1
|
Wang Y, Chen Z, You F, Sun J, Yang H. PTK2B inhibitor PF-431396 inhibits inflammatory response and apoptosis of ovarian granulosa cells by targeting AKT1 phosphorylation in premature ovarian insufficiency. Int Immunopharmacol 2025; 155:114651. [PMID: 40228422 DOI: 10.1016/j.intimp.2025.114651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/16/2025]
Abstract
Premature ovarian insufficiency (POI) is a female reproductive disorder characterized by impaired ovarian function. Protein tyrosine kinase 2 beta (PTK2B), a non-receptor tyrosine kinase, has been implicated in folliculogenesis, but its role in POI remains unknown. In this study, a rat POI model was established by intraperitoneal injection of cyclophosphamide (Cy) for 14 days. Electroacupuncture (EA) has been elicited to effectively improve ovarian function in POI. Here, mRNA sequencing (mRNA-seq) analysis found that PTK2B expression in ovarian tissues was upregulated by Cy treatment but downregulated by EA. To investigate PTK2B's role, primary rat ovarian granulosa cells (GCs) were co-treated with Cy (250 μM) and a PTK2B inhibitor PF-431396 (10 μM) for 48 h. PF-431396 inhibited Cy-induced inflammatory response and apoptosis in GCs. Further, PTK2B binds to AKT1 in GCs. PF-431396 facilitated AKT1 phosphorylation, and the inhibitory effects of PF-431396 on GC inflammatory response and apoptosis were reversed by an AKT1 inhibitor LY294002. In vivo, rats were given PF-431396 (10 mg/kg/d) by gavage for 7 days following Cy induction for 14 days. Treatment with PF-431396 increased ovarian weight, serum E2, and AMH levels, while decreased FSH and LH levels. Additionally, it could improve Cy-induced ovarian tissue injury, inhibit inflammation and apoptosis, and elevate p-AKT1 level in ovarian tissues. Together, our results unveil that PF-431396, a PTK2B inhibitor, ameliorates ovarian dysfunction in POI through promoting AKT1 phosphorylation, suggesting that PTK2B may be a therapeutic target for POI.
Collapse
Affiliation(s)
- Yang Wang
- Center of Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.
| | - Zhimin Chen
- Department of Obstetrics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Fang You
- Department of Gynecology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, PR China
| | - Jing Sun
- Center of Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Hongyi Yang
- Center of Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| |
Collapse
|
2
|
Spicer LJ, Maylem ERS, Schütz LF. Granulosa cell function in domestic animals: A review on the in vitro effects of FSH, insulin and insulin-like growth factor 1. Domest Anim Endocrinol 2025; 91:106919. [PMID: 39879874 DOI: 10.1016/j.domaniend.2025.106919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/09/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025]
Abstract
Ovarian granulosa cells produce a variety of biologically active compounds in addition to steroid hormones that include numerous families of growth factors, cytokines and adipokines. Many of these function as endocrine, paracrine and autocrine hormones to regulate ovarian activity. The goal of this review is to provide an update on the evidence in domestic animals on how FSH, insulin and IGF1 regulate the function of granulosa cells with a focus on ovarian steroidogenesis and cell proliferation with comparisons across six domestic animals: pigs, cattle, horses, water buffalo, goats and sheep. In most species, FSH was not a mitogenic stimulus to granulosa cells whereas insulin and IGF1 were stimulatory to cell proliferation in the species it was evaluated. FSH, insulin and IGF1 were all stimulatory to granulosa cell steroidogenesis in the species it was studied. More research is needed to evaluate the role of insulin in the regulation of cell proliferation and steroidogenesis in water buffalo and goats. The role of IGF1 in regulating granulosa cell function in horses also needs further study. Most granulosa-cell secreted factors have direct effects (either positive or negative) on FSH-, insulin- and IGF1-induced steroid production in ovarian cells, but how they all work together to create a cumulative effect to regulate fertility will require further research.
Collapse
Affiliation(s)
- Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078 USA.
| | - Excel Rio S Maylem
- Philippine Carabao Center, National Headquarters and Gene Pool, Science City of Munoz, Nueva Ecija, Philippines
| | - Luis Fernando Schütz
- Department of Agriculture, Veterinary & Rangeland Sciences, University of Nevada, Reno, NV, 89557 USA
| |
Collapse
|
3
|
Yuan J, Li Z, Yu Y, Wang X, Zhao Y. Natural compounds in the management of polycystic ovary syndrome: a comprehensive review of hormonal regulation and therapeutic potential. Front Nutr 2025; 12:1520695. [PMID: 40008316 PMCID: PMC11850276 DOI: 10.3389/fnut.2025.1520695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is a multifaceted endocrine disorder characterized by irregularities in gonadotropin secretion, hyperandrogenism, chronic anovulation, and polycystic ovarian morphology. In addition, it is often associated with metabolic dysfunctions, most notably insulin resistance (IR). This disorder affects approximately 6-20% of individuals, primarily emerging during early adolescence, and considerably increases the risk of conditions such as impaired glucose tolerance, type 2 diabetes, endometrial cancer, cardiovascular diseases, dyslipidemia, and postpartum complications. To date, there is no standardized protocol for treating PCOS. Existing therapies primarily rely on personalized pharmacotherapy and lifestyle modifications. However, these treatments may often lead to adverse effects, and most medications prescribed for PCOS are used off-label and have not secured approval from the U.S. Food and Drug Administration specifically for this condition. Recently, natural compounds have garnered considerable attention due to their efficacy in hormone modulation and minimal toxicity. Substances such as myo-inositol, resveratrol, berberine, and quercetin have shown promise in mitigating PCOS symptoms. Their multi-target properties offer the potential to achieve outcomes unattainable by single-target pharmaceuticals, particularly in managing heterogeneous conditions. This review aims to comprehensively analyze in vivo and in vitro research alongside clinical interventions to evaluate the influence of natural compounds on the prevalence of PCOS and their therapeutic potential. These investigations lay the groundwork for developing innovative therapeutic strategies for PCOS.
Collapse
Affiliation(s)
- Jingyi Yuan
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhenmin Li
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yongjiang Yu
- Department of Endocrine and Metabolic Disease, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiuge Wang
- Department of Endocrine and Metabolic Disease, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yunyun Zhao
- Department of Endocrine and Metabolic Disease, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
4
|
Awwad J, Peramo B, Elgeyoushi B, Melado L, Salame A, Chawla M, Jibrel S, Detho S, Al Rumaih H, Tomsu M, Fahim K, Abd-ElGawad M, Fouad A, Humaidan P. FSH/LH co-stimulation in Advanced Maternal Age (AMA) and hypo-responder patients - Arabian gulf delphi consensus group. Front Endocrinol (Lausanne) 2024; 15:1506332. [PMID: 39726844 PMCID: PMC11669953 DOI: 10.3389/fendo.2024.1506332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/13/2024] [Indexed: 12/28/2024] Open
Abstract
Background In a global effort to assess expert perspectives on the use of recombinant gonadotropins, recombinant human luteinizing hormone (r-hLH) and recombinant human follicle-stimulating hormone (r-hFSH), a consensus meeting was held in Dubai. The key aim was to address three critical questions: What are the factors that influence follicle response to gonadotropins? Which categories of patients are most likely to benefit from LH supplementation? And what are the optimal management strategies for these patients? Methods A panel of thirty-six experts reviewed and refined the initial statements and references proposed by the Scientific Coordinator. Consensus was defined as agreement or disagreement by more than two-thirds (66%) of the panel members for each statement. Results Thirty-five statements were formulated, of which thirty-one reached consensus. For patients with Hypo-Response to Gonadotropin Stimulation (20 statements), all identified risk factors, including advanced age, high BMI, and chronic conditions, achieved unanimous agreement. Diagnostic approaches, such as the inclusion of POSEIDON criteria and hormone level monitoring, were endorsed by the majority, with over 90% agreement. Management strategies, particularly individualized stimulation protocols and optimized scheduling, garnered broad consensus, with only one statement falling short of the threshold. Additionally, in cases of severe FSH and LH deficiency, combining r-hFSH with r-hLH was found to improve pregnancy rates and cost efficiency compared to human menopausal gonadotropin (hMG). For patients with Advanced Maternal Age (AMA) (15 statements), there was strong agreement on the use of oral contraceptive pills and estrogen priming. Recommendations concerning antagonist protocols and dosing of r-hLH and r-hFSH also achieved high levels of consensus. Significant agreement supported r-hLH supplementation and a tailored approach to luteal phase support. However, there were mixed opinions on the route of progesterone administration, with some experts expressing neutral or disagreeing views. Despite these differences, unanimous consensus was reached on markers of treatment success, particularly live birth rates, pregnancy rates, and embryo development, underscoring the importance of these outcomes in evaluating treatment efficacy. Conclusion This consensus provides a practical clinical perspective to a wide range of global professionals on the strategies employed during key phases of Assisted Reproductive Technology (ART) treatment. To further improve outcomes, incorporating additional clinical insights on ART approaches, alongside existing guidelines and policies, may offer valuable guidance for optimizing patient care.
Collapse
Affiliation(s)
- Johnny Awwad
- Women’s Services and Reproductive Medicine and IVF Center, Sidra Medicine, Doha, Qatar
| | - Braulio Peramo
- Obstetrics, Gynecology, and Reproductive Medicine, Al Ain Fertility Center, Al Ain, United Arab Emirates
| | - Bohaira Elgeyoushi
- Obstetrics and Gynecology, Dr Sulaiman Al Habib Fertility Centre, Dubai, United Arab Emirates
| | - Laura Melado
- ART Fertility Clinics, Abu Dhabi, United Arab Emirates
| | | | - Monika Chawla
- Reproductive Medicine, Health Plus Fertility Center, Abu Dhabi, United Arab Emirates
| | - Salam Jibrel
- Salam IVF Center, Arabian Gulf University, Manama, Bahrain
| | - Sajida Detho
- Bournhall IVF Centre, Al Ain, United Arab Emirates
| | - Hazem Al Rumaih
- Obstetrics and Gynecology, New Jahra Hospital, Ministry of Health, Kuwait City, Kuwait
| | - Mustapha Tomsu
- Reproductive Medicine, Tomsu Fertility Clinic, Salmiya, Kuwait
| | - Khaled Fahim
- Medical department, Merck Serono Middle East FZ-LTD, Dubai, United Arab Emirates
| | | | - Alaa Fouad
- Medical department, Merck Serono Middle East FZ-LTD, Dubai, United Arab Emirates
| | - Peter Humaidan
- The Fertility Clinic, Skive Regional Hospital, Skive, Department of Clinical Medicine, Aarhus University, Skive, Denmark
| |
Collapse
|
5
|
Zhang Q, Zhang K, Gao Y, He S, Meng Y, Ming L, Yin T, Yang J, Wu S, Zhou Z, Li W, Li S. Effect of LH level on HCG trigger day on clinical outcomes in patients with diminished ovarian reserve undergoing GnRH-antagonist protocol. Reprod Biol Endocrinol 2024; 22:107. [PMID: 39175038 PMCID: PMC11340131 DOI: 10.1186/s12958-024-01280-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
RESEARCH QUESTION Does luteinizing hormone (LH) levels on human chorionic gonadotropin (HCG) trigger day (LHHCG) affect the clinical outcomes of patients with diminished ovarian reserve (DOR) undergoing gonadotropin-releasing hormone antagonist (GnRH-ant) protocol? METHODS Retrospective analysis fresh embryo transfer cycles of DOR patients who underwent GnRH-ant protocol from August 2019 to June 2023. The participants were divided into different groups according to LHHCG level and age. The clinical data and outcomes were compared between groups. RESULTS In patients with DOR, the HCG positive rate (59.3% versus 39.8%, P = 0.005), embryo implantation rate (34.5% versus 19.7%, P = 0.002), clinical pregnancy rate (49.2% versus 28.4%, P = 0.003), live birth rate (41.5% versus 22.7%, P = 0.005) in LHHCG < 2.58 IU/L group were significantly higher than LHHCG ≥ 2.58 IU/L group. There was no significant correlation between LHHCG level and clinical pregnancy in POSEIDON group 3. In POSEIDON group 4, the HCG positive rate (52.8% versus 27.0%, P = 0.015), embryo implantation rate (29.2% versus 13.3%, P = 0.023), clinical pregnancy rate (45.3% versus 18.9%, P = 0.010) in LHHCG < 3.14 IU/L group were significantly higher than LHHCG ≥ 3.14 IU/L group. Logistic regression analysis indicated that LHHCG level was an independent influencing factor for clinical pregnancy in POSEIDON group 4 patients (OR = 3.831, 95% CI: 1.379-10.643, P < 0.05). CONCLUSIONS LHHCG level is an independent factor affecting pregnancy outcome of fresh embryo transfer in DOR patients undergoing GnRH-ant protocol, especially for advanced-aged women. LHHCG had a high predictive value for POSEIDON group 4 patients, and LHHCG ≥ 3.14 IU/L predicts poor pregnancy outcomes.
Collapse
Affiliation(s)
- Qianjie Zhang
- Reproductive Medical Center, Hubei Clinical Research Center for Assisted Fertility and Embryo Development, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Kexin Zhang
- Reproductive Medical Center, Hubei Clinical Research Center for Assisted Fertility and Embryo Development, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu Gao
- Reproductive Medical Center, Hubei Clinical Research Center for Assisted Fertility and Embryo Development, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Shaojing He
- Reproductive Medical Center, Hubei Clinical Research Center for Assisted Fertility and Embryo Development, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yicen Meng
- Reproductive Medical Center, Hubei Clinical Research Center for Assisted Fertility and Embryo Development, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lei Ming
- Reproductive Medical Center, Hubei Clinical Research Center for Assisted Fertility and Embryo Development, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tailang Yin
- Reproductive Medical Center, Hubei Clinical Research Center for Assisted Fertility and Embryo Development, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jing Yang
- Reproductive Medical Center, Hubei Clinical Research Center for Assisted Fertility and Embryo Development, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Shuang Wu
- Hubei Provincial Hospital of Traditional Chinese Medicine Affiliated to Hubei University of Traditional Chinese Medicine, Wuhan, 430060, China
| | - Zhongming Zhou
- Hubei Provincial Hospital of Traditional Chinese Medicine Affiliated to Hubei University of Traditional Chinese Medicine, Wuhan, 430060, China
| | - Wei Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Saijiao Li
- Reproductive Medical Center, Hubei Clinical Research Center for Assisted Fertility and Embryo Development, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
6
|
Longobardi S, Klinger FG, Zheng W, Campitiello MR, D’Hooghe T, La Marca A. Gonadotropin Activity during Early Folliculogenesis and Implications for Polycystic Ovarian Syndrome and Premature Ovarian Insufficiency: A Narrative Review. Int J Mol Sci 2024; 25:7520. [PMID: 39062762 PMCID: PMC11277126 DOI: 10.3390/ijms25147520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Female fertility depends on the ovarian reserve of follicles, which is determined at birth. Primordial follicle development and oocyte maturation are regulated by multiple factors and pathways and classified into gonadotropin-independent and gonadotropin-dependent phases, according to the response to gonadotropins. Folliculogenesis has always been considered to be gonadotropin-dependent only from the antral stage, but evidence from the literature highlights the role of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) during early folliculogenesis with a potential role in the progression of the pool of primordial follicles. Hormonal and molecular pathway alterations during the very earliest stages of folliculogenesis may be the root cause of anovulation in polycystic ovary syndrome (PCOS) and in PCOS-like phenotypes related to antiepileptic treatment. Excessive induction of primordial follicle activation can also lead to premature ovarian insufficiency (POI), a condition characterized by menopause in women before 40 years of age. Future treatments aiming to suppress initial recruitment or prevent the growth of resting follicles could help in prolonging female fertility, especially in women with PCOS or POI. This review will briefly introduce the impact of gonadotropins on early folliculogenesis. We will discuss the influence of LH on ovarian reserve and its potential role in PCOS and POI infertility.
