1
|
Erin N, Shurin GV, Baraldi JH, Shurin MR. Regulation of Carcinogenesis by Sensory Neurons and Neuromediators. Cancers (Basel) 2022; 14:2333. [PMID: 35565462 PMCID: PMC9102554 DOI: 10.3390/cancers14092333] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/26/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
Interactions between the immune system and the nervous system are crucial in maintaining homeostasis, and disturbances of these neuro-immune interactions may participate in carcinogenesis and metastasis. Nerve endings have been identified within solid tumors in humans and experimental animals. Although the involvement of the efferent sympathetic and parasympathetic innervation in carcinogenesis has been extensively investigated, the role of the afferent sensory neurons and the neuropeptides in tumor development, growth, and progression is recently appreciated. Similarly, current findings point to the significant role of Schwann cells as part of neuro-immune interactions. Hence, in this review, we mainly focus on local and systemic effects of sensory nerve activity as well as Schwann cells in carcinogenesis and metastasis. Specific denervation of vagal sensory nerve fibers, or vagotomy, in animal models, has been reported to markedly increase lung metastases of breast carcinoma as well as pancreatic and gastric tumor growth, with the formation of liver metastases demonstrating the protective role of vagal sensory fibers against cancer. Clinical studies have revealed that patients with gastric ulcers who have undergone a vagotomy have a greater risk of stomach, colorectal, biliary tract, and lung cancers. Protective effects of vagal activity have also been documented by epidemiological studies demonstrating that high vagal activity predicts longer survival rates in patients with colon, non-small cell lung, prostate, and breast cancers. However, several studies have reported that inhibition of sensory neuronal activity reduces the development of solid tumors, including prostate, gastric, pancreatic, head and neck, cervical, ovarian, and skin cancers. These contradictory findings are likely to be due to the post-nerve injury-induced activation of systemic sensory fibers, the level of aggressiveness of the tumor model used, and the local heterogeneity of sensory fibers. As the aggressiveness of the tumor model and the level of the inflammatory response increase, the protective role of sensory nerve fibers is apparent and might be mostly due to systemic alterations in the neuro-immune response. Hence, more insights into inductive and permissive mechanisms, such as systemic, cellular neuro-immunological mechanisms of carcinogenesis and metastasis formation, are needed to understand the role of sensory neurons in tumor growth and spread.
Collapse
Affiliation(s)
- Nuray Erin
- Department of Medical Pharmacology, Immunopharmacology, and Immuno-Oncology Unit, School of Medicine, Akdeniz University, 07070 Antalya, Turkey
| | - Galina V. Shurin
- Department of Pathology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, 15213 PA, USA; (G.V.S.); (M.R.S.)
| | - James H. Baraldi
- Department of Neuroscience, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, 15213 PA, USA;
| | - Michael R. Shurin
- Department of Pathology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, 15213 PA, USA; (G.V.S.); (M.R.S.)
- Department of Immunology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, 15213 PA, USA
| |
Collapse
|
2
|
Crosson T, Roversi K, Balood M, Othman R, Ahmadi M, Wang JC, Seadi Pereira PJ, Tabatabaei M, Couture R, Eichwald T, Latini A, Prediger RD, Rangachari M, Seehus CR, Foster SL, Talbot S. Profiling of how nociceptor neurons detect danger - new and old foes. J Intern Med 2019; 286:268-289. [PMID: 31282104 DOI: 10.1111/joim.12957] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The host evolves redundant mechanisms to preserve physiological processing and homeostasis. These functions range from sensing internal and external threats, creating a memory of the insult and generating reflexes, which aim to resolve inflammation. Impairment in such functioning leads to chronic inflammatory diseases. By interacting through a common language of ligands and receptors, the immune and sensory nervous systems work in concert to accomplish such protective functions. Whilst this bidirectional communication helps to protect from danger, it can contribute to disease pathophysiology. Thus, the somatosensory nervous system is anatomically positioned within primary and secondary lymphoid tissues and mucosa to modulate immunity directly. Upstream of this interplay, neurons detect danger, which prompts the release of neuropeptides initiating (i) defensive reflexes (ranging from withdrawal response to coughing) and (ii) chemotaxis, adhesion and local infiltration of immune cells. The resulting outcome of such neuro-immune interplay is still ill-defined, but consensual findings start to emerge and support neuropeptides not only as blockers of TH 1-mediated immunity but also as drivers of TH 2 immune responses. However, the modalities detected by nociceptors revealed broader than mechanical pressure and temperature sensing and include signals as various as cytokines and pathogens to immunoglobulins and even microRNAs. Along these lines, we aggregated various dorsal root ganglion sensory neuron expression profiling datasets supporting such wide-ranging sensing capabilities to help identifying new danger detection modalities of these cells. Thus, revealing unexpected aspects of nociceptor neuron biology might prompt the identification of novel drivers of immunity, means to resolve inflammation and strategies to safeguard homeostasis.
