1
|
Liu W, Guo Y, Zhang C, Liu C, Chen S, Li X, Qiu J, Wan S. Development of molecular Trojan horses targeting New Delhi metallo-β-lactamase-1 for the restoration of meropenem susceptibility in drug-resistant bacteria. Eur J Med Chem 2025; 285:117243. [PMID: 39798399 DOI: 10.1016/j.ejmech.2025.117243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/13/2024] [Accepted: 12/23/2024] [Indexed: 01/15/2025]
Abstract
The emergence of New Delhi metallo-β-lactamase-1 (NDM-1) poses a significant threat to the clinical application of antibiotics, as it possesses the ability to hydrolyze nearly all β-lactam antibiotics. Regrettably, there are currently no clinical drugs targeting NDM-1, making it imperative to develop highly potent and minimally toxic NDM-1 inhibitors. Herein, a series of molecular Trojan horses targeting NDM-1 were synthesized by introducing ebselen into 7-aminocephalosporanic acid derivatives via a C-Se bond. Representative compound 18b exhibited potent inhibitory activity against NDM-1, with an IC50 value of 7.03 μM, and combining with meropenem (Mem) decreased the minimum inhibitory concentration (MIC) of Mem by 4-32-fold in NDM-1 expressing bacteria. Mechanistically, 18b released the ebselen moiety at the active site of NDM-1, forming a Se-S bond with Cys208 to achieve targeted drug delivery of ebselen. Importantly, 18b demonstrated potent inhibition of resistant bacterial growth and replication in mice when administered in combination with Mem. These results suggest that 18b is a promising candidate for treating infections caused by resistant bacteria expressing NDM-1.
Collapse
Affiliation(s)
- Wandong Liu
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266071, China
| | - Yan Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Chen Zhang
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266071, China
| | - Chenyu Liu
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, 100872, China
| | - Sheng Chen
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, 100872, China
| | - Xiaoyang Li
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266071, China.
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Shengbiao Wan
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266071, China.
| |
Collapse
|
2
|
Olivieri R, Riccobono E, Gonnelli S, Basagni C, Tumbarello M, Cusi MG, Rossolini GM. Large, protracted, multi-species and multi-clonal spread of VIM-type metallo-β-lactamase-producing Enterobacterales in an Italian hospital. J Hosp Infect 2025; 157:10-18. [PMID: 39706527 DOI: 10.1016/j.jhin.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Carbapenem-resistant Enterobacterales, particularly those producing carbapenemase (CPE), pose a major threat to human health, being listed among critical-priority resistant pathogens by the World Health Organization. AIM To report on a large nosocomial spread of CPE of different species producing Verona integron-encoded metallo-β-lactamase (VIM)-type carbapenemases, and on the infection prevention and control measures that were adopted to combat the spread. METHODS Conventional culture and molecular methods were used for detection and identification of VIM-positive CPE (VIM-CPE) causing infections or colonizing patients or present in environmental specimens. Whole-genome sequencing analysis of selected isolates was performed to investigate clonal relatedness. Basic (active surveillance, contact precautions, close contact screening, cohorting of patients, surface cleaning, hand hygiene) and advanced (weekly point-prevalence surveys for rectal colonization, additional training of healthcare workers, extraordinary ward sanitization, extraordinary maintenance interventions, and environmental microbiological screening, single-use equipment, ward relocation) infection prevention and control (IPC) measures were implemented to combat the spread. FINDINGS Spread of VIM-CPE involving 151 patients (mostly colonizations) was documented in a single hospital ward from November 2021 to December 2023. The spread involved several different species of Enterobacterales, with clonal expansion documented in some cases. Implementation of basic and advanced IPC measures was temporarily successful at mitigating the spread, but multiple relapses were observed, suggesting the presence of an unidentified environmental reservoir. CONCLUSION VIM-CPE has the potential to cause large and complex nosocomial outbreaks in hospital environments, underscoring the challenges to their control by IPC practices.