Collapse
Affiliation(s)
| | - Francesca Gioia Klinger
- Department of Histology and Embryology, University of Health Sciences, Saint Camillus International, Via di Sant’Alessandro 8, 00131 Rome, Italy
| | | | - Maria Rosaria Campitiello
- Department of Obstetrics and Gynecology and Physiopathology of Human Reproduction, ASL Salerno, 84124 Salerno, Italy
| | - Thomas D’Hooghe
- Merck KGaA, 64293 Darmstadt, Germany (T.D.)
- Department of Development and Regeneration, Biomedical Sciences Group, KU Leuven (University of Leuven), 3000 Leuven, Belgium
| | - Antonio La Marca
- Department of Maternal-Child and Adult Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
7
|
Zhu Q, Sun J, An C, Li X, Xu S, He Y, Zhang X, Liu L, Hu K, Liang M. Mechanism of LncRNA Gm2044 in germ cell development. Front Cell Dev Biol 2024; 12:1410914. [PMID: 39027044 PMCID: PMC11255455 DOI: 10.3389/fcell.2024.1410914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Germ cell development in mammals is a complex physiological process that involves the proliferation of primordial germ cells, meiosis, and the formation of male and female gametes. Long non-coding RNA (lncRNA) is a type of RNA with more than 200 nucleotides that does not code for proteins. A small number of lncRNAs have been shown to participate in spermatogenesis in the testes and in follicular development in the ovaries, but the role of the vast majority of lncRNAs and their molecular mechanisms still need further study. LncRNA Gm2044 was identified as a differentially expressed lncRNA in mouse spermatogenesis by microarray technology. In mouse testis, lncRNA Gm2044 can act as competing endogenous RNA to regulate SYCP1 expression in GC-2 cells derived from mouse spermatocyte cells, and it can also act as a host gene for miR-202 to regulate RBFOX2 protein expression. In female mouse ovaries, lncRNA Gm2044 regulates 17β-estradiol synthesis through the miRNA-138-5p-Nr5a1 pathway or by interacting with EEF2. In addition, studies suggest that lncRNA Gm2044 is also involved in the progression of reproductive system diseases such as male nonobstructive azoospermia. Here, we summarize the roles and molecular mechanisms of lncRNA Gm2044 in male and female gametogenesis and its potential role in some infertility disorders.
Collapse
Affiliation(s)
- Qinran Zhu
- School of Life Science, Bengbu Medical University, Bengbu, China
| | - Junpei Sun
- First Affiliated Hospital, Bengbu Medical University, Bengbu, China
| | - Chuangchuang An
- School of Life Science, Bengbu Medical University, Bengbu, China
| | - Xin Li
- School of Life Science, Bengbu Medical University, Bengbu, China
| | - Shumin Xu
- School of Life Science, Bengbu Medical University, Bengbu, China
| | - Yutong He
- School of Life Science, Bengbu Medical University, Bengbu, China
| | - Xinyi Zhang
- School of Life Science, Bengbu Medical University, Bengbu, China
| | - Lei Liu
- First Affiliated Hospital, Bengbu Medical University, Bengbu, China
| | - Ke Hu
- School of Life Science, Bengbu Medical University, Bengbu, China
| | - Meng Liang
- School of Life Science, Bengbu Medical University, Bengbu, China
| |
Collapse
|
8
|
Yue S, Chen J, Duan C, Li X, Yang R, Chen M, Li Y, Song Z, Zhang Y, Liu Y. The Effect of Prolactin on Gene Expression and the Secretion of Reproductive Hormones in Ewes during the Estrus Cycle. Animals (Basel) 2024; 14:1873. [PMID: 38997985 PMCID: PMC11240556 DOI: 10.3390/ani14131873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/19/2024] [Accepted: 06/23/2024] [Indexed: 07/14/2024] Open
Abstract
Prolactin (PRL) plays an important role in animal follicle development and ovulation. However, its regulatory effects on the different stages of the estrus cycle in ewes are unclear. In this study, bromocriptine (BCR, PRL inhibitor) was used to study the effect of PRL on the secretion of reproductive hormones and gene expressions in order to explore its regulatory effects on the sexual cycle of ewes. Eighty healthy ewes with the same parity and similar weights were randomly assigned to the control group (C, n = 40) and the treatment group (T, n = 40, fed bromocriptine). After estrus synchronization, thirty-one ewes with overt signs of estrus were selected from each group. Six blood samples were randomly obtained by jugular venipuncture to measure the concentration of PRL, estrogen (E2), progesterone (P4), luteinizing hormone (LH), follicle-stimulating hormone (FSH), and gonadotropin-releasing hormone (GnRH) in the proestrus, estrus, metestrus, and diestrus. At the same time, we collected the ovaries of the six ewes in vivo after anesthesia in order to detect follicle and corpus luteum (CL) counts and measure the expression of hormone-receptor and apoptosis-related genes. The results show that PRL inhibition had no significant effects on the length of the estrus cycle (p > 0.05). In proestrus, the number of large and small follicles, the levels of E2, FSH, and GnRH, and the expressions of ER, FSHR, and the apoptotic gene Caspase-3 were increased (p < 0.05); and the number of middle follicles and the expression of anti-apoptotic gene Bcl-2 were decreased (p < 0.05) in the T group. In estrus, the number of large follicles, the levels of E2 and GnRH, and the expressions of the StAR, CYP19A1, and Bcl-2 genes were increased (p < 0.05), and the number of middle follicles was decreased (p < 0.05) in the T group. In metestrus, the number of small follicles and the expression of LHR (p < 0.05) and the pro-apoptotic gene Bax were increased (p < 0.05); the number of middle follicles was decreased (p < 0.05) in the T group. In diestrus, the number of large follicles, middle follicles, and CL, the level of P4, and the expressions of PR, 3β-HSD, StAR, Caspase-3, and Bax were increased (p < 0.05); the number of small follicles and the expression of Bcl-2 were decreased (p < 0.05) in the T group. In summary, PRL inhibition can affect the secretion of reproductive hormones, the follicle count, and the gene expression during the estrus cycle. These results provide a basis for understanding the mechanisms underlying the regulation of the ewe estrus cycle by PRL.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yingjie Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (S.Y.); (J.C.); (C.D.); (X.L.); (R.Y.); (M.C.); (Y.L.); (Z.S.)
| | - Yueqin Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (S.Y.); (J.C.); (C.D.); (X.L.); (R.Y.); (M.C.); (Y.L.); (Z.S.)
| |
Collapse
|
9
|
Zhao Y, Lan Y, Liu L, Hao J, Wang H, Ji L. Efficacy of acupuncture in animal models of various ovarian dysfunctions: a systematic review and meta-analysis. Front Med (Lausanne) 2024; 11:1348884. [PMID: 38966526 PMCID: PMC11222413 DOI: 10.3389/fmed.2024.1348884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
Objective This study aims to assess the comprehensive and integrated modulatory effects of acupuncture and electroacupuncture on various ovarian dysfunctions. Methods We systematically searched for articles on animal experiments related to polycystic ovary syndrome (PCOS), premature ovarian failure (POF), premature ovarian insufficiency (POI), and perimenopausal syndrome (PMS) across multiple databases, including PubMed, Web of Science, Cochrane Library, Embase, and four Chinese language databases. The search covered the period from inception to November 2023. We conducted a comparative analysis between the acupuncture group and the model group (untreated) based on eligible literature. Our primary outcomes encompassed serum sex hormones (Luteinizing hormone, Follicle-stimulating hormone, Testosterone, Estradiol, Progesterone, and Anti-Müllerian hormone) and ovarian weight. Dichotomous data were synthesized to establish the relative risk (RR) of notable post-treatment improvement, while continuous data were pooled to determine the standardized mean difference (SMD) in post-treatment scores between the groups. Statistical analyses, including sensitivity analysis, Egger's test, and the trim-and-fill method, were executed using Stata 15.0 software. Results The meta-analysis encompassed 29 articles involving a total of 623 rats. In comparison to rat models of PCOS, the experimental group exhibited a reduction in serum levels of LH, T and LH/FSH ratio. However, no statistically significant differences were observed in AMH, FSH, E2 levels, and ovarian weight between the two groups. In the ovarian hypoplasia model rats, both acupuncture and electroacupuncture interventions were associated with an increase in E2 levels. However, the levels of LH and FSH did not exhibit a significant difference between the two groups. Conclusions Acupuncture or electroacupuncture facilitates the restoration of ovarian function primarily through the modulation of serum sex hormones, exerting regulatory effects across various types of ovarian dysfunction disorders. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022316279.
Collapse
Affiliation(s)
- Yuemeng Zhao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Ying Lan
- Prevention and Treatment Center Department, Chengdu University of Traditional Chinese Medicine Affiliated Hospital, Chengdu, Sichuan Province, China
| | - Liying Liu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Jianheng Hao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Haijun Wang
- Acupuncture and Tuina School, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Laixi Ji
- Acupuncture and Tuina School, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi Province, China
| |
Collapse
|
10
|
Liang Y, Hou X, Chen H, Yang R, Wang R, Mao R, Zhao J, Chen H, Cheng J. Assisted Reproductive Technology Outcomes in Women with Normal Ovarian Response Receiving Recombinant Luteinizing Hormone/Human Menopausal Gonadotropin: An Observational Study. Int J Womens Health 2024; 16:1103-1111. [PMID: 38895039 PMCID: PMC11185249 DOI: 10.2147/ijwh.s454410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Objective Additive human menopausal gonadotropin (HMG)/recombinant luteinizing hormone (r-LH) to follicle-stimulating hormone (FSH) can improve pregnancy outcomes in patients with poor ovarian response during assisted reproductive procedures. However, their effects on patients with normal ovarian response during such procedures are unclear, which formed the aim of this study. Methods This retrospective study enrolled 456 infertile women who underwent in vitro fertilization or intracytoplasmic sperm injection treatment. Group 1 received FSH; Group 2 received FSH+HMG/r-LH; Group 3 received FSH+HMG+r-LH. Results The age and Body Mass Index were significantly greater in Group III. The endometrial thickness was greater in Groups II and III, suggesting better endometrial receptivity. Better pregnancy and birth outcomes were seen in Group 3. In sub-cohorts of women older than 32 years old or with overweight/obesity, pregnancy and birth outcomes were also much better in Group 3, albeit without statistical significance. Conclusion The addition of both HMG and r-LH to FSH may improve the chance of infertile women with normal ovarian responses to have more success in having live birth babies, specifically in those over 32 years of age or with overweight/obese patients who typically face challenges in conceiving and sustaining a pregnancy.
Collapse
Affiliation(s)
- Yingxiu Liang
- Reproductive Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325088, People’s Republic of China
| | - Xiaohong Hou
- Reproductive Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325088, People’s Republic of China
| | - Haoying Chen
- Reproductive Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325088, People’s Republic of China
| | - Ruqing Yang
- Reproductive Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325088, People’s Republic of China
| | - Ruina Wang
- Reproductive Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325088, People’s Republic of China
| | - Ruotong Mao
- Reproductive Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325088, People’s Republic of China
| | - Junzhao Zhao
- Reproductive Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325088, People’s Republic of China
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Jing Cheng
- Reproductive Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325088, People’s Republic of China
| |
Collapse
|
11
|
Zhao T, He M, Zhu Z, Zhang T, Zheng W, Qin S, Gao M, Wang W, Chen Z, Han J, Liu L, Zhou B, Wang H, Zhang H, Xia G, Wang J, Wang F, Wang C. P62 promotes FSH-induced antral follicle formation by directing degradation of ubiquitinated WT1. Cell Mol Life Sci 2024; 81:221. [PMID: 38763964 PMCID: PMC11102895 DOI: 10.1007/s00018-024-05251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
In females, the pathophysiological mechanism of poor ovarian response (POR) is not fully understood. Considering the expression level of p62 was significantly reduced in the granulosa cells (GCs) of POR patients, this study focused on identifying the role of the selective autophagy receptor p62 in conducting the effect of follicle-stimulating hormone (FSH) on antral follicles (AFs) formation in female mice. The results showed that p62 in GCs was FSH responsive and that its level increased to a peak and then decreased time-dependently either in ovaries or in GCs after gonadotropin induction in vivo. GC-specific deletion of p62 resulted in subfertility, a significantly reduced number of AFs and irregular estrous cycles, which were same as pathophysiological symptom of POR. By conducting mass spectrum analysis, we found the ubiquitination of proteins was decreased, and autophagic flux was blocked in GCs. Specifically, the level of nonubiquitinated Wilms tumor 1 homolog (WT1), a transcription factor and negative controller of GC differentiation, increased steadily. Co-IP results showed that p62 deletion increased the level of ubiquitin-specific peptidase 5 (USP5), which blocked the ubiquitination of WT1. Furthermore, a joint analysis of RNA-seq and the spatial transcriptome sequencing data showed the expression of steroid metabolic genes and FSH receptors pivotal for GCs differentiation decreased unanimously. Accordingly, the accumulation of WT1 in GCs deficient of p62 decreased steroid hormone levels and reduced FSH responsiveness, while the availability of p62 in GCs simultaneously ensured the degradation of WT1 through the ubiquitin‒proteasome system and autophagolysosomal system. Therefore, p62 in GCs participates in GC differentiation and AF formation in FSH induction by dynamically controlling the degradation of WT1. The findings of the study contributes to further study the pathology of POR.