Collapse
Affiliation(s)
- T Crosson
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - K Roversi
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.,Departamento de Farmacologia Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - M Balood
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.,Axe Neurosciences, Centre de recherche du CHU, Université Laval, Québec, QC, Canada.,Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - R Othman
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - M Ahmadi
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - J-C Wang
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.,Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | - M Tabatabaei
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - R Couture
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - T Eichwald
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - A Latini
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - R D Prediger
- Departamento de Farmacologia Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - M Rangachari
- Axe Neurosciences, Centre de recherche du CHU, Université Laval, Québec, QC, Canada.,Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - C R Seehus
- FM Kirby Neurobiology Center, Children's Hospital, Boston, MA, USA
| | - S L Foster
- Depression Clinical Research Program, Massachusetts General Hospital, Boston, MA, USA
| | - S Talbot
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
3
|
Aarão TLDS, de Sousa JR, Falcão ASC, Falcão LFM, Quaresma JAS. Nerve Growth Factor and Pathogenesis of Leprosy: Review and Update. Front Immunol 2018; 9:939. [PMID: 29867937 PMCID: PMC5949531 DOI: 10.3389/fimmu.2018.00939] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/16/2018] [Indexed: 12/11/2022] Open
Abstract
Neurotrophins are a family of proteins that regulate different aspects of biological development and neural function and are of great importance in neuroplasticity. This group of proteins has multiple functions in neuronal cells, as well as in other cellular populations. Nerve growth factor (NGF) is a neurotrophin that is endogenously produced during development and maturation by multiple cell types, including neurons, Schwann cells, oligodendrocytes, lymphocytes, mast cells, macrophages, keratinocytes, and fibroblasts. These cells produce proNGF, which is transformed by proteolytic cleavage into the biologically active NGF in the endoplasmic reticulum. The present review describes the role of NGF in the pathogenesis of leprosy and its correlations with different clinical forms of the disease and with the phenomena of regeneration and neural injury observed during infection. We discuss the involvement of NGF in the induction of neural damage and the pathophysiology of pain associated with peripheral neuropathy in leprosy. We also discuss the roles of immune factors in the evolution of this pathological process. Finally, we highlight avenues of investigation for future research to broaden our understanding of the role of NGF in the pathogenesis of leprosy. Our analysis of the literature indicates that NGF plays an important role in the evolution and outcome of Mycobacterium leprae infection. The findings described here highlight an important area of investigation, as leprosy is one of the main causes of infection in the peripheral nervous system.