Collapse
Affiliation(s)
- R Olivieri
- Health Service Management Board, Health Service Management, Siena University Hospital, Siena, Italy
| | - E Riccobono
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - S Gonnelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - C Basagni
- Health Service Management Board, Health Service Management, Siena University Hospital, Siena, Italy
| | - M Tumbarello
- Department of Medical Biotechnologies, University of Siena, Siena, Italy; Department of Medical Sciences, Infectious and Tropical Diseases Unit, Siena University Hospital, Siena, Italy
| | - M G Cusi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy; Department of Innovation, Experimentation and Clinical Research, Microbiology and Virology Unit, Siena University Hospital, Siena, Italy
| | - G M Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Clinical Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy.
| |
Collapse
|
3
|
Hu X, Tao J, Yan L, Hong W, Wang W, Wang L, Li G, Jia W. Molecular epidemiology of Escherichia coli in bloodstream infections from a general hospital in Ningxia, China, 2022-2023. BMC Infect Dis 2025; 25:293. [PMID: 40021996 PMCID: PMC11871600 DOI: 10.1186/s12879-025-10658-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/17/2025] [Indexed: 03/03/2025] Open
Abstract
OBJECTIVE To analyse the antibiotic resistance, resistance genes and clonal relationship of Escherichia coli in bloodstream infections in Ningxia from 2022 to 2023. METHODS We retrospectively analyzed the antibiotic susceptibilities of 257 isolates. PCR was used to detect blaTEM, blaSHV, blaCTX-M, qnrS, qnrA, qnrB, oqxA, qepA, gyrA, gyrB, parC, and parE, and the clonal relationship through multilocus sequence typing (MLST). RESULTS One hundred and twenty-nine of 257 patients were male (50.2%). The 257 E. coli isolates were mainly obtained from the Emergency, Hepatobiliary Surgery, and Haematology Departments, accounting for 56.6%, 7.3%, and 6.2%, respectively. There is no significant difference in sex and genes between the two groups over and under 60 years old (P > 0.05), but there is a significant difference in ST between them(P<0.05). The antimicrobial susceptibility testing showed that the 257 isolates had the highest rates of resistance to ampicillin (82.8%), followed by cefazolin (71.6%), and all isolates were susceptible to tigecycline. Based on the antibiotic susceptibility results for ceftriaxone, we tested 126 isolates of E. coli for extended-spectrum beta-lactamase (ESBL) resistance genes. As a result, blaCTX-M was detected in 76 isolates (60.32%), blaSHV in 26 isolates (20.63%), and blaTEM in 38 isolates (30.16%). Based on the ciprofloxacin and levofloxacin antibiotic susceptibility results, we tested for quinolone resistance genes in 148 isolates, revealing 66 isolates of aac(6')-Ib-cr (44.60%), 3 isolates of oqxA (2.02%), 32 isolates of qnrS (21.62%), and 2 isolates of qepA (1.35%). We did not detect qnrA or qnrB. The detection rates of gyrA, gyrB, parC, and parE were 98%, 42.6%, 91.2%, and 87.8%, respectively and the main amino acid mutations were Ser83 to Leu, Asp87 to Asn(75.2%), Leu417 to Ser, Ser418 to Leu (6.3%), Ser80 to Ile (65.2%), and Ser458 to Ala (21.5%), respectively. MLST revealed that the most common sequence types (STs) were ST69 (12.5%), ST131 (8.2%), and ST1193 (7.8%). CONCLUSION In our hospital, E. coli was resistant to most commonly used antibiotics, and cefoperazone/sulbactam, cefotetan, amikacin, and tigecycline were empirically selected for the treatment of bloodstream infections. The predominant ESBL genotype in our hospital was blaCTX-M and the major quinolone resistance gene was aac(6')-Ib-cr. Clonal relationship analysis revealed genetic diversity among the isolates.
Collapse
Affiliation(s)
- Xinxin Hu
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchua, China
| | - Jia Tao
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
- Center of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchua, China
| | - Lixin Yan
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchua, China
| | - Wei Hong
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchua, China
| | - Wen Wang
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
- Center of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchua, China
| | - Liru Wang
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
- Center of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchua, China
| | - Gang Li
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
- Center of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, China.
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchua, China.
| | - Wei Jia
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
- Center of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, China.
