glutamate, influencing neural excitability and promoting synaptic plasticity. The exact mechanism of such interaction is not fully understood. This study investigates, in detail, how dopamine overactivity in dopamine transporter knockout (DAT-/-) rats, alters the homeostasis of the striatal glutamate synapse from a molecular, behavioural and functional point of view. EXPERIMENTAL APPROACH The expression, localisation, retention and electrophysiological properties of N-methyl-D-aspartate (NMDA) receptors as well as dendritic spine density and morphology were investigated in the striatum of DAT-/- rats, at baseline and after treatment with the non-competitive NMDA receptor antagonist memantine (30 mg kg-1). KEY RESULTS Dopamine overactivity dramatically reorganises the striatal glutamate synapse, redistributing NMDA receptors in the synapse as typified by reduced synaptic availability and reduced expression of NMDA scaffolding proteins, as well as by increased GluN2B-containing NMDA receptors in the extra synapse. Such changes are accompanied by reduced spine density, suggesting dopamine-induced structural rearrangements. These results converge into a compromised plasticity, as shown by the impaired ability to promote long-term depression (LTD) in the striatum of DAT-/-rats. Notably, memantine counteracts hyperlocomotion, reverses spine alterations and abolishes the extrasynaptic movements of NMDA receptors in the striatum of DAT-/- rats, thus restoring functional LTD. CONCLUSION AND IMPLICATIONS A hyperdopaminergic condition seems to alter striatal homeostasis by increasing extrasynaptic NMDA receptors. These findings may be relevant to manipulate disorders characterised by elevated dopaminergic activity.
Collapse
Affiliation(s)
- Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Giorgia Targa
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Sarah Thielens
- Department of Neurosciences, University of Mons, Mons, Belgium
| | - Beatrice Rizzi
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
- Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Agnes Villers
- Department of Neurosciences, University of Mons, Mons, Belgium
| | - Laurence Ris
- Department of Neurosciences, University of Mons, Mons, Belgium
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- St. Petersburg University Hospital, St. Petersburg State University, St. Petersburg, Russia
| | - Damiana Leo
- Department of Neurosciences, University of Mons, Mons, Belgium
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
2
|
Aslan A, Hatırnaz-Ng Ö, Taşar O, Özbek U, Yamantürk-Çelik P. Memantine and SKF82958 but not an enriched environment modulate naloxone-precipitated morphine abstinence syndrome without affecting hippocampal tPA mRNA levels in rats. Pharmacol Biochem Behav 2024; 234:173688. [PMID: 38056696 DOI: 10.1016/j.pbb.2023.173688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
There is accumulating evidence supporting the involvement of tissue-plasminogen activator (tPA) in the mechanisms underlying the effects of morphine and an enriched environment. This study was designed to investigate possible interactive roles of the glutamatergic and the dopaminergic systems regarding hippocampal tPA in the neurobiology of morphine dependence. For this purpose, Wistar albino rats, housed in either a standard- (SE) or an enriched environment (EE) were implanted subcutaneously with morphine (150 mg base) or placebo pellets. Behavioral and somatic signs of morphine abstinence precipitated by an opioid-receptor antagonist naloxone (1 mg/kg, i.p.) 72 h after the pellet implantation were observed individually for 15 min in all groups. Memantine (10 mg/kg i.p.), an antagonist of N-methyl-D-aspartic acid class of glutamatergic receptor-subtype decreased teeth-chattering, ptosis, diarrhea and the loss of body weight. SKF82958 (1 mg/kg, i.p.), a dopamine D1-receptor agonist decreased jumping and ptosis but increased rearing and loss of body weight. On the other hand, co-administration of SKF82958 with memantine prevented some of their effects that occur when administered alone at the same doses. Furthermore, the EE did not change the intensity of morphine abstinence. The level of hippocampal tPA mRNA was found to be lower in the SE morphine abstinence group than in the placebo group and close to the EE morphine abstinence group, whereas there was no significant alteration of its level in the memantine or SKF82958 groups. These findings suggest that the interaction between the glutamatergic and the dopaminergic systems may be an important component of the neurobiology of morphine dependence, and the role of tPA in this interaction should be further investigated.
Collapse
Affiliation(s)
- Abdurrahman Aslan
- Department of Medical Pharmacology, Istanbul Faculty of Medicine, Istanbul University, 34093 Çapa, İstanbul, Turkey; Institute of Health Sciences, Istanbul University, 34126 Vezneciler, İstanbul, Turkey
| | - Özden Hatırnaz-Ng
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Çapa, İstanbul, Turkey
| | - Orçun Taşar
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Çapa, İstanbul, Turkey
| | - Uğur Özbek
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Çapa, İstanbul, Turkey
| | - Pınar Yamantürk-Çelik
- Department of Medical Pharmacology, Istanbul Faculty of Medicine, Istanbul University, 34093 Çapa, İstanbul, Turkey; Institute of Health Sciences, Istanbul University, 34126 Vezneciler, İstanbul, Turkey.
| |
Collapse
|
3
|
Bove F, Angeloni B, Sanginario P, Rossini PM, Calabresi P, Di Iorio R. Neuroplasticity in levodopa-induced dyskinesias: An overview on pathophysiology and therapeutic targets. Prog Neurobiol 2024; 232:102548. [PMID: 38040324 DOI: 10.1016/j.pneurobio.2023.102548] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/29/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Levodopa-induced dyskinesias (LIDs) are a common complication in patients with Parkinson's disease (PD). A complex cascade of electrophysiological and molecular events that induce aberrant plasticity in the cortico-basal ganglia system plays a key role in the pathophysiology of LIDs. In the striatum, multiple neurotransmitters regulate the different forms of physiological synaptic plasticity to provide it in a bidirectional and Hebbian manner. In PD, impairment of both long-term potentiation (LTP) and long-term depression (LTD) progresses with disease and dopaminergic denervation of striatum. The altered balance between LTP and LTD processes leads to unidirectional changes in plasticity that cause network dysregulation and the development of involuntary movements. These alterations have been documented, in both experimental models and PD patients, not only in deep brain structures but also at motor cortex. Invasive and non-invasive neuromodulation treatments, as deep brain stimulation, transcranial magnetic stimulation, or transcranial direct current stimulation, may provide strategies to modulate the aberrant plasticity in the cortico-basal ganglia network of patients affected by LIDs, thus restoring normal neurophysiological functioning and treating dyskinesias. In this review, we discuss the evidence for neuroplasticity impairment in experimental PD models and in patients affected by LIDs, and potential neuromodulation strategies that may modulate aberrant plasticity.
Collapse
Affiliation(s)
- Francesco Bove
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Benedetta Angeloni
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Pasquale Sanginario
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
| | - Paolo Calabresi
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Riccardo Di Iorio
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
4
|
Kochoian BA, Bure C, Papa SM. Targeting Striatal Glutamate and Phosphodiesterases to Control L-DOPA-Induced Dyskinesia. Cells 2023; 12:2754. [PMID: 38067182 PMCID: PMC10706484 DOI: 10.3390/cells12232754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
A large body of work during the past several decades has been focused on therapeutic strategies to control L-DOPA-induced dyskinesias (LIDs), common motor complications of long-term L-DOPA therapy in Parkinson's disease (PD). Yet, LIDs remain a clinical challenge for the management of patients with advanced disease. Glutamatergic dysregulation of striatal projection neurons (SPNs) appears to be a key contributor to altered motor responses to L-DOPA. Targeting striatal hyperactivity at the glutamatergic neurotransmission level led to significant preclinical and clinical trials of a variety of antiglutamatergic agents. In fact, the only FDA-approved treatment for LIDs is amantadine, a drug with NMDAR antagonistic actions. Still, novel agents with improved pharmacological profiles are needed for LID therapy. Recently other therapeutic targets to reduce dysregulated SPN activity at the signal transduction level have emerged. In particular, mechanisms regulating the levels of cyclic nucleotides play a major role in the transduction of dopamine signals in SPNs. The phosphodiesterases (PDEs), a large family of enzymes that degrade cyclic nucleotides in a specific manner, are of special interest. We will review the research for antiglutamatergic and PDE inhibition strategies in view of the future development of novel LID therapies.
Collapse
Affiliation(s)
- Brik A. Kochoian
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; (B.A.K.); (C.B.)
| | - Cassandra Bure
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; (B.A.K.); (C.B.)
| | - Stella M. Papa
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; (B.A.K.); (C.B.)
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30329, USA
| |
Collapse
|
5
|
Cervetto C, Amaroli A, Amato S, Gatta E, Diaspro A, Maura G, Signore A, Benedicenti S, Marcoli M. Photons Induce Vesicular Exocytotic Release of Glutamate in a Power-Dependent Way. Int J Mol Sci 2023; 24:10977. [PMID: 37446155 DOI: 10.3390/ijms241310977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Increasing evidence indicates that photobiomodulation, based on tissue irradiation with photons in the red to near-infrared spectrum, may be an effective therapeutic approach to central nervous system disorders. Although nervous system functionality has been shown to be affected by photons in animal models, as well as in preliminary evidence in healthy subjects or in patients with neuropsychiatric disorders, the mechanisms involved in the photobiomodulation effects have not yet been clarified. We previously observed that photobiomodulation could stimulate glutamate release. Here, we investigate mechanisms potentially involved in the glutamate-releasing effect of photons from adult mouse cerebrocortical nerve terminals. We report evidence of photon ability to induce an exocytotic vesicular release of glutamate from the terminals of glutamatergic neurons in a power-dependent way. It can be hypothesized that photobiomodulation, depending on the potency, can release glutamate in a potentially neurotoxic or physiological range.
Collapse
Affiliation(s)
- Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56122 Pisa, Italy
| | - Andrea Amaroli
- Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy
| | - Sarah Amato
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Elena Gatta
- DIFILAB, Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Alberto Diaspro
- DIFILAB, Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
- Nanoscopy, Nanophysics, Istituto Italiano di Tecnologia-IIT, Via Morego 30, 16133 Genova, Italy
- Biophysics Institute, National Research Council-CNR, Via de Marini, 6, 16149 Genova, Italy
| | - Guido Maura
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Antonio Signore
- Therapeutic Dentistry Department, Institute of Dentistry, Sechenov First Moscow State Medical University, Trubetskaya Str. 8, b. 2, 119992 Moskow, Russia
| | - Stefano Benedicenti
- Department of Surgical Sciences and Integrated Diagnostics, University of Genova, Viale Benedetto XV 6, 16132 Genova, Italy
| | - Manuela Marcoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56122 Pisa, Italy
- Center of Excellence for Biomedical Research, University of Genova, 16132 Genova, Italy
| |
Collapse
|
6
|
Kwan C, Kang W, Kim E, Belliveau S, Frouni I, Huot P. Metabotropic glutamate receptors in Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:1-31. [PMID: 36868628 DOI: 10.1016/bs.irn.2022.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Parkinson's disease (PD) is a complex disorder that leads to alterations in multiple neurotransmitter systems, notably glutamate. As such, several drugs acting at glutamatergic receptors have been assessed to alleviate the manifestation of PD and treatment-related complications, culminating with the approval of the N-methyl-d-aspartate (NMDA) antagonist amantadine for l-3,4-dihydroxyphenylalanine (l-DOPA)-induced dyskinesia. Glutamate elicits its actions through several ionotropic and metabotropic (mGlu) receptors. There are 8 sub-types of mGlu receptors, with sub-types 4 (mGlu4) and 5 (mGlu5) modulators having been tested in the clinic for endpoints pertaining to PD, while sub-types 2 (mGlu2) and 3 (mGlu3) have been investigated in pre-clinical settings. In this book chapter, we provide an overview of mGlu receptors in PD, with a focus on mGlu5, mGlu4, mGlu2 and mGlu3 receptors. For each sub-type, we review, when applicable, their anatomical localization and possible mechanisms underlying their efficacy for specific disease manifestation or treatment-induced complications. We then summarize the findings of pre-clinical studies and clinical trials with pharmacological agents and discuss the potential strengths and limitations of each target. We conclude by offering some perspectives on the potential use of mGlu modulators in the treatment of PD.