Collapse
Affiliation(s)
- Ting Zhao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Meina He
- College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China
| | - Zijian Zhu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Tuo Zhang
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China
| | - Wenying Zheng
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shaogang Qin
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Meng Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenji Wang
- School of Life Science, Taizhou University, Taizhou, 318000, China
| | - Ziqi Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jun Han
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Longping Liu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bo Zhou
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, Fujian Province, 361005, China
| | - Hua Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Guoliang Xia
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fengchao Wang
- Transgenic Animal Center, National Institute of Biological Sciences, Beijing, 102206, China
| | - Chao Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
- China Agricultural University, No.2 Yuan Ming Yuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
12
|
Sirotkin AV, Fabová Z, Loncová B, Bauerová M, Halim Harrath A. The adipokines progranulin and omentin - novel regulators of basic ovarian cell functions. Reprod Biol Endocrinol 2024; 22:38. [PMID: 38575956 PMCID: PMC10993585 DOI: 10.1186/s12958-024-01215-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024] Open
Abstract
The present study aimed to examine the effects of progranulin and omentin on basic ovarian cell functions. For this purpose, we investigated the effects of the addition of progranulin and omentin (0, 0.1, 1, or 10 ng/ml) on the viability, proliferation, apoptosis and steroidogenesis of cultured rabbit ovarian granulosa cells. To determine the importance of the interrelationships between granulosa cells and theca cells, we compared the influence of progranulin and omentin on progesterone and estradiol release in cultured granulosa cells and ovarian fragments containing both granulosa cells and theca cells. Cell viability, proliferation, cytoplasmic apoptosis and release of progesterone and estradiol were measured by Cell Counting Kit-8 (CCK-8), BrdU incorporation, cell death detection, and ELISA. Both progranulin and omentin increased granulosa cell viability and proliferation and decreased apoptosis. Progranulin increased progesterone release by granulosa cells but reduced progesterone output by ovarian fragments. Progranulin decreased estradiol release by granulosa cells but increased it in ovarian fragments. Omentin reduced progesterone release in both models. Omentin reduced estradiol release by granulosa cells but promoted this release in ovarian fragments. The present observations are the first to demonstrate that progranulin and omentin can be direct regulators of basic ovarian cell functions. Furthermore, the differences in the effects of these adipokines on steroidogenesis via granulosa and ovarian fragments indicate that these peptides could target both granulosa and theca cells.
Collapse
Affiliation(s)
- Alexander V Sirotkin
- Faculty of Natural Sciences, Constantine the Philosopher University, Tr. A. Hlinku 1, Nitra, 949 74, Slovakia.
| | - Zuzana Fabová
- Faculty of Natural Sciences, Constantine the Philosopher University, Tr. A. Hlinku 1, Nitra, 949 74, Slovakia
| | - Barbora Loncová
- Faculty of Natural Sciences, Constantine the Philosopher University, Tr. A. Hlinku 1, Nitra, 949 74, Slovakia
| | - Maria Bauerová
- Faculty of Natural Sciences, Constantine the Philosopher University, Tr. A. Hlinku 1, Nitra, 949 74, Slovakia
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Jin Y, Di-si D, Ke-ming W. XinJiaCongRongTuSiZiWan protects triptolide-induced rats from oxidative stress injury via mitophagy mediated PINK1/Parkin signaling pathway. Acta Cir Bras 2024; 39:e391424. [PMID: 38511762 PMCID: PMC10953615 DOI: 10.1590/acb391424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/15/2023] [Indexed: 03/22/2024] Open
Abstract
PURPOSE XinJiaCongRongTuSiZiWan (XJCRTSZW) is a traditional Chinese medicine compound for invigorating the kidney, nourishing blood, and promoting blood circulation. This study aimed to explore the effect of XJCRTSZW on triptolide (TP)-induced oxidative stress injury. METHODS Adult female Sprague-Dawley rats and human ovarian granulosa cell lines were treated with TP and XJCRTSZW. Hematoxylin and eosin staining, enzyme-linked immunosorbent assay, flow cytometry, CCK-8, JC-1 staining, transmission electron microscopy, reverse transcription-quantitative polymerase chain reaction, and Western blotting were performed in this study. RESULTS XJCRTSZW treatment observably ameliorated the TP-induced pathological symptoms. Furthermore, XJCRTSZW treatment observably enhanced the TP-induced reduction of estradiol, anti-Mullerian hormone, progesterone, superoxide dismutase, ATP content, mitochondrial membrane potential, p62, and Hsp60 mRNA, and protein levels in vivo and in vitro (p < 0.05). However, TP-induced elevation of follicle stimulating hormone and luteinizing hormone concentrations, malondialdehyde levels, reactive oxygen species levels, apoptosis rate, mitophagy, and the mRNA and protein expressions of LC3-II/LC3-I, PTEN-induced kinase 1 (PINK1), and Parkin were decreased (p < 0.05). In addition, XJCRTSZW treatment markedly increased cell viability in vitro (p < 0.05). CONCLUSIONS XJCRTSZW protects TP-induced rats from oxidative stress injury via the mitophagy-mediated PINK1/Parkin pathway.
Collapse
Affiliation(s)
- Yan Jin
- Shaanxi University of Chinese Medicine – Xianyang, China
- Shaanxi Key Laboratory of Chinese Medicine – Research on Physical Constitution and Diseases – Xianyang, China
| | - Deng Di-si
- Hospital of Chengdu University of Traditional Chinese Medicine – Department of Gynecology – Chengdu, China
| | - Wu Ke-ming
- Hospital of Chengdu University of Traditional Chinese Medicine – Department of Gynecology – Chengdu, China
| |
Collapse
|
14
|
Yang B, An Y, Yang Y, Zhao Y, Yu K, Weng Y, Du C, Li H, Yu B. The ERβ-cAMP signaling pathway regulates estradiol-induced ovine oocyte meiotic arrest. Theriogenology 2024; 214:81-88. [PMID: 37862941 DOI: 10.1016/j.theriogenology.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023]
Abstract
Although 17β-estradiol (E2) and its receptors (ERs) are reported to play important roles in regulating oocyte maturation, the specific mechanism remains unclear. First, we performed immunohistochemistry analyses to determine the expression of the ERα and ERβ proteins in ovine ovarian tissue. Second, E2 (0.5 ng/mL and 1 μg/mL) were added to pre-IVM medium for 0 h, 1 h and 2 h. The effects of E2 (0.5 ng/mL and 1 μg/mL) on cyclic adenosine monophosphate (cAMP) level in cumulus-oocyte complexes (COCs) and on oocyte meiotic progression were evaluated by ELISA and DAPI staining respectively. Third, the effects of E2 on the gene and protein expression of ERα and ERβ in COCs were investigated by Western blotting and real-time PCR. Afterward, ERβ and cAMP regulators were added to the 2-h pretreatment medium with or without E2 (0.5 ng/mL) to explore the possible interactions among E2, cAMP and ERβ. The results showed that both ERα and ERβ proteins were expressed in ovine cumulus layers and oocytes. E2 significantly increased intra-COC cAMP levels, maintained oocyte meiotic arrest, and promoted ERβ transcript and protein expression. E2 treatment increased the cAMP concentration, which was enhanced by ERβ agonist treatment and remarkably attenuated by ERβ inhibitor treatment. Forskolin plus IBMX treatment increased ERβ protein expression in COCs (P < 0.05), and this was attenuated by Rp-cAMP treatment. In conclusion, E2 (0.5 ng/mL) increased intra-COC cAMP levels by promoting ERβ expression, thereby maintaining oocyte meiotic arrest. cAMP in COCs has a positive feedback effect on ERβ expression, which provides a novel explanation for the positive role of E2 in regulating ovine follicle development and oocyte maturation.
Collapse
Affiliation(s)
- Bingxue Yang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, PR China; Key Laboratory of Animal Embryo and Development Engineering of Autonomous Region Universities, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Yang An
- Inner Mongolia People's Hospital, Hohhot, 010020, PR China
| | - Yanyan Yang
- Institute of Animal Husbandry, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, PR China
| | - Yufen Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, PR China; Key Laboratory of Animal Embryo and Development Engineering of Autonomous Region Universities, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Kai Yu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, PR China; Key Laboratory of Animal Embryo and Development Engineering of Autonomous Region Universities, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Yu Weng
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, PR China; Key Laboratory of Animal Embryo and Development Engineering of Autonomous Region Universities, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Chenguang Du
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, PR China; Key Laboratory of Animal Embryo and Development Engineering of Autonomous Region Universities, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Haijun Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, PR China; Key Laboratory of Animal Embryo and Development Engineering of Autonomous Region Universities, Inner Mongolia Agricultural University, Hohhot, 010018, PR China.
| | - Boyang Yu
- Basic Medical College, Inner Mongolia Medical University, Hohhot, 010110, PR China.
| |
Collapse
|
15
|
Wu Q, Chen M, Li Y, Zhao X, Fan C, Dai Y. Paeoniflorin Alleviates Cisplatin-Induced Diminished Ovarian Reserve by Restoring the Function of Ovarian Granulosa Cells via Activating FSHR/cAMP/PKA/CREB Signaling Pathway. Molecules 2023; 28:8123. [PMID: 38138611 PMCID: PMC10745843 DOI: 10.3390/molecules28248123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Paeoniflorin (PAE) is the main active compound of Radix Paeoniae Rubra (a valuable traditional Chinese medicine and a dietary supplement) and exerts beneficial effects on female reproductive function. However, the actions of PAE on diminished ovarian reserve (DOR, a very common ovarian function disorder) are still unclear. Herein, our study investigated the effect and potential mechanism of PAE on DOR by using cisplatin-induced DOR mice and functional impairment of estradiol (E2) synthesis of ovarian granulosa-like KGN cells. Our data show that PAE improved the estrous cycle, ovarian index, and serum hormones levels, including E2, and the number of antral follicles and corpora lutea in DOR mice. Further mechanism results reveal that PAE promoted aromatase expression (the key rate-limiting enzyme for E2 synthesis) and upregulated the FSHR/cAMP/PKA/CREB signaling pathway in the ovaries. Subsequently, PAE improved the levels of E2 and aromatase and activated the FSHR/cAMP/PKA/CREB signaling pathway in KGN cells, while these improving actions were inhibited by the siRNA-FSHR and FSHR antagonist treatments. In sum, PAE restored the function of E2 synthesis in ovarian granulosa cells to improve DOR by activating the FSHR/cAMP/PKA/CREB signaling pathway, which exhibited a new clue for the development of effective therapeutic agents for the treatment of DOR.
Collapse
Affiliation(s)
- Qingchang Wu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China; (Q.W.); (M.C.); (Y.L.)
| | - Miao Chen
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China; (Q.W.); (M.C.); (Y.L.)
| | - Yao Li
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China; (Q.W.); (M.C.); (Y.L.)
| | - Xiangyun Zhao
- College of Medicine, Henan Engineering Research Center of Funiu Mountain’s Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan 467000, China;
| | - Cailian Fan
- College of Medicine, Henan Engineering Research Center of Funiu Mountain’s Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan 467000, China;
| | - Yi Dai
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China; (Q.W.); (M.C.); (Y.L.)
| |
Collapse
|
16
|
Derkach KV, Lebedev IA, Morina IY, Bakhtyukov AA, Pechalnova AS, Sorokoumov VN, Kuznetsova VS, Romanova IV, Shpakov AO. Comparison of Steroidogenic and Ovulation-Inducing Effects of Orthosteric and Allosteric Agonists of Luteinizing Hormone/Chorionic Gonadotropin Receptor in Immature Female Rats. Int J Mol Sci 2023; 24:16618. [PMID: 38068943 PMCID: PMC10706028 DOI: 10.3390/ijms242316618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
Gonadotropins, including human chorionic gonadotropin (hCG), are used to induce ovulation, but they have a number of side effects, including ovarian hyperstimulation syndrome (OHSS). A possible alternative is allosteric luteinizing hormone (LH)/hCG receptor agonists, including the compound TP4/2 we developed, which remains active when administered orally. The aim was to study the effectiveness of TP4/2 (orally, 40 mg/kg) as an ovulation inducer in FSH-stimulated immature female rats, compared with hCG (s.c., 15 IU/rat). TP4/2 stimulated progesterone production and corpus luteum formation; time-dependently increased the ovarian expression of steroidogenic genes (Star, Cyp11a1, Cyp17a1) and genes involved in ovulation regulation (Adamts-1, Cox-2, Egr-1, Mt-1); and increased the content of metalloproteinase ADAMTS-1 in the ovaries. These effects were similar to those of hCG, although in some cases they were less pronounced. TP4/2, in contrast to hCG, maintained normal LH levels and increased the ovarian expression of the LH/hCG receptor gene, indicating preservation of ovarian sensitivity to LH, and did not cause a sustained increase in expression of vascular endothelial growth factor-A involved in OHSS. Thus, TP4/2 is an effective ovulation inducer that, unlike hCG, has a lower risk of OHSS and ovarian LH resistance due to its moderate stimulating effect on steroidogenesis.
Collapse
Affiliation(s)
- Kira V. Derkach
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia; (K.V.D.); (I.A.L.); (A.A.B.); (V.N.S.); (V.S.K.); (I.V.R.)
| | - Ivan A. Lebedev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia; (K.V.D.); (I.A.L.); (A.A.B.); (V.N.S.); (V.S.K.); (I.V.R.)
| | - Irina Yu. Morina
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia; (K.V.D.); (I.A.L.); (A.A.B.); (V.N.S.); (V.S.K.); (I.V.R.)
| | - Andrey A. Bakhtyukov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia; (K.V.D.); (I.A.L.); (A.A.B.); (V.N.S.); (V.S.K.); (I.V.R.)
| | - Alena S. Pechalnova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia; (K.V.D.); (I.A.L.); (A.A.B.); (V.N.S.); (V.S.K.); (I.V.R.)
| | - Viktor N. Sorokoumov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia; (K.V.D.); (I.A.L.); (A.A.B.); (V.N.S.); (V.S.K.); (I.V.R.)
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Veronica S. Kuznetsova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia; (K.V.D.); (I.A.L.); (A.A.B.); (V.N.S.); (V.S.K.); (I.V.R.)
| | - Irina V. Romanova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia; (K.V.D.); (I.A.L.); (A.A.B.); (V.N.S.); (V.S.K.); (I.V.R.)
| | - Alexander O. Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia; (K.V.D.); (I.A.L.); (A.A.B.); (V.N.S.); (V.S.K.); (I.V.R.)
| |
Collapse
|
17
|
Zhu Q, Li Y, Ma J, Ma H, Liang X. Potential factors result in diminished ovarian reserve: a comprehensive review. J Ovarian Res 2023; 16:208. [PMID: 37880734 PMCID: PMC10598941 DOI: 10.1186/s13048-023-01296-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023] Open
Abstract
The ovarian reserve is defined as the quantity of oocytes stored in the ovary or the number of oocytes that can be recruited. Ovarian reserve can be affected by many factors, including hormones, metabolites, initial ovarian reserve, environmental problems, diseases, and medications, among others. With the trend of postponing of pregnancy in modern society, diminished ovarian reserve (DOR) has become one of the most common challenges in current clinical reproductive medicine. Attributed to its unclear mechanism and complex clinical features, it is difficult for physicians to administer targeted treatment. This review focuses on the factors associated with ovarian reserve and discusses the potential influences and pathogenic factors that may explain the possible mechanisms of DOR, which can be improved or built upon by subsequent researchers to verify, replicate, and establish further study findings, as well as for scientists to find new treatments.