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchua, China.
| |
Collapse
|
4
|
Ciardullo G, Prejanò M, Parise A, Russo N, Marino T. The Effect of Chalcogen-Chalcogen Bond Formation in the New Delhi Metallo-β-Lactamase 1 Enzyme to Counteract Antibiotic Resistance. J Chem Theory Comput 2025; 21:1422-1431. [PMID: 39582151 DOI: 10.1021/acs.jctc.4c01266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
New Delhi metallo-β-lactamase 1 (NDM-1) is an enzyme involved in the drug resistance of many bacteria against most of the widely adopted antibiotics, such as penicillins, cephalosporins, and carbapenems. Consequently, inhibiting NDM-1 swiftly has gained significant interest as a strategy to counteract this bacterial defense mechanism, thereby restoring the effectiveness of antibiotics. Among the inhibitors tested against the enzyme, ebselen (EbSe) showed particularly promising results. This molecule, renowned for its numerous benefits to the human body, targets the enzyme's active site at Cys208 with its selenium atom, facilitating the expulsion of the catalytic zinc ion from the active pocket. Since the inhibitory mechanism of EbSe remains poorly understood, gaining detailed information about it is highly desirable. In the present work, density functional theory calculations and μs-long molecular dynamics simulations are carried out to investigate the reaction mechanism of EbSe with NDM-1, unveiling the structural implications of the inhibition. A large model of the NDM-1 active site is built to investigate the different mechanistic proposals for the SeEbSe-SCys208 bond formation. Deeper insights into Lys211 are also provided to consolidate its role during the inhibition process. Furthermore, the chemical reaction with the ebsulfur (EbS) molecule is also investigated to compare its behavior with that of the periodic relative selenium. Molecular dynamics simulations, besides evidencing the role of the L3 and L10 loops in the occurrence of the inhibition, corroborate the Zn ion release from the active site as a result of the complete disruption of its coordination sphere caused by the creation of the SeEbSe-SCys208 covalent bond.
Collapse
Affiliation(s)
- Giada Ciardullo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci Rende 87036, Italy
| | - Mario Prejanò
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci Rende 87036, Italy
| | - Angela Parise
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci Rende 87036, Italy
- Consiglio Nazionale delle ricerche (CNR)-IOM c/o International School for Advanced Studies (SISSA/ISAS), Trieste 34136, Italy
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci Rende 87036, Italy
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci Rende 87036, Italy
| |
Collapse
|
5
|
Huang YS, Zhou H. Breakthrough Advances in Beta-Lactamase Inhibitors: New Synthesized Compounds and Mechanisms of Action Against Drug-Resistant Bacteria. Pharmaceuticals (Basel) 2025; 18:206. [PMID: 40006020 PMCID: PMC11859904 DOI: 10.3390/ph18020206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/29/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Beta-lactam drugs hold a central place in the antibacterial arsenal, and the production of beta-lactamases by drug-resistant bacteria has severely compromised the effectiveness of nearly all available beta-lactams. Therefore, in the face of the increasing threat of drug resistance, the combined use of beta-lactamase inhibitors (BLIs) with beta-lactam antibiotics is crucial for treating infections caused by drug-resistant bacteria. Hence, the development of BLIs has always been a hot topic in the field of medicinal chemistry. In recent years, significant progress has been made in screening active drugs by enhancing the affinity of inhibitors for enzymes and the stability of their complexes, based on the design concept of competitive inhibitors. Here, we review the effects and mechanisms of newly synthesized beta-lactamase inhibitors on various BLIs in recent years, to provide ideas for the development of subsequent beta-lactamase inhibitors.
Collapse
Affiliation(s)
- Ya-Si Huang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563006, China;
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Hong Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563006, China;
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| |
Collapse
|
6
|
Bošnjak Z, Hasman H, Hansen F, Hammerum AM, Roer L, Jurić I, Budimir A. Co-occurrence of triple carbapenemase genes, blaVIM-2, blaNDM-1, and blaOXA-48 in Enterobacter hormaechei clinical isolates -first report from Croatia. J Chemother 2025; 37:10-14. [PMID: 38741515 DOI: 10.1080/1120009x.2024.2354107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Two Enterobacter hormaechei isolates harbouring three carbapenemase genes each, were isolated from two patients from different ICUs at University Hospital Centre Zagreb, Croatia, which is to our knowledge, the first report of triple carbapenemase (blaVIM-2, blaNDM-1, and blaOXA-48) co-existence in E. hormachei strains and also among Enterobacterales members in Croatia. Antimicrobial susceptibility testing showed susceptibility only to colistin and amikacin. The production of carbapenemases was phenotypically tested by immunochromatographic assay and confirmed by PCR. Detailed analysis by Whole Genome Sequencing (WGS) of short reads by Illumina and long reads by Oxford Nanopore Technologies (ONT) was additionally performed and showed that both isolates belonged to ST200. They were separated by 98 Single Nucleotide Polymorphisms (SNPs) having variations in the number of blaVIM-2 genes on the chromosome, the number of blaNDM-1 genes on the plasmid, non-identical blaNDM-1 plasmids, different plasmid content in general, and only one isolate carried a 94 kb prophage.
