1
|
Sun S, Ginn J, Kochanczyk T, Arango N, Jiang X, Huggins DJ, Bean J, Michino M, Baxt L, Liverton N, Meinke PT, Bryk R. Indazole to 2-Cyanoindole Scaffold Progression for Mycobacterial Lipoamide Dehydrogenase Inhibitors Achieves Extended Target Residence Time and Improved Antibacterial Activity. Angew Chem Int Ed Engl 2024; 63:e202407276. [PMID: 38997232 PMCID: PMC11887847 DOI: 10.1002/anie.202407276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/10/2024] [Accepted: 07/11/2024] [Indexed: 07/14/2024]
Abstract
Tuberculosis remains a leading cause of death from a single infection worldwide. Drug resistance to existing and even new antimycobacterials calls for research into novel targets and unexplored mechanisms of action. Recently we reported on the development of tight-binding inhibitors of Mycobacterium tuberculosis (Mtb) lipoamide dehydrogenase (Lpd), which selectively inhibit the bacterial but not the human enzyme based on a differential modality of inhibitor interaction with these targets. Here we report on the striking improvement in inhibitor residence time on the Mtb enzyme associated with scaffold progression from an indazole to 2-cyanoindole. Cryo-EM of Lpd with the bound 2-cyanoindole inhibitor 19 confirmed displacement of the buried water molecule deep in the binding channel with a cyano group. The ensuing hours-long improvement in on-target residence time is associated with enhanced antibacterial activity in axenic culture and in primary mouse macrophages. Resistance to 2-cyanoindole inhibitors involves mutations within the inhibitor binding site that have little effect on inhibitor affinity but change the modality of inhibitor-target interaction, resulting in fast dissociation from Lpd. These findings underscore that on-target residence time is a major determinant of antibacterial activity and in vivo efficacy.
Collapse
Affiliation(s)
- Shan Sun
- Sanders Tri-Institutional Therapeutics Discovery Institute, Bronk Laboratory, 1230 York Avenue, Box 122, New York NY 10065
| | - John Ginn
- Sanders Tri-Institutional Therapeutics Discovery Institute, Bronk Laboratory, 1230 York Avenue, Box 122, New York NY 10065
| | - Tomasz Kochanczyk
- Structural Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York NY 10065
| | - Nancy Arango
- Structural Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York NY 10065
| | - Xiuju Jiang
- Department of Microbiology and Immunology, Weill Cornell Medicine, 413 East 69 Street, New York NY 10021
| | - David J. Huggins
- Sanders Tri-Institutional Therapeutics Discovery Institute, Bronk Laboratory, 1230 York Avenue, Box 122, New York NY 10065
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York NY 10021
| | - James Bean
- Immunology Program, Sloan Kettering Institute, 1275 York Avenue, New York NY 10065
| | - Mayako Michino
- Sanders Tri-Institutional Therapeutics Discovery Institute, Bronk Laboratory, 1230 York Avenue, Box 122, New York NY 10065
| | - Leigh Baxt
- Sanders Tri-Institutional Therapeutics Discovery Institute, Bronk Laboratory, 1230 York Avenue, Box 122, New York NY 10065
| | - Nigel Liverton
- Sanders Tri-Institutional Therapeutics Discovery Institute, Bronk Laboratory, 1230 York Avenue, Box 122, New York NY 10065
| | - Peter T. Meinke
- Sanders Tri-Institutional Therapeutics Discovery Institute, Bronk Laboratory, 1230 York Avenue, Box 122, New York NY 10065
| | - Ruslana Bryk
- Department of Microbiology and Immunology, Weill Cornell Medicine, 413 East 69 Street, New York NY 10021
| |
Collapse
|
2
|
Craggs PD, de Carvalho LPS. Bottlenecks and opportunities in antibiotic discovery against Mycobacterium tuberculosis. Curr Opin Microbiol 2022; 69:102191. [PMID: 35970040 DOI: 10.1016/j.mib.2022.102191] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/29/2022] [Accepted: 07/17/2022] [Indexed: 11/16/2022]
Abstract
Tuberculosis (TB) persists as a major global health issue and a leading cause of death by a single infectious agent. The global burden of TB is further exacerbated by the continuing emergence and dissemination of strains of Mycobacterium tuberculosis resistant to multiple antibiotics. The need for novel drugs that can be used to shorten the course for current TB drug regimens as well as combat the persistent threat of antibiotic resistance has never been greater. There have been significant advances in the discovery of de novo TB treatments, with the first TB-specific drugs in 45 years approved for use. However, there are still issues that restrict the pipeline of new antitubercular chemotherapies. The rate of failure of TB drug candidates in clinical trials remains high, while the validation of new TB drug targets and subsequent identification of novel inhibitors remains modest.
Collapse
Affiliation(s)
- Peter D Craggs
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom; GSK-Francis Crick Institute Linklabs, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, United Kingdom
| | - Luiz Pedro S de Carvalho
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom.
| |
Collapse
|
3
|
Abstract
Models of nonreplication help us understand the biology of persistent Mycobacterium tuberculosis. High throughput screening (HTS) against nonreplicating M. tuberculosis may lead to identification of tool compounds that affect pathways on which bacterial survival depends in such states and to development of drugs that can overcome phenotypic resistance to conventional antimycobacterial agents, which are mostly active against replicating M. tuberculosis. We describe a multistress model of nonreplication that mimics some of the microenvironmental conditions that M. tuberculosis faces in the host as adapted for HTS. The model includes acidic pH, mild hypoxia, a flux of nitric oxide, and other reactive nitrogen intermediates arising from nitrite at low pH and low concentrations of a fatty acid (butyrate) as a carbon source.
Collapse
|
4
|
Zhang H, Hsu HC, Kahne SC, Hara R, Zhan W, Jiang X, Burns-Huang K, Ouellette T, Imaeda T, Okamoto R, Kawasaki M, Michino M, Wong TT, Toita A, Yukawa T, Moraca F, Vendome J, Saha P, Sato K, Aso K, Ginn J, Meinke PT, Foley M, Nathan CF, Darwin KH, Li H, Lin G. Macrocyclic Peptides that Selectively Inhibit the Mycobacterium tuberculosis Proteasome. J Med Chem 2021; 64:6262-6272. [PMID: 33949190 PMCID: PMC8194371 DOI: 10.1021/acs.jmedchem.1c00296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Treatment of tuberculosis (TB) currently takes at least 6 months. Latent Mycobacterium tuberculosis (Mtb) is phenotypically tolerant to most anti-TB drugs. A key hypothesis is that drugs that kill nonreplicating (NR) Mtb may shorten treatment when used in combination with conventional drugs. The Mtb proteasome (Mtb20S) could be such a target because its pharmacological inhibition kills NR Mtb and its genetic deletion renders Mtb unable to persist in mice. Here, we report a series of macrocyclic peptides that potently and selectively target the Mtb20S over human proteasomes, including macrocycle 6. The cocrystal structure of macrocycle 6 with Mtb20S revealed structural bases for the species selectivity. Inhibition of 20S within Mtb by 6 dose dependently led to the accumulation of Pup-tagged GFP that is degradable but resistant to depupylation and death of nonreplicating Mtb under nitrosative stress. These results suggest that compounds of this class have the potential to develop as anti-TB therapeutics.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065
| | - Hao-Chi Hsu
- Department of Structural Biology, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| | - Shoshanna C. Kahne
- Department of Microbiology, New York University School of Medicine, 430 E. 29th Street, New York, NY 10016
| | - Ryoma Hara
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, NY 10065
| | - Wenhu Zhan
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065
| | - Xiuju Jiang
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065
| | - Kristin Burns-Huang
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065
| | - Tierra Ouellette
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065
| | - Toshihiro Imaeda
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, NY 10065
| | - Rei Okamoto
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, NY 10065
| | - Masanori Kawasaki
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, NY 10065
| | - Mayako Michino
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, NY 10065
| | - Tzu-Tshin Wong
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, NY 10065
| | - Akinori Toita
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, NY 10065
| | - Takafumi Yukawa
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, NY 10065
| | | | | | - Priya Saha
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065
| | - Kenjiro Sato
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, NY 10065
| | - Kazuyoshi Aso
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, NY 10065
| | - John Ginn
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, NY 10065
| | - Peter T. Meinke
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, NY 10065
| | - Michael Foley
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, NY 10065
| | - Carl F Nathan
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065
| | - K. Heran Darwin
- Department of Microbiology, New York University School of Medicine, 430 E. 29th Street, New York, NY 10016
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| | - Gang Lin
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065
| |
Collapse
|
5
|
Ferguson SA, Menorca A, Van Zuylen EM, Cheung CY, McConnell MA, Rennison D, Brimble MA, Bodle K, McDougall S, Cook GM, Heikal A. Microtiter Screening Reveals Oxygen-Dependent Antimicrobial Activity of Natural Products Against Mastitis-Causing Bacteria. Front Microbiol 2019; 10:1995. [PMID: 31555233 PMCID: PMC6722467 DOI: 10.3389/fmicb.2019.01995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/14/2019] [Indexed: 11/27/2022] Open
Abstract
In this study we investigated the influence of oxygen availability on a phenotypic microtiter screen to identify new, natural product inhibitors of growth for the bovine mastitis-causing microorganisms; Streptococcus uberis, Staphylococcus aureus, and Escherichia coli. Mastitis is a common disease in dairy cattle worldwide and is a major cause of reduced milk yield and antibiotic usage in dairy herds. Prevention of bovine mastitis commonly relies on the application of teat disinfectants that contain either iodine or chlorhexidine. These compounds are used extensively in human clinical settings and increased tolerance to chlorhexidine has been reported in both Gram-positive and Gram-negative microorganisms. As such new, non-human use alternatives are required for the agricultural industry. Our screening was conducted under normoxic (20% oxygen) and hypoxic (<1% oxygen) conditions to mimic the conditions on teat skin and within the mammary gland respectively, against two natural compound libraries. No compounds inhibited E. coli under either oxygen condition. Against the Gram-positive microorganisms, 12 inhibitory compounds were identified under normoxic conditions, and 10 under hypoxic conditions. Data revealed a clear oxygen-dependency amongst compounds inhibiting growth, with only partial overlap between oxygen conditions. The oxygen-dependent inhibitory activity of a naturally occurring quinone, β-lapachone, against S. uberis was subsequently investigated and we demonstrated that this compound is only active under normoxic conditions with a minimum inhibitory concentration and minimum bactericidal concentration of 32 μM and kills via a reactive oxygen species-dependent mechanism as has been demonstrated in other microorganisms. These results demonstrate the importance of considering oxygen-availability in high-throughput inhibitor discovery.