Collapse
Affiliation(s)
- Cynthia Kwan
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Woojin Kang
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Esther Kim
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Sébastien Belliveau
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Imane Frouni
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Philippe Huot
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Movement Disorder Clinic, Division of Neurology, Department of Neurosciences, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
7
|
Striatal glutamatergic hyperactivity in Parkinson's disease. Neurobiol Dis 2022; 168:105697. [DOI: 10.1016/j.nbd.2022.105697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022] Open
|
8
|
Angela Cenci M, Skovgård K, Odin P. Non-dopaminergic approaches to the treatment of motor complications in Parkinson's disease. Neuropharmacology 2022; 210:109027. [DOI: 10.1016/j.neuropharm.2022.109027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 12/21/2022]
|
9
|
Merced-Nieves FM, Chelonis J, Pantic I, Schnass L, Téllez-Rojo MM, Braun JM, Paule MG, Wright RJ, Wright RO, Curtin P. Sexually dimorphic associations between prenatal blood lead exposure and performance on a behavioral testing battery in children. Neurotoxicol Teratol 2022; 90:107075. [PMID: 35108597 PMCID: PMC8957713 DOI: 10.1016/j.ntt.2022.107075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Associations between lead (Pb) and neurodevelopment have been studied widely in the context of global measures of cognitive function, such as IQ. Operant test batteries consist of behavioral tasks that can be used to target discrete cognitive and behavioral mechanisms, which contribute to global cognitive faculties. OBJECTIVES The goals of this study were to identify Pb-associated deficits in cognitive development and determine the underlying mechanisms involved, utilizing an operant test battery. We evaluated effect modification by child sex. METHODS This study utilized data from a prospective cohort in Mexico City. We included 549 participants aged 6-to-7 years with complete data on prenatal blood Pb measurements, Operant Test Battery (OTB) tasks, and demographic covariates. General linear models were used to examine the association of Pb levels at each prenatal timepoint and OTB performance. Effect modification by child sex was evaluated using 2-way interaction terms. RESULTS In three of the operant tasks, we observed that higher late-pregnancy blood Pb concentrations were associated with greater response latencies. In the temporal processing task, we observed that higher late-pregnancy Pb exposure was associated with worse overall task performance. Further, in two operant tasks, the effects of Pb were dependent on the sex of the child, such that the effects of Pb were more pronounced in females in the condition position responding task, but stronger in males in the temporal processing task. CONCLUSIONS Our results suggest that prenatal Pb concentrations yield broad dysregulation of executive functions, which can be attributed to dysregulation of temporal processing. In addition, we observed sex differences in two operant tasks suggesting that some Pb effects on neurocognitive function may be sexually dimorphic.
Collapse
Affiliation(s)
- Francheska M. Merced-Nieves
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Chelonis
- Division of Neurotoxicology, National Center for Toxicological Research, FDA, Jefferson, AR, USA
| | - Ivan Pantic
- Division of Community Interventions Research, National Institute of Perinatology, Mexico City, Mexico
| | - Lourdes Schnass
- Division of Community Interventions Research, National Institute of Perinatology, Mexico City, Mexico
| | - Martha M. Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Joseph M. Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Merle G. Paule
- Division of Neurotoxicology, National Center for Toxicological Research, FDA, Jefferson, AR, USA
| | - Rosalind J. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
10
|
Amantadine in the treatment of Parkinson's disease and other movement disorders. Lancet Neurol 2021; 20:1048-1056. [PMID: 34678171 DOI: 10.1016/s1474-4422(21)00249-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/14/2021] [Accepted: 07/21/2021] [Indexed: 11/24/2022]
Abstract
The efficacy of amantadine in the symptomatic treatment of patients with Parkinson's disease, discovered serendipitously more than 50 years ago, has stood the test of time and the drug is still commonly used by neurologists today. Its pharmacological actions are unique in combining dopaminergic and glutamatergic properties, which account for its dual effect on parkinsonian signs and symptoms and levodopa-induced dyskinesias. Furthermore, amantadine has additional and less well-defined pharmacological effects, including on anticholinergic and serotonergic activity. Evidence from randomised controlled trials over the past 5 years has confirmed the efficacy of amantadine to treat levodopa-induced dyskinesias in patients with Parkinson's disease, and clinical studies have also provided support for its potential to reduce motor fluctuations. Other uses of amantadine, such as in the treatment of drug-induced parkinsonism, atypical parkinsonism, Huntington's disease, or tardive dyskinesia, lack a strong evidence base. Future trials should examine its role in the management of motor and non-motor symptoms in patients with early Parkinson's disease and those with other movement disorders.
Collapse
|
11
|
Fabbrini A, Guerra A. Pathophysiological Mechanisms and Experimental Pharmacotherapy for L-Dopa-Induced Dyskinesia. J Exp Pharmacol 2021; 13:469-485. [PMID: 33953618 PMCID: PMC8092630 DOI: 10.2147/jep.s265282] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/30/2021] [Indexed: 12/21/2022] Open
Abstract
L-dopa-induced dyskinesia (LID) is the most frequent motor complication associated with chronic L-dopa treatment in Parkinson’s disease (PD). Recent advances in the understanding of the pathophysiological mechanisms underlying LID suggest that abnormalities in multiple neurotransmitter systems, in addition to dopaminergic nigrostriatal denervation and altered dopamine release and reuptake dynamics at the synaptic level, are involved in LID development. Increased knowledge of neurobiological LID substrates has led to the development of several drug candidates to alleviate this motor complication. However, with the exception of amantadine, none of the pharmacological therapies tested in humans have demonstrated clinically relevant beneficial effects. Therefore, LID management is still one of the most challenging problems in the treatment of PD patients. In this review, we first describe the known pathophysiological mechanisms of LID. We then provide an updated report of experimental pharmacotherapies tested in clinical trials of PD patients and drugs currently under study to alleviate LID. Finally, we discuss available pharmacological LID treatment approaches and offer our opinion of possible issues to be clarified and future therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Fabbrini
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
12
|
Epigenetic Modulation in Parkinson's Disease and Potential Treatment Therapies. Neurochem Res 2021; 46:1618-1626. [PMID: 33900517 DOI: 10.1007/s11064-021-03334-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022]
Abstract
In the recent past, huge emphasis has been given to the epigenetic alterations of the genes responsible for the cause of neurological disorders. Earlier, the scientists believed somatic changes and modifications in the genetic makeup of DNA to be the main cause of the neurodegenerative diseases. With the increase in understanding of the neural network and associated diseases, it was observed that alterations in the gene expression were not always originated by the change in the genetic sequence. For this reason, extensive research has been conducted to understand the role of epigenetics in the pathophysiology of several neurological disorders including Alzheimer's disease, Parkinson's disease and, Huntington's disease. In a healthy person, the epigenetic modifications play a crucial role in maintaining the homeostasis of a cell by either up-regulating or down-regulating the genes. Therefore, improved understanding of these modifications may provide better insight about the diseases and may serve as potential therapeutic targets for their treatment. The present review describes various epigenetic modifications involved in the pathology of Parkinson's Disease (PD) backed by multiple researches carried out to study the gene expression regulation related to the epigenetic alterations. Additionally, we will briefly go through the current scenario about the various treatment therapies including small molecules and multiple phytochemicals potent enough to reverse these alterations and the future directions for a better management of PD.
Collapse
|
13
|
Ye T, Bartlett MJ, Sherman SJ, Falk T, Cowen SL. Spectral signatures of L-DOPA-induced dyskinesia depend on L-DOPA dose and are suppressed by ketamine. Exp Neurol 2021; 340:113670. [PMID: 33662379 DOI: 10.1016/j.expneurol.2021.113670] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/11/2021] [Accepted: 02/25/2021] [Indexed: 01/22/2023]
Abstract
L-DOPA-induced dyskinesias (LID) are debilitating motor symptoms of dopamine-replacement therapy for Parkinson's disease (PD) that emerge after years of L-DOPA treatment. While there is an abundance of research into the cellular and synaptic origins of LID, less is known about how LID impacts systems-level circuits and neural synchrony, how synchrony is affected by the dose and duration of L-DOPA exposure, or how potential novel treatments for LID, such as sub-anesthetic ketamine, alter this activity. Sub-anesthetic ketamine treatments have recently been shown to reduce LID, and ketamine is known to affect neural synchrony. To investigate these questions, we measured movement and local-field potential (LFP) activity from the motor cortex (M1) and the striatum of preclinical rodent models of PD and LID. In the first experiment, we investigated the effect of the LID priming procedures and L-DOPA dose on neural signatures of LID. Two common priming procedures were compared: a high-dose procedure that exposed unilateral 6-hydroxydopamine-lesioned rats to 12 mg/kg L-DOPA for 7 days, and a low-dose procedure that exposed rats to 7 mg/kg L-DOPA for 21 days. Consistent with reports from other groups, 12 mg/kg L-DOPA triggered LID and 80-Hz oscillations; however, these 80-Hz oscillations were not observed after 7 mg/kg administration despite clear evidence of LID, indicating that 80-Hz oscillations are not an exclusive signature of LID. We also found that weeks-long low-dose priming resulted in the emergence of non-oscillatory broadband gamma activity (> 30 Hz) in the striatum and theta-to-high-gamma cross-frequency coupling (CFC) in M1. In a second set of experiments, we investigated how ketamine exposure affects spectral signatures of low-dose L-DOPA priming. During each neural recording session, ketamine was delivered through 5 injections (20 mg/kg, i.p.) administered every 2 h. We found that ketamine exposure suppressed striatal broadband gamma associated with LID but enhanced M1 broadband activity. We also found that M1 theta-to-high-gamma CFC associated with the LID on-state was suppressed by ketamine. These results suggest that ketamine's therapeutic effects are region specific. Our findings also have clinical implications, as we are the first to report novel oscillatory signatures of the common low-dose LID priming procedure that more closely models dopamine replacement therapy in individuals with PD. We also identify neural correlates of the anti-dyskinetic activity of sub-anesthetic ketamine treatment.
