1
|
Mundy MA, Demers D, Brossay L. Lung NK cells are sufficient to control viral dissemination during respiratory MCMV infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf039. [PMID: 40174911 DOI: 10.1093/jimmun/vkaf039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/29/2025] [Indexed: 04/04/2025]
Abstract
Murine cytomegalovirus (MCMV) respiratory dissemination schemes, which mimic natural infection routes, have only recently become an area of investigation. Using an intratracheal (i.t.) infection method, we discovered that the respiratory infection route yields differential infection kinetics compared to the widely used intraperitoneal (i.p.) infection method. Remarkably, we find that respiratory infection results in limited dissemination, with the virus being mostly contained in the pulmonary tissue. Importantly, using Rag1, Ly49H, and natural killer (NK) cell-deficient animals, we find that lung conventional NK (cNK) cells play a critical role in preventing MCMV-induced morbidity. Mechanistically, we show that indirect activation of lung NK cells via interleukin (IL)-12 and type 1 interferon (IFN) inflammatory cytokines is dispensable, while direct activation via Ly49H is essential in preventing morbidity from i.t. infection. Additionally, we did not find a significant role for ILC2 or tissue-resident NK (trNK) cells in the prevention of viral dissemination, and we did not observe an increase in the abundance of these cells. These findings uncover an unanticipated role for pulmonary cNK cells in preventing viral dissemination from infected lungs.
Collapse
Affiliation(s)
- Miles A Mundy
- Division of Biology and Medicine, Department of Molecular Microbiology & Immunology, Brown University, Providence, RI, United States
| | - Delia Demers
- Division of Biology and Medicine, Department of Molecular Microbiology & Immunology, Brown University, Providence, RI, United States
| | - Laurent Brossay
- Division of Biology and Medicine, Department of Molecular Microbiology & Immunology, Brown University, Providence, RI, United States
| |
Collapse
|
2
|
Liu X, Zhang M, Yin L, Kang L, Luo Y, Wang X, Ren L, Zhang G, Yao Y, Liu P. PEDV evades MHC-I-related immunity through nsp1-mediated NLRC5 translation inhibition. J Virol 2024; 98:e0142124. [PMID: 39480087 PMCID: PMC11575403 DOI: 10.1128/jvi.01421-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/06/2024] [Indexed: 11/02/2024] Open
Abstract
Major histocompatibility complex class I (MHC-I) plays crucial roles against viral infections not only by initiating CD8+ T cell immunity but also by modulating natural killer (NK) cell cytotoxicity. Understanding how viruses precisely regulate MHC-I to optimize their infection is important; however, the manipulation of MHC-I molecules by porcine epidemic diarrhea virus (PEDV) remains unclear. In this study, we demonstrate that PEDV infection promotes the transcription of NLRC5, a key transactivator of MHC-I, in several porcine cell lines and in vivo. Paradoxically, no increase in MHC-I expression is observed after PEDV infection both in vitro and in vivo. Mechanistic studies revealed that PEDV infection inhibits the translation of PEDV-elicited NLRC5 mRNA and the expression of downstream MHC-I proteins, without affecting the expression of physiological NLRC5 and MHC-I proteins. Through viral protein screening, we identified PEDV nonstructural protein 1 (nsp1) as the critical antagonist that inhibits NLRC5-mediated upregulation of MHC-I, and the nsp1's inhibitory effect on MHC-I requires the motif of 15 amino acids at its C-terminus. Notably, our results revealed that the cytotoxic ability of NK cells against PEDV-infected cells is similar to that against healthy cells. Collectively, our findings uncover an immune evasion mechanism by which PEDV-infected cells masquerade as healthy cells to evade NK and T cell immunity. This is achieved by targeting NLRC5, a key MHC-I transcriptional regulator, via nsp1.IMPORTANCEPorcine epidemic diarrhea virus (PEDV) is a highly contagious enteric coronavirus that inflicts substantial financial losses on the swine industry. Major histocompatibility complex class I (MHC-I) is a critical factor influencing both CD8+ T cell and natural killer (NK) cell immunity. However, how PEDV manipulates MHC-I expression to optimize its infection process remains largely unknown. In this study, we demonstrate that PEDV's nonstructural protein 1 (nsp1) inhibits virus-mediated induction of MHC-I expression by directly targeting NLRC5, a key MHC-I transactivator. Intriguingly, nsp1 does not reduce physiological NLRC5 and MHC-I expression. This selective inhibition of virus-elicited NLRC5 mRNA translation allows PEDV-infected cells to masquerade as healthy cells, thereby evading CD8+ T cell and NK cell cytotoxicity. Our findings provide unique insights into the mechanisms by which PEDV evades CD8+ T cell and NK cell immunity.