Collapse
Affiliation(s)
- Scott A Ferguson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Ayana Menorca
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Essie M Van Zuylen
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Chen-Yi Cheung
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Michelle A McConnell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - David Rennison
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | | | | | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Adam Heikal
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
6
|
Smith J, Wescott H, Early J, Mullen S, Guzman J, Odingo J, Lamar J, Parish T. Anthranilic amide and imidazobenzothiadiazole compounds disrupt Mycobacterium tuberculosis membrane potential. MEDCHEMCOMM 2019; 10:934-945. [PMID: 31303991 PMCID: PMC6596218 DOI: 10.1039/c9md00088g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 04/12/2019] [Indexed: 11/24/2022]
Abstract
A family of compounds typified by an anthranilic amide 1 was identified from a whole-cell screening effort targeted at identifying compounds that disrupt pH homeostasis in Mycobacterium tuberculosis. 1 demonstrated bactericidal activity against non-replicating M. tuberculosis in pH 4.5 buffer (MBC4.5 = 6.3 μM). Exploration of the structure-activity relations failed to simplify the scaffold. The antitubercular activity proved dependent on the lipophilicity and planarity of the molecule and directly correlated with mammalian cytotoxicity. Further studies revealed a pH-dependent correlation between the family's disruption of M. tuberculosis membrane potential and antitubercular activity, with active compounds causing a drop in membrane potential at concentrations below their MBC4.5. A second compound family, identified in the same screening effort and typified by imidazo(4,5-e)(2,1,3)benzothiadiazole 2, provided a contrasting profile. As with 1, structure-activity profiling of 2 (MBC4.5 = 25 μM) failed to minimize the initial scaffold, mammalian cytotoxicity was observed for a majority of the active compounds, and many of the active compounds disrupted M. tuberculosis membrane potential. However, unlike the anthranilic amide compounds, the benzothiadiazole compounds disrupted M. tuberculosis membrane potential primarily at concentrations above the MBC4.5 in a pH-independent fashion. These differences suggest an alternative mechanism of action for the benzothiadiazole compounds. As a result, while the cytotoxicity of the anthranilic amides limits their utility to tool compounds, benzothiadiazole 2 presents an attractive target for more focused SAR exploration.
Collapse
Affiliation(s)
- Jake Smith
- TB Discovery Research , Infectious Disease Research Institute , 1616 Eastlake Ave E, Suite 400 , Seattle , Washington 98102 , USA .
| | - Heather Wescott
- TB Discovery Research , Infectious Disease Research Institute , 1616 Eastlake Ave E, Suite 400 , Seattle , Washington 98102 , USA .
| | - Julie Early
- TB Discovery Research , Infectious Disease Research Institute , 1616 Eastlake Ave E, Suite 400 , Seattle , Washington 98102 , USA .
| | - Steven Mullen
- TB Discovery Research , Infectious Disease Research Institute , 1616 Eastlake Ave E, Suite 400 , Seattle , Washington 98102 , USA .
| | - Junitta Guzman
- TB Discovery Research , Infectious Disease Research Institute , 1616 Eastlake Ave E, Suite 400 , Seattle , Washington 98102 , USA .
| | - Joshua Odingo
- TB Discovery Research , Infectious Disease Research Institute , 1616 Eastlake Ave E, Suite 400 , Seattle , Washington 98102 , USA .
| | - Jason Lamar
- Lilly Research Laboratories , Eli Lilly and Company , 307 E Merrill St , Indianapolis , Indiana 46285 , USA
| | - Tanya Parish
- TB Discovery Research , Infectious Disease Research Institute , 1616 Eastlake Ave E, Suite 400 , Seattle , Washington 98102 , USA .
| |
Collapse
|
7
|
Zhang P, Zhang W, Lang Y, Qu Y, Chu F, Chen J, Cui L. Mass spectrometry-based metabolomics for tuberculosis meningitis. Clin Chim Acta 2018; 483:57-63. [PMID: 29678632 DOI: 10.1016/j.cca.2018.04.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 04/14/2018] [Accepted: 04/16/2018] [Indexed: 02/07/2023]
Abstract
Tuberculosis meningitis (TBM) is a prevalent form of extra-pulmonary tuberculosis that causes substantial morbidity and mortality. Diagnosis of TBM is difficult because of the limited sensitivity of existing laboratory techniques. A metabolomics approach can be used to investigate the sets of metabolites of both bacteria and host, and has been used to clarify the mechanisms underlying disease development, and identify metabolic changes, leadings to improved methods for diagnosis, treatment, and prognostication. Mass spectrometry (MS) is a major analysis platform used in metabolomics, and MS-based metabolomics provides wide metabolite coverage, because of its high sensitivity, and is useful for the investigation of Mycobacterium tuberculosis (Mtb) and related diseases. It has been used to investigate TBM diagnosis; however, the processes involved in the MS-based metabolomics approach are complex and flexible, and often consist of several steps, and small changes in the methods used can have a huge impact on the final results. Here, the process of MS-based metabolomics is summarized and its applications in Mtb and Mtb-related diseases discussed. Moreover, the current status of TBM metabolomics is described.