Collapse
Affiliation(s)
- Tony Ye
- Department of Neurology, University of Arizona College of Medicine, Tucson, AZ, United States of America.
| | - Mitchell J Bartlett
- Department of Neurology, University of Arizona College of Medicine, Tucson, AZ, United States of America; Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, United States of America.
| | - Scott J Sherman
- Department of Neurology, University of Arizona College of Medicine, Tucson, AZ, United States of America.
| | - Torsten Falk
- Department of Neurology, University of Arizona College of Medicine, Tucson, AZ, United States of America; Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, United States of America.
| | - Stephen L Cowen
- Department of Psychology, University of Arizona, Tucson, AZ, United States of America.
| |
Collapse
|
14
|
Calabrese V, Di Maio A, Marino G, Cardinale A, Natale G, De Rosa A, Campanelli F, Mancini M, Napolitano F, Avallone L, Calabresi P, Usiello A, Ghiglieri V, Picconi B. Rapamycin, by Inhibiting mTORC1 Signaling, Prevents the Loss of Striatal Bidirectional Synaptic Plasticity in a Rat Model of L-DOPA-Induced Dyskinesia. Front Aging Neurosci 2020; 12:230. [PMID: 32848709 PMCID: PMC7431470 DOI: 10.3389/fnagi.2020.00230] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/30/2020] [Indexed: 12/16/2022] Open
Abstract
Levodopa (L-DOPA) treatment is the main gold-standard therapy for Parkinson disease (PD). Besides good antiparkinsonian effects, prolonged use of this drug is associated to the development of involuntary movements known as L-DOPA-induced dyskinesia (LID). L-DOPA-induced dyskinesia is linked to a sensitization of dopamine (DA) D1 receptors located on spiny projection neurons (SPNs) of the dorsal striatum. Several evidences have shown that the emergence of LID can be related to striatal D1/cAMP/PKA/DARPP-32 and extracellular signal-regulated kinases (ERK1/2) pathway overactivation associated to aberrant N-methyl-d-aspartate (NMDA) receptor function. In addition, within striatum, ERK1/2 is also able to modulate in a D1 receptor-dependent manner the activity of the mammalian target of rapamycin complex 1 (mTORC1) pathway under DA depletion and L-DOPA therapy. Consistently, increased mTORC1 signaling appears during chronic administration of L-DOPA and shows a high correlation with the severity of dyskinesia. Furthermore, the abnormal activation of the D1/PKA/DARPP-32 cascade is paralleled by increased phosphorylation of the GluA1 subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor at the PKA Ser845 site. The GluA1 promotes excitatory AMPA receptor-mediated transmission and may be implicated in the alterations found at the corticostriatal synapses of dyskinetic animals. In our study, we investigated the role of mTORC1 pathway activation in modulating bidirectional striatal synaptic plasticity in L-DOPA-treated parkinsonian rats. Inhibition of mTORC1 by coadministration of rapamycin to L-DOPA was able to limit the magnitude of LID expression, accounting for a therapeutic effect of this drug. In particular, behavioral data showed that, in L-DOPA-treated rats, rapamycin administration induced a selective decrease of distinct components of abnormal involuntary movements (i.e., axial and orolingual dyskinesia). Furthermore, ex vivo patch clamp and intracellular recordings of SPNs revealed that pharmacological inhibition of mTORC1 also resulted associated with a physiological bidirectional plasticity, when compared to dyskinetic rats treated with L-DOPA alone. This study uncovers the important role of mTORC1 inhibition to prevent the loss of striatal bidirectional plasticity under chronic L-DOPA treatment in rodent models of PD.
Collapse
Affiliation(s)
- Valeria Calabrese
- Laboratory of Experimental Neurophysiology, IRCCS San Raffaele Pisana, Rome, Italy.,Department of Medicine, University of Perugia, Perugia, Italy
| | | | - Gioia Marino
- Department of Medicine, University of Perugia, Perugia, Italy.,Laboratory of Neurophysiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Antonella Cardinale
- Laboratory of Experimental Neurophysiology, IRCCS San Raffaele Pisana, Rome, Italy.,Department of Medicine, University of Perugia, Perugia, Italy
| | - Giuseppina Natale
- Department of Medicine, University of Perugia, Perugia, Italy.,Laboratory of Neurophysiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Arianna De Rosa
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Federica Campanelli
- Department of Medicine, University of Perugia, Perugia, Italy.,Laboratory of Neurophysiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Maria Mancini
- Laboratory of Neurophysiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Francesco Napolitano
- CEINGE Biotecnologie Avanzate, Naples, Italy.,Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Paolo Calabresi
- Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandro Usiello
- CEINGE Biotecnologie Avanzate, Naples, Italy.,Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DISTABIF), University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Veronica Ghiglieri
- Department of Medicine, University of Perugia, Perugia, Italy.,Laboratory of Neurophysiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Barbara Picconi
- Laboratory of Experimental Neurophysiology, IRCCS San Raffaele Pisana, Rome, Italy.,Università Telematica San Raffaele, Rome, Italy
| |
Collapse
|
15
|
Ebada MA, Alkanj S, Ebada M, Abdelkarim AH, Diab A, Aziz MAE, Soliman AM, Fayed N, Bahbah EI, Negida A. Safety and Efficacy of Levetiracetam for the Management of Levodopa- Induced Dyskinesia in Patients with Parkinson's Disease: A Systematic Review. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:317-325. [PMID: 30868968 DOI: 10.2174/1871527318666190314101314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/28/2019] [Accepted: 03/07/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Levetiracetam, a novel antiepileptic drug, has shown antidyskinetic effects in experimental animal models of Parkinson's disease (PD). The tolerability and efficacy of levetiracetam in reducing the levodopa-induced dyskinesia (LID) in PD patients have not been established. Therefore, this study aims to synthesize evidence from published prospective clinical trials about the efficacy of levetiracetam for the management of LID in PD patients. METHODS We followed the PRISMA statement guidelines during the preparation of this systematic review. A computer literature search of PubMed, EBSCO, Scopus, MEDLINE, and the web of science was carried out. We selected prospective clinical trials assessing the anti-dyskinetic efficacy of levetiracetam for treating LID in patients with PD. The Abnormal Involuntary Movement Scale (AIMS), Clinical Global Impression Score (GCI), UPDRS III, and UPDRS IV were considered as the primary outcome measures; their data were extracted and reviewed. RESULTS Our review included seven clinical trials with a total of 150 patients. Of them, three studies were randomized controlled trials, and the remaining were open-label single arm trials. Four studies reported poor tolerability of the levetiracetam with mild anti-dyskinetic effects. Levetiracetam slightly improved the UPDRS-IV and AIMS scores with small effect size. In the remaining three studies, levetiracetam failed to exhibit any anti-dyskinetic effects. CONCLUSION Current evidence does not support the efficacy of the levetiracetam for treating LID in PD patients, however, due to the limited number of published randomized control trials (RCTs), further RCTs are required.
Collapse
Affiliation(s)
- Mahmoud A Ebada
- Faculty of Medicine, Zagazig University, Zagazig, Egypt.,Medical Research Group of Egypt
| | - Souad Alkanj
- Faculty of Medicine, Zagazig University, Zagazig, Egypt.,Medical Research Group of Egypt
| | | | - Ahmed H Abdelkarim
- Faculty of Medicine, Zagazig University, Zagazig, Egypt.,Medical Research Group of Egypt
| | - Ahmed Diab
- Medical Research Group of Egypt.,Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed A E Aziz
- Medical Research Group of Egypt.,Omr Shahin Mental Hospital, Egypt
| | - Ahmed M Soliman
- Medical Research Group of Egypt.,Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Notila Fayed
- Faculty of Medicine, Zagazig University, Zagazig, Egypt.,Medical Research Group of Egypt
| | - Eshak I Bahbah
- Medical Research Group of Egypt.,Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Ahmed Negida
- Faculty of Medicine, Zagazig University, Zagazig, Egypt.,Medical Research Group of Egypt
| |
Collapse
|
16
|
Utilization Patterns of Amantadine in Parkinson's Disease Patients Enrolled in the French COPARK Study. Drugs Aging 2020; 37:215-223. [PMID: 31919803 DOI: 10.1007/s40266-019-00740-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Immediate-release (IR) amantadine has been marketed for Parkinson's disease (PD) therapy for 50 years, while two novel extended-release formulations have only recently reached the market in the US. OBJECTIVES The aim of this study was to describe amantadine IR utilization patterns in the French COPARK cohort, at baseline and after 2 years of follow-up. METHODS Overall, 683 PD patients from the COPARK survey were evaluated. All patients were assessed in a standardized manner (demographics, treatments, Unified Parkinson's Disease Rating Scale [UPDRS], Hospital Anxiety and Depression Scale, Pittsburg Questionnaire and health-related quality-of-life scales (Short Form-36 [SF-36], 39-item Parkinson's Disease Questionnaire [PDQ-39]). Longitudinal data were only available for 401/683 patients (59%) with a median (P25-75) follow-up period of 23 months (18-31). Patients were assessed in the same way as in the baseline visit. RESULTS At baseline, amantadine was prescribed to 61/683 (9%) patients (median dose 200 mg/day, range 100-300 mg/day). Amantadine was initiated after a median of 7 years from PD diagnosis, and its prescription was correlated with the presence of dyskinesia (logistic regression odds ratio [OR] 3.72, 95% confidence interval [CI] 1.95-7.08) and hallucinations (UPDRS I.2) [OR 1.57, 95% CI 1.08-2.29]. After 2 years, the amantadine prescription increased from 33 (8%) patients at baseline to 54 (14%) patients in the subset of 401 patients analysed twice (p = 0.001). Among the 33 patients receiving amantadine at baseline, 9 (27%) stopped amantadine, 5 (15%) increased the dose, 6 (18%) reduced the dose and 13 (40%) stayed at the same doses. Treatment was initiated in 30/54 new patients (55%). Patients who started amantadine or increased its dose (n = 35) had more levodopa-induced dyskinesias at baseline (OR 7.02, 95% CI 3.09-15.90) and higher Mini-Mental State Examination score at follow-up (OR 1.37, 95% CI 1.06-1.79). Undergoing deep brain stimulation was related to stopping or downtitrating amantadine (OR 22.02, 95% CI 4.24-114.44; n = 15). CONCLUSIONS In this cohort, amantadine was used in 10% of patients. Its use increased during follow-up, despite the fact that one-third of patients who received amantadine at baseline stopped taking it. Amantadine prescription was mainly correlated with the presence of dyskinesia.