Collapse
Affiliation(s)
- Qinying Zhu
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yi Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jianhong Ma
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Hao Ma
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, Key Laboratory for Gynecologic Oncology Gansu Province, The First Hospital of Lanzhou University, No.1, Donggangxi Rd, Chengguan District, 730000, Lanzhou, China.
| |
Collapse
|
18
|
Telfer EE, Grosbois J, Odey YL, Rosario R, Anderson RA. Making a good egg: human oocyte health, aging, and in vitro development. Physiol Rev 2023; 103:2623-2677. [PMID: 37171807 PMCID: PMC10625843 DOI: 10.1152/physrev.00032.2022] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023] Open
Abstract
Mammalian eggs (oocytes) are formed during fetal life and establish associations with somatic cells to form primordial follicles that create a store of germ cells (the primordial pool). The size of this pool is influenced by key events during the formation of germ cells and by factors that influence the subsequent activation of follicle growth. These regulatory pathways must ensure that the reserve of oocytes within primordial follicles in humans lasts for up to 50 years, yet only approximately 0.1% will ever be ovulated with the rest undergoing degeneration. This review outlines the mechanisms and regulatory pathways that govern the processes of oocyte and follicle formation and later growth, within the ovarian stroma, through to ovulation with particular reference to human oocytes/follicles. In addition, the effects of aging on female reproductive capacity through changes in oocyte number and quality are emphasized, with both the cellular mechanisms and clinical implications discussed. Finally, the details of current developments in culture systems that support all stages of follicle growth to generate mature oocytes in vitro and emerging prospects for making new oocytes from stem cells are outlined.
Collapse
Affiliation(s)
- Evelyn E Telfer
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Johanne Grosbois
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Yvonne L Odey
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Roseanne Rosario
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
19
|
Zhai Y, Zhang X, Zhao C, Geng R, Wu K, Yuan M, Ai N, Ge W. Rescue of bmp15 deficiency in zebrafish by mutation of inha reveals mechanisms of BMP15 regulation of folliculogenesis. PLoS Genet 2023; 19:e1010954. [PMID: 37713421 PMCID: PMC10529593 DOI: 10.1371/journal.pgen.1010954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/27/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023] Open
Abstract
As an oocyte-specific growth factor, bone morphogenetic protein 15 (BMP15) plays a critical role in controlling folliculogenesis. However, the mechanism of BMP15 action remains elusive. Using zebrafish as the model, we created a bmp15 mutant using CRISPR/Cas9 and demonstrated that bmp15 deficiency caused a significant delay in follicle activation and puberty onset followed by a complete arrest of follicle development at previtellogenic (PV) stage without yolk accumulation. The mutant females eventually underwent female-to-male sex reversal to become functional males, which was accompanied by a series of changes in secondary sexual characteristics. Interestingly, the blockade of folliculogenesis and sex reversal in bmp15 mutant could be partially rescued by the loss of inhibin (inha-/-). The follicles of double mutant (bmp15-/-;inha-/-) could progress to mid-vitellogenic (MV) stage with yolk accumulation and the fish maintained their femaleness without sex reversal. Transcriptome analysis revealed up-regulation of pathways related to TGF-β signaling and endocytosis in the double mutant follicles. Interestingly, the expression of inhibin/activin βAa subunit (inhbaa) increased significantly in the double mutant ovary. Further knockout of inhbaa in the triple mutant (bmp15-/-;inha-/-;inhbaa-/-) resulted in the loss of yolk granules again. The serum levels of estradiol (E2) and vitellogenin (Vtg) both decreased significantly in bmp15 single mutant females (bmp15-/-), returned to normal in the double mutant (bmp15-/-;inha-/-), but reduced again significantly in the triple mutant (bmp15-/-;inha-/-;inhbaa-/-). E2 treatment could rescue the arrested follicles in bmp15-/-, and fadrozole (a nonsteroidal aromatase inhibitor) treatment blocked yolk accumulation in bmp15-/-;inha-/- fish. The loss of inhbaa also caused a reduction of Vtg receptor-like molecules (e.g., lrp1ab and lrp2a). In summary, the present study provided comprehensive genetic evidence that Bmp15 acts together with the activin-inhibin system in the follicle to control E2 production from the follicle, Vtg biosynthesis in the liver and its uptake by the developing oocytes.
Collapse
Affiliation(s)
- Yue Zhai
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Xin Zhang
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Cheng Zhao
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Ruijing Geng
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Kun Wu
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Mingzhe Yuan
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Nana Ai
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| |
Collapse
|
20
|
Shao Y, Li X, Du S, Sun X, Wang Y, Zhao D, Wang Z. Effect of Dietary Supplemental Zinc on Laying Performance, Egg Quality, and Plasma Hormone Levels of Breeding Pigeons. Biol Trace Elem Res 2023; 201:2991-2999. [PMID: 36104538 DOI: 10.1007/s12011-022-03402-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022]
Abstract
This study aimed to evaluate the dietary zinc requirement of parental pigeons for better laying and reproductive performance, egg quality, sex hormones, and mineral content in eggs. A total of 160 pairs of healthy American Silver King pigeons were randomly assigned to five treatments of eight replicate cages each with four pairs of birds per cage, and fed a basal diet without zinc supplementation or the basal diet supplemented with 30, 60, 90, and 120 mg of zinc/kg (ZnSO4·7H2O). The experiment lasted for 45 days, including two laying cycles. Results indicated the egg production rate (P = 0.081), egg shape index (P = 0.038), egg eggshell percentage (P = 0.070), and zinc and calcium contents (P < 0.01) tended to be affected or significantly affected by zinc addition. They increased quadratically with dietary zinc levels (P < 0.05). Besides, shell thickness (P = 0.069), plasma testosterone (P = 0.008), LH, and carbonic anhydrase contents (P < 0.05) tended to be affected or significantly affected by zinc addition. They increased linearly as dietary zinc level increased (P < 0.05). Compared with the control, 60 mg/kg zinc addition increased egg production rate, egg shape index, zinc and calcium contents in eggshell, and plasma testosterone concentration in pigeons (P < 0.05), and tended to increase the eggshell percentage (P = 0.07). Besides, supplemental 120 mg/kg zinc had higher shell thickness and LH content than control (P < 0.05), but had no difference with 60 mg/kg zinc addition. In conclusion, the supplementation of zinc at the level of 60 mg/kg to basal diet improved laying performance by increasing eggshell quality and sex hormone levels of breeding pigeons.
Collapse
Affiliation(s)
- Yuxin Shao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xing Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Shaohua Du
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xiaoshan Sun
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yangyang Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Dongdong Zhao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Zheng Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
21
|
Han X, Pan Y, Fan J, Wang M, Wang L, Wang J, Afedo SY, Zhao L, Wang Y, Zhao T, Zhang T, Zhang R, Cui Y, Yu S. LncRNA MEG3 regulates ASK1/JNK axis-mediated apoptosis and autophagy via sponging miR-23a in granulosa cells of yak tertiary follicles. Cell Signal 2023; 107:110680. [PMID: 37086956 DOI: 10.1016/j.cellsig.2023.110680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 04/24/2023]
Abstract
Apoptosis and autophagy in granulosa cells (GCs) are highly related to follicular development and atresia. It has also been reported that they are related to LncRNA MEG3, miR-23a and apoptosis signal-regulating kinase 1 (ASK-1). However, their relationship to follicular development and the extent to which follicle stimulating hormone (FSH) or luteinizing hormone (LH) can regulate this process remain unknown. Here, we found that ASK1 and JNK were expressed in the GCs of gonadotropin-dependent follicles, and those levels were significantly higher (p < 0.05) in yak Tertiary follicles compared to that of Secondary follicles and Graafian follicles. Then, the effect of LncRNA MEG3 / miR-23a on apoptosis and autophagy via ASK1/JNK (c-Jun N-terminal kinase) in yak GCs was studied. Overexpressing LncRNA MEG3 reduced miR-23a levels and p-967 protein expression, but enhanced ASK1 and JNK mRNA levels as well as t-ASK1, p-845, t-JNK, and p-JNK proteins levels. And Up-regulation of LncRNA MEG3 promoted apoptosis while attenuating autophagy. The targeting relationship between miR-23a and the binding sites of LncRNA MEG3 and ASK1 was also confirmed with the dual luciferase reporter assay. And, the relationship between LncRNA MEG3 and miR-23a was observed as a negative feedback regulation, and changes in LncRNA MEG3 and miR-23a levels can alter the expression of ASK1/JNK axis in yaks GCs. In addition, FSH (10 μg/mL) or LH (100 μg/mL) ability to reverse the effects of LncRNA MEG3 on miR-23a levels and ASK1/JNK axis-mediated apoptosis and autophagy was verified in yak GCs. This is significantly beneficial for decreasing abnormal follicular atresia for yaks tertiary follicles.
Collapse
Affiliation(s)
- Xiaohong Han
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yangyang Pan
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiangfeng Fan
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Meng Wang
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Libin Wang
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Jinglei Wang
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Seth Yaw Afedo
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Ling Zhao
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yaying Wang
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Tian Zhao
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Tongxiang Zhang
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Rui Zhang
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yan Cui
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Sijiu Yu
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
22
|
Safitri E, Purnobasuki H, Purnama MTE, Chhetri S. Role of apoptotic inhibitors, viability, and differentiation in low oxygen tension of mesenchymal stem cells cultured in a rat model of ovarian failure. F1000Res 2023; 12:24. [PMID: 38644927 PMCID: PMC11031646 DOI: 10.12688/f1000research.124919.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 04/23/2024] Open
Abstract
Background: Stem cell therapy shows applications potential for malnutrition-induced ovarian failure in rat models. However, it is ineffective because of the lack of viability and differentiation of transplanted stem cells, resulting in low adaptation and survival rates. We aimed to determine whether stem cells cultured under low oxygen (O 2) tension improves the adaptability and viability of stem cells, as well as ovarian failure. Methods: After four days of culturing mesenchymal stem cells (MSCs) in 21% oxygen (normoxia) as the T2 group and 1% oxygen (low O 2 or hypoxia) as the T1 group, 200 million bone marrow-derived MSCs per rat were transplanted into female rats with ovarian failure (15 rats per treatment group). A total of 15 fertile and 15 infertile rats were categorized as the C+ and C- groups, respectively. Results: The slight increase in cells expressing HSP70 (C+, T2, T1, and C- groups were 0.5 a±0.53, 1.7 a±0.82, 6.2 b±1.5, and 9.6 c±1.3, respectively), decrease in cells expressing caspase-3 as an apoptotic inhibitor (C+, T2, T1, and C- groups were 0.2 a±0.42, 0.6 a±0.52, 4.8 b±1.03, and 7.3 c±1.42, respectively), and increase in cells expressing VEGF-1 (C+, T2, T1, and C- groups were 10.8 c±1.55, 8.7 b±0.48, 0.4 a±0.52, and 0.2 a±0.42, respectively) and GDF-9 (C+, T2, T1, and C- groups were 5.8 c±1.47, 4.6 b±0.97, 0.5 a±0.53, and 0.3 a±0.48, respectively) were used as markers for viability and differentiation in ovarian tissue, indicating that MSCs cultured under low O 2 tension were more effective than those cultured under normoxic conditions as a treatment for female rats with ovarian failure. Furthermore, infertile female rats treated with MSCs cultivated under low O 2 tension had an enhanced ovarian tissue shape, as indicated by the increasing Graafian follicle count (C+, T2, T1, and C- groups were 8.9 c±0.74, 4.5 b±0.71, 0.5 a±0.53, and 0.4 a±0.52, respectively). Conclusions: MSCs cultured under low O 2 tension are an effective treatment for malnourished rats with ovarian failure.
Collapse
Affiliation(s)
- Erma Safitri
- Division of Veterinary Reproduction, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Hery Purnobasuki
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Muhammad Thohawi Elziyad Purnama
- Division of Veterinary Anatomy, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Shekhar Chhetri
- Department of Animal Science, College of Natural Resources, Royal University of Bhutan, Lobesa, Punakha, 13001, Bhutan
| |
Collapse
|
23
|
Mao L, Wang L, Bennett S, Xu J, Zou J. Effects of follicle-stimulating hormone on fat metabolism and cognitive impairment in women during menopause. Front Physiol 2022; 13:1043237. [PMID: 36545281 PMCID: PMC9760686 DOI: 10.3389/fphys.2022.1043237] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/22/2022] [Indexed: 12/07/2022] Open
Abstract
Lipid metabolism disorder is a common pathological manifestation of menopausal women, and is also an important risk factor for many diseases at this stage of life. Epidemiological studies have shown that high levels of follicle-stimulating hormone (FSH) in menopausal women are closely associated with changes in body composition, central obesity, and cognitive decline. Exogenous FSH causes growth and proliferation of adipose, whereas blockage of the FSH signaling pathway leads to decline in adipose. Mechanistically, FSH, FSH receptor (FSHR), G protein coupling, gene mutation and other pathways are involved in adipogenesis and cognitive impairment. Here, we review the critical role and potential interactions of FSH in adipogenesis and cognitive impairment in menopausal women. Further understanding of the exact mechanisms of FSH aggravating obesity and cognitive impairment may provide a new perspective for promoting healthy aging in menopausal women.
Collapse
Affiliation(s)
- Liwei Mao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Lian Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Samuel Bennett
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
24
|
He W, Wang H, Tang C, Zhao Q, Zhang J. Dietary supplementation with astaxanthin alleviates ovarian aging in aged laying hens by enhancing antioxidant capacity and increasing reproductive hormones. Poult Sci 2022; 102:102258. [PMID: 36435161 PMCID: PMC9700305 DOI: 10.1016/j.psj.2022.102258] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022] Open
Abstract
We investigated the effects of astaxanthin supplementation on the egg quality, antioxidant capacity, and ovarian aging of aged laying hens. Six groups of 68-wk-old Hy-line brown laying hens with six replications each, fifteen chickens in each replicate were fed for 12 wk. The control group was fed a basal diet, the positive control group was fed the basal diet supplemented with 100 mg/kg vitamin E, and the experimental groups were fed the basal diet supplemented with 15 mg/kg, 30 mg/kg, 45 mg/kg, or 60 mg/kg astaxanthin (Ax15, Ax30, Ax45, and Ax60, respectively). The results showed that astaxanthin accumulated in the egg yolks and improved egg yolk color (P < 0.01) and Haugh unit (P < 0.05). Compared with the control group, the experimental groups a higher number of follicles in the ovary and a lower rate of atresia (P < 0.01). Astaxanthin increased the expression of nuclear factor e2-related factor 2 (NRF2) in the ovary (P < 0.05), enhanced the antioxidant capacity of aged laying hens (P < 0.05), and reduced cellular apoptosis (P < 0.05). In addition, astaxanthin improved serum reproductive hormone levels (follicle-stimulating hormone, luteinizing hormone, and progesterone) (P < 0.05) with a maximum value observed in Ax60. However, astaxanthin had no effects on estrogen level (P > 0.05). The expression of FSHR and CYP11A1 increased in the follicular granulosa cells (P < 0.05). Therefore, astaxanthin prevented ovarian aging by improving the antioxidant capacity of laying hens and promoting the production of reproductive hormones. The declining reproductive performance of laying hens in the late laying period may be improved with astaxanthin supplementation.