Collapse
Affiliation(s)
- Peixu Zhang
- Department of Neurology, First Hospital, Jilin University, Changchun 130021, PR China
| | - Weiguanliu Zhang
- Department of Neurology, First Hospital, Jilin University, Changchun 130021, PR China
| | - Yue Lang
- Department of Neurology, First Hospital, Jilin University, Changchun 130021, PR China
| | - Yan Qu
- Blood Bank, Jilin Women and Children Health Hospital, Changchun 130021, PR China
| | - Fengna Chu
- Department of Neurology, First Hospital, Jilin University, Changchun 130021, PR China
| | - Jiafeng Chen
- Department of Neurology, First Hospital, Jilin University, Changchun 130021, PR China
| | - Li Cui
- Department of Neurology, First Hospital, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
8
|
Arora D, Chawla Y, Malakar B, Singh A, Nandicoori VK. The transpeptidase PbpA and noncanonical transglycosylase RodA of Mycobacterium tuberculosis play important roles in regulating bacterial cell lengths. J Biol Chem 2018. [PMID: 29530985 DOI: 10.1074/jbc.m117.811190] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The cell wall of Mycobacterium tuberculosis (Mtb) is a complex structure that protects the pathogen in hostile environments. Peptidoglycan (PG), which helps determine the morphology of the cell envelope, undergoes substantial remodeling under stress. This meshwork of linear chains of sugars, cross-linked through attached peptides, is generated through the sequential action of enzymes termed transglycosylases and transpeptidases. The Mtb genome encodes two classical transglycosylases and four transpeptidases, the functions of which are not fully elucidated. Here, we present work on the yet uncharacterized transpeptidase PbpA and a nonclassical transglycosylase RodA. We elucidate their roles in regulating in vitro growth and in vivo survival of pathogenic mycobacteria. We find that RodA and PbpA are required for regulating cell length, but do not affect mycobacterial growth. Biochemical analyses show PbpA to be a classical transpeptidase, whereas RodA is identified to be a member of an emerging class of noncanonical transglycosylases. Phosphorylation of RodA at Thr-463 modulates its biological function. In a guinea pig infection model, RodA and PbpA are found to be required for both bacterial survival and formation of granuloma structures, thus underscoring the importance of these proteins in mediating mycobacterial virulence in the host. Our results emphasize the fact that whereas redundant enzymes probably compensate for the absence of RodA or PbpA during in vitro growth, the two proteins play critical roles for the survival of the pathogen inside its host.
Collapse
Affiliation(s)
- Divya Arora
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067 India and
| | - Yogesh Chawla
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067 India and
| | - Basanti Malakar
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067 India and
| | - Archana Singh
- CSIR-Institute of Genomics and Integrative Biology, 110025 New Delhi, India
| | - Vinay Kumar Nandicoori
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067 India and
| |
Collapse
|
9
|
Nathan C. Kunkel Lecture: Fundamental immunodeficiency and its correction. J Exp Med 2017; 214:2175-2191. [PMID: 28701368 PMCID: PMC5551579 DOI: 10.1084/jem.20170637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 02/05/2023] Open
Abstract
"Fundamental immunodeficiency" is the inability of the encoded immune system to protect an otherwise healthy host from every infection that could threaten its life. In contrast to primary immunodeficiencies, fundamental immunodeficiency is not rare but nearly universal. It results not from variation in a given host gene but from the rate and extent of variation in the genes of other organisms. The remedy for fundamental immunodeficiency is "adopted immunity," not to be confused with adaptive or adoptive immunity. Adopted immunity arises from four critical societal contributions to the survival of the human species: sanitation, nutrition, vaccines, and antimicrobial agents. Immunologists have a great deal to contribute to the development of vaccines and antimicrobial agents, but they have focused chiefly on vaccines, and vaccinology is thriving. In contrast, the effect of antimicrobial agents in adopted immunity, although fundamental, is fragile and failing. Immunologists can aid the development of sorely needed antimicrobial agents, and the study of antimicrobial agents can help immunologists discover targets and mechanisms of host immunity.
Collapse
Affiliation(s)
- Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY
| |
Collapse
|
10
|
Hsu HC, Singh PK, Fan H, Wang R, Sukenick G, Nathan C, Lin G, Li H. Structural Basis for the Species-Selective Binding of N,C-Capped Dipeptides to the Mycobacterium tuberculosis Proteasome. Biochemistry 2016; 56:324-333. [PMID: 27976853 DOI: 10.1021/acs.biochem.6b01107] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The Mycobacterium tuberculosis (Mtb) 20S proteasome is vital for the pathogen to survive under nitrosative stress in vitro and to persist in mice. To qualify for drug development, inhibitors targeting Mtb 20S must spare both the human constitutive proteasome (c-20S) and immunoproteasome (i-20S). We recently reported members of a family of noncovalently binding dipeptide proteasome inhibitors that are highly potent and selective for Mtb 20S over human c-20S and i-20S. To understand the structural basis of their potency and selectivity, we have studied the structure-activity relationship of six derivatives and solved their cocrystal structures with Mtb 20S. The dipeptide inhibitors form an antiparallel β-strand with the active site β-strands. Selectivity is conferred by several features of Mtb 20S relative to its mouse counterparts, including a larger S1 pocket, additional hydrogen bonds in the S3 pocket, and hydrophobic interactions in the S4 pocket. Serine-20 and glutamine-22 of Mtb 20S interact with the dipeptides and confer Mtb-specific inhibition over c-20S and i-20S. The Mtb 20S and mammalian i-20S have a serine-27 that interacts strongly with the dipeptides, potentially explaining the higher inhibitory activity of the dipeptides toward i-20S over c-20S. This detailed structural knowledge will aid in optimizing the dipeptides as anti-tuberculosis drugs.
Collapse
Affiliation(s)
- Hao-Chi Hsu
- Van Andel Research Institute , Grand Rapids, Michigan 49503, United States
| | | | | | - Rong Wang
- NMR Analytical Core Facility, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - George Sukenick
- NMR Analytical Core Facility, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | | | | | - Huilin Li
- Van Andel Research Institute , Grand Rapids, Michigan 49503, United States
| |
Collapse
|
11
|
Structural analysis of the dodecameric proteasome activator PafE in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2016; 113:E1983-92. [PMID: 27001842 DOI: 10.1073/pnas.1512094113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The human pathogen Mycobacterium tuberculosis (Mtb) requires a proteasome system to cause lethal infections in mice. We recently found that proteasome accessory factor E (PafE, Rv3780) activates proteolysis by the Mtb proteasome independently of adenosine triphosphate (ATP). Moreover, PafE contributes to the heat-shock response and virulence of Mtb Here, we show that PafE subunits formed four-helix bundles similar to those of the eukaryotic ATP-independent proteasome activator subunits of PA26 and PA28. However, unlike any other known proteasome activator, PafE formed dodecamers with 12-fold symmetry, which required a glycine-XXX-glycine-XXX-glycine motif that is not found in previously described activators. Intriguingly, the truncation of the PafE carboxyl-terminus resulted in the robust binding of PafE rings to native proteasome core particles and substantially increased proteasomal activity, suggesting that the extended carboxyl-terminus of this cofactor confers suboptimal binding to the proteasome core particle. Collectively, our data show that proteasomal activation is not limited to hexameric ATPases in bacteria.
Collapse
|
12
|
Abstract
Genetic strategies have yet to come into their own as tools for antibiotic development. While holding a lot of initial promise, they have only recently started to bear fruit in the quest for new drug targets. An ever-increasing body of knowledge is showing that genetics can lead to significant improvements in the success and efficiency of drug discovery. Techniques such as high-frequency transposon mutagenesis and expression modulation have matured and have been applied successfully not only to the identification and characterization of new targets, but also to their validation as tractable weaknesses of bacteria. Past experience shows that choosing targets must not rely on gene essentiality alone, but rather needs to incorporate knowledge of the system as a whole. The ability to manipulate genes and their expression is key to ensuring that we understand the entire set of processes that are affected by drug treatment. Focusing on exacerbating these perturbations, together with the identification of new targets to which resistance has not yet occurred--both enabled by genetic approaches--may point us toward the successful development of new combination therapies engineered based on underlying biology.
Collapse
|
13
|
Chakraborty S, Rhee KY. Tuberculosis Drug Development: History and Evolution of the Mechanism-Based Paradigm. Cold Spring Harb Perspect Med 2015; 5:a021147. [PMID: 25877396 DOI: 10.1101/cshperspect.a021147] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Modern tuberculosis (TB) chemotherapy is widely viewed as a crowning triumph of anti-infectives research. However, only one new TB drug has entered clinical practice in the past 40 years while drug resistance threatens to further destabilize the pandemic. Here, we review a brief history of TB drug development, focusing on the evolution of mechanism(s)-of-action studies and key conceptual barriers to rational, mechanism-based drugs.