Collapse
|
17
|
SAP97 polymorphisms associated with early onset Parkinson’s disease. Neurosci Lett 2020; 728:134931. [DOI: 10.1016/j.neulet.2020.134931] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 12/19/2022]
|
18
|
Guerra A, Suppa A, D'Onofrio V, Di Stasio F, Asci F, Fabbrini G, Berardelli A. Abnormal cortical facilitation and L-dopa-induced dyskinesia in Parkinson's disease. Brain Stimul 2019; 12:1517-1525. [DOI: 10.1016/j.brs.2019.06.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 10/26/2022] Open
|
19
|
Activation of mGlu2/3 receptors, a novel therapeutic approach to alleviate dyskinesia and psychosis in experimental parkinsonism. Neuropharmacology 2019; 158:107725. [DOI: 10.1016/j.neuropharm.2019.107725] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/27/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022]
|
20
|
Pourmirbabaei S, Dolatshahi M, Rahmani F. Pathophysiological clues to therapeutic applications of glutamate mGlu5 receptor antagonists in levodopa-induced dyskinesia. Eur J Pharmacol 2019; 855:149-159. [PMID: 31063776 DOI: 10.1016/j.ejphar.2019.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 12/16/2022]
Abstract
Levodopa remains to be the mainstay for treatment of Parkinson disease (PD). Long-term levodopa treatment bears a risk for developing levodopa-induced dyskinesia (LID). LID significantly overshadows patients' quality of life and therapeutic efficacy of levodopa. Pre- and post-synaptic changes in dopamine secretion and signaling, along with altered glutamate receptor expression and glutamatergic signaling in striatal neurons, and the resulting disinhibition-like changes in the corticostriatal circuitry, lead to aberrant activity of motor cortex and formation of LID. Research has highlighted the role of group I metabotropic glutamate receptors especially the metabotropic glutamate receptor 5 (mGlu5) in formation of LID through potentiating of ionotropic glutamate NMDA receptors and dopamine D1/D5 receptors in direct pathway. Accordingly, MTEP and MPEP were the first mGlu5 receptor antagonists which were shown to attenuate LID in animal models through suppression of downstream signaling cascades involving mitogen-activated protein kinase (MAPK) and FosB/delta FosB activation, as well as modulation of prodynorphinegic, preproenkephalinergic, and GABA-ergic neurotransmission systems. Beneficial effects of other mGlu5 receptor antagonists such as AFQ056/mavoglurant and ADX48621/dipraglurant in amelioration of LID has been shown not only in animal models but also in clinical trials. Considering the presence of mGlu receptor dysregulation in rapid eye movement (REM) sleep behavior disorder and depression, which are prodromal signs of PD, along with the neuroprotective effects of mGlu receptor antagonists, and their cognitive benefits, potential effectiveness of mGlu receptor antagonists in early prevention of PD remains to be investigated.
Collapse
Affiliation(s)
- Shayan Pourmirbabaei
- Student's Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran; NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Dolatshahi
- Student's Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran; NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farzaneh Rahmani
- Student's Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran; NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
21
|
Kazi JA, Zatilfarihiah R. Gabapentin completely neutralized the acute morphine activation in the rat hypothalamus: a c-Fos study. FUTURE NEUROLOGY 2019. [DOI: 10.2217/fnl-2018-0037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: The molecular mechanism of gabapentin (GBP)–morphine combinational function and its neuro-anatomical sites of action to prevent, to neutralize morphine side effects and also the enhancement its analgesic effect of morphine is unknown. Methods: Morphine (10 mg/kg), saline, co-injection: GBP (150 mg/kg) with morphine (10 mg/kg) were injected by intraperitoneal injection in rats under deep anaesthesia. C-Fos immunohistochemistry technique was used to locate c-Fos expression in rat hypothalamus. Results: Gabapentin in combination with morphine significantly (p < 0.01) attenuated the acute morphine induced c-Fos immunoreactive neuron in hypothalamus. Conclusion: GBP neutralized the morphine sensitization in rat hypothalamus. GBP might neuromodulate and or antagonize the receptor regulatory machinery of morphine sensitization circuit which might work for drug discovery of morphine abuse.
Collapse
Affiliation(s)
- Jamil Ahsan Kazi
- Universiti Teknologi MARA (UiTM), Faculty of Dentistry, Centre of Studies for Preclinical Science, Jalan Hospital, 47000 SUNGAI BULOH, Selangor, Malaysia
| | - Rasdi Zatilfarihiah
- Universiti Teknologi MARA (UiTM), Faculty of Dentistry, Centre of Studies for Preclinical Science, Jalan Hospital, 47000 SUNGAI BULOH, Selangor, Malaysia
| |
Collapse
|
22
|
Receptor Ligands as Helping Hands to L-DOPA in the Treatment of Parkinson's Disease. Biomolecules 2019; 9:biom9040142. [PMID: 30970612 PMCID: PMC6523988 DOI: 10.3390/biom9040142] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/05/2019] [Accepted: 04/06/2019] [Indexed: 12/12/2022] Open
Abstract
Levodopa (LD) is the most effective drug in the treatment of Parkinson’s disease (PD). However, although it represents the “gold standard” of PD therapy, LD can cause side effects, including gastrointestinal and cardiovascular symptoms as well as transient elevated liver enzyme levels. Moreover, LD therapy leads to LD-induced dyskinesia (LID), a disabling motor complication that represents a major challenge for the clinical neurologist. Due to the many limitations associated with LD therapeutic use, other dopaminergic and non-dopaminergic drugs are being developed to optimize the treatment response. This review focuses on recent investigations about non-dopaminergic central nervous system (CNS) receptor ligands that have been identified to have therapeutic potential for the treatment of motor and non-motor symptoms of PD. In a different way, such agents may contribute to extending LD response and/or ameliorate LD-induced side effects.
Collapse
|
23
|
Metabotropic Glutamate Receptor 5 and 8 Modulate the Ameliorative Effect of Ultramicronized Palmitoylethanolamide on Cognitive Decline Associated with Neuropathic Pain. Int J Mol Sci 2019; 20:ijms20071757. [PMID: 30970677 PMCID: PMC6480075 DOI: 10.3390/ijms20071757] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/23/2022] Open
Abstract
This study investigated whether metabotropic glutamate receptor (mGluR) 5 and 8 are involved in the effect of ultramicronizedpalmitoylethanolamide (um-PEA) on the cognitive behavior and long term potentiation (LTP) at entorhinal cortex (LEC)-dentate gyrus (DG) pathway in mice rendered neuropathic by the spare nerve injury (SNI). SNI reduced discriminative memory and LTP. Um-PEA treatment started after the development of neuropathic pain had no effects in sham mice, whereas it restored cognitive behavior and LTP in SNI mice. 2-Methyl-6-(phenylethynyl) pyridine (MPEP), a selective mGluR5 antagonist, improved cognition in SNI mice and produced a chemical long term depression of the field excitatory postsynaptic potentials (fEPSPs) in sham and SNI mice. After theta burst stimulation (TBS) MPEP restored LTP in SNI mice. In combination with PEA, MPEP antagonized the PEA effect on discriminative memory and decreased LTP in SNI mice. The (RS)-4-(1-amino-1-carboxyethyl)phthalic acid (MDCPG), a selective mGluR8 antagonist, did not affect discriminative memory, but it induced a chemical LTP and prevented the enhancement of fEPSPs after TBS in SNI mice which were treated or not treated with PEA. The effect of PEA on LTP and cognitive behavior was modulated by mGluR5 and mGluR8. In particular in the SNI conditions, the mGluR5 blockade facilitated memory and LTP, but prevented the beneficial effects of PEA on discriminative memory while the mGluR8 blockade, which was ineffective in itself, prevented the favorable action of the PEA on LTP. Thus, although their opposite roles (excitatory/inhibitory of the two receptor subtypes on the glutamatergic system), they appeared to be required for the neuroprotective effect of PEA in conditions of neuropathic pain.
Collapse
|
24
|
Ba M, Ding W, Guan L, Lv Y, Kong M. S-nitrosylation of Src by NR2B-nNOS signal causes Src activation and NR2B tyrosine phosphorylation in levodopa-induced dyskinetic rat model. Hum Exp Toxicol 2018; 38:303-310. [PMID: 30350722 DOI: 10.1177/0960327118806633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abnormality in Src PSD-95 NR2B signaling complex assemble occurs in levodopa-induced dyskinesia (LID). N-methyl-D-aspartate receptor (NMDAR) subunit NR2B tyrosine phosphorylation mediated by Src family protein tyrosine kinases is closely associated with dyskinesia. Src autophosphorylation (p-Src) is an important part of Src-catalyzed phosphorylation of NR2B. In addition, the neuronal nitric oxide synthase (nNOS)-derived NO (nNOS/NO) signal which was also involved in dyskinesia recently was proved to participate in the regulation of Src function. Yet, the detailed signal mechanism about the interactions of NR2B, nNOS, and Src is still unknown. In the present study, we investigated the influences of nNOS on Src activation and NR2B tyrosine phosphorylation in dyskinetic rat model by immunoblotting and immunoprecipitation. The results demonstrated that chronic levodopa treatment resulted in downregulation of p-nNOS-S847, one marker of nNOS overactivation. Coinstantaneously, the S-nitrosylation (SNO-Src) and autophosphorylation (p-Src) of Src and NR2B tyrosine phosphorylation were upregulated in dyskinetic rat model. Conversely, administration of 7-NI, one nNOS inhibitor, reversed all these effects of levodopa treatment. Besides, NR2B-containing NMDAR (NR2B/NMDAR) antagonist CP-101,606 could upregulate p-nNOS-S847 and thus attenuate nNOS activation and simultaneously reduce the SNO-Src, p-Src, and NR2B tyrosine phosphorylation. Taken together, the S-nitrosylation of Src is caused by nNOS/NO signal, which is overactivated via Ca2+ influx dependent on NR2B/NMDAR, and subsequently facilitates Src auto-tyrosine phosphorylation and further phosphorylates NR2B. The "NR2B/NMDAR-nNOS/NO-SNO-Src-p-Src-NR2B/NMDAR" signaling cycle may be the molecular basis of NR2B tyrosine phosphorylation upward positive feedback, which demonstrates the possibility as one latent target for dyskinesia therapy.
Collapse
Affiliation(s)
- M Ba
- 1 Department of Neurology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong, China
| | - W Ding
- 2 Department of Health, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong, China
| | - L Guan
- 1 Department of Neurology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong, China
| | - Y Lv
- 1 Department of Neurology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong, China
| | - M Kong
- 3 Department of Neurology, Yantaishan Hospital, Yantai City, Shandong, China
| |
Collapse
|
25
|
Wang WW, Zhang XR, Zhang ZR, Wang XS, Chen J, Chen SY, Xie CL. Effects of mGluR5 Antagonists on Parkinson's Patients With L-Dopa-Induced Dyskinesia: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front Aging Neurosci 2018; 10:262. [PMID: 30271338 PMCID: PMC6142875 DOI: 10.3389/fnagi.2018.00262] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 08/14/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Modulation of Metabotropic glutamate receptor 5 (mGluR5) may be a novel therapeutic approach to manage Parkinson's disease (PD) Patients with L-dopa-induced dyskinesia (LID). Objectives: The objective of this meta-analysis was to evaluate the effects of mGluR5 antagonists for the treatment of LID patients. Methods: Several electronic databases were consulted up to July 30, 2017. Randomized clinical trials (RCTs) that compared mGluR5 antagonists vs. placebo in LID patients were included. Pooled weighted mean difference (WMD) with 95% confidence intervals (CIs) were calculated using random-effects models. Results: Nine trials including 776 patients met all inclusion criteria. We pooled the whole data and found apparent difference between mGluR5 antagonists and placebo in terms of mAIMS (p = 0.010). However, there was no significant improvements on antidyskinetic in terms of LFADLDS (p = 0.42) and UPDRS Part IV (p = 0.20). Meanwhile, the effect size of UPDRS part III was similar in mGluR5 antagonist groups with in placebo groups (p = 0.25). Adverse events incidence was higher with mGluR5 antagonists than with placebo, especially at the expense of increased dizziness (16.3 vs. 4.3%), visual hallucination (10.1 vs. 1.1%), or fatigue (10.1 vs. 4.8%). Conclusions: mGluR5 antagonists had a greater treatment effect on the mAIMS in LID patients, however, there was no improvements on antidyskinetic in terms of LFADLDS and UPDRS Part IV compared with placebo. According to these results, we unable to recommend mGluR5 antagonists for the routine treatment of LID patients right now.