Collapse
Affiliation(s)
- Weizhao He
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hao Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China,Corresponding author:
| |
Collapse
|
25
|
Safitri E, Purnobasuki H, Purnama MTE, Chhetri S. Effectiveness of forest honey ( Apis dorsata) as therapy for ovarian failure causing malnutrition. F1000Res 2022; 11:512. [PMID: 37767071 PMCID: PMC10521050 DOI: 10.12688/f1000research.110660.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 09/29/2023] Open
Abstract
Background: Malnutrition is the imbalance between intake and nutritional needs, resulting in a decrease in body weight, composition, and physical function. Malnutrition causes infertility due to intestinal and liver degeneration,which may progress to testicular and ovarian degeneration. Methods: An infertile female rat model with a degenerative ovary was induced with malnutrition through a 5-day food fasting but still had drinking water. The administration of (T1) 30% (v/v) and (T2) 50% (v/v) forest honey ( Apis dorsata) were performed for ten consecutive days, whereas the (T+) group was fasted and not administered forest honey and the (T-) group has not fasted and not administered forest honey. Superoxide dismutase, malondialdehyde, IL-13 and TNF-α cytokine expressions, and ovarian tissue regeneration were analyzed. Results: Superoxide dismutase was significantly different ( p<0.05) in T1 (65.24±7.53), T2 (74.16±12.3), and T- (65.09±6.56) compared with T+ (41.76±8.51). Malondialdehyde was significantly different ( p<0.05) in T1 (9.71±1.53), T2 (9.23±0.96), and T- (9.83±1.46) compared with T+ (15.28±1.61). Anti-inflammatory cytokine (IL-13) expression was significantly different ( p<0.05) in T1 (5.30±2.31), T2 (9.80±2.53), and T- (0.30±0.48) compared with T+ (2.70±1.57). Pro-inflammatory cytokine (TNF-α) expression was significantly different ( p<0.05) in T1 (4.40±3.02), T2 (2.50±1.65), and T- (0.30±0.48) compared with T+ (9.50±1.78). Ovarian tissue regeneration was significantly different ( p<0.05) in T- (8.6±0.69) and T2 (5.10±0.99) compared with T1 (0.7±0.95) and T+ (0.3±0.67). Conclusion: The 10-day administration of 50% (v/v) forest honey can be an effective therapy for ovarian failure that caused malnutrition in the female rat model.
Collapse
Affiliation(s)
- Erma Safitri
- Division of Veterinary Reproduction, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Hery Purnobasuki
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Muhammad Thohawi Elziyad Purnama
- Division of Veterinary Anatomy, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Shekhar Chhetri
- Department of Animal Science, College of Natural Resources, Royal University of Bhutan, Lobesa, Punakha, 13001, Bhutan
| |
Collapse
|
26
|
Safitri E, Purnobasuki H, Purnama MTE, Chhetri S. Effectiveness of forest honey ( Apis dorsata) as therapy for ovarian failure causing malnutrition. F1000Res 2022; 11:512. [PMID: 37767071 PMCID: PMC10521050 DOI: 10.12688/f1000research.110660.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 08/27/2024] Open
Abstract
Background: Malnutrition is the imbalance between intake and nutritional needs, resulting in a decrease in body weight, composition, and physical function. Malnutrition causes infertility due to intestinal and liver degeneration,which may progress to testicular and ovarian degeneration. Methods: An infertile female rat model with a degenerative ovary was induced with malnutrition through a 5-day food fasting but still had drinking water. The administration of (T1) 30% (v/v) and (T2) 50% (v/v) forest honey ( Apis dorsata) were performed for ten consecutive days, whereas the (T+) group was fasted and not administered forest honey and the (T-) group has not fasted and not administered forest honey. Superoxide dismutase, malondialdehyde, IL-13 and TNF-α cytokine expressions, and ovarian tissue regeneration were analyzed. Results: Superoxide dismutase was significantly different ( p<0.05) in T1 (65.24±7.53), T2 (74.16±12.3), and T- (65.09±6.56) compared with T+ (41.76±8.51). Malondialdehyde was significantly different ( p<0.05) in T1 (9.71±1.53), T2 (9.23±0.96), and T- (9.83±1.46) compared with T+ (15.28±1.61). Anti-inflammatory cytokine (IL-13) expression was significantly different ( p<0.05) in T1 (5.30±2.31), T2 (9.80±2.53), and T- (0.30±0.48) compared with T+ (2.70±1.57). Pro-inflammatory cytokine (TNF-α) expression was significantly different ( p<0.05) in T1 (4.40±3.02), T2 (2.50±1.65), and T- (0.30±0.48) compared with T+ (9.50±1.78). Ovarian tissue regeneration was significantly different ( p<0.05) in T- (8.6±0.69) and T2 (5.10±0.99) compared with T1 (0.7±0.95) and T+ (0.3±0.67). Conclusion: The 10-day administration of 50% (v/v) forest honey can be an effective therapy for ovarian failure that caused malnutrition in the female rat model.
Collapse
Affiliation(s)
- Erma Safitri
- Division of Veterinary Reproduction, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Hery Purnobasuki
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Muhammad Thohawi Elziyad Purnama
- Division of Veterinary Anatomy, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Shekhar Chhetri
- Department of Animal Science, College of Natural Resources, Royal University of Bhutan, Lobesa, Punakha, 13001, Bhutan
| |
Collapse
|
27
|
Montano G, Clough P, Schmitt T, Davis M, Steinman K, O’Brien J, Robeck T. Follicular and Hormonal Changes after Estrous Synchronization in Bottlenose Dolphins. REPRODUCTION AND FERTILITY 2022; 3:RAF-22-0039. [PMID: 36074941 PMCID: PMC9578064 DOI: 10.1530/raf-22-0039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/08/2022] [Indexed: 11/08/2022] Open
Abstract
To gain more knowledge about the influence of hormone regulation on follicle development, ovarian ultrasounds were performed, and urinary hormone profiles were determined in ovulating and non-ovulating female bottlenose dolphins (n = 15) following estrus synchronization with altrenogest. Ovarian ultrasounds were conducted daily, post synchronization to describe follicular recruitment in relationship to the endocrine profile. Follicle sizes were grouped into very small (VSM), small (SM), medium (MD) and large (LG). In ovulating females, two follicular waves were identified, and follicular deviation towards establishing a dominant follicle only occurred during the second wave. For non-ovulating females, only the first wave was observed. For all urinary hormones, the non-ovulating group presented significantly lower concentrations of follicle stimulating hormone (uFSH), luteinizing hormone (uLH), estrone conjugates (uE1-C) and estriol (uE3) but similar progestagen and cortisol concentrations compared to the ovulating group. Concentrations of uE1-C and uE3 and numbers of MD and LG follicles significantly (P < 0.05) increased, while uFSH concentrations significantly (P < 0.05) decreased as ovulation approached. Urinary LH significantly increased concurrently with increasing numbers of LG follicles and decreasing numbers of SM follicles. The characterization of follicular development and its relationship with hormone assessments complements our understanding of follicular recruitment post-synchronization in bottlenose dolphins and provides new information concerning differences between ovulating and non-ovulating females in response to an estrous synchronization protocol.
Collapse
Affiliation(s)
- Gisele Montano
- SeaWorld and Busch Gardens Species Preservation Laboratory, SeaWorld Parks and Entertainment Inc., Orlando, Florida, USA
| | - Pat Clough
- Dolphin Research Center, Grassy Key, Florida, USA
| | - Todd Schmitt
- SeaWorld Parks and Entertainment Inc., SeaWorld California, San Diego, California, USA
| | - Michelle Davis
- SeaWorld Parks and Entertainment Inc., SeaWorld Florida, Orlando, Florida, USA
| | - Karen Steinman
- SeaWorld and Busch Gardens Species Preservation Laboratory, SeaWorld Parks and Entertainment Inc., Orlando, Florida, USA
| | - Justine O’Brien
- SeaWorld and Busch Gardens Species Preservation Laboratory, SeaWorld Parks and Entertainment Inc., Orlando, Florida, USA
| | - Todd Robeck
- SeaWorld and Busch Gardens Species Preservation Laboratory, SeaWorld Parks and Entertainment Inc., Orlando, Florida, USA
| |
Collapse
|
28
|
Liang H, Wu X, Yao H, Weng X, Liu S, Chen J, Li Y, Wu Y, Wen L, Chen Q, Jing C. Association of urinary metabolites of non-persistent pesticides with serum sex hormones among the US females: NHANES 2013-2014. CHEMOSPHERE 2022; 300:134577. [PMID: 35421444 DOI: 10.1016/j.chemosphere.2022.134577] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/25/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Evidence indicated the possibility of non-persistent pesticides disrupting the homeostasis of sex hormones. However, few studies have focused on this relationship in females. We aimed to explore the relationship between non-persistent pesticide exposure and sex hormones among the US females from the National Health and Nutrition Examination Survey 2013-2014. METHODS A total of 790 females, including girls (6-11 years), female adolescents (12-19 years), and adult females (>19 years), were enrolled in this study. Age stratified associations of individual non-persistent pesticide metabolites and their mixtures with sex hormones were analyzed by weighted multiple linear regression and Bayesian kernel machine regression (BKMR) using spot urinary non-persistent pesticide measurement, including 2,4-dichlorophenoxyacetic acid (2,4-D), 3,5,6-trichloropyridinol (TCPY), para-nitrophenol (PNP) and 3-phenoxybenzoic acid (3-PBA), and three serum sex hormones [total testosterone (TT), estradiol (E2) and sex hormone binding globulin (SHBG)]. RESULTS In girls, weighted multivariate linear regression indicated that both 2,4-D and PNP were negatively associated with TT, and TCPY was inversely associated with SHBG. In female adolescents, TCPY was negatively associated with TT and E2, and 3-PBA was negatively associated with SHBG; positive associations were detected both in 2,4-D with SHBG, and in PNP with TT. In adult females, a higher concentration of 3-PBA was associated with higher levels of TT. The BKMR model showed that in female adolescents, the concentrations of pesticide metabolite mixtures at or above the 55th percentile were negatively related to the levels of E2 compared with their mixtures at 50th percentile, and an inverse U-shaped exposure-response function between PNP and E2 was found. CONCLUSIONS Associations between the four non-persistent pesticide metabolites and serum sex hormones were identified in the US females from NHANES 2013-2014 and these associations were age dependent, especially in adolescents. Large-scale cohort studies are needed to confirm these findings and elucidate the potential biological mechanisms.
Collapse
Affiliation(s)
- Huanzhu Liang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Xiaomei Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Huojie Yao
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Xueqiong Weng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Shan Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Jingmin Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Yexin Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Yingying Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Lin Wen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Qian Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Chunxia Jing
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China; Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
29
|
Abstract
Turner syndrome (TS) is tightly associated with hypergonadotropic hypogonadism and ovarian dysgenesis, typically resulting in infertility in the great majority of patients. Therefore females with TS are usually treated with female sex steroids from 11-12 years of age until the normal age of natural menopause of around 53-54 years of age. Infertility is rated among females with TS as a distressing concern and a detractor from a good quality of life. Options for motherhood for females with TS has expanded during recent years. Originally, only adoption was an option, unless of course for the small minority of TS females that still has ovarian function and are capable of achieving pregnancy through normal means. Oocyte donation has become the mainstream option in many countries and seems to work well, especially if patients have been treated with optimal estrogen and gestagen for a prolonged time before the intervention. It comes with an increased risk of cardiovascular complications and TS oocyte donation pregnancies are viewed as high risk pregnancies necessitating increased vigilance. Oocyte cryopreservation of own oocytes is also becoming an option in a select group of TS and has special challenges. Ovarian tissue cryopreservation is a promising new techniques that has been applied successfully in children with cancer. Currently, several trials are running around the world evaluating this techniques in TS. The genetics and genomics behind the ovarian dysgenesis seen in TS is not understood, but new studies have elucidated global changes in DNA methylation and RNA expression in blood from persons with TS and it is likely that similar changes are present in the ovaries. We still, however, need more thorough research to fully uncover the genetic background of ovarian failure in TS. Gene expression studies and methylation analysis from ovarian TS tissues still needs to be performed.
Collapse
|
30
|
Deng D, Yan J, Li W, Wu Y, Wu K. Protective Effect of XinJiaCongRongTuSiZiWan on the Reproductive Toxicity of Female Rats Induced by Triptolide. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:3642349. [PMID: 35707471 PMCID: PMC9192320 DOI: 10.1155/2022/3642349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/29/2021] [Accepted: 04/15/2022] [Indexed: 11/18/2022]
Abstract
Background Although triptolide (TP) has been widely used for the treatment of inflammatory, autoimmune diseases, and various kinds of tumors, the long experimental and clinical applications have exhibited severe reproductive system toxicity in TP-treated animals and patients. More importantly, the underlying molecular mechanism involved in TP-induced reproductive system toxicity still needs more research. Methods Adult female Sprague Dawley rats and human ovarian granulosa cell lines were treated with TP and then treated with XinJiaCongRongTuSiZiWan (XJCRTSZW). Histological analysis and follicle count were executed using H&E staining. Hormone (E2, AMH, FSH, LH, and INH B) concentrations, inflammation indicators (IL-1β, IL-6, and TNF-α), oxidative stress indicators (SOD, GSH-Px, and MDA), apoptosis rate, protein distribution and expression (SIRT1, AMPK, and 8-OhdG), cell viability, relative protein levels (beclin-1, LC3-II/LC3-I, p62, procaspase-3, cleaved caspase-3, p-SIRT1, SIRT1, p-AMPKα-1, AMPKα-1, Akt, and p-Akt), autophagosome were detected by ELISA, commercial biochemical detection kits, flow cytometry, immunohistochemistry, CCK-8, western blotting, and transmission electron microscope, respectively. Results XJCRTSZW administration notably improved the TP-treated pathological symptoms, including few mature follicles in the ovary and less granular cell layer, and disordered the arrangement of the follicle, lymphocytes and plasma cells infiltration, and necrosis, shedding, and follicular cystic dilatation of the granular layer follicle cells in the ovarian stroma. Furthermore, XJCRTSZW treatment observably enhanced the TP-induced reduction of primary follicles and secondary follicles numbers and decreased the TP-induced elevation of atretic follicle numbers and the expression of AMPK, SIRT1, and 8-OhdG in GCs in vivo. Moreover, XJCRTSZW application significantly increased the TP-induced diminishment of E2, AMH, and LNH-B concentrations, apoptosis rate, SOD and GSH-Px concentrations, and p62 protein level; however, it declined the TP-induced augmentation of MDA level, the levels of IL-1β, IL-6, and TNF-α, autophagosome, beclin-1, LC3-II/LC3-I, cleaved-caspase-3, p-AMPKα-1, and p-SIRT1 protein levels both in vivo and in vitro. Besides, XJCRTSZW treatment prominently enhanced the TP-induced decrease of cell viability in vitro. Conclusion XJCRTSZW can alleviate TP-induced reproductive toxicity via apoptosis, inflammation, and oxidative stress both in vivo and in vitro. Moreover, XJCRTSZW ameliorates TP-induced reproductive toxicity through AMPK/SIRT and Akt signaling axis mediated autophagy both in vivo and in vitro.