Collapse
Affiliation(s)
- Xiang Liu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Meng Zhang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lingdan Yin
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Li Kang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yi Luo
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaodong Wang
- Beijing Great Wall Danyu Livestock Co. Ltd., Beijing, China
| | - Li Ren
- Beijing Great Wall Danyu Livestock Co. Ltd., Beijing, China
| | - Guozhong Zhang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yao Yao
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Pinghuang Liu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Ulitzka M, Harwardt J, Lipinski B, Tran H, Hock B, Kolmar H. Potent Apoptosis Induction by a Novel Trispecific B7-H3xCD16xTIGIT 2+1 Common Light Chain Natural Killer Cell Engager. Molecules 2024; 29:1140. [PMID: 38474651 DOI: 10.3390/molecules29051140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Valued for their ability to rapidly kill multiple tumor cells in succession as well as their favorable safety profile, NK cells are of increasing interest in the field of immunotherapy. As their cytotoxic activity is controlled by a complex network of activating and inhibiting receptors, they offer a wide range of possible antigens to modulate their function by antibodies. In this work, we utilized our established common light chain (cLC)-based yeast surface display (YSD) screening procedure to isolate novel B7-H3 and TIGIT binding monoclonal antibodies. The chicken-derived antibodies showed single- to low-double-digit nanomolar affinities and were combined with a previously published CD16-binding Fab in a 2+1 format to generate a potent NK engaging molecule. In a straightforward, easily adjustable apoptosis assay, the construct B7-H3xCD16xTIGIT showed potent apoptosis induction in cancer cells. These results showcase the potential of the TIGIT NK checkpoint in combination with activating receptors to achieve increased cytotoxic activity.
Collapse
Affiliation(s)
- Michael Ulitzka
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany
| | - Julia Harwardt
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany
| | - Britta Lipinski
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany
| | - Hue Tran
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany
| | - Björn Hock
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany
- Centre of Synthetic Biology, Technical University of Darmstadt, 64283 Darmstadt, Germany
| |
Collapse
|
4
|
Kot K, Łanocha-Arendarczyk N, Ptak M, Łanocha A, Kalisińska E, Kosik-Bogacka D. Pathomechanisms in the Kidneys in Selected Protozoan Parasitic Infections. Int J Mol Sci 2021; 22:4209. [PMID: 33921746 PMCID: PMC8073708 DOI: 10.3390/ijms22084209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 11/17/2022] Open
Abstract
Leishmaniasis, malaria, toxoplasmosis, and acanthamoebiasis are protozoan parasitic infections. They remain important contributors to the development of kidney disease, which is associated with increased patients' morbidity and mortality. Kidney injury mechanisms are not fully understood in protozoan parasitic diseases, bringing major difficulties to specific therapeutic interventions. The aim of this review is to present the biochemical and molecular mechanisms in kidneys infected with Leishmania spp., Plasmodium spp., Toxoplasma gondii, and Acanthamoeba spp. We present available mechanisms of an immune response, oxidative stress, apoptosis process, hypoxia, biomarkers of renal injury in the serum or urine, and the histopathological changes of kidneys infected with the selected parasites. Pathomechanisms of Leishmania spp. and Plasmodium spp. infections have been deeply investigated, while Toxoplasma gondii and Acanthamoeba spp. infections in the kidneys are not well known yet. Deeper knowledge of kidney involvement in leishmaniasis and malaria by presenting their mechanisms provides insight into how to create novel and effective treatments. Additionally, the presented work shows gaps in the pathophysiology of renal toxoplasmosis and acanthamoebiasis, which need further research.