Collapse
Affiliation(s)
- Wen-Wen Wang
- The Center of Traditional Chinese Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xing-Ru Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zeng-Rui Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xin-Shi Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jie Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Si-Yan Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cheng-Long Xie
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
26
|
Ketamine and Ceftriaxone-Induced Alterations in Glutamate Levels Do Not Impact the Specific Binding of Metabotropic Glutamate Receptor Subtype 5 Radioligand [ 18F]PSS232 in the Rat Brain. Pharmaceuticals (Basel) 2018; 11:ph11030083. [PMID: 30158438 PMCID: PMC6161118 DOI: 10.3390/ph11030083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/23/2018] [Accepted: 08/25/2018] [Indexed: 01/21/2023] Open
Abstract
Several studies showed that [11C]ABP688 binding is altered following drug-induced perturbation of glutamate levels in brains of humans, non-human primates and rats. We evaluated whether the fluorinated derivative [18F]PSS232 can be used to assess metabotropic glutamate receptor 5 (mGluR5) availability in rats after pharmacological challenge with ketamine, known to increase glutamate, or ceftriaxone, known to decrease glutamate. In vitro autoradiography was performed on rat brain slices with [18F]PSS232 to prove direct competition of the drugs for mGluR5. One group of rats were challenged with a bolus injection of either vehicle, racemic ketamine, S-ketamine or ceftriaxone followed by positron emission tomography PET imaging with [18F]PSS232. The other group received an infusion of the drugs during the PET scan. Distribution volume ratios (DVRs) were calculated using a reference tissue model. In vitro autoradiography showed no direct competition of the drugs with [18F]PSS232 for the allosteric binding site of mGluR5. DVRs of [18F]PSS232 binding in vivo did not change in any brain region neither after bolus injection nor after infusion. We conclude that [18F]PSS232 has utility for measuring mGluR5 density or occupancy of the allosteric site in vivo, but it cannot be used to measure in vivo fluctuations of glutamate levels in the rat brain.
Collapse
|
27
|
Ba M, Yu G, Yang H, Wang Y, Yu L, Kong M. Tat-Src reduced NR2B tyrosine phosphorylation and its interaction with NR2B in levodopa-induced dyskinetic rats model. Behav Brain Res 2018; 356:41-45. [PMID: 30130562 DOI: 10.1016/j.bbr.2018.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/16/2018] [Accepted: 08/16/2018] [Indexed: 12/27/2022]
Abstract
Augmented function of N-methyl-d-aspartate receptor subunit 2B (NR2B) and Src protein tyrosine kinase have been demonstrated to get involved in the pathological mechanisms of dyskinesia. In view of functional interactions between NR2B and Src, we investigated the effects of uncoupling NR2B and Src interactions on dyskinesia by using the Src-derived interfering peptide (Tat-Src). In the present study, valid 6-hydroxydopamine-lesioned parkinsonian rats were treated with levodopa intraperitoneally for 22 days to induce dyskinetic rats model. On day 23, dyskinetic rats received either Tat-Src or Tat-sSrc or vehicle with each levodopa dose. The data showed that in dyskinetic rats model intraperitoneal microinjection of Tat-Src improved dyskinetic behaviors and decreased NR2B tyrosine phosphorylation and the interactions of Src with NR2B induced by chronic levodopa treatment. Besides, Tat-Src also attenuated S-nitrosylation (SNO-Src) and the autophosphorylation (p-Src) of Src, which catalyzed NR2B phosphorylation. These findings suggest that targeting NR2B/Src complexes can be one potential treatment for dyskinesia in Parkinson's disease.
Collapse
Affiliation(s)
- Maowen Ba
- Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong 264000, PR China
| | - Guoping Yu
- Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong 264000, PR China
| | - Hongqi Yang
- Department of Neurology, Henan Provincial People's Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Ying Wang
- Department of Neurology, Yantaishan Hospital, Yantai City, Shandong 264000, PR China
| | - Ling Yu
- Department of Neurology, Yantaishan Hospital, Yantai City, Shandong 264000, PR China
| | - Min Kong
- Department of Neurology, Yantaishan Hospital, Yantai City, Shandong 264000, PR China.
| |
Collapse
|
28
|
Perez-Lloret S, Rascol O. Efficacy and safety of amantadine for the treatment of L-DOPA-induced dyskinesia. J Neural Transm (Vienna) 2018; 125:1237-1250. [PMID: 29511826 DOI: 10.1007/s00702-018-1869-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/27/2018] [Indexed: 12/19/2022]
Abstract
L-DOPA induced dyskinesias (LIDs) may affect up to 40% of Parkinson's disease (PD) and impact negatively health-related quality of life. Amantadine has demonstrated significant antidyskinetic effects in animal PD models and in randomized double-blind placebo-controlled trials (RCTs) in patients with PD. These effects are thought to be related to the blockade of NMDA receptors modulating cortico-striatal glutamatergic-dopaminergic interactions involved in the genesis of LIDs. There are three pharmaceutical forms of amantadine currently available in the market: an oral immediate-release (IR) formulation, which is widely available; an extended-release (ER) formulation (ADS-5102) which has been recently developed and approved by the FDA; and an intravenous infusion (IV) solution, which is not commonly used in clinical practice. RCTs with amantadine IR or ER, involving more than 650 patients have shown consistent and long-lasting reductions in LIDs. Interestingly, ADS-5102 not only reduced LIDs, but also reduced significantly at the same time the duration of daily OFF-time, a unique finding compared with other antiparkinsonian medications that usually reduce time spent OFF at the cost of worsening of LIDs. Amantadine IR might also have possible effects on other PD symptoms such as apathy or fatigue. The most common adverse reactions with amantadine are constipation, cardiovascular dysfunction including QT prolongation, orthostatic hypotension and edema, neuropsychiatric symptoms such as hallucinations, confusion and delirium, nausea and livedo reticularis. Corneal degeneration is rare but critical. In summary, amantadine immediate and extended-release are effective and safe for the treatment of LIDs.
Collapse
Affiliation(s)
- Santiago Perez-Lloret
- Institute of Cardiology Research, University of Buenos Aires, National Research Council (CONICET-ININCA), Buenos Aires, Argentina
| | - Olivier Rascol
- University of Toulouse 3, CHU of Toulouse, Toulouse, France. .,INSERM, Department of Clinical Pharmacology and Neurosciences, Faculty of Medicine, Centre d'Investigation Clinique CIC1436, Centre Expert Parkinson de Toulouse, 37 Allées Jules Guesde, 31000, Toulouse, France. .,NeuroToul Center of Excellence in Neurodegeneration (COEN), Toulouse, France.
| |
Collapse
|
29
|
Repetitive transcranial magnetic stimulation (rTMS) improves behavioral and biochemical deficits in levodopa-induced dyskinetic rats model. Oncotarget 2018; 7:58802-58812. [PMID: 27613848 PMCID: PMC5312277 DOI: 10.18632/oncotarget.11587] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 08/21/2016] [Indexed: 11/25/2022] Open
Abstract
Fluctuations of dopamine levels and upregulations of NR2B tyrosine phosphorylation in the striatum have been connected with levodopa (L-dopa)-induced dyskinesia (LID) in Parkinson's disease (PD). Repetitive transcranial magnetic stimulation (rTMS) is one of the noninvasive and potential method treating dyskinesia. Yet, the effect of rTMS on the above key pathological events remains unclear. In this study, we gave L-dopa treatment intraperitoneally for 22 days to 6-hydroxydopamine-lesioned PD rats to prepare LID rats model, and subsequently applied rTMS daily for 3 weeks to LID rats model. The effect of rTMS on abnormal involuntary movements (AIMs) was assessed. After ending the experiments, we further determined tyrosine hydroxylase (TH)-positive dopaminergic neurons number by immunohistochemistry, dopamine levels by HPLC, glial cell line-derived neurotrophic factor (GDNF) levels by ELISA, NR2B tyrosine phosphorylation and interactions of NR2B with Fyn by immunoblotting and immunoprecipitation. The results demonstrated that rTMS obviously attenuated AIMs scores, reduced the loss of nigral dopaminergic neurons and the fluctuations of striatal dopamine levels. Meanwhile, rTMS significantly increased the expression of GDNF, which couldrestore the damage of dopaminergic neurons. Additionally, rTMS also reduced the levels of the NR2B tyrosine phosphorylation andits interactions with Fyn in the lesioned striatum of LID rats model. Thus, these data indicate that rTMS can provide benefit for the therapy of LID by improving the key biochemical deficits related to dyskinesia.
Collapse
|
30
|
Crabbé M, Van der Perren A, Weerasekera A, Himmelreich U, Baekelandt V, Van Laere K, Casteels C. Altered mGluR5 binding potential and glutamine concentration in the 6-OHDA rat model of acute Parkinson's disease and levodopa-induced dyskinesia. Neurobiol Aging 2018; 61:82-92. [DOI: 10.1016/j.neurobiolaging.2017.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 05/24/2017] [Accepted: 09/08/2017] [Indexed: 01/28/2023]
|
31
|
Park HY, Ryu YK, Go J, Son E, Kim KS, Kim MR. Palmitoyl Serotonin Inhibits L-dopa-induced Abnormal Involuntary Movements in the Mouse Parkinson Model. Exp Neurobiol 2016; 25:174-84. [PMID: 27574484 PMCID: PMC4999423 DOI: 10.5607/en.2016.25.4.174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/21/2016] [Accepted: 07/25/2016] [Indexed: 12/12/2022] Open
Abstract
L-3,4-dihydroxyphenylalanine (L-DOPA) is the most common treatment for patients with Parkinson's disease (PD). However, long term use of L-DOPA for PD therapy lead to abnormal involuntary movements (AIMs) known as dyskinesia. Fatty acid amide hydrolase (FAAH) is enriched protein in basal ganglia, and inhibition of the protein reduces dyskinetic behavior of mice. Palmitoyl serotonin (PA-5HT) is a hybrid molecule patterned after arachidonoyl serotonin, antagonist of FAAH. However, the effect of PA-5HT on L-DOPA-induced dyskinesia (LID) in PD have not yet been elucidated. To investigate whether PA-5HT relieve LID in PD and decrease hyperactivation of dopamine D1 receptors, we used the 6-hydroxydopomine (6-OHDA)-lesioned mouse model of PD and treated the L-DOPA (20 mg/kg) for 10 days with PA-5HT (0.3 mg/kg/day). The number of wall contacts with the forelimb in the cylinder test was significantly decreased by 6-OHDA lesion in mice and the pharmacotherapeutic effect of L-DOPA was also revealed in PA-5HT-treated mice. Moreover, in AIMs test, PA-5HT-treated mice showed significant reduction of locomotive, axial, limb, and orofacial AIMs score compared to the vehicle-treated mice. LID-induced hyper-phosphorylation of ERK1/2 and overexpression of FosB/ΔFosB was markedly decreased in 6-OHDA-lesioned striatum of PA-5HT-treated mice, indicating that PA-5HT decreased the dopamine D1 receptor-hyperactivation induced by chronic treatment of L-DOPA in dopamine-denervated striatum. These results suggest that PA-5HT effectively attenuates the development of LID and enhance of ERK1/2 phosphorylation and FosB/ΔFosB expression in the hemi-parkinsonian mouse model. PA-5HT may have beneficial effect on the LID in PD.