Collapse
Affiliation(s)
- Sumit Chakraborty
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, New York 10021 Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10021
| | - Kyu Y Rhee
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, New York 10021 Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10021
| |
Collapse
|
14
|
Gold B, Warrier T, Nathan C. A multi-stress model for high throughput screening against non-replicating Mycobacterium tuberculosis. Methods Mol Biol 2015; 1285:293-315. [PMID: 25779324 DOI: 10.1007/978-1-4939-2450-9_18] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Models of non-replication help us understand the biology of persistent Mycobacterium tuberculosis. High throughput screening (HTS) against non-replicating M. tuberculosis may lead to identification of tool compounds that affect pathways on which bacterial survival depends in such states, and to development of drugs that can overcome phenotypic tolerance to conventional antimycobacterial agents, which are mostly active against replicating M. tuberculosis. We describe a multi-stress model of non-replication that mimics some of the microenvironmental conditions that M. tuberculosis faces in the host as adapted for HTS. The model includes acidic pH, mild hypoxia, a flux of nitric oxide and other reactive nitrogen intermediates arising from nitrite at low pH, and low concentrations of a fatty acid (butyrate) as a carbon source.
Collapse
Affiliation(s)
- Ben Gold
- Department of Microbiology and Immunology, Weill Cornell Medical College, Belfer 1126, 413 East 69th St., New York, NY, 10065, USA,
| | | | | |
Collapse
|
15
|
Zheng Y, Jiang X, Gao F, Song J, Sun J, Wang L, Sun X, Lu Z, Zhang H. Identification of plant-derived natural products as potential inhibitors of the Mycobacterium tuberculosis proteasome. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:400. [PMID: 25315519 PMCID: PMC4203866 DOI: 10.1186/1472-6882-14-400] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 10/07/2014] [Indexed: 01/22/2023]
Abstract
Background The Mycobacterium tuberculosis (Mtb) proteasome has been established as a viable target for the development of anti-tuberculosis agents. In this study, the inhibitory activities of 100 plant-derived natural products on the Mtb proteasome were analyzed to identify novel potential inhibitors. Methods The fluorescent substrate Suc-Leu-Leu-Val-Tyr-AMC can be hydrolyzed by the proteasome to release free AMC, the fluorescence of which is proportional to the proteasome activity. The inhibitory activities of 100 natural products (each at a final concentration of 200 μM) were detected by this method using MG132 as a positive control. Results Twelve of these natural products (10 of which were flavonoids) inhibited the activity of the Mtb proteasome by more than 65%. Comparison of the structural differences between the flavonoids with good inhibitory activity and those without inhibitory activity revealed that the hydroxyl at the flavonoid C ring C-3 or the hydroxyl/methoxyl at the flavonoid A ring C-6 were critical for the inhibition of proteasomal activity. Conclusions These data indicate that flavonoids represent a basis for rational structural design in the process of novel anti-tuberculosis drug discovery.
Collapse
|
16
|
Metabolomics: a window into the adaptive physiology of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2014; 94:538-43. [PMID: 25172023 DOI: 10.1016/j.tube.2014.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 08/05/2014] [Indexed: 10/24/2022]
Abstract
Mycobacterium tuberculosis is the causative agent of tuberculosis (TB) and second leading cause of human mortality due to a single infectious agent. This is mostly because of M. tuberculosis' ability to adapt its metabolism to the host environment and regulate entry into and exit from cell cycle. Knowledge of the specific metabolic changes accompanying these transitions however is incomplete. Metabolomics has emerged as a new biochemical window into M. tuberculosis physiology. This review highlights recent insights from the application of such technologies to studies of the M. tuberculosis lifecycle.
Collapse
|
17
|
Nixon MR, Saionz KW, Koo MS, Szymonifka MJ, Jung H, Roberts JP, Nandakumar M, Kumar A, Liao R, Rustad T, Sacchettini JC, Rhee KY, Freundlich JS, Sherman DR. Folate pathway disruption leads to critical disruption of methionine derivatives in Mycobacterium tuberculosis. ACTA ACUST UNITED AC 2014; 21:819-30. [PMID: 24954008 DOI: 10.1016/j.chembiol.2014.04.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 04/11/2014] [Accepted: 04/23/2014] [Indexed: 01/08/2023]
Abstract
In this study, we identified antifolates with potent, targeted activity against whole-cell Mycobacterium tuberculosis (MTB). Liquid chromatography-mass spectrometry analysis of antifolate-treated cultures revealed metabolic disruption, including decreased pools of methionine and S-adenosylmethionine. Transcriptomic analysis highlighted altered regulation of genes involved in the biosynthesis and utilization of these two compounds. Supplementation with amino acids or S-adenosylmethionine was sufficient to rescue cultures from antifolate treatment. Instead of the "thymineless death" that characterizes folate pathway inhibition in a wide variety of organisms, these data suggest that MTB is vulnerable to a critical disruption of the reactions centered around S-adenosylmethionione, the activated methyl cycle.
Collapse
Affiliation(s)
- Molly R Nixon
- Interdisciplinary Program in Pathobiology, Department of Global Health, University of Washington, Seattle, WA 98195, USA; Seattle Biomedical Research Institute, Seattle, WA 98109, USA
| | - Kurt W Saionz
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Mi-Sun Koo
- Department of Pharmacology and Physiology and Medicine, Center for Emerging and Reemerging Pathogens, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA
| | - Michael J Szymonifka
- Department of Pharmacology and Physiology and Medicine, Center for Emerging and Reemerging Pathogens, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA
| | - Hunmin Jung
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Justin P Roberts
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Madhumita Nandakumar
- Departments of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Anuradha Kumar
- Seattle Biomedical Research Institute, Seattle, WA 98109, USA
| | - Reiling Liao
- Seattle Biomedical Research Institute, Seattle, WA 98109, USA
| | - Tige Rustad
- Seattle Biomedical Research Institute, Seattle, WA 98109, USA
| | - James C Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Kyu Y Rhee
- Departments of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Joel S Freundlich
- Department of Pharmacology and Physiology and Medicine, Center for Emerging and Reemerging Pathogens, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA
| | - David R Sherman
- Interdisciplinary Program in Pathobiology, Department of Global Health, University of Washington, Seattle, WA 98195, USA; Seattle Biomedical Research Institute, Seattle, WA 98109, USA.
| |
Collapse
|
18
|
Zheng P, Somersan-Karakaya S, Lu S, Roberts J, Pingle M, Warrier T, Little D, Guo X, Brickner SJ, Nathan CF, Gold B, Liu G. Synthetic calanolides with bactericidal activity against replicating and nonreplicating Mycobacterium tuberculosis. J Med Chem 2014; 57:3755-72. [PMID: 24694175 DOI: 10.1021/jm4019228] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
It is urgent to introduce new drugs for tuberculosis to shorten the prolonged course of treatment and control drug-resistant Mycobacterium tuberculosis (Mtb). One strategy toward this goal is to develop antibiotics that eradicate both replicating (R) and nonreplicating (NR) Mtb. Naturally occurring (+)-calanolide A was active against R-Mtb. The present report details the design, synthesis, antimycobacterial activities, and structure-activity relationships of synthetic calanolides. We identified potent dual-active nitro-containing calanolides with minimal in vitro toxicity that were cidal to axenic Mtb and Mtb in human macrophages, while sparing Gram-positive and -negative bacteria and yeast. Two of the nitrobenzofuran-containing lead compounds were found to be genotoxic to mammalian cells. Although genotoxicity precluded clinical progression, the profound, selective mycobactericidal activity of these calanolides will be useful in identifying pathways for killing both R- and NR-Mtb, as well as in further structure-based design of more effective and drug-like antimycobacterial agents.