Collapse
Affiliation(s)
- Disi Deng
- Department of Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jin Yan
- Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Wanjing Li
- Department of Gynaecology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Yeke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Keming Wu
- Department of Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| |
Collapse
|
31
|
Lett BM, Kirkpatrick BW. Identifying genetic variants and pathways influencing daughter averages for twinning in North American Holstein cattle and evaluating the potential for genomic selection. J Dairy Sci 2022; 105:5972-5984. [PMID: 35525609 DOI: 10.3168/jds.2021-21238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/04/2022] [Indexed: 11/19/2022]
Abstract
Multiple birth in dairy cattle is a detrimental trait both economically for producers and for animal health. Genetics of twinning is complex and has led to several quantitative trait loci regions being associated with increased twinning. To identify variants associated with this trait, calving records from 2 time periods were used to estimate daughter averages for twinning for Holstein bulls. Multiple analyses were conducted and compared including GWAS, genomic prediction, and gene set enrichment analysis for pathway detection. Although pathway analysis did not yield many congruent pathways of interest between data sets, it did indicate two of interest. Both pathways have ties to the strong candidate region on BTA11 from the genome-wide association analysis across data sets. This region does not overlap with previously identified quantitative trait loci regions for twinning or ovulation rate in cattle. The strongest associated SNPs were upstream from 2 candidate genes LHCGR and FSHR, which are involved in folliculogenesis. Genomic prediction showed a moderate correlation accuracy (0.43) when predicting genomic breeding values for bulls with estimates from calving records from 2010 to 2016. Future analysis of the region on BTA11 and the relation of the candidate genes could improve this accuracy.
Collapse
Affiliation(s)
- Beth M Lett
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison 53706
| | - Brian W Kirkpatrick
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison 53706.
| |
Collapse
|
32
|
Canosa S, Carosso AR, Mercaldo N, Ruffa A, Evangelista F, Bongioanni F, Benedetto C, Revelli A, Gennarelli G. Effect of rLH Supplementation during Controlled Ovarian Stimulation for IVF: Evidence from a Retrospective Analysis of 1470 Poor/Suboptimal/Normal Responders Receiving Either rFSH plus rLH or rFSH Alone. J Clin Med 2022; 11:jcm11061575. [PMID: 35329901 PMCID: PMC8954443 DOI: 10.3390/jcm11061575] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 12/10/2022] Open
Abstract
We retrospectively studied a real-life population of 1470 women undergoing IVF, with poor/suboptimal/normal ovarian responsiveness to controlled ovarian stimulation (COS), comparing the cumulative live birth rate (cLBR) when COS was performed using rFSH alone or rFSH + rLH in a 2:1 ratio. Overall, we observed significantly higher cLBR in the rFSH alone group than in the rFSH + rLH group (29.3% vs. 22.2%, p < 0.01). However, considering only suboptimal/poor responders (n = 309), we observed comparable cLBR (15.6% vs. 15.2%, p = 0.95) despite the fact that patients receiving rFSH + rLH had significantly higher ages and worse ovarian reserve markers. The equivalent effectiveness of rFSH + rLH and rFSH alone was further confirmed after stratification according to the number of oocytes retrieved: despite basal characteristics were still in favor of rFSH alone group, the cLBR always resulted comparable. Even subdividing patients according to the POSEIDON classification, irrespective of differences in the baseline clinical characteristics in favor of FSH alone group, the cLBR resulted comparable in all subgroups. Despite the retrospective, real-life analysis, our data suggest that rLH supplementation in COS may represent a reasonable option for patients with predictable or unexpected poor/suboptimal ovarian responsiveness to FSH, those matching the Bologna criteria for poor responsiveness, and those included in the POSEIDON classification.
Collapse
Affiliation(s)
- Stefano Canosa
- Obstetrics and Gynecology 1U, Physiopathology of Reproduction and IVF Unit, Department of Surgical Sciences, Sant’Anna Hospital, University of Turin, 10126 Turin, Italy; (A.R.C.); (N.M.); (A.R.); (F.E.); (C.B.); (G.G.)
- Livet, GeneraLife IVF, 10126 Turin, Italy;
- Correspondence:
| | - Andrea Roberto Carosso
- Obstetrics and Gynecology 1U, Physiopathology of Reproduction and IVF Unit, Department of Surgical Sciences, Sant’Anna Hospital, University of Turin, 10126 Turin, Italy; (A.R.C.); (N.M.); (A.R.); (F.E.); (C.B.); (G.G.)
| | - Noemi Mercaldo
- Obstetrics and Gynecology 1U, Physiopathology of Reproduction and IVF Unit, Department of Surgical Sciences, Sant’Anna Hospital, University of Turin, 10126 Turin, Italy; (A.R.C.); (N.M.); (A.R.); (F.E.); (C.B.); (G.G.)
| | - Alessandro Ruffa
- Obstetrics and Gynecology 1U, Physiopathology of Reproduction and IVF Unit, Department of Surgical Sciences, Sant’Anna Hospital, University of Turin, 10126 Turin, Italy; (A.R.C.); (N.M.); (A.R.); (F.E.); (C.B.); (G.G.)
| | - Francesca Evangelista
- Obstetrics and Gynecology 1U, Physiopathology of Reproduction and IVF Unit, Department of Surgical Sciences, Sant’Anna Hospital, University of Turin, 10126 Turin, Italy; (A.R.C.); (N.M.); (A.R.); (F.E.); (C.B.); (G.G.)
- Livet, GeneraLife IVF, 10126 Turin, Italy;
| | | | - Chiara Benedetto
- Obstetrics and Gynecology 1U, Physiopathology of Reproduction and IVF Unit, Department of Surgical Sciences, Sant’Anna Hospital, University of Turin, 10126 Turin, Italy; (A.R.C.); (N.M.); (A.R.); (F.E.); (C.B.); (G.G.)
| | - Alberto Revelli
- Obstetrics and Gynecology 2U, Department of Surgical Sciences, Sant’Anna Hospital, University of Turin, 10126 Turin, Italy;
| | - Gianluca Gennarelli
- Obstetrics and Gynecology 1U, Physiopathology of Reproduction and IVF Unit, Department of Surgical Sciences, Sant’Anna Hospital, University of Turin, 10126 Turin, Italy; (A.R.C.); (N.M.); (A.R.); (F.E.); (C.B.); (G.G.)
| |
Collapse
|
33
|
Lv J, Ge W, Ding Z, Zeng J, Wang W, Duan H, Zhang Y, Zhao X, Hu J. Regulatory role of dihydrotestosterone on BMP-6 receptors in granular cells of sheep antral follicles. Gene 2022; 810:146066. [PMID: 34838638 DOI: 10.1016/j.gene.2021.146066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/08/2021] [Accepted: 11/16/2021] [Indexed: 11/19/2022]
Abstract
Bone morphogenetic protein-6 (BMP-6) and dihydrotestosterone (DHT) affect steroid synthesis in follicles and regulate cell proliferation in the ovaries of female animals. However, little is known about granular cells (GCs) in sheep. We identified the key BMP-6 receptors, activin receptor-like kinase(ALK-6), and bone morphogenetic protein receptor type 2 (BMPRII) in sheep follicles using immunohistochemistry (IHC) and immunofluorescence (IF). Both ALK-6 and BMPRII were expressed in the GC layer, GC membranes, and cytoplasm. We evaluated ALK-6 and BMPRII expression at the follicular development stage using quantitative real-time PCR and western blotting to detect sheep GCs from large, medium, and small follicles (diameters of ≥5, 2-5, and ≤2 mm, respectively). The mRNA abundance and protein expression of ALK-6 and BMPRII were significantly higher in GCs from large follicles compared to those in GCs from small follicles (P < 0.05) and were the lowest in GCs from medium follicles. To assess whether DHT affects ALK-6 and BMPRII expression in sheep GCs, we cultured GCs from large follicles in vitro then incubated them with DHT (10-11, 10-9, 10-7 M). We found that 10-7-M DHT significantly inhibited ALK-6 and BMPRII mRNA and protein (P < 0.05). We further explored whether DHT regulates ALK-6 and BMPRII through the nuclear androgen receptor (AR) pathway and found that 10-6-M flutamide, a non-selective androgen inhibitor, partially relieved the inhibitory effect of 10-7-M DHT on ALK-6 and BMPRII expression. Thus, GCs in sheep antral follicles differentially expressed ALK-6 and BMPRII at various stages, indicating that BMP-6 plays different roles to some extent during the development of antral follicles, and that high concentrations of DHT can inhibit the expression of ALK-6 and BMPRII via the androgen receptor pathway in sheep GCs. The present study aimed to determine the expression of the main BMP-6-related main receptors, namely, ALK-6 and BMPRII, during the development of GCs in sheep antral follicles and a potential mechanism of DHT regulation in sheep GCs. Our findings lay a foundation for the further exploration of the effects of ovarian BMP-6 expression on follicular development.
Collapse
Affiliation(s)
- Jianshu Lv
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, China
| | - Wenbo Ge
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, China
| | - Ziqiang Ding
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, China
| | - Jianlin Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, China
| | - Wenjuan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, China
| | - Hongwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, China.
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, China.
| |
Collapse
|
34
|
Matsushige C, Xu X, Miyagi M, Zuo YY, Yamazaki Y. RGD-modified dextran hydrogel promotes follicle growth in three-dimensional ovarian tissue culture in mice. Theriogenology 2022; 183:120-131. [PMID: 35247849 PMCID: PMC9005264 DOI: 10.1016/j.theriogenology.2022.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 10/19/2022]
Abstract
In vitro follicle growth is a promising technology to preserve fertility for cancer patients. We previously developed a three-dimensional (3-D) ovarian tissue culture system supported by mouse tumor cell-derived Matrigel. When murine ovarian tissues at 14 days old were cultured in Matrigel drops, antrum formation and oocyte competence were significantly enhanced compared with those cultured without Matrigel. In this study, we tested whether nonanimal-derived dextran hydrogels can support a 3-D ovarian tissue culture. We employed chemically defined dextran hydrogels consisting of dextran polymers crosslinked with polyethylene glycol (PEG)-based cell-degradable crosslinker. To determine the optimal gel elasticity for the 3-D tissue culture, we measured Young's modulus of dextran hydrogels at four concentrations (1.75, 2.25, 2.75, and 3.25 mmol/L), and cultured ovarian tissues in these gels for 7 days. As a result, 2.25 mmol/L dextran hydrogel with Young's modulus of 224 Pa was appropriate to provide physical support as well as to promote follicle expansion in the 3-D system. To mimic the natural extracellular matrix (ECM) environment, we modified the dextran hydrogels with two bioactive factors: ECM-derived Arg-Gly-Asp (RGD) peptides as a cell-adhesive factor, and activin A. The ovarian tissues were cultured in 2.25 mmol/L dextran hydrogels under four different conditions: Activin-/RGD- (A-R-), A + R-, A-R+, and A + R+. On Day 7 of culture, follicle and oocyte sizes were significantly increased in the RGD-modified conditions compared with those without RGD. The RGD-modified hydrogels also promoted mRNA levels of steroidogenic-related genes and estradiol production in the 3-D ovarian tissue culture. In vitro maturation and developmental competence of follicular oocytes were remarkably improved in the presence of RGD. In particular, blastocyst embryos were obtained only from A-R+ or A+R+ conditions after in vitro fertilization. We also determined synergistic effects of the RGD peptides and activin A on follicle growth and oocyte development in the 3-D tissue culture. In conclusion, our results suggest that RGD-modified dextran hydrogels provide an ECM-mimetic bioactive environment to support folliculogenesis in a 3-D ovarian tissue culture system.
Collapse
|
35
|
Wang W, Lv J, Duan H, Ding Z, Zeng J, Lv C, Hu J, Zhang Y, Zhao X. Regulatory role of melatonin on epidermal growth factor receptor, Type I collagen α1 chain, and caveolin 1 in granulosa cells of sheep antral follicles. Anim Sci J 2022; 93:e13760. [PMID: 35932205 DOI: 10.1111/asj.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/17/2022] [Accepted: 06/09/2022] [Indexed: 11/29/2022]
Abstract
We investigated the expression of epidermal growth factor receptor (EGFR), Type I collagen α1 chain (COL1A1), and caveolin 1 (CAV1) during follicular development and examined the regulatory role of melatonin (MLT) on EGFR, COL1A1, and CAV1 in sheep antral ovaries. The expression was detected in granulosa and theca cells by immunohistochemistry. Quantitative real-time polymerase chain reaction and Western blotting were used to examine the expression levels of EGFR, COL1A1, and CAV1 in small (≤2 mm), medium (2-5 mm), and large (≥5 mm) follicles. The mRNA and protein levels of EGFR, COL1A1, and CAV1 were found to be the highest in large follicles. Furthermore, cultured granulosa cells were treated with MLT (10-7 -10-11 M), luzindole (nonselective MT1 and MT2 receptor antagonist, 10-7 M), and 4-phenyl-2-propanamide tetraldehyde (4P-PDOT, MT2 selective antagonist, 10-7 M) to detect the regulatory role of MLT on EGFR, COL1A1, and CAV1. Results indicated COL1A1 and CAV1 were at least partially regulated by MLT through MT1 and MT2 pathways, whereas EGFR was not. This study provided a reference for further studies on MLT regulatory role on EGFR, COL1A1, and CAV1 during sheep follicular development and elucidated the physiological mechanism of MLT regulator production.