Collapse
Affiliation(s)
- Zrinka Bošnjak
- Department of Clinical Microbiology, Infection Prevention and Control, University Hospital Center, Zagreb, Croatia
- Department of Microbiology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Henrik Hasman
- Department for Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Frank Hansen
- Department for Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Anette M Hammerum
- Department for Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Louise Roer
- Department for Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Ivana Jurić
- Department of Clinical Microbiology, Infection Prevention and Control, University Hospital Center, Zagreb, Croatia
| | - Ana Budimir
- Department of Clinical Microbiology, Infection Prevention and Control, University Hospital Center, Zagreb, Croatia
- Department of Microbiology, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
7
|
De Freitas G. Verona Integron-Encoded Metallo-β-Lactamase (VIM)-Producing Pseudomonas aeruginosa Pyelonephritis in a Young Adult: A Case Report. Cureus 2025; 17:e78932. [PMID: 40091939 PMCID: PMC11909723 DOI: 10.7759/cureus.78932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2025] [Indexed: 03/19/2025] Open
Abstract
We report a case of pyelonephritis caused by Verona integron-encoded metallo-β-lactamase (VIM)-producing Pseudomonas aeruginosa in a 23-year-old female who presented from the community with flank pain and fever, and whose urine culture confirmed the presence of VIM-positive P. aeruginosa. Treatment with ceftazidime-avibactam resulted in a favorable outcome. This case highlights the emerging threat of carbapenem-resistant P. aeruginosa (CRPA) infections and the effectiveness of ceftazidime-avibactam.
Collapse
|
8
|
Quyen TLT, Hsieh YC, Li SW, Wu LT, Liu YZ, Pan YJ. Molecular epidemiology of carbapenem-resistant Acinetobacter baumannii group in Taiwan. mSphere 2025; 10:e0079324. [PMID: 39745372 PMCID: PMC11774041 DOI: 10.1128/msphere.00793-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/21/2024] [Indexed: 01/29/2025] Open
Abstract
Acinetobacter, particularly the Acinetobacter baumannii group, is a major cause of nosocomial infections, and carbapenem-resistant Acinetobacter spp. are important human pathogens. We collected 492 Acinetobacter spp. strains from two hospitals in Taiwan and classified them using MALDI-TOF MS and blaOXA-51-like PCR; 94.5% were A. baumannii, and 5.5% were non-A. baumannii (NAB). We confirmed their identity by rpoB gene sequencing of 239 randomly selected A. baumannii strains and all 27 NAB strains. Our analysis revealed that the rpoB alleles of OXA51-like-negative strains matched those of two NAB species, A. seifertii and A. nosocomialis, while all OXA51-like-positive strains matched A. baumannii, as per the Pasteur MLST scheme database. Among the 492 strains, 240 exhibited carbapenem resistance, including 237 carbapenem-resistant A. baumannii (CRAB) strains and three CR-NAB strains. All CRAB strains were positive for blaOXA-51-like; 72.6% also carried blaOXA-23-like, 22.8% carried blaOXA-24-like, 3.4% co-carried blaOXA-23-like+blaOXA-24-like, and 1.27% carried blaOXA-51-like alone. Among the three CR-NAB strains, one carried blaNDM-1, and two co-carried blaOXA-58-like+blaIMP. We also established a new multiplex PCR method for rapid screening of common capsular types (KL), which showed a difference between CRAB and carbapenem-susceptible A. baumannii (CSAB). KL2, KL10, KL22, and KL52 accounted for 76.6% of CRAB strains, whereas about half of the CSAB strains were other KL types. Of the remaining CSAB strains, KL14 was the most predominant type at 10.3%. We further conducted MLST Pasteur typing for 262 isolates and found that the carbapenemase genes were correlated with either ST or KL types. Additionally, KL types showed correlations with ST types, carbapenem resistance, and certain clinical records. Whole-genome sequencing of a blaNDM-1-carrying A. seifertii strain revealed a plasmid transferable via in vitro conjugation, suggesting A. seifertii may be a reservoir for NDM-1 plasmids.IMPORTANCECarbapenem-resistant Acinetobacter spp. have been identified by the World Health Organization as a top priority for new antibiotic development. We established a rapid KL-typing method for efficient screening of Acinetobacter baumannii strains to enable epidemiological surveillance and provide a foundation for effective infection control. Our investigation of the molecular epidemiology of the A. baumannii group isolates revealed the prevalence of carbapenemase genes and major KL types among CR and CS strains of A. baumannii and NAB. We identified an A. seifertii strain carrying a Ti-type conjugative operon on a small plasmid that harbored genes encoding the NDM-1 carbapenemase alongside genes conferring resistance to aminoglycosides and bleomycin and closely resembled sequences detected in A. soli and A. pittii in Taiwan and China, respectively, suggesting its potential for transmitting multidrug resistance and contributing to the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Tran Lam Tu Quyen