Collapse
Affiliation(s)
- Hye-Yeon Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.; Department of Food and Nutrition, Chung-Nam National University, Daejeon 34134, Korea
| | - Young-Kyoung Ryu
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Jun Go
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Eunjung Son
- Department of Food and Nutrition, Chung-Nam National University, Daejeon 34134, Korea
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.; University of Science and Technology, Daejeon 34113, Korea
| | - Mee Ree Kim
- Department of Food and Nutrition, Chung-Nam National University, Daejeon 34134, Korea
| |
Collapse
|
32
|
Nair VD, Ge Y. Alterations of miRNAs reveal a dysregulated molecular regulatory network in Parkinson's disease striatum. Neurosci Lett 2016; 629:99-104. [PMID: 27369327 DOI: 10.1016/j.neulet.2016.06.061] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/12/2022]
Abstract
Molecular adaptations in the striatum mediated by dopamine (DA) denervation and/or levodopa (L-dopa) treatments have been implicated in the motor deficits found in Parkinson's disease (PD). Alterations in inflammatory response mechanisms and glutamatergic neurotransmission are reported to play important roles in mediating these changes. However, the mechanisms mediating the molecular adaptations in the striatum are not well understood. Small non-coding microRNAs (miRNAs) influence numerous biological processes including the development and maintenance of striatal neurons by regulating gene expression post-transcriptionally. To investigate miRNA function in human PD striatum, we examined the global expression of miRNAs in postmortem putamen (putamen along with caudate forms the striatum) tissues obtained from PD patients and neurologically normal controls using Nanostring miRNA assays. We found that 6 miRNAs were significantly (p≤0.05) upregulated and 7 miRNAs were downregulated in PD putamen when compared with control. The differential expression (DE) of the 4 highest scoring miRNAs was further confirmed by reverse transcription polymerase chain reaction. Ingenuity pathway analysis demonstrated that these miRNAs are enriched in the processes of inflammatory responses. We found that the expression of DE miRNAs in PD putamen negatively correlates with the expression of gene transcripts implicated in inflammatory response with p53 and NF-kB as central signaling molecules. Taken together, our results suggest that in PD striatum, the DE miRNAs are associated with the oxidative stress pathway. This mechanism may contribute to the molecular adaptations and related motor complications found in PD.
Collapse
Affiliation(s)
- Venugopalan D Nair
- Department of Neurology and Center for Translational Systems Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Yongchao Ge
- Department of Neurology and Center for Translational Systems Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
33
|
Morari M, Fantin M. Loss of the preferential control over the striato-nigral direct pathway by striatal NMDA receptors in a rat model of Parkinson's disease. Analyst 2016; 140:3830-9. [PMID: 25584655 DOI: 10.1039/c4an01918k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
By using multi-probe microdialysis we previously demonstrated that endogenous glutamate differentially regulates the activity of the striatal output pathways in vivo, through N-methyl-d-aspartate (NMDA) receptors containing the GluN2A or GluN2B subunits. Using the same approach, we presently investigate whether reverse dialysis of NMDA in the striatum differentially affects GABA release in the striatum and in striatal target areas, i.e. globus pallidus (GP) and substantia nigra reticulata (SNr). Moreover, we ask whether this control is altered under parkinsonian conditions. Intrastriatal NMDA perfusion (10 min) evoked GABA release more potently in SNr (1-100 μM) than in other regions (10-100 μM), suggesting preferential control over striato-nigral projection neurons. Intrastriatal NMDA more potently stimulated glutamate levels in the striatum (1-100 μM) and SNr (1-10 μM) than in GP (10 μM). Striatal dopamine denervation with 6-hydroxydopamine caused a leftward shift in the NMDA concentration-response curve. Intrastriatal NMDA elevated GABA levels at 0.1 μM (all regions) and 1 μM (striatum and GP only), but not at higher concentrations, indicating that, compared to naïve animals, the GABA response in SNr was attenuated. Attenuation of the glutamate response was also observed in SNr (NMDA effective only at 0.1 μM). Conversely, the glutamate response in GP was widened (NMDA effective in the 0.1-1 μM range). We conclude that NMDA preferentially stimulates the activity of the striato-nigral direct pathway under physiological conditions. In Parkinson's disease, dopamine loss compromises the NMDA ability to stimulate striato-nigral neurons, thus shifting the NMDA control towards the striato-pallidal ones.
Collapse
Affiliation(s)
- Michele Morari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy.
| | | |
Collapse
|
34
|
Song L, Zhang Z, Hu R, Cheng J, Li L, Fan Q, Wu N, Gan J, Zhou M, Liu Z. Targeting the D1-N-methyl-D-aspartate receptor complex reduces L-dopa-induced dyskinesia in 6-hydroxydopamine-lesioned Parkinson's rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:547-55. [PMID: 26893543 PMCID: PMC4745842 DOI: 10.2147/dddt.s93487] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
L-3,4-dihydroxyphenylalanine (l-dopa) remains the most effective therapy for Parkinson’s disease (PD), but its long-term administration is associated with the development of debilitating motor complications known as l-dopa-induced dyskinesia (LID). Enhanced function of dopamine D1 receptor (D1R) and N-methyl-d-aspartate receptor (NMDAR) is believed to participate in the pathogenesis of LID. Given the existence of physical and functional interactions between D1R and NMDAR, we explored the effects of uncoupling D1R and NMDA GluN1 (GluN1) interaction on LID by using the Tat-conjugated interfering peptide (Tat-D1-t2). In this study, we demonstrated in 6-hydroxydopamine (6-OHDA)-lesioned PD rat model that intrastriatal injection of Tat-D1-t2 alleviated dyskinetic behaviors and downregulated the phosphorylation of DARPP-32 at Thr34 induced by levodopa. Moreover, we also showed intrastriatal administration of Tat-D1-t2 elicited alterations in membranous GluN1 and D1R expression. These findings indicate that D1R/GluN1 complexes may be a molecular target with therapeutic potential for the treatment of dyskinesia in Parkinson’s patients.
Collapse
Affiliation(s)
- Lu Song
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zhanzhao Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Rongguo Hu
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jie Cheng
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Lin Li
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Qinyi Fan
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Na Wu
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jing Gan
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Mingzhu Zhou
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zhenguo Liu
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
35
|
Modulation by Trace Amine-Associated Receptor 1 of Experimental Parkinsonism, L-DOPA Responsivity, and Glutamatergic Neurotransmission. J Neurosci 2016; 35:14057-69. [PMID: 26468205 DOI: 10.1523/jneurosci.1312-15.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Parkinson's disease (PD) is a movement disorder characterized by a progressive loss of nigrostriatal dopaminergic neurons. Restoration of dopamine transmission by l-DOPA relieves symptoms of PD but causes dyskinesia. Trace Amine-Associated Receptor 1 (TAAR1) modulates dopaminergic transmission, but its role in experimental Parkinsonism and l-DOPA responses has been neglected. Here, we report that TAAR1 knock-out (KO) mice show a reduced loss of dopaminergic markers in response to intrastriatal 6-OHDA administration compared with wild-type (WT) littermates. In contrast, the TAAR1 agonist RO5166017 aggravated degeneration induced by intrastriatal 6-OHDA in WT mice. Subchronic l-DOPA treatment of TAAR1 KO mice unilaterally lesioned with 6-OHDA in the medial forebrain bundle resulted in more pronounced rotational behavior and dyskinesia than in their WT counterparts. The enhanced behavioral sensitization to l-DOPA in TAAR1 KO mice was paralleled by increased phosphorylation of striatal GluA1 subunits of AMPA receptors. Conversely, RO5166017 counteracted both l-DOPA-induced rotation and dyskinesia as well as AMPA receptor phosphorylation. Underpinning a role for TAAR1 receptors in modulating glutamate neurotransmission, intrastriatal application of RO5166017 prevented the increase of evoked corticostriatal glutamate release provoked by dopamine deficiency after 6-OHDA-lesions or conditional KO of Nurr1. Finally, inhibition of corticostriatal glutamate release by TAAR1 showed mechanistic similarities to that effected by activation of dopamine D2 receptors. These data unveil a role for TAAR1 in modulating the degeneration of dopaminergic neurons, the behavioral response to l-DOPA, and presynaptic and postsynaptic glutamate neurotransmission in the striatum, supporting their relevance to the pathophysiology and, potentially, management of PD. SIGNIFICANCE STATEMENT Parkinson's disease (PD) is characterized by a progressive loss of nigrostriatal dopaminergic neurons. Restoration of dopamine transmission by l-DOPA relieves symptoms of PD but causes severe side effects. Trace Amine-Associated Receptor 1 (TAAR1) modulates dopaminergic transmission, but its role in PD and l-DOPA responses has been neglected. Here, we report that TAAR1 potentiates the degeneration of dopaminergic neurons and attenuates the behavioral response to l-DOPA and presynaptic and postsynaptic glutamate neurotransmission in the striatum, supporting the relevance of TAAR1 to the pathophysiology and, potentially, management of PD.