Collapse
Affiliation(s)
- Purong Zheng
- Tsinghua-Peking Center for Life Sciences and ‡Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University , Haidian Dist., Beijing 100084, P. R. China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Pohl B, Fins JJ. Walsh McDermott and changing conceptions of tuberculosis antibiotic therapy: latent lessons for health care reform. ACADEMIC MEDICINE : JOURNAL OF THE ASSOCIATION OF AMERICAN MEDICAL COLLEGES 2014; 89:555-559. [PMID: 24556761 PMCID: PMC4016765 DOI: 10.1097/acm.0000000000000196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Although health care reform efforts are laudably directed at promoting quality and efficiency, added bureaucracy may have the unintended consequence of constraining physicians' creativity. This has the potential to undermine clinicians' freedom to reframe their thinking in response to unfolding biological knowledge, a defining feature of academic medicine. In this Perspective, the authors illustrate the confluence of creativity, context, and discovery through a historical example: the evolution of tuberculosis (TB) multidrug chemotherapy as espoused by Walsh McDermott and his colleagues during the 1940s and 1950s.Before the discovery of streptomycin in 1943, clinician-researchers aimed to identify a "magic bullet" that would rapidly eradicate tubercle bacilli from the body. In the years following the discovery of streptomycin, it became clear that the biology of TB did not conform to researchers' expectations. The recognition that treatment would neither be simple nor quick prompted further attempts to devise an optimal streptomycin regimen, which would enable the host's immune system to suppress infection and prevent the emergence of streptomycin-resistant strains. By the late 1950s, investigators clarified the limits of streptomycin's effectiveness, which led to combined chemotherapy. In so doing, they gained a better understanding of drug-bacilli-host interactions and shifted attention from the host to the drug-resistant microbe.The authors argue that this tale of discovery offers a latent lesson for academic medicine: As the health care system undergoes systemic restructuring, it is essential to preserve the freedom to reframe thinking and creatively solve translational problems in research and practice.
Collapse
Affiliation(s)
- Barbara Pohl
- Ms. Pohl is research assistant, Division of Medical Ethics, Weill Cornell Medical College, New York, New York. Dr. Fins is E. William Davis Jr, MD, Professor of Medical Ethics, and professor of medicine, public health, and medicine in psychiatry, as well as chief, Division of Medical Ethics, Weill Cornell Medical College, New York, New York. He is also an attending physician and director of medical ethics, New York Presbyterian-Weill Cornell Medical Center, New York, New York
| | | |
Collapse
|
20
|
Eoh H, Rhee KY. Allostery and compartmentalization: old but not forgotten. Curr Opin Microbiol 2014; 18:23-9. [PMID: 24607642 PMCID: PMC5228163 DOI: 10.1016/j.mib.2014.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/27/2014] [Accepted: 01/30/2014] [Indexed: 11/16/2022]
Abstract
Homeostasis is an essential capability of all cells mediated by complex and diverse regulatory networks. Despite this complexity, many of the fundamental regulatory mechanisms used by cells have been evolutionarily conserved. It is thus somewhat surprising that the apparent physiologic significance of these mechanisms has been experimentally neglected. Here, we review 2 widely recognized regulatory mechanisms, allostery and compartmentalization, which exemplify this dissociation in our current understanding of the microbial pathogen, Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Hyungjin Eoh
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Kyu Y Rhee
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Microbiology & Immunology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
21
|
Lin G, Chidawanyika T, Tsu C, Warrier T, Vaubourgeix J, Blackburn C, Gigstad K, Sintchak M, Dick L, Nathan C. N,C-Capped dipeptides with selectivity for mycobacterial proteasome over human proteasomes: role of S3 and S1 binding pockets. J Am Chem Soc 2013; 135:9968-71. [PMID: 23782398 DOI: 10.1021/ja400021x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We identified N,C-capped dipeptides that are selective for the Mycobacterium tuberculosis proteasome over human constitutive and immunoproteasomes. Differences in the S3 and S1 binding pockets appeared to account for the species selectivity. The inhibitors can penetrate mycobacteria and kill nonreplicating M. tuberculosis under nitrosative stress.
Collapse
Affiliation(s)
- Gang Lin
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Rezayan AH, Azerang P, Sardari S, Sarvary A. Synthesis and biological evaluation of coumarin derivatives as inhibitors of Mycobacterium bovis (BCG). Chem Biol Drug Des 2013; 80:929-36. [PMID: 22943459 DOI: 10.1111/cbdd.12044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The coumarin compounds are an important class of biologically active molecules, which have attractive caught the attention of many organic and medicinal chemists, due to potential pharmaceutical implications and industrial applications. We herein report the one-pot procedure for the efficient synthesis of coumarin derivatives using commercially available substrates via isocyanide-based multicomponent condensation reactions. These compounds were evaluated for anti-mycobacterium activity against Mycobacterium bovis (Bacillus Calmette-Guerin). The preliminary results indicated that all of the tested compounds showed relatively good activity against the test organism. The compounds 7e, 7l, and 7m showed high anti-tuberculosis activity.
Collapse
Affiliation(s)
- Ali Hossein Rezayan
- Department of Life Science Engineering, Faculty of New Science and Technology, University of Tehran, Tehran, Iran
| | | | | | | |
Collapse
|
23
|
Multifunctional essentiality of succinate metabolism in adaptation to hypoxia in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2013; 110:6554-9. [PMID: 23576728 DOI: 10.1073/pnas.1219375110] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mycobacterium tuberculosis is a chronic, facultative intracellular pathogen that spends the majority of its decades-long life cycle in a non- or slowly replicating state. However, the bacterium remains poised to resume replicating so that it can transmit itself to a new host. Knowledge of the metabolic adaptations used to facilitate entry into and exit from nonreplicative states remains incomplete. Here, we apply (13)C-based metabolomic profiling to characterize the activity of M. tuberculosis tricarboxylic acid cycle during adaptation to and recovery from hypoxia, a physiologically relevant condition associated with nonreplication. We show that, as M. tuberculosis adapts to hypoxia, it slows and remodels its tricarboxylic acid cycle to increase production of succinate, which is used to flexibly sustain membrane potential, ATP synthesis, and anaplerosis, in response to varying degrees of O2 limitation and the presence or absence of the alternate electron acceptor nitrate. This remodeling is mediated by the bifunctional enzyme isocitrate lyase acting in a noncanonical role distinct from fatty acid catabolism. Isocitrate lyase-dependent production of succinate affords M. tuberculosis with a unique and bioenergetically efficient metabolic means of entry into and exit from hypoxia-induced quiescence.
Collapse
|
24
|
Efficacy of nitazoxanide against clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother 2013; 57:2834-7. [PMID: 23507275 DOI: 10.1128/aac.02542-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Nitazoxanide (NTZ) has bactericidal activity against the H37Rv laboratory strain of Mycobacterium tuberculosis with a MIC of 16 μg/ml. However, its efficacy against clinical isolates of M. tuberculosis has not been determined. We found that NTZ's MIC against 50 clinical isolates ranged from 12 to 28 μg/ml with a median of 16 μg/ml and was unaffected by resistance to first- or second-line antituberculosis drugs or a diversity of spoligotypes.
Collapse
|
25
|
Abstract
Pupylation is a post-translational protein modification occurring in actinobacteria through which the small, intrinsically disordered protein Pup (prokaryotic ubiquitin-like protein) is conjugated to lysine residues of proteins, marking them for proteasomal degradation. Although functionally related to ubiquitination, pupylation is carried out by different enzymes that are evolutionarily linked to bacterial carboxylate-amine ligases. Here, we compare the mechanism of Pup-conjugation to target proteins with ubiquitination, describe the evolutionary emergence of pupylation and discuss the importance of this pathway for survival of Mycobacterium tuberculosis in the host.
Collapse
Affiliation(s)
- Jonas Barandun
- ETH Zurich, Institute of Molecular Biology & Biophysics, CH-8093 Zurich, Switzerland
| | | | | |
Collapse
|
26
|
Abstract
If discovery of new antibiotics continues to falter while resistance to drugs in clinical use continues to spread, society's medicine chest will soon lack effective treatments for many infections. Heritable antibiotic resistance emerges in bacteria from nonheritable resistance, also called phenotypic tolerance. This widespread phenomenon is closely linked to nonproliferative states in ways that scientists are just beginning to understand. A deeper understanding of the mechanisms of phenotypic tolerance may reveal new drug targets in the infecting organisms. At the same time, researchers must investigate ways to target the host in order to influence host-pathogen relationships. Government must reform the regulatory process for approval of new antibiotics. The private sector, government, and academia must undertake multiple, organized, multidisciplinary, parallel efforts to improve the ways in which antibiotics are discovered, tested, approved, and conserved, or it will be difficult to sustain the modern practice of medicine.