Collapse
Affiliation(s)
- Karolina Kot
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (K.K.); (N.Ł.-A.); (E.K.)
| | - Natalia Łanocha-Arendarczyk
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (K.K.); (N.Ł.-A.); (E.K.)
| | - Michał Ptak
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Aleksandra Łanocha
- Department of Haematology and Transplantology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Elżbieta Kalisińska
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (K.K.); (N.Ł.-A.); (E.K.)
| | - Danuta Kosik-Bogacka
- Independent Laboratory of Pharmaceutical Botany, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
5
|
Tang M, Gao S, Zhang L, Liu B, Li J, Wang Z, Zhang W. Docetaxel suppresses immunotherapy efficacy of natural killer cells toward castration-resistant prostate cancer cells via altering androgen receptor-lectin-like transcript 1 signals. Prostate 2020; 80:742-752. [PMID: 32449811 DOI: 10.1002/pros.23988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/17/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Docetaxel is an effective first-line chemotherapy agent used in the treatment of castration-resistant prostate cancer (CRPC) patients. However, most times chemotherapy with docetaxel eventually fails due to the development of docetaxel resistance. Natural killer (NK) cells are the first line of defense against cancer and infections. NK cell function is determined by a delicate balance between signals received via activating and inhibitory receptors. The aim of this study is to explore whether the potential docetaxel-resistant mechanism is associated with impaired NK cell cytotoxicity toward CRPC cells. METHODS By performing MTT assay, we explored the role of docetaxel in regulating NK cells' cytotoxicity. Western blot and quantitative real-time polymerase chain reaction analysis were used to measure messenger RNA and protein levels separately. Luciferase reporter assay and chromatin immunoprecipitation assay were performed to analyze the mechanism. RESULTS We found that docetaxel could suppress the immunotherapy efficacy of NK cells toward CRPC cells via the androgen receptor (AR)-lectin-like transcript 1 (LLT1) signals in vitro. Analysis of the mechanism revealed that docetaxel functioned through increasing AR to upregulate LLT1 expression in CRPC cells. AR transcriptionally activated LLT1 expression by binding to its promoter region. Furthermore, targeting AR with ASC-J9 or blocking LL1 by anti-human LLT1 monoclonal antibody could reverse the suppressive effect of docetaxel on the immunotherapy efficacy of NK cells toward CRPC cells. CONCLUSIONS We concluded that chemotherapy agent docetaxel could increase AR that transcriptionally regulated the expression of NK inhibitory ligand LLT1 on CRPC cells. An increase of LL1 may further suppress the immunological efficacy of NK cells to kill CRPC cells. Additionally, targeting AR or blocking LL1 could enhance the immunotherapy efficacy of NK cells toward CRPC cells which might be considered as a new therapeutic option for the prevention or treatment of docetaxel resistance.