Collapse
Affiliation(s)
| | | | | | | | - Juarez Antônio Simões Quaresma
- Center of Health and Biological Sciences, State University of Para, Belem, Brazil.,Tropical Medicine Center, Federal University of Para, Belem, Brazil.,Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil
| |
Collapse
|
4
|
Sarker P, Bhuiyan TR, Qadri F, Alam NH, Wretlind B, Bishop AE, Mathan M, Agerberth B, Andersson J, Raqib R. Differential expression of enteric neuroimmune-network in invasive and acute watery diarrhoea. Neurogastroenterol Motil 2010; 22:70-8, e29. [PMID: 19650770 DOI: 10.1111/j.1365-2982.2009.01375.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We aimed to evaluate the changes of nerve morphology and distribution of neurotransmitters and neuropeptides in the rectum of Shigella flexneri-infected patients and in the duodenum of Vibrio cholerae O1-infected patients. Nerve morphology was observed by transmission electron microscopy. Immunoreactivity of nerve growth factor (NGF), neurotransmitters and neuropeptides in tissues were studied by immunohistochemistry. Ultrastructural analysis of intestinal biopsy revealed persisting axons degeneration throughout the study period in all patients. Regeneration was already evident at the acute stage with marked increase at late convalescence. Both acute shigellosis and cholera were accompanied by increased expression of NGF and histamine and decreased expression of serotonin that was restored at convalescence. Immunoreactivity of vasoactive intestinal peptide (VIP) was increased during acute cholera, whereas in shigellosis VIP- and substance P-immunoreactive nerves appeared at early convalescence. Both shigellosis and cholera induced long-lasting degeneration of enteric neuronal axons, despite the presence of ongoing proliferation and regeneration processes. Neurotransmitters and neuropeptides may play differential roles in invasive and watery diarrhoea.
Collapse
Affiliation(s)
- P Sarker
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Elenkov IJ, Kvetnansky R, Hashiramoto A, Bakalov VK, Link AA, Zachman K, Crane M, Jezova D, Rovensky J, Dimitrov MA, Gold PW, Bonini S, Fleisher T, Chrousos GP, Wilder RL. Low- versus high-baseline epinephrine output shapes opposite innate cytokine profiles: presence of Lewis- and Fischer-like neurohormonal immune phenotypes in humans? THE JOURNAL OF IMMUNOLOGY 2008; 181:1737-45. [PMID: 18641310 PMCID: PMC10066863 DOI: 10.4049/jimmunol.181.3.1737] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Immunogenetic mechanisms operating within the immune system are known to influence cytokine profiles and disease susceptibility. Yet the role of the individual's neurohormonal background in these processes remains undefined. Hormonal imbalances are documented in immune-related diseases, but it is unclear whether this represents a secondary phenomenon or a primary "defect" related to specific neurohormonal immune phenotype(s). We report that in a large subpopulation of healthy humans the baseline epinephrine output (but not cortisol and sex steroid hormones) correlated inversely with proinflammatory and positively with anti-inflammatory cytokine production. Thus, low vs high epinephrine excretors had a 2- to 5-fold higher TNF-alpha and IL-12 production but 2-fold lower IL-10 production induced by LPS ex vivo. In alternative settings, we found low baseline levels and profoundly blunted stress-induced epinephrine responses but high TNF-alpha levels in Lewis vs Fischer inbred rats. Additionally, isoproterenol, a beta adrenoreceptor agonist suppressed LPS-induced TNF-alpha production, with more pronounced effect in Lewis than in Fischer rats. In human monocytes, epinephrine and the beta(2) adrenoreceptor agonist fenoterol potently inhibited LPS-induced TNF-alpha and IL-12, but stimulated IL-10 production. The order of potency for hormones able to inhibit IL-12 production ex vivo was: epinephrine > norepinephrine > or = 1,25-(OH)(2) vitamin D(3) > hydrocortisone. This indicates that baseline epinephrine conditions cytokine responsiveness and through this mechanism intrinsic hypo- or hyperactive adrenal medullas in some individuals may shape opposite cytokine profiles. Since Lewis and Fischer rats have opposite susceptibility to experimental immunological diseases, this suggests that the parallel human phenotypes could be linked to differing responsiveness and susceptibility to infections and immune/inflammatory-related conditions.