Collapse
Affiliation(s)
- Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
27
|
Gengenbacher M, Kaufmann SHE. Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol Rev 2012; 36:514-32. [PMID: 22320122 PMCID: PMC3319523 DOI: 10.1111/j.1574-6976.2012.00331.x] [Citation(s) in RCA: 486] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 12/22/2011] [Accepted: 01/31/2012] [Indexed: 01/21/2023] Open
Abstract
Tuberculosis (TB) remains a major health threat, killing nearly 2 million individuals around this globe, annually. The only vaccine, developed almost a century ago, provides limited protection only during childhood. After decades without the introduction of new antibiotics, several candidates are currently undergoing clinical investigation. Curing TB requires prolonged combination of chemotherapy with several drugs. Moreover, monitoring the success of therapy is questionable owing to the lack of reliable biomarkers. To substantially improve the situation, a detailed understanding of the cross-talk between human host and the pathogen Mycobacterium tuberculosis (Mtb) is vital. Principally, the enormous success of Mtb is based on three capacities: first, reprogramming of macrophages after primary infection/phagocytosis to prevent its own destruction; second, initiating the formation of well-organized granulomas, comprising different immune cells to create a confined environment for the host-pathogen standoff; third, the capability to shut down its own central metabolism, terminate replication, and thereby transit into a stage of dormancy rendering itself extremely resistant to host defense and drug treatment. Here, we review the molecular mechanisms underlying these processes, draw conclusions in a working model of mycobacterial dormancy, and highlight gaps in our understanding to be addressed in future research.
Collapse
Affiliation(s)
- Martin Gengenbacher
- Max Planck Institute for Infection Biology, Department of Immunology Charitéplatz 1, 10117 Berlin, Germany
| | - Stefan H. E. Kaufmann
- Max Planck Institute for Infection Biology, Department of Immunology Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
28
|
Warrier T, Tropis M, Werngren J, Diehl A, Gengenbacher M, Schlegel B, Schade M, Oschkinat H, Daffe M, Hoffner S, Eddine AN, Kaufmann SHE. Antigen 85C inhibition restricts Mycobacterium tuberculosis growth through disruption of cord factor biosynthesis. Antimicrob Agents Chemother 2012; 56:1735-43. [PMID: 22290959 PMCID: PMC3318338 DOI: 10.1128/aac.05742-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/04/2012] [Indexed: 11/20/2022] Open
Abstract
The antigen 85 (Ag85) protein family, consisting of Ag85A, -B, and -C, is vital for Mycobacterium tuberculosis due to its role in cell envelope biogenesis. The mycoloyl transferase activity of these proteins generates trehalose dimycolate (TDM), an envelope lipid essential for M. tuberculosis virulence, and cell wall arabinogalactan-linked mycolic acids. Inhibition of these enzymes through substrate analogs hinders growth of mycobacteria, but a link to mycolic acid synthesis has not been established. In this study, we characterized a novel inhibitor of Ag85C, 2-amino-6-propyl-4,5,6,7-tetrahydro-1-benzothiophene-3-carbonitrile (I3-AG85). I3-AG85 was isolated from a panel of four inhibitors that exhibited structure- and dose-dependent inhibition of M. tuberculosis division in broth culture. I3-AG85 also inhibited M. tuberculosis survival in infected primary macrophages. Importantly, it displayed an identical MIC against the drug-susceptible H37Rv reference strain and a panel of extensively drug-resistant/multidrug-resistant M. tuberculosis strains. Nuclear magnetic resonance analysis indicated binding of I3-AG85 to Ag85C, similar to its binding to the artificial substrate octylthioglucoside. Quantification of mycolic acid-linked lipids of the M. tuberculosis envelope showed a specific blockade of TDM synthesis. This was accompanied by accumulation of trehalose monomycolate, while the overall mycolic acid abundance remained unchanged. Inhibition of Ag85C activity also disrupted the integrity of the M. tuberculosis envelope. I3-AG85 inhibited the division of and reduced TDM synthesis in an M. tuberculosis strain deficient in Ag85C. Our results indicate that Ag85 proteins are promising targets for novel antimycobacterial drug design.
Collapse
Affiliation(s)
- Thulasi Warrier
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Marielle Tropis
- Institute of Pharmacology and Structural Biology, CNRS, and University of Toulouse (Toulouse III), Toulouse, France
| | - Jim Werngren
- Swedish Institute for Communicable Disease Control, Solna, Sweden
| | - Anne Diehl
- NMR Group, Leibniz Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Martin Gengenbacher
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Brigitte Schlegel
- NMR Group, Leibniz Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Markus Schade
- AstraZeneca Ltd., DECS Biophysics, Macclesfield, United Kingdom
| | - Hartmut Oschkinat
- NMR Group, Leibniz Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Mamadou Daffe
- Institute of Pharmacology and Structural Biology, CNRS, and University of Toulouse (Toulouse III), Toulouse, France
| | - Sven Hoffner
- Swedish Institute for Communicable Disease Control, Solna, Sweden
| | - Ali Nasser Eddine
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Stefan H. E. Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
29
|
An isoniazid analogue promotes Mycobacterium tuberculosis-nanoparticle interactions and enhances bacterial killing by macrophages. Antimicrob Agents Chemother 2012; 56:2259-67. [PMID: 22330919 DOI: 10.1128/aac.05993-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Nanoenabled drug delivery systems against tuberculosis (TB) are thought to control pathogen replication by targeting antibiotics to infected tissues and phagocytes. However, whether nanoparticle (NP)-based carriers directly interact with Mycobacterium tuberculosis and how such drug delivery systems induce intracellular bacterial killing by macrophages is not defined. In the present study, we demonstrated that a highly hydrophobic citral-derived isoniazid analogue, termed JVA, significantly increases nanoencapsulation and inhibits M. tuberculosis growth by enhancing intracellular drug bioavailability. Importantly, confocal and atomic force microscopy analyses revealed that JVA-NPs associate with both intracellular M. tuberculosis and cell-free bacteria, indicating that NPs directly interact with the bacterium. Taken together, these data reveal a nanotechnology-based strategy that promotes antibiotic targeting into replicating extra- and intracellular mycobacteria, which could actively enhance chemotherapy during active TB.
Collapse
|
30
|
de Carvalho LPS, Darby CM, Rhee KY, Nathan C. Nitazoxanide Disrupts Membrane Potential and Intrabacterial pH Homeostasis of Mycobacterium tuberculosis. ACS Med Chem Lett 2011; 2:849-854. [PMID: 22096616 DOI: 10.1021/ml200157f] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nitazoxanide (Alinia(®)), a nitro-thiazolyl antiparasitic drug, kills diverse microorganisms by unknown mechanisms. Here we identified two actions of nitazoxanide against Mycobacterium tuberculosis (Mtb): disruption of Mtb's membrane potential and pH homeostasis. Both actions were shared by a structurally related anti-mycobacterial compound, niclosamide. Reactive nitrogen intermediates were reported to synergize with nitazoxanide and its deacetylated derivative tizoxanide in killing Mtb. Herein, however, we could not attribute this to increased uptake of nitazoxanide or tizoxanide as monitored by targeted metabolomics, nor to increased impact of nitazoxanide on Mtb's membrane potential or intrabacterial pH. Thus, further mechanisms of action of nitazoxanide or tizoxanide may await discovery. The multiple mechanisms of action may contribute to Mtb's ultra-low frequency of resistance against nitazoxanide.
Collapse
Affiliation(s)
- Luiz Pedro S. de Carvalho
- Departments of Microbiology and Immunology, ‡Division of Infectious Diseases, Department of Medicine, Weill Medical College of Cornell University, 1300 York Ave, New York, New York 10065, United States
| | - Crystal M. Darby
- Departments of Microbiology and Immunology, ‡Division of Infectious Diseases, Department of Medicine, Weill Medical College of Cornell University, 1300 York Ave, New York, New York 10065, United States
| | - Kyu Y. Rhee
- Departments of Microbiology and Immunology, ‡Division of Infectious Diseases, Department of Medicine, Weill Medical College of Cornell University, 1300 York Ave, New York, New York 10065, United States
| | - Carl Nathan
- Departments of Microbiology and Immunology, ‡Division of Infectious Diseases, Department of Medicine, Weill Medical College of Cornell University, 1300 York Ave, New York, New York 10065, United States
| |
Collapse
|
31
|
Central carbon metabolism in Mycobacterium tuberculosis: an unexpected frontier. Trends Microbiol 2011; 19:307-14. [PMID: 21561773 DOI: 10.1016/j.tim.2011.03.008] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 03/29/2011] [Accepted: 03/31/2011] [Indexed: 11/23/2022]
Abstract
Recent advances in liquid chromatography and mass spectrometry have enabled the highly parallel, quantitative measurement of metabolites within a cell and the ability to trace their biochemical fates. In Mycobacterium tuberculosis (Mtb), these advances have highlighted major gaps in our understanding of central carbon metabolism (CCM) that have prompted fresh interpretations of the composition and structure of its metabolic pathways and the phenotypes of Mtb strains in which CCM genes have been deleted. High-throughput screens have demonstrated that small chemical compounds can selectively inhibit some enzymes of Mtb's CCM while sparing homologs in the host. Mtb's CCM has thus emerged as a frontier for both fundamental and translational research.