Collapse
MESH Headings
- Androgen Receptor Antagonists/pharmacology
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antineoplastic Agents/adverse effects
- Antineoplastic Agents/therapeutic use
- Cell Line, Tumor
- Coculture Techniques
- Combined Modality Therapy
- Curcumin/analogs & derivatives
- Curcumin/pharmacology
- Docetaxel/adverse effects
- Docetaxel/therapeutic use
- HEK293 Cells
- Humans
- Immunotherapy, Adoptive/methods
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/transplantation
- Lectins, C-Type/antagonists & inhibitors
- Lectins, C-Type/biosynthesis
- Lectins, C-Type/immunology
- Male
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/immunology
- Prostatic Neoplasms, Castration-Resistant/therapy
- Receptors, Androgen/biosynthesis
- Receptors, Androgen/genetics
- Receptors, Androgen/immunology
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/immunology
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Min Tang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shenglin Gao
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Lei Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bianjiang Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Mathew SO, Chaudhary P, Powers SB, Vishwanatha JK, Mathew PA. Overexpression of LLT1 (OCIL, CLEC2D) on prostate cancer cells inhibits NK cell-mediated killing through LLT1-NKRP1A (CD161) interaction. Oncotarget 2018; 7:68650-68661. [PMID: 27626681 PMCID: PMC5356580 DOI: 10.18632/oncotarget.11896] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 08/22/2016] [Indexed: 11/25/2022] Open
Abstract
Prostate cancer is the most common type of cancer diagnosed and the second leading cause of cancer-related death in American men. Natural Killer (NK) cells are the first line of defense against cancer and infections. NK cell function is regulated by a delicate balance between signals received through activating and inhibitory receptors. Previously, we identified Lectin-like transcript-1 (LLT1/OCIL/CLEC2D) as a counter-receptor for the NK cell inhibitory receptor NKRP1A (CD161). Interaction of LLT1 expressed on target cells with NKRP1A inhibits NK cell activation. In this study, we have found that LLT1 was overexpressed on prostate cancer cell lines (DU145, LNCaP, 22Rv1 and PC3) and in primary prostate cancer tissues both at the mRNA and protein level. We further showed that LLT1 is retained intracellularly in normal prostate cells with minimal cell surface expression. Blocking LLT1 interaction with NKRP1A by anti-LLT1 mAb on prostate cancer cells increased the NK-mediated cytotoxicity of prostate cancer cells. The results indicate that prostate cancer cells may evade immune attack by NK cells by expressing LLT1 to inhibit NK cell-mediated cytolytic activity through LLT1-NKRP1A interaction. Blocking LLT1-NKRP1A interaction will make prostate cancer cells susceptible to killing by NK cells and therefore may be a new therapeutic option for treatment of prostate cancer.
Collapse
Affiliation(s)
- Stephen O Mathew
- Department of Cell Biology and Immunology and Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Pankaj Chaudhary
- Department of Molecular and Medical Genetics and Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Sheila B Powers
- Department of Cell Biology and Immunology and Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Jamboor K Vishwanatha
- Department of Molecular and Medical Genetics and Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Porunelloor A Mathew
- Department of Cell Biology and Immunology and Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
7
|
Abstract
Classically, natural killer (NK) cells have been defined by nonspecific innate killing of virus-infected and tumor cells. However, burgeoning evidence suggests that the functional repertoire of NK cells is far more diverse than has been previously appreciated, thus raising the possibility that there may be unexpected functional specialization and even adaptive capabilities among NK cell subpopulations. Some of the first evidence that NK cells respond in an antigen-specific fashion came from experiments revealing that subpopulations of murine NK cells were able to respond to a specific murine cytomegalovirus (MCMV) protein and that in the absence of T and B cells, murine NK cells also mediated adaptive immune responses to a secondary challenge with specific haptens. These data have been followed by demonstrations of NK cell memory of viruses and viral antigens in mice and primates. Herein, we discuss different forms of NK cell antigen specificity and how these responses may be tuned to specific viral pathogens, and we provide assessment of the current literature that may explain molecular mechanisms of the novel phenomenon of NK cell memory.
Collapse
|
8
|
Riley JK. Murine trophoblast stem cells and their immunological capabilities. Expert Rev Clin Immunol 2011; 7:561-3. [PMID: 21895467 DOI: 10.1586/eci.11.55] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Quattrocchi V, Langellotti C, Pappalardo JS, Olivera V, Di Giacomo S, van Rooijen N, Mongini C, Waldner C, Zamorano PI. Role of macrophages in early protective immune responses induced by two vaccines against foot and mouth disease. Antiviral Res 2011; 92:262-70. [PMID: 21878353 DOI: 10.1016/j.antiviral.2011.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 08/07/2011] [Accepted: 08/10/2011] [Indexed: 10/17/2022]
Abstract
Foot and Mouth Disease (FMD) is an acute disease of cloven-hoofed species. We studied the protection and early immune response induced in the murine model by vaccines formulated with inactivated virus and two different adjuvants. The presence of IMS12802PR or ISA206VG adjuvants yielded protection against viral challenge at early times post vaccination and induced FMDV-specific, but non neutralizing, antibody titers. In vivo macrophage depletion in vaccinated mice severely decreased the protection levels after virus challenge, indicating a central role of this cell population in the response elicited by the vaccines. Accordingly, opsonophagocytosis of FITC-labelled virus was augmented in 802-FMDVi and 206-FMDVi vaccinated mice. These results demonstrate the ability of the studied adjuvants to enhance the protective responses of these inactivated vaccines without the increase in seroneutralizing antibodies and the main role of opsonization and phagocytosis in the early protective immune responses against FMD infection in the murine model.