Collapse
Affiliation(s)
- Ilia J Elenkov
- Arthritis and Rheumatism Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Mravec B, Gidron Y, Hulin I. Neurobiology of cancer: Interactions between nervous, endocrine and immune systems as a base for monitoring and modulating the tumorigenesis by the brain. Semin Cancer Biol 2008; 18:150-63. [DOI: 10.1016/j.semcancer.2007.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 12/05/2007] [Indexed: 12/26/2022]
|
7
|
Biros D. Anterior Chamber-Associated Immune Deviation. Vet Clin North Am Small Anim Pract 2008; 38:309-21, vi-vii. [DOI: 10.1016/j.cvsm.2007.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Elenkov IJ. Neurohormonal-cytokine interactions: implications for inflammation, common human diseases and well-being. Neurochem Int 2007; 52:40-51. [PMID: 17716784 DOI: 10.1016/j.neuint.2007.06.037] [Citation(s) in RCA: 204] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 06/20/2007] [Accepted: 06/22/2007] [Indexed: 11/29/2022]
Abstract
The neuroendocrine system affects the immune system through the neuroendocrine humoral outflow via the pituitary, and through direct neuronal influences via the sympathetic, parasympathetic (cholinergic) and peptidergic/sensory innervation of peripheral tissues. Circulating hormones or locally released neurotransmitters and neuropeptides regulate major immune functions, such as antigen presentation, antibody production, lymphocyte activity, proliferation and traffic, and the secretion of cytokines including the selection of T helper (Th)1 or Th2 cytokine responses. During inflammation, the activation of the stress system, through induction of a Th2 shift protects the organism from systemic "overshooting" with Th1/pro-inflammatory cytokines. Under certain conditions, however, stress hormones, substance P, ATP and the activation of the corticotropin-releasing hormone/substance P-histamine axis may actually facilitate inflammation, through induction of interleukin (IL)-1, IL-6, IL-8, IL-18, tumor necrosis factor (TNF)-alpha and CRP production. Thus, a dysfunctional neuroendocrine-immune interface associated with abnormalities of the 'systemic anti-inflammatory feedback' and/or 'hyperactivity' of the local pro-inflammatory factors may play a role in the pathogenesis of atopic/allergic and autoimmune diseases, obesity, depression and atherosclerosis. Better understanding of the neuroendocrine control of inflammation may provide critical insights into mechanisms underlying a variety of common human immune-related diseases.
Collapse
Affiliation(s)
- Ilia J Elenkov
- Institute of Neurobiology and Molecular Medicine, Italian National Research Council, Via Fosso del Cavaliere 100, 00133 Rome, Italy.
| |
Collapse
|
9
|
Andersson AK, Atkinson SE, Khanolkar-Young S, Chaduvula M, Jain S, Suneetha L, Suneetha S, Lockwood DNJ. Alteration of the cortisol–cortisone shuttle in leprosy type 1 reactions in leprosy patients in Hyderabad, India. Immunol Lett 2007; 109:72-5. [PMID: 17320974 DOI: 10.1016/j.imlet.2007.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 01/14/2007] [Accepted: 01/14/2007] [Indexed: 10/23/2022]
Abstract
Regulation of inflammation in leprosy may be influenced by local concentrations of active cortisol and inactive cortisone, whose concentrations are regulated by enzymes in the cortisol-cortisone shuttle. We investigated the cortisol-cortisone shuttle enzymes in the skin of leprosy patients with type 1 reactions (T1R), which are characterised by skin and nerve inflammation. Gene expression of the shuttle enzymes were quantified in skin biopsies from 15 leprosy patients with new T1R before and during prednisolone treatment and compared with levels in skin biopsies from 10 borderline leprosy patients without reactions. Gene expression of 11beta-hydroxysteroid dehydrogenase (11beta-HSD) type 2, which converts cortisol to cortisone, is down-regulated in skin from T1R lesions. However expression levels of 11beta-HSD type 1, which converts cortisone to cortisol, were similar in skin with and without reactions and did not change during anti-leprosy drug treatment. Prednisolone treatment of patients with reactions is associated with an upregulation of 11beta-HSD2 expression in skin. The down regulation of 11beta-HSD2 at the beginning of a reaction may be caused by pro-inflammatory cytokines in the leprosy reactional lesion and may be a local attempt to down-regulate inflammation. However in leprosy reactions this local response is insufficient and exogenous steroids are required to control inflammation.