Collapse
|
32
|
Venugopal A, Bryk R, Shi S, Rhee K, Rath P, Schnappinger D, Ehrt S, Nathan C. Virulence of Mycobacterium tuberculosis depends on lipoamide dehydrogenase, a member of three multienzyme complexes. Cell Host Microbe 2011; 9:21-31. [PMID: 21238944 DOI: 10.1016/j.chom.2010.12.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 10/18/2010] [Accepted: 12/01/2010] [Indexed: 01/24/2023]
Abstract
Mycobacterium tuberculosis (Mtb) adapts to persist in a nutritionally limited macrophage compartment. Lipoamide dehydrogenase (Lpd), the third enzyme (E3) in Mtb's pyruvate dehydrogenase complex (PDH), also serves as E1 of peroxynitrite reductase/peroxidase (PNR/P), which helps Mtb resist host-reactive nitrogen intermediates. In contrast to Mtb lacking dihydrolipoamide acyltransferase (DlaT), the E2 of PDH and PNR/P, Lpd-deficient Mtb is severely attenuated in wild-type and immunodeficient mice. This suggests that Lpd has a function that DlaT does not share. When DlaT is absent, Mtb upregulates an Lpd-dependent branched-chain keto acid dehydrogenase (BCKADH) encoded by pdhA, pdhB, pdhC, and lpdC. Without Lpd, Mtb cannot metabolize branched-chain amino acids and potentially toxic branched-chain intermediates accumulate. Mtb deficient in both DlaT and PdhC phenocopies Lpd-deficient Mtb. Thus, Mtb critically requires BCKADH along with PDH and PNR/P for pathogenesis. These findings position Lpd as a potential target for anti-infectives against Mtb.
Collapse
Affiliation(s)
- Aditya Venugopal
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Mazloum N, Stegman MA, Croteau DL, Van Houten B, Kwon NS, Ling Y, Dickinson C, Venugopal A, Towheed MA, Nathan C. Identification of a chemical that inhibits the mycobacterial UvrABC complex in nucleotide excision repair. Biochemistry 2011; 50:1329-35. [PMID: 21235228 PMCID: PMC3042777 DOI: 10.1021/bi101674c] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
Bacterial DNA can be damaged by reactive nitrogen and oxygen intermediates (RNI and ROI) generated by host immunity, as well as by antibiotics that trigger bacterial production of ROI. Thus a pathogen’s ability to repair its DNA may be important for persistent infection. A prominent role for nucleotide excision repair (NER) in disease caused by Mycobacterium tuberculosis (Mtb) was suggested by attenuation of uvrB-deficient Mtb in mice. However, it was unknown if Mtb’s Uvr proteins could execute NER. Here we report that recombinant UvrA, UvrB, and UvrC from Mtb collectively bound and cleaved plasmid DNA exposed to ultraviolet (UV) irradiation or peroxynitrite. We used the DNA incision assay to test the mechanism of action of compounds identified in a high-throughput screen for their ability to delay recovery of M. smegmatis from UV irradiation. 2-(5-Amino-1,3,4-thiadiazol-2-ylbenzo[f]chromen-3-one) (ATBC) but not several closely related compounds inhibited cleavage of damaged DNA by UvrA, UvrB, and UvrC without intercalating in DNA and impaired recovery of M. smegmatis from UV irradiation. ATBC did not affect bacterial growth in the absence of UV exposure, nor did it exacerbate the growth defect of UV-irradiated mycobacteria that lacked uvrB. Thus, ATBC appears to be a cell-penetrant, selective inhibitor of mycobacterial NER. Chemical inhibitors of NER may facilitate studies of the role of NER in prokaryotic pathobiology.
Collapse
Affiliation(s)
- Nayef Mazloum
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Copper resistance is essential for virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2011; 108:1621-6. [PMID: 21205886 DOI: 10.1073/pnas.1009261108] [Citation(s) in RCA: 248] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Copper (Cu) is essential for many biological processes, but is toxic when present in excessive amounts. In this study, we provide evidence that Cu plays a crucial role in controlling tuberculosis. A Mycobacterium tuberculosis (Mtb) mutant lacking the outer membrane channel protein Rv1698 accumulated 100-fold more Cu and was more susceptible to Cu toxicity than WT Mtb. Similar phenotypes were observed for a M. smegmatis mutant lacking the homolog Ms3747, demonstrating that these mycobacterial copper transport proteins B (MctB) are essential for Cu resistance and maintenance of low intracellular Cu levels. Guinea pigs responded to infection with Mtb by increasing the Cu concentration in lung lesions. Loss of MctB resulted in a 1,000- and 100-fold reduced bacterial burden in lungs and lymph nodes, respectively, in guinea pigs infected with Mtb. In mice, the persistence defect of the Mtb mctB mutant was exacerbated by the addition of Cu to the diet. These experiments provide evidence that Cu is used by the mammalian host to control Mtb infection and that Cu resistance mechanisms are crucial for Mtb virulence. Importantly, Mtb is much more susceptible to Cu than other bacteria and is killed in vitro by Cu concentrations lower than those found in phagosomes of macrophages. Hence, this study reveals an Achilles heel of Mtb that might be a promising target for tuberculosis chemotherapy.
Collapse
|
35
|
Binding-induced folding of prokaryotic ubiquitin-like protein on the Mycobacterium proteasomal ATPase targets substrates for degradation. Nat Struct Mol Biol 2010; 17:1352-7. [PMID: 20953180 PMCID: PMC2988878 DOI: 10.1038/nsmb.1918] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 08/27/2010] [Indexed: 01/17/2023]
Abstract
Mycobacterium tuberculosis uses a proteasome system that is analogous to the eukaryotic ubiquitin-proteasome pathway and is required for pathogenesis. However, the bacterial analog of ubiquitin, prokaryotic ubiquitin-like protein (Pup), is an intrinsically disordered protein that bears little sequence or structural resemblance to the highly structured ubiquitin. Thus, it was unknown how pupylated proteins were recruited to the proteasome. Here, we show that the Mycobacterium proteasomal ATPase (Mpa) has three pairs of tentacle-like coiled coils that recognize Pup. Mpa bound unstructured Pup through hydrophobic interactions and a network of hydrogen bonds, leading to the formation of an α-helix in Pup. Our work describes a binding-induced folding recognition mechanism in the Pup-proteasome system that differs mechanistically from substrate recognition in the ubiquitin-proteasome system. This key difference between the prokaryotic and eukaryotic systems could be exploited for the development of a small molecule-based treatment for tuberculosis.
Collapse
|
36
|
Structural basis for the assembly and gate closure mechanisms of the Mycobacterium tuberculosis 20S proteasome. EMBO J 2010; 29:2037-47. [PMID: 20461058 PMCID: PMC2892373 DOI: 10.1038/emboj.2010.95] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 04/20/2010] [Indexed: 01/07/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) possesses a proteasome system analogous to the eukaryotic ubiquitin-proteasome pathway. Mtb requires the proteasome to resist killing by the host immune system. The detailed assembly process and the gating mechanism of Mtb proteasome have remained unknown. Using cryo-electron microscopy and X-ray crystallography, we have obtained structures of three Mtb proteasome assembly intermediates, showing conformational changes during assembly, and explaining why the beta-subunit propeptide inhibits rather than promotes assembly. Although the eukaryotic proteasome core particles close their protein substrate entrance gates with different amino terminal peptides of the seven alpha-subunits, it has been unknown how a prokaryotic proteasome might close the gate at the symmetry axis with seven identical peptides. We found in the new Mtb proteasome crystal structure that the gate is tightly sealed by the seven identical peptides taking on three distinct conformations. Our work provides the structural bases for assembly and gating mechanisms of the Mtb proteasome.