Collapse
Affiliation(s)
- Wenjuan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Jianshu Lv
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Hongwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Ziqiang Ding
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Jianlin Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Chen Lv
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| |
Collapse
|
36
|
Chen X, Yu F, Zhu Z, Huang J, Zhang L, Pan J. The effect of fixed-time artificial insemination protocol initiated at different stages of the estrous cycle on follicle development and ovulation in gilts. J Reprod Dev 2021; 67:380-385. [PMID: 34657902 PMCID: PMC8668377 DOI: 10.1262/jrd.2021-060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/15/2021] [Indexed: 12/02/2022] Open
Abstract
Hormonal products have been developed for fixed-time artificial insemination (FTAI) to improve the efficiency of swine production. Here, we evaluated the effect of an FTAI protocol initiated during different phases of the estrous cycle on follicle development and ovulation in gilts. A total of 36 gilts were equally divided into three groups designated as the luteal (L), follicular (F), and post-ovulation (O) groups and fed with 20 mg of altrenogest for 18 days, followed by intramuscular injection of 1000 IU PMSG at 42 h after withdrawal of altrenogest, and 100 μg of GnRH after an 80-h interval. The L group had the highest number of follicles 4-6 mm in diameter, as well as corpora hemorrhagica. The mRNA expression of caspase-9 in the L group were significantly lower than those in the O and F groups (P < 0.05), while CYP11A1 and VEGF mRNA expression levels were significantly higher (P < 0.05). Moreover, FSHR mRNA levels were significantly higher in the O group than in the L, F, and control groups (P < 0.05). LHCGR and CYP19A1 mRNA levels were the highest in the F group (P < 0.05). Thus, the changes in the expression of genes associated with follicular development, maturation, and ovulation identified in this study indicated that initiation of the FTAI protocol during the luteal phase induced a better environment for follicle development and ovulation in gilts.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Animal Biotechnology Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Fuxian Yu
- Animal Biotechnology Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Zhiwei Zhu
- Animal Biotechnology Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
- Ningbo Kuangdai Livestock Husbandry Technology Co., Ltd., Ningbo 315181, China
| | - Jing Huang
- Animal Biotechnology Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
- Ningbo Kuangdai Livestock Husbandry Technology Co., Ltd., Ningbo 315181, China
| | - Liang Zhang
- Animal Biotechnology Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Jianzhi Pan
- Animal Biotechnology Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
- Ningbo Kuangdai Livestock Husbandry Technology Co., Ltd., Ningbo 315181, China
| |
Collapse
|
37
|
Chandra K, Banerjee A, Das M. Epigenetic and transcriptional regulation of GnRH gene under altered metabolism and ageing. THE NUCLEUS 2021. [DOI: 10.1007/s13237-021-00374-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
38
|
Recchia K, Jorge AS, Pessôa LVDF, Botigelli RC, Zugaib VC, de Souza AF, Martins DDS, Ambrósio CE, Bressan FF, Pieri NCG. Actions and Roles of FSH in Germinative Cells. Int J Mol Sci 2021; 22:10110. [PMID: 34576272 PMCID: PMC8470522 DOI: 10.3390/ijms221810110] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022] Open
Abstract
Follicle stimulating hormone (FSH) is produced by the pituitary gland in a coordinated hypothalamic-pituitary-gonadal (HPG) axis event, plays important roles in reproduction and germ cell development during different phases of reproductive development (fetal, neonatal, puberty, and adult life), and is consequently essential for fertility. FSH is a heterodimeric glycoprotein hormone of two dissociable subunits, α and β. The FSH β-subunit (FSHβ) function starts upon coupling to its specific receptor: follicle-stimulating hormone receptor (FSHR). FSHRs are localized mainly on the surface of target cells on the testis and ovary (granulosa and Sertoli cells) and have recently been found in testicular stem cells and extra-gonadal tissue. Several reproduction disorders are associated with absent or low FSH secretion, with mutation of the FSH β-subunit or the FSH receptor, and/or its signaling pathways. However, the influence of FSH on germ cells is still poorly understood; some studies have suggested that this hormone also plays a determinant role in the self-renewal of germinative cells and acts to increase undifferentiated spermatogonia proliferation. In addition, in vitro, together with other factors, it assists the process of differentiation of primordial germ cells (PGCLCs) into gametes (oocyte-like and SSCLCs). In this review, we describe relevant research on the influence of FSH on spermatogenesis and folliculogenesis, mainly in the germ cell of humans and other species. The possible roles of FSH in germ cell generation in vitro are also presented.
Collapse
Affiliation(s)
- Kaiana Recchia
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 01001-010, Brazil; (K.R.); (F.F.B.)
| | - Amanda Soares Jorge
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Laís Vicari de Figueiredo Pessôa
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Ramon Cesar Botigelli
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
- Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-970, Brazil
| | - Vanessa Cristiane Zugaib
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Aline Fernanda de Souza
- Department Biomedical Science, Ontary Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Daniele dos Santos Martins
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Carlos Eduardo Ambrósio
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Fabiana Fernandes Bressan
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 01001-010, Brazil; (K.R.); (F.F.B.)
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Naira Caroline Godoy Pieri
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| |
Collapse
|
39
|
Bunma T, Kanjanaruch C, Kogram N, Uriyapongson S, Khanthusaeng V, Navanukraw C. Effects of FSH treatment and withdrawal during proestrus on uterine proliferation and steroid hormone receptor expression in beef heifers. Anim Sci J 2021; 92:e13621. [PMID: 34448516 DOI: 10.1111/asj.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 11/29/2022]
Abstract
To determine the effects of Follicle Stimulating Hormone (FSH) treatment and subsequent withdrawal on uterine proliferation and estrogen receptor (ESR), Brahman crossbred heifers (n = 12) were twice daily injected with FSH (4, 3, and 2 mg/injection) on Days 17-19 of the estrous cycle (FSH 3 days) and (4 and 3 mg/injection) on Days 17-18 (FSH 2 days) and withdrawal with saline on Day 19 and (4 mg/injection) on Day 17 (FSH 1 day) and withdrawal with saline on Days 18-19. Uterine tissue was subjectively collected on Day 20 and microscopically classified to four regions: endometrial stroma (ES), surface endometrial gland (EG), deep endometrial gland (DG), and myometrium (Myo). The cell proliferation marker, Ki-67, was quantified as labeling index (LI) in uterine regions, and tissues were immunostained to detect ESR2 followed by image analysis. The LI of ES, EG, and DG was greater (P = 0.0018, P = 0.0005, and P = 0.0103; respectively) in heifers received FSH for 3 days. The expression of ESR2 protein on ES and EG was greatest (P < 0.0001 and P = 0.0036, respectively) in FSH 3 days-treated group. Thus, FSH administration during proestrus stimulates uterine cell proliferation, and ESR2 expressions are affected by FSH during proestrus and differentially distributed in the uterine regions.
Collapse
Affiliation(s)
- Thanya Bunma
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Chutikun Kanjanaruch
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Nattawut Kogram
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Suthipong Uriyapongson
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Vilaivan Khanthusaeng
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Chainarong Navanukraw
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand.,Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok, Thailand
| |
Collapse
|
40
|
Hatirnaz E, Hatirnaz S, Kanat-Pektas M, Dokuzeylul Gungor N, Erol O, Kalyoncu S, Dahan MH. The impact of timing for estrogen supplementation in polycystic ovary syndrome patients undergoing primed in vitro maturation. J Obstet Gynaecol Res 2021; 47:2684-2691. [PMID: 34028123 DOI: 10.1111/jog.14858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/24/2021] [Accepted: 05/08/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE This study aims to determine the effects of early and late onset estrogen supplementation on the immature oocyte retrieval, fertilization and clinical pregnancy rates in follicle stimulating hormone (FSH) and human chorionic hormone (hCG) primed in vitro maturation (IVM) cycles of the patients with polycystic ovary syndrome (PCOS). METHODS This is a retrospective analysis of 161 patients with PCOS who underwent FSH and hCG primed IVM. Group 1 included 120 patients who received early onset estrogen supplementation while group 2 consisted of 41 patients who had late onset estrogen supplementation in primed IVM cycles. Immature oocyte (germinal vesicle and/or metaphase I) retrieval and fertilization rates were the primary outcomes, whereas clinical pregnancy and live rates were the secondary outcomes. RESULTS Group 1 patients had significantly higher body mass index and more previous IVF attempts (p = 0.001 and p = 0.008, respectively). All of the retrieved oocytes from the PCOS patients were either germinal vesicle or metaphase I oocytes and there were no metaphase II oocytes among the retrieved oocytes. Both groups had statistically similar numbers of metaphase I and fertilized oocytes (p > 0.05 for both). However, group 1 patients had significantly lower number of germinal vesicle oocytes but significantly higher number of metaphase II oocytes (p = 0.001 for both). Both groups had statistically similar fertilization (85.0% vs 78.0%), clinical pregnancy (49.2% vs 43.9%) and live birth (37.5% vs 39.0%) rates (p > 0.05 for all). CONCLUSION Early onset estrogen supplementation appears to improve the quality of retrieved immature oocytes and contribute to the maturation of oocytes in stimulated IVM cycles.
Collapse
Affiliation(s)
- Ebru Hatirnaz
- In Vitro Fertilization Center, Department of Obstetrics and Gynecology, Medicana International Hospital, Samsun, Turkey
| | - Safak Hatirnaz
- In Vitro Fertilization Center, Department of Obstetrics and Gynecology, Medicana International Hospital, Samsun, Turkey
| | - Mine Kanat-Pektas
- Department of Obstetrics and Gynecology, School of Medicine, Kocatepe University, Afyonkarahisar, Turkey
| | - Nur Dokuzeylul Gungor
- In Vitro Fertilization Center, Department of Obstetrics and Gynecology, BAU MedicalparkGöztepe Hospital, Istanbul, Turkey
| | - Onur Erol
- Department of Obstetrics and Gynecology, Antalya Training and Research Hospital, Health Sciences University, Antalya, Turkey
| | - Senol Kalyoncu
- Department of Obstetrics and Gynecology, TOBB ETU Hospital, Ankara, Turkey
| | - Michael H Dahan
- McGill Fertility Center, Department of Obstetrics and Gynecology, McGill University, Montreal, Canada
| |
Collapse
|
41
|
Chen Y, Liu Q, Liu R, Yang C, Wang X, Ran Z, Zhou S, Li X, He C. A Prepubertal Mice Model to Study the Growth Pattern of Early Ovarian Follicles. Int J Mol Sci 2021; 22:5130. [PMID: 34066233 PMCID: PMC8151218 DOI: 10.3390/ijms22105130] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 01/15/2023] Open
Abstract
Early folliculogenesis begins with the activation of the follicle and ends with the formation of the follicular antrum, which takes up most of the time of folliculogenesis. In this long process, follicles complete a series of developmental events, including but not limited to granulosa cell (GC) proliferation, theca folliculi formation, and antrum formation. However, the logical or temporal sequence of these events is not entirely clear. This study demonstrated in a mouse model that completion of early folliculogenesis required a minimum of two weeks. The oocyte reached its largest size in the Type 4-5 stage, which was therefore considered as the optimum period for studying oogenesis. Postnatal days (PD) 10-12 were regarded as the crucial stage of theca folliculi formation, as Lhcgr sharply increased during this stage. PD13-15 was the rapid growth period of early follicles, which was characterized by rapid cell proliferation, the sudden emergence of the antrum, and increased Fshr expression. The ovarian morphology remained stable during PD15-21, but antrum follicles accumulated gradually. Atresia occurred at all stages, with the lowest rate in Type 3 follicles and no differences among early Type 4-6 follicles. The earliest vaginal opening was observed at PD24, almost immediately after the first growing follicular wave. Therefore, the period of PD22-23 could be considered as a suitable period for studying puberty initiation. This study objectively revealed the pattern of early folliculogenesis and provided time windows for the study of biological events in this process.
Collapse
Affiliation(s)
- Yingjun Chen
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (Q.L.); (R.L.); (C.Y.); (X.W.); (Z.R.); (S.Z.)
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan 430070, China
| | - Qinghua Liu
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (Q.L.); (R.L.); (C.Y.); (X.W.); (Z.R.); (S.Z.)
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruiyan Liu
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (Q.L.); (R.L.); (C.Y.); (X.W.); (Z.R.); (S.Z.)
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan 430070, China
| | - Chan Yang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (Q.L.); (R.L.); (C.Y.); (X.W.); (Z.R.); (S.Z.)
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaodong Wang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (Q.L.); (R.L.); (C.Y.); (X.W.); (Z.R.); (S.Z.)
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan 430070, China
| | - Zaohong Ran
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (Q.L.); (R.L.); (C.Y.); (X.W.); (Z.R.); (S.Z.)
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan 430070, China
| | - Shanshan Zhou
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (Q.L.); (R.L.); (C.Y.); (X.W.); (Z.R.); (S.Z.)
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Li
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (Q.L.); (R.L.); (C.Y.); (X.W.); (Z.R.); (S.Z.)
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan 430070, China
| | - Changjiu He
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (Q.L.); (R.L.); (C.Y.); (X.W.); (Z.R.); (S.Z.)
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
42
|
Cardoso L, Rodrigues L, Fontes D, Allison J, Chiarini-Garcia H, Almeida F. Ovarian morphometrical evaluation to assess reproductive activity suppression in heavy weight finishing gilts immunized against gonadotropin-releasing hormone. Res Vet Sci 2021; 136:519-526. [PMID: 33882380 DOI: 10.1016/j.rvsc.2021.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/02/2021] [Accepted: 04/12/2021] [Indexed: 11/24/2022]
Abstract
It is known that immunizing gilts against gonadotropin-releasing hormone (GnRH) is an efficient castration method that increases their growth performance. However, it is still unknown the ovarian histophysiology outcomes after this procedure. Therefore, the aim of this study was to investigate in detail, using morphological and morphometrical methods, changes in the ovarian structure that result in the suppression of ovarian activity, as well as to gain knowledge on the ovarian structure to assist in ovarian histopathological diagnoses. Seventy-two pre-pubertal finishing gilts were allocated to two experimental groups: immunized (IC; n = 36; gilts which received two injections of 2 mL of Vivax® - one at 15 and another at 19 weeks of age) and control (CT; n = 36, females which received two saline injections following the same protocol). All gilts were euthanized at 25 weeks of age and the ovaries of 5 gilts from each experimental group collected for biometrical and histomorphometrical analysis. IC gilts showed higher body weights, but smaller ovaries compared to CT females. In addition, the number of small follicles (≤ 2 mm) on the ovarian surface was higher, while no large follicles (> 6 mm) nor corpora lutea were found in the ovaries of IC gilts. Histomorphometrical analysis revealed that IC females showed higher numbers of quiescent and active primordial, primary, pre-antral and final stage atretic follicles. Moreover, follicle size, antrum diameter and area of the granulosa layer from mature follicles were smaller in IC gilts. Collectively, these results demonstrate that the efficacy of immunization against GnRH is related to the blockage of follicular recruitment and selection, thus suppressing reproductive activity in finishing gilts.