Collapse
|
36
|
Nie S, Xu Y, Chen G, Ma K, Han C, Guo Z, Zhang Z, Ye K, Cao X. Small molecule TrkB agonist deoxygedunin protects nigrostriatal dopaminergic neurons from 6-OHDA and MPTP induced neurotoxicity in rodents. Neuropharmacology 2015; 99:448-58. [DOI: 10.1016/j.neuropharm.2015.08.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 11/17/2022]
|
37
|
Hoang MT, Ita KB, Bair DA. Solid Microneedles for Transdermal Delivery of Amantadine Hydrochloride and Pramipexole Dihydrochloride. Pharmaceutics 2015; 7:379-96. [PMID: 26426039 PMCID: PMC4695825 DOI: 10.3390/pharmaceutics7040379] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/09/2015] [Accepted: 09/16/2015] [Indexed: 12/22/2022] Open
Abstract
The aim of this project was to study the influence of microneedles on transdermal delivery of amantadine hydrochloride and pramipexole dihydrochloride across porcine ear skin in vitro. Microchannel visualization studies were carried out and characterization of the microchannel depth was performed using confocal laser scanning microscopy (CLSM) to demonstrate microchannel formation following microneedle roller application. We also report, for the first time, the use of TA.XT Plus Texture Analyzer to characterize burst force in pig skin for transdermal drug delivery experiments. This is the force required to rupture pig skin. The mean passive flux of amantadine hydrochloride, determined using a developed LC–MS/MS technique, was 22.38 ± 4.73 µg/cm2/h, while the mean flux following the use of a stainless steel microneedle roller was 49.04 ± 19.77 µg/cm2/h. The mean passive flux of pramipexole dihydrochloride was 134.83 ± 13.66 µg/cm2/h, while the flux following the use of a stainless steel microneedle roller was 134.04 ± 0.98 µg/cm2/h. For both drugs, the difference in flux values following the use of solid stainless steel microneedle roller was not statistically significantly (p > 0.05). Statistical analysis was carried out using the Mann–Whitney Rank sum test.
Collapse
Affiliation(s)
- Mylien T Hoang
- College of Pharmacy, Touro University, Mare Island-Vallejo, CA 94592, USA.
| | - Kevin B Ita
- College of Pharmacy, Touro University, Mare Island-Vallejo, CA 94592, USA.
| | - Daniel A Bair
- Department of Land, Air, and Water Resources, University of California, Davis, CA 95616, USA.
| |
Collapse
|
38
|
Glutamatergic pathways as a target for the treatment of dyskinesias in Parkinson's disease. Biochem Soc Trans 2015; 42:600-4. [PMID: 24646284 DOI: 10.1042/bst20140006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PD (Parkinson's disease) is characterized by some typical motor features that are caused by striatal dopamine depletion and respond well to dopamine-replacement therapy with L-dopa. Unfortunately, the majority of PD patients treated with L-dopa develop abnormal involuntary movements (dyskinesias) within a few years. The mechanisms underlying the development of LIDs (L-dopa-induced dyskinesias) involve, on one hand, a presynaptic dysregulation of dopamine release and clearance and, on the other hand, an abnormal postsynaptic response to dopamine in the brain. There is a large amount of evidence that these dopamine-dependent mechanisms are modulated by glutamatergic pathways and glutamate receptors. The present article summarizes the pathophysiological role of glutamatergic pathways in LID and reviews pre-clinical and clinical results obtained using pharmacological modulators of different classes and subtypes of glutamate receptors to treat parkinsonian dyskinesias.
Collapse
|
39
|
Neurobiology of l-DOPA induced dyskinesia and the novel therapeutic strategies. Biomed Pharmacother 2015; 70:283-93. [DOI: 10.1016/j.biopha.2015.01.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 01/23/2015] [Indexed: 12/27/2022] Open
|
40
|
Kong M, Ba M, Liu C, Zhang Y, Zhang H, Qiu H. NR2B antagonist CP-101,606 inhibits NR2B phosphorylation at tyrosine-1472 and its interactions with Fyn in levodopa-induced dyskinesia rat model. Behav Brain Res 2015; 282:46-53. [PMID: 25576965 DOI: 10.1016/j.bbr.2014.12.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 12/28/2014] [Accepted: 12/31/2014] [Indexed: 10/24/2022]
Abstract
The augmented tyrosine phosphorylation of NR2B subunit of N-methyl-d-aspartate receptors (NMDAR) dependent on Fyn kinase has been associated with levodopa (l-dopa)-induced dyskinesia (LID). CP-101,606, one selective NR2B subunit antagonist, can improve dyskinesia. Yet, the accurate action mechanism is less well understood. In the present study, the evidences were investigated. Valid 6-hydroxydopamine-lesioned parkinsonian rats were treated with l-dopa intraperitoneally for 22 days to induce LID rat model. On day 23, rats received either CP-101,606 (0.5mg/kg) or vehicle with each l-dopa dose. On the day of 1, 8, 15, 22, and 23 during l-dopa treatment, we determined abnormal involuntary movements (AIMs) in rats. The levels of NR2B phosphorylation at tyrosine-1472 (pNR2B-Tyr1472) and interactions of NR2B with Fyn in LID rat model were detected by immunoblotting and immunoprecipitation. Results showed that CP-101,606 attenuated l-dopa-induced AIMs. In agreement with behavioral analysis, CP-101,606 reduced the augmented pNR2B-Tyr1472 and its interactions with Fyn triggered during the l-dopa administration in the lesioned striatum of parkinsonian rats. Moreover, CP-101,606 also decreased the level of Ca(2+)/calmodulin-dependent protein kinase II at threonine-286 hyperphosphorylation (pCaMKII-Thr286), which was the downstream signaling amplification molecule of NMDAR overactivation and closely associated with LID. However, the protein level of NR2B and Fyn had no difference under the above conditions. These data indicate that the inhibition of the interactions of NR2B with Fyn and NR2B tyrosine phosphorylation may contribute to the CP-101,606-induced downregulation of NMDAR function and provide benefit for the therapy of LID.
Collapse
Affiliation(s)
- Min Kong
- Department of Neurology, Yantaishan Hospital, Yantai City, Shandong 264000, China
| | - Maowen Ba
- Department of Neurology, Yuhuangding Hospital, Yantai City, Shandong 264000, China.
| | - Chuanyu Liu
- Department of Neurology, Yuhuangding Hospital, Yantai City, Shandong 264000, China
| | - Yanxiang Zhang
- Department of Neurology, Yuhuangding Hospital, Yantai City, Shandong 264000, China
| | - Hongli Zhang
- Department of Endocrinology, Ruijin Hospital Affiliated To Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Haiyan Qiu
- Department of Neuroscience, the University of Texas Southwestern Medical Center, TX 75390, USA
| |
Collapse
|
41
|
Salavati B, Rajji TK, Price R, Sun Y, Graff-Guerrero A, Daskalakis ZJ. Imaging-based neurochemistry in schizophrenia: a systematic review and implications for dysfunctional long-term potentiation. Schizophr Bull 2015; 41:44-56. [PMID: 25249654 PMCID: PMC4266301 DOI: 10.1093/schbul/sbu132] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cognitive deficits are commonly observed in patients with schizophrenia. Converging lines of evidence suggest that these deficits are associated with impaired long-term potentiation (LTP). In our systematic review, this hypothesis is evaluated using neuroimaging literature focused on proton magnetic resonance spectroscopy, positron emission tomography, and single-photon emission computed tomography. The review provides evidence for abnormal dopaminergic, GABAergic, and glutamatergic neurotransmission in antipsychotic-naive/free patients with schizophrenia compared with healthy controls. The review concludes with a model illustrating how these abnormalities could lead to impaired LTP in patients with schizophrenia and consequently cognitive deficits.
Collapse
Affiliation(s)
- Bahar Salavati
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada;,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Tarek K. Rajji
- *To whom correspondence should be addressed; 80 Workman Way, Room 6312, Toronto, Ontario M6J 1H4, Canada; tel: +1 416 535 8501 x 33661; fax: +1 416 583 1307; e-mail:
| | - Rae Price
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada;,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Yinming Sun
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Ariel Graff-Guerrero
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Zafiris J. Daskalakis
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada;,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada;,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada;,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Schaeffer E, Pilotto A, Berg D. Pharmacological strategies for the management of levodopa-induced dyskinesia in patients with Parkinson's disease. CNS Drugs 2014; 28:1155-84. [PMID: 25342080 DOI: 10.1007/s40263-014-0205-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
L-Dopa-induced dyskinesias (LID) are the most common adverse effects of long-term dopaminergic therapy in Parkinson's disease (PD). However, the exact mechanisms underlying dyskinesia are still unclear. For a long time, nigrostriatal degeneration and pulsatile stimulation of striatal postsynaptic receptors have been highlighted as the key factors for the development of LID. In recent years, PD models have revealed a wide range of non-dopaminergic neurotransmitter systems involved in pre- and postsynaptic changes and thereby contributing to the pathophysiology of LID. In the current review, we focus on therapeutic LID targets, mainly based on agents acting on dopaminergic, glutamatergic, serotoninergic, adrenergic, and cholinergic systems. Despite a large number of clinical trials, currently only amantadine and, to a lesser extent, clozapine are being used as effective strategies in the treatment of LID in clinical settings. Thus, in the second part of the article, we review the placebo-controlled trials on LID treatment in order to disentangle the changing scenario of drug development. Promising results include the extension of L-dopa action without inducing LID of the novel monoamine oxidase B- and glutamate-release inhibitor safinamide; however, this had no obvious effect on existing LID. Others, like the metabotropic glutamate-receptor antagonist AFQ056, showed promising results in some of the studies; however, confirmation is still lacking. Thus, to date, strategies of continuous dopaminergic stimulation seem the most promising to prevent or ameliorate LID. The success of future therapeutic strategies once moderate to severe LID occur will depend on the translation from preclinical experimental models into clinical practice in a bidirectional process.
Collapse
Affiliation(s)
- Eva Schaeffer
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tuebingen, Hoppe Seyler-Strasse 3, 72076, Tübingen, Germany
| | | | | |
Collapse
|
43
|
Džoljić E, Novaković I, Krajinovic M, Grbatinić I, Kostić V. Pharmacogenetics of drug response in Parkinson's disease. Int J Neurosci 2014; 125:635-44. [PMID: 25226559 DOI: 10.3109/00207454.2014.963851] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Parkinson's disease (PD) is a debilitating, demoralizing and financially devastating condition affecting 1% of population at the age of 60 years. Thus, very important issue to address is individual therapy optimization. Recent results have shown evidence that variable efficacy of treatment and risk of motor and mental complications could have genetic origin. Significant roles in that process play (pharmaco)genomic/genetic studies of PD. Variability in genes coding for drug-metabolizing enzymes, drug receptors and proteins involved in drug pathway signaling is an important factor determining inter-individual variability in drug responses. Interpersonal differences in drug responses are clearly documented although individualized treatment of PD is not widely known. Treatment with antiparkinsonian drugs is associated with the development of complications, such as L-DOPA-induced dyskinesia (LID), hallucinations and excessive daytime sleepiness. Carriers of specific genetic polymorphisms are particularly susceptible to development of some of these drug adverse effects. Pharmacogenomics aims to understand the relationship between genetic factors and inter-individual variations in drug responses, and to translate this information in therapy tailored to individual patient genetics. Relatively few efforts have been made to investigate the role of pharmacogenetics in the individual response to anti-PD drugs. Thus, many genetic variations and polymorphisms in myriad of different proteins can influence individual response to anti-PD drugs.