Collapse
|
37
|
Bryk R, Arango N, Venugopal A, Warren JD, Park YH, Patel MS, Lima CD, Nathan C. Triazaspirodimethoxybenzoyls as selective inhibitors of mycobacterial lipoamide dehydrogenase . Biochemistry 2010; 49:1616-27. [PMID: 20078138 DOI: 10.1021/bi9016186] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mycobacterium tuberculosis (Mtb) remains the leading single cause of death from bacterial infection. Here we explored the possibility of species-selective inhibition of lipoamide dehydrogenase (Lpd), an enzyme central to Mtb's intermediary metabolism and antioxidant defense. High-throughput screening of combinatorial chemical libraries identified triazaspirodimethoxybenzoyls as high-nanomolar inhibitors of Mtb's Lpd that were noncompetitive versus NADH, NAD(+), and lipoamide and >100-fold selective compared to human Lpd. Efficacy required the dimethoxy and dichlorophenyl groups. The structure of an Lpd-inhibitor complex was resolved to 2.42 A by X-ray crystallography, revealing that the inhibitor occupied a pocket adjacent to the Lpd NADH/NAD(+) binding site. The inhibitor did not overlap with the adenosine moiety of NADH/NAD(+) but did overlap with positions predicted to bind the nicotinamide rings in NADH and NAD(+) complexes. The dimethoxy ring occupied a deep pocket adjacent to the FAD flavin ring where it would block coordination of the NADH nicotinamide ring, while the dichlorophenyl group occupied a more exposed pocket predicted to coordinate the NAD(+) nicotinamide. Several residues that are not conserved between the bacterial enzyme and its human homologue were predicted to contribute both to inhibitor binding and to species selectivity, as confirmed for three residues by analysis of the corresponding mutant Mtb Lpd proteins. Thus, nonconservation of residues lining the electron-transfer tunnel in Mtb Lpd can be exploited for development of species-selective Lpd inhibitors.
Collapse
Affiliation(s)
- Ruslana Bryk
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York,New York 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Wang T, Li H, Lin G, Tang C, Li D, Nathan C, Darwin KH, Li H. Structural insights on the Mycobacterium tuberculosis proteasomal ATPase Mpa. Structure 2010; 17:1377-85. [PMID: 19836337 DOI: 10.1016/j.str.2009.08.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 08/18/2009] [Accepted: 08/21/2009] [Indexed: 12/16/2022]
Abstract
Proteasome-mediated protein turnover in all domains of life is an energy-dependent process that requires ATPase activity. Mycobacterium tuberculosis (Mtb) was recently shown to possess a ubiquitin-like proteasome pathway that plays an essential role in Mtb resistance to killing by products of host macrophages. Here we report our structural and biochemical investigation of Mpa, the presumptive Mtb proteasomal ATPase. We demonstrate that Mpa binds to the Mtb proteasome in the presence of ATPgammaS, providing the physical evidence that Mpa is the proteasomal ATPase. X-ray crystallographic determination of the conserved interdomain showed a five stranded double beta barrel structure containing a Greek key motif. Structure and mutational analysis indicate a major role of the interdomain for Mpa hexamerization. Our mutational and functional studies further suggest that the central channel in the Mpa hexamer is involved in protein substrate translocation and degradation. These studies provide insights into how a bacterial proteasomal ATPase interacts with and facilitates protein degradation by the proteasome.
Collapse
Affiliation(s)
- Tao Wang
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
de Carvalho LPS, Lin G, Jiang X, Nathan C. Nitazoxanide kills replicating and nonreplicating Mycobacterium tuberculosis and evades resistance. J Med Chem 2009; 52:5789-92. [PMID: 19736929 DOI: 10.1021/jm9010719] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We report here that nitazoxanide (NTZ) and its active metabolite kill replicating and nonreplicating M. tuberculosis at low microg/mL levels. NTZ appears to evade resistance, as we were unable to recover resistant colonies, using up to 10(12) colony forming units. Therefore, NTZ is a novel lead compound that kills replicating and nonreplicating M. tuberculosis by a novel mechanism of action, which appears to bypass the development of resistance.
Collapse
Affiliation(s)
- Luiz Pedro S de Carvalho
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, USA
| | | | | | | |
Collapse
|
40
|
Lee SH, Oh T, Jeon BY, Kwak EY, Shim WS, Cho SN, Kim DD, Chung SJ, Shim CK. Tissue-specific changes in mRNA expression of Abc and Slc transporters in murine pulmonary tuberculosis. Xenobiotica 2009; 39:738-48. [DOI: 10.1080/00498250903089829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
41
|
Abstract
Despite scientific advances, we are losing ground against Mycobacterium tuberculosis, a pathogen with which a third of us share our lives. Challenges include fundamental biologic questions; hurdles for translational medicine; and societal deficits in resources, incentives, collaboration, and leadership. Fortunately, the crisis is inspiring scientific and organizational creativity.
Collapse
|
42
|
Cancer stem cells in brain tumor biology. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2009; 73:411-20. [PMID: 19329578 DOI: 10.1101/sqb.2008.73.060] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Tumors are aberrant organ systems containing a complex interplay between the neoplastic compartment and recruited vascular, inflammatory, and stromal elements. Furthermore, most cancers display a hierarchy of differentiation states within the tumor cell population. Molecular signals that drive tumor formation and maintenance commonly overlap with those involved in normal development and wound responses--two processes in which normal stem cells function. It is therefore not surprising that cancers invoke stem cell programs that promote tumor malignancy. Stem-cell-like cancer cells (or cancer stem cells) need not be derived from normal stem cells but may be subjected to evolutionary pressures that select for the capacity to self-renew extensively or differentiate depending on conditions. Current cancer model systems may not fully recapitulate the cellular complexity of cancers, perhaps partially explaining the lack of power of these models in predicting clinical outcomes. New methods are enabling researchers to identify and characterize cancer stem cells. Our laboratory focuses on the roles of brain tumor stem cells in clinically relevant tumor biology, including therapeutic resistance, angiogenesis, and invasion/metastasis. We hope that these studies will translate into improved diagnostic, prognostic, and therapeutic approaches for these lethal cancers.
Collapse
|
43
|
Lazy, dynamic or minimally recrudescent? On the elusive nature and location of the mycobacterium responsible for latent tuberculosis. Infection 2009; 37:87-95. [PMID: 19308316 DOI: 10.1007/s15010-009-8450-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 01/26/2009] [Indexed: 01/21/2023]
Abstract
In the absence of symptoms characteristic of tuberculosis (TB), a condition termed clinical latency, diagnosis is currently impossible by detection of the microorganism itself and resorts to the demonstration of an immunological memory response to antigens of Mycobacterium tuberculosis (Mtb). Whether latency is synonymous to chronic persistent infection with viable Mtb in all instances has been difficult to establish. The physical and physiological state of Mtb during latency is much disputed: are organisms mostly dormant, in a nonreplicating state of persistence, and characterized by lipid inclusions and metabolic adaptation to hypoxia, or do they continue to replicate and sometimes even escape from the fringes of granulomatous lesions or alveolar epithelial cells into adjacent airways, thereby inducing recurring immune responses? The physical nature of Mtb during latency is important as it determines which antimicrobial agents may be used to kill it, which immunomodulating strategies (including post-exposure vaccines) may be appropriate to contain it, and which diagnostic measures may be most useful to discriminate latent from reactivating infection. Two major viewpoints exist: one argues that Mtb persists mostly in a lazy state within granulomatous lesions, but periodically recrudesces, and that there is considerable heterogeneity for different sites within the lesion and within the infected lung. Throughout latency, there is a dynamic immunological interplay between Mtb and the host, necessitating continuous recruitment of cells into the granuloma, and reactivation occurs when this dynamic cellular exchange becomes dysregulated. Another view holds that dormant Mtb reside within alveolar epithelial cells in the lung apices and in adipocytes, with reactivation being associated with the upregulation of resuscitation promoting factors within Mtb and the escape of newly dividing microorganisms into alveoli and bronchi in the form of lipid pneumonia. These views need not be mutually exclusive. However, if minimal intermittent recrudescence were to take place within the alveolar space, this would contradict the very definition of latency, which implies that no access of Mtb to the airways exists during latency.
Collapse
|
44
|
Affiliation(s)
- Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|