Collapse
Affiliation(s)
- Lucas Cardoso
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, 31.270-901 Belo Horizonte, MG, Brazil
| | - Lucas Rodrigues
- Prairie Swine Centre, Inc., S7H 5N9, 2105 - 8th Street East, Canada; Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, S7N 5A8, 51 Campus Drive, Canada
| | - Dalton Fontes
- Department of Animal Science, Veterinary School, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Jim Allison
- Zoetis, 10 Sylvan Way, Parsippany, NJ 07054, USA
| | - Helio Chiarini-Garcia
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, 31.270-901 Belo Horizonte, MG, Brazil
| | - Fernanda Almeida
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, 31.270-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
43
|
Duan H, Ge W, Yang S, Lv J, Ding Z, Hu J, Zhang Y, Zhao X, Hua Y, Xiao L. Dihydrotestosterone regulates oestrogen secretion, oestrogen receptor expression, and apoptosis in granulosa cells during antral follicle development. J Steroid Biochem Mol Biol 2021; 207:105819. [PMID: 33465420 DOI: 10.1016/j.jsbmb.2021.105819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 12/30/2022]
Abstract
Dihydrotestosterone (DHT) is involved in the development of preantral follicles. However, the effect of DHT on the development of antral follicles has yet to be fully investigated. Herein, we used enzyme-linked immunosorbent assays, immunofluorescence assays, quantitative real time-polymerase chain reaction, immunohistochemical staining, and western blotting to investigate the effect of DHT on antral follicle development. First, we detected the concentration of DHT and the expression of the androgen receptor (AR) in different antral follicles. Second, multiple DHT concentration (10-10-10-7 M) were added to granulosa cells cultured in vitro to examine the influence of DHT on AR expression. Third, to study changes in the expression of oestrogen (E2) synthase and receptors during the development of antral follicles, we divided them according to their diameters into small (≤ 2 mm), medium (2-5 mm), and large (≥ 5 mm) groups. Fourth, we added DHT (10-8 M) and flutamide (Flu, 10-7 M) to granulosa cells to determine whether DHT regulates the expression of cytochrome P450 aromatase (CYP19A1) and the associated receptors through the AR pathway. Fifth, we tested the effect of DHT and Flu on the expression of apoptotic genes and proteins in granulosa cells. We found that AR was expressed in sheep antral follicle granulosa cells and was regulated by DHT. During antral follicle development, the concentration of E2 and the expression of CYP19A1 and E2 receptors significantly increased in granulosa cells. DHT influenced this increase, at least partially, through the AR. Moreover, DHT regulated the expression of apoptotic genes and proteins through the AR. Our study expands our knowledge on the regulatory mechanism of DHT in antral follicle development and guides further research on the androgen regulation of ovarian function.
Collapse
Affiliation(s)
- Hongwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Wenbo Ge
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Shanshan Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jianshu Lv
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Ziqiang Ding
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yongli Hua
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Longfei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
44
|
Ma WQ, Zhao DH, Cheng HZ, Wang SB, Yang J, Cui HX, Lu MY, Wu HZ, Xu L, Liu GJ. Effects of dietary Enteromorpha powder on reproduction-related hormones and genes during the late laying period of Zi geese. Anim Biosci 2021; 34:457-462. [PMID: 32898960 PMCID: PMC7961191 DOI: 10.5713/ajas.20.0368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/13/2020] [Accepted: 08/16/2020] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the effects of Enteromorpha powder supplementation on reproduction-related hormones and genes in the late laying period of Zi geese. METHODS A total of 312 (1-year-old) Zi geese with similar laying rate were randomly divided into 2 groups with 6 replicates each, each with 21 female geese and 5 male geese. The control group was fed with a basal diet and the test group was fed with a diet containing 3% Enteromorpha powder. The trial period lasted for 7 weeks. RESULTS Our results showed that the laying rate was improved in the test group at each week of trial (p<0.01), and the levels of estradiol in serum and prolactin in ovary were increased compared with the control group (p<0.05). CONCLUSION Based on above results, Enteromorpha powder supplementation at 3% could promote reproductive performance during the late laying period of Zi geese.
Collapse
Affiliation(s)
- Wei Qing Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030,
China
| | - Dan Hua Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030,
China
| | - Huang Zuo Cheng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030,
China
| | - Si Bo Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030,
China
| | - Ji Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030,
China
| | - Hong Xia Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030,
China
| | - Ming Yuan Lu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030,
China
| | - Hong Zhi Wu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030,
China
| | - Li Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030,
China
| | - Guo Jun Liu
- Institute of Animal Husbandry of Heilongjiang Academy of Agricultural Sciences, Harbin 150086,
China
| |
Collapse
|
45
|
Zhang Y, Zhou X, Zhu Y, Wang H, Xu J, Su Y. Current mechanisms of primordial follicle activation and new strategies for fertility preservation. Mol Hum Reprod 2021; 27:6128515. [PMID: 33538812 DOI: 10.1093/molehr/gaab005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Premature ovarian insufficiency (POI) is characterized by symptoms caused by ovarian dysfunction in patients aged <40 years. It is associated with a shortened reproductive lifespan. The only effective treatment for patients who are eager to become pregnant is IVF/Embryo Transfer (ET) using oocytes donated by young women. However, the use of the technique is constrained by the limited supply of oocytes and ethical issues. Some patients with POI still have some residual follicles in the ovarian cortex, which are not regulated by gonadotropin. These follicles are dormant. Therefore, activating dormant primordial follicles (PFs) to obtain high-quality oocytes for assisted reproductive technology may bring new hope for patients with POI. Therefore, this study aimed to explore the factors related to PF activation, such as the intercellular signaling network, the internal microenvironment of the ovary and the environment of the organism. In addition, we discussed new strategies for fertility preservation, such as in vitro activation and stem cell transplantation.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Xiaomei Zhou
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Ye Zhu
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Hanbin Wang
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Juan Xu
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Yiping Su
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| |
Collapse
|
46
|
Duan H, Xiao L, Ge W, Yang S, Jiang Y, Lv J, Hu J, Zhang Y, Zhao X, Hua Y. Follicle-stimulating hormone and luteinizing hormone regulate the synthesis mechanism of dihydrotestosterone in sheep granulosa cells. Reprod Domest Anim 2020; 56:292-300. [PMID: 33001490 DOI: 10.1111/rda.13837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 11/26/2022]
Abstract
Steroid hormones and receptors play important roles in female reproduction, and their expression patterns affect follicular growth and development. To examine the expression of dihydrotestosterone (DHT) synthases (5α-reductases (5α-red1 and 5α-red2)) and androgen receptor (AR) during follicular development, and the regulation of DHT signalling by follicle-stimulating hormone (FSH) and luteinizing hormone (LH), we have used enzyme-linked immunosorbent assays, quantitative real-time polymerase chain reaction, immunohistochemical staining and Western blotting to examine DHT synthesis in small (≤2 mm), medium (2-5 mm) and large (≥5 mm) sheep follicles. Expression of 5α-red1, 5α-red2 and AR was observed in ovine ovaries, and with the development of follicles, the expressions of 5α-red1 and 5α-red2 mRNA and protein increased, but the levels of AR mRNA, protein and DHT level decreased. In addition, granulosa cells were treated with FSH (0.01, 0.1 and 1 international unit (IU)/ml), LH (0.01, 0.1 and 1 IU/ml) and testosterone (T, 10-7 M) to evaluate the effects of FSH and LH on DHT and oestradiol (E2) synthesis and 5α-red1, 5α-red2 and AR expression. We found that FSH and LH upregulated 5α-red1 and 5α-red2 in sheep granulosa cells, but downregulated the concentration of DHT and expression of AR. Meanwhile, FSH and LH significantly upregulated the expression of aromatase (P450arom) and secretion of E2. This result indicates that although FSH and LH promote the expression of 5α-red1 and 5α-red2, T is not transformed into DHT, but E2. This study reveals the reason why DHT concentration is downregulated in large follicles and lays a foundation for further exploring the synthesis mechanism of DHT during follicular development.
Collapse
Affiliation(s)
- Hongwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Longfei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Wenbo Ge
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Shanshan Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yuting Jiang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jianshu Lv
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yongli Hua
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
47
|
Schuler G. [Equine chorionic gonadotrophin: Biology and veterinary use]. Tierarztl Prax Ausg G Grosstiere Nutztiere 2020; 48:344-354. [PMID: 33080658 DOI: 10.1055/a-1235-7973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The pituitary gonadotrophins follicle-stimulating hormone (FSH) and luteinizing hormone (LH) play a prominent role in the control of gonadal functions. Therefore, their use in the treatment of fertility disorders (e. g. anovulatory anestrus) as well as in biotechnology (e. g. superovulation, hormone programs for cycle synchronization) is of substantial interest. Preparations of FSH or LH are relatively expensive due to the laborious extraction from pituitary tissue and are therefore reserved for special indications. In primates and equids, the chorionic epithelium expresses an LH-like molecule (chorionic gonadotrophin, CG). Equine CG (eCG) selectively binds to LH receptors in equids. In all other domestic mammalian species, equine CG (eCG) shows an extraordinarily high FSH activity in addition to its LH activity ("dual activity"). Since its market launch, this has therefore gained considerable importance as a comparatively inexpensive FSH analogue, mainly for use in ruminants and pigs. In contrast to the human CG (hCG), which may be isolated non-invasively from the urine of pregnant women and is widely used as LH analogue, eCG must be extracted from the blood of pregnant donor mares, as eCG concentrations in urine are only minimal. Following reports of deaths and suffering of donor mares associated with eCG collection in South American settings, the current practice of eCG production has given rise to increasing public criticism. This has recently led to calls for a general production ban. Primary aim of this review is therefore to summarize the current state of knowledge concerning the properties and biology of this molecule, which is also highly interesting from the point of view of basic science.
Collapse
Affiliation(s)
- Gerhard Schuler
- Klinik für Geburtshilfe, Gynäkologie und Andrologie der Groß- und Kleintiere mit Tierärztlicher Ambulanz, Justus-Liebig-Universität Gießen
| |
Collapse
|
48
|
Zhai QY, Wang JJ, Tian Y, Liu X, Song Z. Review of psychological stress on oocyte and early embryonic development in female mice. Reprod Biol Endocrinol 2020; 18:101. [PMID: 33050936 PMCID: PMC7552561 DOI: 10.1186/s12958-020-00657-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/07/2020] [Indexed: 12/22/2022] Open
Abstract
Psychological stress can cause adverse health effects in animals and humans. Accumulating evidence suggests that psychological stress in female mice is associated with ovarian developmental abnormalities accompanied by follicle and oocyte defects. Oocyte and early embryonic development are impaired in mice facing psychological stress, likely resulting from hormone signalling disorders, reactive oxygen species (ROS) accumulation and alterations in epigenetic modifications, which are primarily mediated by the hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-ovarian (HPO) axes. The present evidence suggests that psychological stress is increasingly becoming the most common causative factor for female subfertility. Here, we review recent progress on the impact of psychological stress on female reproduction, particularly for oocyte and early embryonic development in female mice. This review highlights the connection between psychological stress and reproductive health and provides novel insight on human subfertility.
Collapse
Affiliation(s)
- Qiu-Yue Zhai
- grid.410645.20000 0001 0455 0905School of Basic Medicine, Qingdao University, Qingdao, 266071 China
- grid.410645.20000 0001 0455 0905Qingdao Medical College, Qingdao University, Qingdao, 266071 China
| | - Jun-Jie Wang
- grid.412608.90000 0000 9526 6338College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109 China
| | - Yu Tian
- grid.412608.90000 0000 9526 6338College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109 China
| | - Xiaofang Liu
- grid.43308.3c0000 0000 9413 3760Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
| | - Zhenhua Song
- grid.410645.20000 0001 0455 0905School of Basic Medicine, Qingdao University, Qingdao, 266071 China
- grid.410645.20000 0001 0455 0905Qingdao Medical College, Qingdao University, Qingdao, 266071 China
| |
Collapse
|
49
|
Beato S, Toledo-Solís FJ, Fernández I. Vitamin K in Vertebrates' Reproduction: Further Puzzling Pieces of Evidence from Teleost Fish Species. Biomolecules 2020; 10:E1303. [PMID: 32917043 PMCID: PMC7564532 DOI: 10.3390/biom10091303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Vitamin K (VK) is a fat-soluble vitamin that vertebrates have to acquire from the diet, since they are not able to de novo synthesize it. VK has been historically known to be required for the control of blood coagulation, and more recently, bone development and homeostasis. Our understanding of the VK metabolism and the VK-related molecular pathways has been also increased, and the two main VK-related pathways-the pregnane X receptor (PXR) transactivation and the co-factor role on the γ-glutamyl carboxylation of the VK dependent proteins-have been thoroughly investigated during the last decades. Although several studies evidenced how VK may have a broader VK biological function than previously thought, including the reproduction, little is known about the specific molecular pathways. In vertebrates, sex differentiation and gametogenesis are tightly regulated processes through a highly complex molecular, cellular and tissue crosstalk. Here, VK metabolism and related pathways, as well as how gametogenesis might be impacted by VK nutritional status, will be reviewed. Critical knowledge gaps and future perspectives on how the different VK-related pathways come into play on vertebrate's reproduction will be identified and proposed. The present review will pave the research progress to warrant a successful reproductive status through VK nutritional interventions as well as towards the establishment of reliable biomarkers for determining proper nutritional VK status in vertebrates.
Collapse
Affiliation(s)
- Silvia Beato
- Campus de Vegazana, s/n, Universidad de León (ULE), 24071 León, Spain;
| | - Francisco Javier Toledo-Solís
- Consejo Nacional de Ciencia y Tecnología (CONACYT, México), Av. Insurgentes Sur 1582, Col. Crédito Constructor, Alcaldía Benito Juárez, C.P. 03940 Ciudad de Mexico, Mexico;
- Department of Biology and Geology, University of Almería, 04120 Almería, Spain
| | - Ignacio Fernández
- Center for Aquaculture Research, Agrarian Technological Institute of Castile and Leon, Ctra. Arévalo, s/n, 40196 Zamarramala, Segovia, Spain
| |
Collapse
|
50
|
Guo Y, Li Y, Zhang S, Wu X, Jiang L, Zhao Q, Xue W, Huo S. The effect of total flavonoids of Epimedium on granulosa cell development in laying hens. Poult Sci 2020; 99:4598-4606. [PMID: 32868004 PMCID: PMC7597984 DOI: 10.1016/j.psj.2020.05.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/04/2020] [Accepted: 05/22/2020] [Indexed: 12/02/2022] Open
Abstract
To investigate the impact of total flavonoids of Epimedium (TFE) on the development of follicles of laying hens, 3 types of follicles including primary, prehierarchical, and preovulatory follicles were selected to obtain the follicular granulosa cells cultured in vitro. First, extraction of TFE was conducted by alcohol-soluble and ultrasonic methods. The effects of TFE on activity and proliferation of follicular granulosa cells were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and measuring the expression of proliferating cell nuclear antigen mRNA through real-time quantitative polymerase chain reaction, and the expression of the follicle-stimulating hormone receptor, luteinizing hormone receptor, steroidogenic acute regulatory protein, and cytochrome P450 family 11 subfamily A member 1 mRNA was detected to study the functions of TFE affecting the differentiation and hormone secretion by granulosa cells. The results showed that TFE significantly improved the proliferation of 3 types of granulosa cells and promoted the differentiation of granulosa cells and accelerated the conversion of primary follicles to prehierarchical follicles. Total flavonoids of Epimedium played an important role in promoting progesterone secretion by prehierarchical and preovulatory granulosa cells. The results indicated that TFE could promote proliferation and differentiation of follicular granulosa cells and improve hormone secretion and follicle development, which provided reference data for TFE used as a feed additive or safe Chinese veterinary medicine to promote the laying rate.
Collapse
Affiliation(s)
- Yu Guo
- The College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| | - Yurong Li
- The College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| | - Shuang Zhang
- The College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| | - Xianjun Wu
- The College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| | - Luying Jiang
- The College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| | - Qianhui Zhao
- The College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| | - Wenhui Xue
- The College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| | - Shuying Huo
- The College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China.
| |
Collapse
|