Collapse
Affiliation(s)
- Eleonora Džoljić
- 1Neurology Clinic, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | | | | | | |
Collapse
|
44
|
Rascol O, Fox S, Gasparini F, Kenney C, Di Paolo T, Gomez-Mancilla B. Use of metabotropic glutamate 5-receptor antagonists for treatment of levodopa-induced dyskinesias. Parkinsonism Relat Disord 2014; 20:947-56. [DOI: 10.1016/j.parkreldis.2014.05.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/02/2014] [Accepted: 05/02/2014] [Indexed: 10/25/2022]
|
45
|
Abstract
Elevation of inflammatory cytokines in the striatum precedes symptoms in a number of motor dysfunctions, but it is unclear whether this is part of the disease process or an adaptive response to the pathology. In pyramidal cells, TNFα drives the insertion of AMPA-type glutamate receptors into synapses, and contributes to the homeostatic regulation of circuit activity in the developing neocortex. Here we demonstrate that in the mouse dorsolateral striatum, TNFα drives the internalization of AMPARs and reduces corticostriatal synaptic strength, dephosphorylates DARPP-32 and GluA1, and results in a preferential removal of Ca(2+)-permeable AMPARs. Striatal TNFα signaling appears to be adaptive in nature, as TNFα is upregulated in response to the prolonged blockade of D2 dopamine receptors and is necessary to reduce the expression of extrapyramidal symptoms induced by chronic haloperidol treatment. These data indicate that TNFα is a regulator of glutamatergic synaptic strength in the adult striatum in a manner distinct from its regulation of synapses on pyramidal cells and mediates an adaptive response during pathological conditions.
Collapse
|
46
|
Chotibut T, Davis RW, Arnold JC, Frenchek Z, Gurwara S, Bondada V, Geddes JW, Salvatore MF. Ceftriaxone increases glutamate uptake and reduces striatal tyrosine hydroxylase loss in 6-OHDA Parkinson's model. Mol Neurobiol 2014; 49:1282-92. [PMID: 24297323 PMCID: PMC4618839 DOI: 10.1007/s12035-013-8598-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 11/19/2013] [Indexed: 12/18/2022]
Abstract
Excess glutamatergic neurotransmission may contribute to excitotoxic loss of nigrostriatal neurons in Parkinson's disease (PD). Here, we determined if increasing glutamate uptake could reduce the extent of tyrosine hydroxylase (TH) loss in PD progression. The beta-lactam antibiotic, ceftriaxone, increases the expression of glutamate transporter 1 (GLT-1), a glutamate transporter that plays a major role in glutamate clearance in central nervous system and may attenuate adverse behavioral or neurobiological function in other neurodegenerative disease models. In association with >80% TH loss, we observed a significant decrease in glutamate uptake in the established 6-hydroxydopamine (6-OHDA) PD model. Ceftriaxone (200 mg/kg, i.p.) increased striatal glutamate uptake with >5 consecutive days of injection in nonlesioned rats and lasted out to 14 days postinjection, a time beyond that required for 6-OHDA to produce >70% TH loss (∼9 days). When ceftriaxone was given at the time of 6-OHDA, TH loss was ∼57% compared to ∼85% in temporally matched vehicle-injected controls and amphetamine-induced rotation was reduced about 2-fold. This attenuation of TH loss was associated with increased glutamate uptake, increased GLT-1 expression, and reduced Serine 19 TH phosphorylation, a calcium-dependent target specific for nigrostriatal neurons. These results reveal that glutamate uptake can be targeted in a PD model, decrease the rate of TH loss in a calcium-dependent manner, and attenuate locomotor behavior associated with 6-OHDA lesion. Given that detection of reliable PD markers will eventually be employed in susceptible populations, our results give credence to the possibility that increasing glutamate uptake may prolong the time period before locomotor impairment occurs.
Collapse
Affiliation(s)
- Tanya Chotibut
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA
| | - Richard W. Davis
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA
| | - Jennifer C. Arnold
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA
| | - Zachary Frenchek
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA
| | - Shawn Gurwara
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA
| | - Vimala Bondada
- Spinal Cord & Brain Injury Research Center, University of Kentucky Medical Center, Lexington, KY 40536, USA
| | - James W. Geddes
- Spinal Cord & Brain Injury Research Center, University of Kentucky Medical Center, Lexington, KY 40536, USA
| | - Michael F. Salvatore
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71106, USA
| |
Collapse
|
47
|
Gubellini P, Melon C, Dale E, Doller D, Kerkerian-Le Goff L. Distinct effects of mGlu4 receptor positive allosteric modulators at corticostriatal vs. striatopallidal synapses may differentially contribute to their antiparkinsonian action. Neuropharmacology 2014; 85:166-77. [PMID: 24866785 DOI: 10.1016/j.neuropharm.2014.05.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/21/2014] [Accepted: 05/15/2014] [Indexed: 12/20/2022]
Abstract
Metabotropic glutamate 4 (mGlu4) receptor is a promising target for the treatment of motor deficits in Parkinson's disease (PD). This is due in part to its localization at key basal ganglia (BG) synapses that become hyperactive in this pathology, particularly striatopallidal synapses. In this context, mGlu4 receptor activation using either orthosteric agonists or positive allosteric modulators (PAMs) improves motor symptoms in rodent PD models in certain conditions. However, literature data show that mGlu4 receptor PAMs have no effect at striatopallidal GABAergic synapses (unless combined with an orthosteric agonist) and on the firing activity of pallidal neurons, and fail to provide significant motor improvement in relevant PD models. This questions the mechanistic hypothesis that mGlu4 receptor PAMs should act at striatopallidal synapses to alleviate PD motor symptoms. To shed light on this issue, we performed brain slice electrophysiology experiments. We show that Lu AF21934, an mGlu4 PAM small-molecule probe-compound, was ineffective at striatopallidal synapses at all concentrations tested, while it significantly inhibited corticostriatal synaptic transmission. Similarly, Lu AF21934 did not affect electrophysiology readouts at striatopallidal synapses in the presence of haloperidol or in 6-hydroxydopamine-lesioned rats. Interestingly, co-application of Lu AF21934 with a glutamate transporter inhibitor revealed a significant inhibitory action at striatopallidal synapses. Possibly, this effect could rely on increased level/permanence of glutamate in the synaptic cleft. Such differential efficacy of mGlu4 receptor PAMs at corticostriatal vs. striatopallidal synapses raises several issues regarding the synaptic target(s) of these drugs in the BG, and challenges the mechanisms by which they alleviate motor deficits in experimental PD models.
Collapse
Affiliation(s)
- Paolo Gubellini
- Aix-Marseille Université, CNRS, IBDM UMR7288, 13009 Marseille, France.
| | - Christophe Melon
- Aix-Marseille Université, CNRS, IBDM UMR7288, 13009 Marseille, France
| | - Elena Dale
- Lundbeck Research USA, 215 College Road, Paramus, NJ 07652, USA
| | - Dario Doller
- Lundbeck Research USA, 215 College Road, Paramus, NJ 07652, USA
| | | |
Collapse
|
48
|
Suzuki H, Ono K, Sawada M. Protective effect of INI-0602, a gap junction inhibitor, on dopaminergic neurodegeneration of mice with unilateral 6-hydroxydopamine injection. J Neural Transm (Vienna) 2014; 121:1349-55. [DOI: 10.1007/s00702-014-1209-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 03/30/2014] [Indexed: 11/30/2022]
|
49
|
Zhong SY, Chen YX, Fang M, Zhu XL, Zhao YX, Liu XY. Low-dose levodopa protects nerve cells from oxidative stress and up-regulates expression of pCREB and CD39. PLoS One 2014; 9:e95387. [PMID: 24743653 PMCID: PMC3990701 DOI: 10.1371/journal.pone.0095387] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 03/25/2014] [Indexed: 11/18/2022] Open
Abstract
Objective This study aimed to investigate the influence of low-dose levodopa (L-DOPA) on neuronal cell death under oxidative stress. Methods PC12 cells were treated with L-DOPA at different concentrations. We detected the L-DOPA induced reactive oxygen species (ROS). Meanwhile, MTT and LDH assay were performed to determine the proliferation and growth of PC12 cells with or without ROS scavenger. In addition, after pretreatment with L-DOPA at different concentrations alone or in combination with CD39 inhibitor, PC12 cells were incubated with hydrogen peroxide (H2O2) and the cell viability was evaluated by MTT and LDH assay. In addition, the expression of pCREB and CD39 was detected by immunofluorescence staining and Western blot assay in both cells and rat’s brain after L-DOPA treatment. Results After treatment with L-DOPA for 3 days, the cell proliferation and growth were promoted when the L-DOPA concentration was <30 µM, while cell proliferation was comparable to that in control group when the L-DOPA concentration was >30 µM. Low dose L-DOPA could protect the PC12 cells from H2O2 induced oxidative stress, which was compromised by CD39 inhibitor. In addition, the expression of CD39 and pCREB increased in both PC12 cells and rats’ brain after L-DOPA treatment. Conclusions L-DOPA at different concentrations has distinct influence on proliferation and growth of PC12 cells, and low dose (<30 µM) L-DOPA protects PC12 cells against oxidative stress which might be related to the up-regulation of CD39 and pCREB expression.
Collapse
Affiliation(s)
- Shi-Ying Zhong
- Department of Neurology, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Shanghai, China
| | - Yong-Xing Chen
- Department of Neurology, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Shanghai, China
| | - Min Fang
- Department of Neurology, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Shanghai, China
| | - Xiao-Long Zhu
- Department of Neurology, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Shanghai, China
| | - Yan-Xin Zhao
- Department of Neurology, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Shanghai, China
- * E-mail: (YXZ); (XYL)
| | - Xue-Yuan Liu
- Department of Neurology, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Shanghai, China
- * E-mail: (YXZ); (XYL)
| |
Collapse
|
50
|
Perez-Lloret S, Merello M. Two new adenosine receptor antagonists for the treatment of Parkinson's disease: istradefylline versus tozadenant. Expert Opin Pharmacother 2014; 15:1097-107. [PMID: 24673462 DOI: 10.1517/14656566.2014.903924] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Adenosine A2A receptors are localized in the brain, mainly within the caudate and putamen nuclei of the basal ganglia. Their activation leads to stimulation of the 'indirect' pathway. Conversely, administration of A2A receptor antagonists leads to inhibition of this pathway, which was translated into reduced hypomotility in several animal models of parkinsonism. AREAS COVERED In this review, the effects of two A2A receptor antagonists, istradefylline and tozadenant, on parkinsonian symptoms in animal and humans will be discussed. EXPERT OPINION Animal studies have shown potent antiparkinsonian effects for several A2A receptor antagonists, including istradefylline. In clinical trials, istradefylline reduced OFF time when administered with levodopa, but results are inconclusive. Results with tozadenant are scarce. Modification of thalamic blood flow compatible with reduced inhibition was noted in one small trial, followed by a significant reduction in OFF time in a larger one. Therefore, both drugs show promising efficacy for the reduction of OFF time in levodopa-treated Parkinson's disease patients, but further research is needed in order to obtain definitive conclusions.
Collapse
Affiliation(s)
- Santiago Perez-Lloret
- Raul Carrea Institute for Neurological Research, Movement Disorders Section , Montañeses 2325 (1425), Buenos Aires , Argentina +54 11 57773200 ; +54 11 57773200 ;
| | | |
Collapse
|