- Department of Biological Science and Technology, College of Life Science, China Medical University, Taichung, Taiwan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Chia Hsieh
- Department of Pediatrics, Chang Gung Children’s Hospital, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Shiao-Wen Li
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan
| | - Lii-Tzu Wu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Ya-Zhu Liu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Jiun Pan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
9
|
Li M, Li L, Zhang X, Yuan Q, Bao B, Tang Y. A Conjugated Oligomer with Drug Efflux Pump Inhibition and Photodynamic Therapy for Synergistically Combating Resistant Bacteria. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4675-4688. [PMID: 39787568 DOI: 10.1021/acsami.4c20278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
High expression of drug efflux pump makes antibiotics ineffective against bacteria, leading to drug-resistant strains and even the emergence of "superbugs". Herein, we design and synthesize a dual functional o-nitrobenzene (NB)-modified conjugated oligo-polyfluorene vinylene (OPFV) photosensitizer, OPFV-NB, which can depress efflux pump activity and also possesses photodynamic therapy (PDT) for synergistically overcoming drug-resistant bacteria. Upon light irradiation, the OPFV-NB can produce aldehyde active groups to covalently bind outer membrane proteins, such as tolerant colicin (TolC), blocking drug efflux of bacteria. The minimum inhibitory concentration of antibiotic model chloramphenicol (CHL) is reduced about 64 times, significantly resensitizing drug-resistant bacteria to antibiotics. Also, the probe can produce highly efficient reactive oxygen species (ROS) under light irradiation. Consequently, the unimolecular OPFV-NB-based system demonstrates insusceptibility to antibiotic resistance while maintaining significant antimicrobial effects (100%) against drug-resistant bacteria. More importantly, in vivo assays corroborate that the combined system greatly accelerates wound healing by eradicating the bacterial population, dampening inflammation, and promoting angiogenesis. Overall, the OPFV-NB not only counteracts antibiotic resistance but also holds tremendous PDT efficiency, which provides a promising therapeutic strategy for combating drug-resistant bacteria and treating bacteria-infected wounds.
Collapse
Affiliation(s)
- Meiqi Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Ling Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Xinyi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Qiong Yuan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Benkai Bao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yanli Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
10
|
Ofosu Appiah F, Mahazu S, Prah I, Kawamura T, Ota Y, Nishikawa Y, Yoshida M, Suzuki M, Hoshino Y, Suzuki T, Ishino T, Ablordey A, Saito R. Emergence of Carbapenem-Resistant blaPOM-1 Harboring Pseudomonas otitidis Isolated from River Water in Ghana. Antibiotics (Basel) 2025; 14:50. [PMID: 39858336 PMCID: PMC11761616 DOI: 10.3390/antibiotics14010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/17/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
Introduction:Pseudomonas otitidis, known for carrying the blaPOM-1 gene and linked to various diseases, is widely distributed. However, its prevalence in Ghana is unknown, mainly due to misidentification or inadequate research. In this study, for the first time, we characterized P. otitidis from Densu river water in Ghana. Methods: The antimicrobial susceptibility and whole genome characteristics of two strains (Tg_9B and BC12) were determined. The resistance and virulence features were determined using ResFinder and the VFDB database, respectively. Maximum-likelihood phylogeny was conducted based on amino acid sequences of blaPOM-1 and P. otitidis core genomes. Results: The strains carried blaPOM-1 on the chromosome, with only Tg_9B showing intermediate resistance to meropenem. Tg_9B had a unique genetic make-up downstream of blaPOM-1, compared with BC12 and other reference strains. Both strains harbored virulence factors able to induce pathogenicity through immune evasion. The efflux pump genes (adeF, rsmA, and qacG) were present in the genomes of all the strains used in this study. The amino acid sequences of POM-1 in the strains shared a sequence homology with seven other sequences from different countries. Conclusions: This study highlights the emergence of blaPOM-1 harboring P. otitidis in Ghana and affirms the conservation of blaPOM-1 and adeF, rsmA, and qacG in the species.