Collapse
Affiliation(s)
- V Quattrocchi
- Instituto de Virología-CICVyA, INTA Castelar, Nicolás Repetto y los Reseros s/n°, 1686 Hurlingham, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Zinöcker S, Sviland L, Dressel R, Rolstad B. Kinetics of lymphocyte reconstitution after allogeneic bone marrow transplantation: markers of graft-versus-host disease. J Leukoc Biol 2011; 90:177-87. [PMID: 21498586 DOI: 10.1189/jlb.0211067] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
GVHD causes extensive morbidity and mortality in patients who receive alloHCT. Predictive and reliable markers for GVHD are currently lacking but required to improve the safety and accessibility of alloHCT. We present an experimental rat model of myeloablative total body irradiation and fully mismatched major and minor histoincompatible, T cell-depleted BMT, followed by delayed infusion of donor lymphocytes. This treatment, in contrast to marrow transplantation alone, resulted in severe aGVHD and 100% lethality within 2-6 weeks. We investigated the reconstitution kinetics and phenotypes of donor leukocyte subpopulations as well as the histopathology of selected organs that may correlate with GVHD, with the goal to find potential disease-related markers. We observed histological changes mainly confined to the skin, with degenerative changes in the basal layer. LNs and spleen showed deranged architecture with markedly increased accumulation of lymphocytes, whereas the gut, liver, and lungs appeared normal. Of the lymphocyte markers tested, donor-derived CD62L(+) T cells were markedly decreased in animals suffering from GVHD. Furthermore, we observed peripheral depletion of CD4(+)CD25(hi)FoxP3(+) T(reg), which was in contrast to controls. The relative frequency of these lymphocyte subpopulations in blood may therefore serve as accessible cellular markers of aGVHD. We propose that the animal model presented is instructive for the identification of clinically relevant markers of GVHD, which could improve disease diagnosis and management in alloHCT.
Collapse
Affiliation(s)
- Severin Zinöcker
- Laboratory of Immunogenetics, NIAID Twinbrook II, 12441 Parklawn Dr, Rockville, MD 20852, USA.
| | | | | | | |
Collapse
|
11
|
G-CSF downregulates natural killer cell-mediated cytotoxicity in donors for hematopoietic SCT. Bone Marrow Transplant 2011; 47:73-81. [PMID: 21358682 DOI: 10.1038/bmt.2011.22] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In G-CSF-mobilized hematopoietic SCT (HSCT), natural killer (NK) cells have a critical role in GVHD and GVL effects. However, regulation of NK cell response to G-CSF remains unclear. This study assayed G-CSF effects in both HSCT donors and NK-92MI cells. The donors who received G-CSF had significantly decreased NK cell cytotoxicity. Levels of phosphatidylinositol 3-kinase (PI3K) and phosphorylated (p)-Akt, but not mammalian target of rapamycin (mTOR), were downregulated in NK cells from G-CSF-injected donors. G-CSF also decreased cytotoxicity without affecting viability and NF-κB of NK-92MI cells. PI3K and p-ERK expression were also decreased in G-CSF-treated NK-92MI cells, and their inhibitors, wortmannin and PD98059, respectively, both enhanced the downregulation of cytotoxicity. These effects were accompanied by decreased expression of a cytotoxicity-related gene, triosephosphate isomerase (TPI). Wortmannin, but not PD98059, enhanced the downregulation of TPI in G-CSF-treated NK-92MI cells, indicating a correlation between PI3K and TPI. We conclude that G-CSF-impaired NK cell cytotoxicity may accompany PI3K/Akt signaling. The effect is transient and NK cells may recover after G-CSF clearance, suggesting that G-CSF-mobilized HSCT may benefit both acute GVHD prevention and late-phase GVL promotion in HSCT recipients.