Collapse
Affiliation(s)
- Anna K Andersson
- Department of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Elenkov IJ. Effects of Catecholamines on the Immune Response. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s1567-7443(07)00210-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
11
|
Mravec B, Gidron Y, Kukanova B, Bizik J, Kiss A, Hulin I. Neural-endocrine-immune complex in the central modulation of tumorigenesis: facts, assumptions, and hypotheses. J Neuroimmunol 2006; 180:104-16. [PMID: 16945428 DOI: 10.1016/j.jneuroim.2006.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 07/07/2006] [Accepted: 07/07/2006] [Indexed: 12/29/2022]
Abstract
For the precise coordination of systemic functions, the nervous system uses a variety of peripherally and centrally localized receptors, which transmit information from internal and external environments to the central nervous system. Tight interconnections between the immune, nervous, and endocrine systems provide a base for monitoring and consequent modulation of immune system functions by the brain and vice versa. The immune system plays an important role in tumorigenesis. On the basis of rich interconnections between the immune, nervous and endocrine systems, the possibility that the brain may be informed about tumorigenesis is discussed in this review article. Moreover, the eventual modulation of tumorigenesis by central nervous system is also considered. Prospective consequences of the interactions between tumor and brain for diagnosis and therapy of cancer are emphasized.
Collapse
Affiliation(s)
- Boris Mravec
- Laboratory of Neurophysiology, Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
12
|
Anterior chamber–associated immune deviation and its impact on corneal allograft survival. Curr Opin Organ Transplant 2006. [DOI: 10.1097/01.mot.0000236697.07092.ac] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Elenkov IJ, Iezzoni DG, Daly A, Harris AG, Chrousos GP. Cytokine dysregulation, inflammation and well-being. Neuroimmunomodulation 2005; 12:255-69. [PMID: 16166805 DOI: 10.1159/000087104] [Citation(s) in RCA: 329] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Accepted: 04/07/2005] [Indexed: 12/15/2022] Open
Abstract
Cytokines mediate and control immune and inflammatory responses. Complex interactions exist between cytokines, inflammation and the adaptive responses in maintaining homeostasis, health, and well-being. Like the stress response, the inflammatory reaction is crucial for survival and is meant to be tailored to the stimulus and time. A full-fledged systemic inflammatory reaction results in stimulation of four major programs: the acute-phase reaction, the sickness syndrome, the pain program, and the stress response, mediated by the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system. Common human diseases such as atopy/allergy, autoimmunity, chronic infections and sepsis are characterized by a dysregulation of the pro- versus anti-inflammatory and T helper (Th)1 versus Th2 cytokine balance. Recent evidence also indicates the involvement of pro-inflammatory cytokines in the pathogenesis of atherosclerosis and major depression, and conditions such as visceral-type obesity, metabolic syndrome and sleep disturbances. During inflammation, the activation of the stress system, through induction of a Th2 shift, protects the organism from systemic 'overshooting' with Th1/pro-inflammatory cytokines. Under certain conditions, however, stress hormones may actually facilitate inflammation through induction of interleukin (IL)-1, IL-6, IL-8, IL-18, tumor necrosis factor-alpha and C-reactive protein production and through activation of the corticotropin-releasing hormone/substance P-histamine axis. Thus, a dysfunctional neuroendocrine-immune interface associated with abnormalities of the 'systemic anti-inflammatory feedback' and/or 'hyperactivity' of the local pro-inflammatory factors may play a role in the pathogenesis of atopic/allergic and autoimmune diseases, obesity, depression, and atherosclerosis. These abnormalities and the failure of the adaptive systems to resolve inflammation affect the well-being of the individual, including behavioral parameters, quality of life and sleep, as well as indices of metabolic and cardiovascular health. These hypotheses require further investigation, but the answers should provide critical insights into mechanisms underlying a variety of common human immune-related diseases.