Collapse
Grants
- JP24wm0225022, JP24fk0108665, JP24fk0108683, JP24fk0108712, JP24fk0108642, JP24wm0225029, JP24wm0225022, JP24wm0125012, JP24gm1610003 JP24fk0108673, JP24fk0108701, JP24wm0125007, JP24wm0225022, JP24wm0325054, JP24gm1610003, JP24gm1610007 Japan Agency for Medical Research and Development
- N/A Kajima Foundation
Collapse
Affiliation(s)
- Frederick Ofosu Appiah
- Department of Molecular Microbiology and Immunology, Institute of Science Tokyo, Tokyo 113-8510, Japan; (F.O.A.); (S.M.); (I.P.); (T.K.); (Y.O.)
- Department of Parasitology and Tropical Medicine, Institute of Science Tokyo, Tokyo 113-8510, Japan;
| | - Samiratu Mahazu
- Department of Molecular Microbiology and Immunology, Institute of Science Tokyo, Tokyo 113-8510, Japan; (F.O.A.); (S.M.); (I.P.); (T.K.); (Y.O.)
| | - Isaac Prah
- Department of Molecular Microbiology and Immunology, Institute of Science Tokyo, Tokyo 113-8510, Japan; (F.O.A.); (S.M.); (I.P.); (T.K.); (Y.O.)
| | - Taira Kawamura
- Department of Molecular Microbiology and Immunology, Institute of Science Tokyo, Tokyo 113-8510, Japan; (F.O.A.); (S.M.); (I.P.); (T.K.); (Y.O.)
| | - Yusuke Ota
- Department of Molecular Microbiology and Immunology, Institute of Science Tokyo, Tokyo 113-8510, Japan; (F.O.A.); (S.M.); (I.P.); (T.K.); (Y.O.)
| | - Yohei Nishikawa
- Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, Tokyo 169-0082, Japan;
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo 162-8644, Japan
| | - Mitsunori Yoshida
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (M.Y.); (Y.H.)
| | - Masato Suzuki
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan;
| | - Yoshihiko Hoshino
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (M.Y.); (Y.H.)
| | - Toshihiko Suzuki
- Department of Bacterial Pathogenesis, Tokyo Medical and Dental University, Tokyo 113-8510, Japan;
| | - Tomoko Ishino
- Department of Parasitology and Tropical Medicine, Institute of Science Tokyo, Tokyo 113-8510, Japan;
| | - Anthony Ablordey
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, Accra P.O. Box LG43, Ghana;
| | - Ryoichi Saito
- Department of Molecular Microbiology and Immunology, Institute of Science Tokyo, Tokyo 113-8510, Japan; (F.O.A.); (S.M.); (I.P.); (T.K.); (Y.O.)