Collapse
|
12
|
Possible role of natural killer and natural killer T-like cells in implantation failure after IVF. Reprod Biomed Online 2010; 21:750-6. [DOI: 10.1016/j.rbmo.2010.07.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 07/23/2010] [Accepted: 07/27/2010] [Indexed: 11/21/2022]
|
13
|
Hormonal regulation of uterine natural killer cells in mouse preimplantation uterus. J Mol Histol 2010; 41:1-7. [PMID: 20198410 DOI: 10.1007/s10735-010-9256-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 02/16/2010] [Indexed: 12/21/2022]
Abstract
Uterine Natural Killer (uNK) cells are the most abundant lymphocyte population recruited in the uteri during murine and human pregnancy. Previous investigation on uNK cells during mouse pregnancy focused more on its accumulation in postimplantation periods, which were believed to play important roles in regulating trophoblast invasion and angiogenesis towards successful placentation. However, by using recently developed methods of Dolichos biflorus agglutinin (DBA) lectin, a closer examination during mouse preimplantation revealed that there were also dynamic regulations of uNK cell, suggesting a major regulation by steroid hormones. Here we provide a detailed examination of uNK cells distribution during mouse early pregnancy by DBA lectin reactivity, with emphasis on preimplantation period and its hormonal regulation profiles. Our results showed that uNK precursor cells or its cell membrane specific components could be recruited in the uterus by estrogen or/and progesterone, and the effects could be completely abolished by specific antagonists of their nuclear receptors (estrogen and progesterone receptor). These results suggested that the preimplantation uterus, through concerted hormone regulation, could recruit uNK precursor cell or its specific cellular component, which might be conducive for uterine receptivity and further uNK construction/function during postimplantation.
Collapse
|
14
|
Kurmyshkina O, Rapoport E, Moiseeva E, Korchagina E, Ovchinnikova T, Pazynina G, Belyanchikov I, Bovin N. Glycoprobes as a tool for the study of lectins expressed on tumor cells. Acta Histochem 2010; 112:118-26. [PMID: 19285339 DOI: 10.1016/j.acthis.2009.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 01/22/2009] [Accepted: 01/26/2009] [Indexed: 01/18/2023]
Abstract
Polyacrylamide glycoconjugates, Glyc-PAA, having various tags or labels are convenient tools for analysis of cellular lectins. Adaptation of such glycoprobes for flow cytometry allows us to reveal lectins expressed on cell surface and analyze their carbohydrate specificity as well as functionality. Localization of lectins is visualized by labeling of cells with fluorescein-tagged glycoprobes, Glyc-PAA-fluo, in combination with fluorescent microscopy techniques. Additionally, biotinylated glycoprobes can be immobilized on magnetic particles making it possible to separate a cell population according to its carbohydrate-binding profile. Here, we exemplify application of glycoprobes in the study of cellular siglecs and galectins, as well as lectin patterning of tumor cells. The specificity of sialic acid binding membrane-anchored lectins, siglecs-1, -5, -7, -8 and -9 was determined using this methodology. To study the carbohydrate-binding profile of soluble galactoside-binding lectins, galectins-1 or -3, these were loaded on (initially galectin free) Raji cells and probed using Glyc-PAA-fluo. Lessons learned from this model system allowed us to study the galectin distribution pattern of tumors: cells obtained from mice carrying mammary adenocarcinoma or lymphoma were probed with Glyc-PAA-fluo using flow cytometry. Disaccharide 6OSuLacdiNAc was shown to be the most potent probe for adenocarcinoma cells, demonstrating that 6OSuLacdiNAc-binding molecules accumulate on cell surface in a patch-wise distribution.
Collapse
Affiliation(s)
- Olga Kurmyshkina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Functional regulation and proteomic characterization of human natural killer cells through recombinant human granulocyte-colony stimulating factor treatment. Proteomics Clin Appl 2009. [DOI: 10.1002/prca.200800113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
|