Collapse
Affiliation(s)
- Ilia J Elenkov
- Division of Rheumatology, Immunology and Allergy, Georgetown University Medical Center, Washington, D.C., USA
| | | | | | | | | |
Collapse
|
14
|
Smit JJ, Folkerts G, Nijkamp FP. Mycobacteria, genes and the 'hygiene hypothesis'. Curr Opin Allergy Clin Immunol 2004; 4:57-62. [PMID: 15090921 DOI: 10.1097/00130832-200402000-00012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The 'hygiene hypothesis' suggests that a relationship exists between improved hygiene and an increase in allergic diseases. As an underlying mechanism for this hypothesis it is proposed that due to the lack of microbial stimulation either a misbalance in T helper type responses or a misbalance in regulatory mechanisms develops. As yet, however, a specific infectious factor responsible for the hygiene hypothesis has not been found. RECENT FINDINGS Animal models have lent support for mycobacteria as important candidates in the hygiene hypothesis. These animal studies have also suggested that mycobacterial treatment generated regulatory mechanisms which restored the immune balance. In contrast, the relationship between mycobacterial infection or treatment and the development of allergy and asthma in humans is unclear and highly controversial. SUMMARY Mycobacteria have been found to unambiguously reduce allergic and asthmatic manifestations, suggesting that mycobacteria perhaps can be used as an 'anti-asthma' vaccine. Conflicting results in humans, however, confirm that the complex and multifactorial interactions between the environment and the genetic background of the individual contribute to the development of allergic disease. Therefore, the hygiene hypothesis should involve the genetic and the environmental background of the individual.
Collapse
Affiliation(s)
- Joost J Smit
- Department of Pharmacology and Pathophysiology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | |
Collapse
|
15
|
Li X, Taylor S, Zegarelli B, Shen S, O'Rourke J, Cone RE. The induction of splenic suppressor T cells through an immune-privileged site requires an intact sympathetic nervous system. J Neuroimmunol 2004; 153:40-9. [PMID: 15265662 DOI: 10.1016/j.jneuroim.2004.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2003] [Revised: 04/20/2004] [Accepted: 04/21/2004] [Indexed: 01/03/2023]
Abstract
Antigen injection into the eye's anterior chamber (AC) induces the antigen-specific suppression of delayed-type hypersensitivity (DTH) that is mediated by NKT cells and splenic CD8+ suppressor T cells. Because the AC, uveal tissues, the thymus and spleen required to induce anterior chamber-associated immune deviation (ACAID) have dense sympathetic innervations, we examined the effects of chemical sympathectomy of mice by 6-hydroxydopamine (6-OHDA) on the induction of the suppression of contact sensitivity to trinitrophenol (TNP) induced by the injection of TNP-bovine serum albumin (BSA) into the anterior chamber. DTH measured as contact sensitivity to picrylchloride was not induced in mice that received 6-OHDA before immunization with TNP-BSA. Although spleen cells from 6-OHDA-treated TNP-BSA-immunized mice produced IFN-gamma when stimulated by TNP-BSA, the number of DTH-initiating hepatic NKT cells was reduced markedly in 6-OHDA-treated mice. Chemically denervated mice did not produce splenic suppressor T cells or thymic NKT cells that activate splenic suppressor T cells. We suggest that an intact sympathetic nervous system (SNS) is required to maintain cellular immunoregulation.
Collapse
Affiliation(s)
- Xingya Li
- Department of Pathology, Connecticut Lions Vision Immunology Center. University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3105, USA
| | | | | | | | | | | |
Collapse
|
16
|
Affiliation(s)
- Kelley S Madden
- Department of Psychiatry, Center for Psychoneuroimmunology Research, University of Rochester School of Medicine and Dentistry, NY 14642, USA.
| |
Collapse
|
17
|
Strand FL. Neuropeptides: general characteristics and neuropharmaceutical potential in treating CNS disorders. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2003; 61:1-37. [PMID: 14674607 DOI: 10.1007/978-3-0348-8049-7_1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The general characteristics of neuropeptides are discussed as a background for the understanding of their role in regulation of physiological systems. The extent of those systems that are crucially affected by neuropeptides is vast and the complexity of their interactions makes the clinical focus on a specific neuropeptide unsatisfactory. The clinical potential of neuropeptides affecting eating disorders, CNS behavioral disorders and the neuroregenerative and neuroprotective action of neuropeptides is discussed. It is probable that successful neuropeptide therapeutics will depend upon the application of translational and combinational research using various ingenious combinations of neuropeptides, their agonists and antagonists, neuropeptide receptor agonists and antagonists, improved methods of delivery and the development of peptides targeted to the genetic profile of individual patients.
Collapse
Affiliation(s)
- Fleur L Strand
- New York University, 340 East 64th Street, New York, NY 10021, USA.
| |
Collapse
|