| |
Collapse
|
11
|
Tapia-Cornejo AS, Ramírez-Castillo FY, Guerrero-Barrera AL, Guillen-Padilla DE, Arreola-Guerra JM, González-Gámez M, Avelar-González FJ, Loera-Muro A, Hernández-Cuellar E, Ramos-Medellín CL, Adame-Álvarez C, García-Romo R, Galindo-Guerrero F, Moreno-Flores AC. Occurrence of Plasmid-Mediated Quinolone Resistance and Carbapenemase-Encoding Genes in Pseudomonas aeruginosa Isolates from Nosocomial Patients in Aguascalientes, Mexico. Pathogens 2024; 13:992. [PMID: 39599545 PMCID: PMC11597332 DOI: 10.3390/pathogens13110992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024] Open
Abstract
Pseudomonas aeruginosa is a leading cause of healthcare-associated infections, which are related to substantial morbidity and mortality. The incidence of Plasmid-Mediated Quinolone Resistance (PMQR) determinants has been previously reported in this bacterium. However, there is limited information regarding the presence of PMQR and carbapenemase-encoding genes simultaneously. This study aims to analyze the prevalence of these determinants on P. aeruginosa strain isolated from clinical patients in the State of Aguascalientes, Mexico. Fifty-two P. aeruginosa isolates from nosocomial patients were collected from Centenario Hospital Miguel Hidalgo. This is a retrospective observational study conducted at a single center. Antibiotic susceptibility was tested using the Vitek-2 system. Only carbapenem-resistant isolates were included in this study. Carbapenemase-encoding genes and PMQR determinants were screened by polymerase chain reaction (PCR). Resistance rates of 100% were found on tigecycline and ceftriaxone. Of the 52 isolates, 34.6% were positive for the qnr genes, 46.2% for the oqxA gene, and 25% for the aac-(6')-lb gene. The most frequent carbapenemase genes found in the samples were blaOXA-51 (42.3%), blaOXA-1 (15.4%), and blaVIM (15.4%). blaOXA-51 co-carrying oqxA was detected in 21.1% of the isolates, blaOXA-51 co-carrying aac-(6')-lb in 11.5%, blaVIM co-carrying aac-(6')-lb in 3.8%, and blaKPC co-carrying oqxA in 5.8%. Systematic surveillance to detect carbapenemase-encoding genes and PMQR determinants, and rational prescription using the last-line drugs could help in preventing the dissemination of multidrug-resistant determinants.
Collapse
Affiliation(s)
- Ana S. Tapia-Cornejo
- Departamento de Medicina Interna, Hospital Centenario Miguel Hidalgo, Aguascalientes 20240, Mexico;
| | - Flor Y. Ramírez-Castillo
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (F.Y.R.-C.); (D.E.G.-P.); (E.H.-C.); (F.G.-G.); (A.C.M.-F.)
| | - Alma L. Guerrero-Barrera
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (F.Y.R.-C.); (D.E.G.-P.); (E.H.-C.); (F.G.-G.); (A.C.M.-F.)
| | - Diana E. Guillen-Padilla
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (F.Y.R.-C.); (D.E.G.-P.); (E.H.-C.); (F.G.-G.); (A.C.M.-F.)
| | - José M. Arreola-Guerra
- Departamento de Nefrología, Hospital Centenario Miguel Hidalgo, Aguascalientes 20240, Mexico;
| | - Mario González-Gámez
- Departamento de Infectología, Hospital Centenario Miguel Hidalgo, Aguascalientes 20240, Mexico;
| | - Francisco J. Avelar-González
- Laboratorio de Estudios Ambientales, Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico;
| | - Abraham Loera-Muro
- CONAHCYT, Centro de Investigaciones Biológicas del Noreste (CIBNOR), La Paz 23205, Mexico;
| | - Eduardo Hernández-Cuellar
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (F.Y.R.-C.); (D.E.G.-P.); (E.H.-C.); (F.G.-G.); (A.C.M.-F.)
| | - Carmen L. Ramos-Medellín
- Laboratorio Clínico, Hospital Centenario Miguel Hidalgo, Aguascalientes 20240, Mexico; (C.L.R.-M.); (C.A.-Á.); (R.G.-R.)
| | - Cesar Adame-Álvarez
- Laboratorio Clínico, Hospital Centenario Miguel Hidalgo, Aguascalientes 20240, Mexico; (C.L.R.-M.); (C.A.-Á.); (R.G.-R.)
| | - Ricardo García-Romo
- Laboratorio Clínico, Hospital Centenario Miguel Hidalgo, Aguascalientes 20240, Mexico; (C.L.R.-M.); (C.A.-Á.); (R.G.-R.)
| | - Fabiola Galindo-Guerrero
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (F.Y.R.-C.); (D.E.G.-P.); (E.H.-C.); (F.G.-G.); (A.C.M.-F.)
| | - Adriana C. Moreno-Flores
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (F.Y.R.-C.); (D.E.G.-P.); (E.H.-C.); (F.G.-G.); (A.C.M.-F.)
| |
Collapse
|
12
|
Zurita J, Sevillano G, Solís MB, Paz Y Miño A, Alves BR, Changuan J, González P. Pseudomonas aeruginosa epidemic high-risk clones and their association with multidrug-resistant. J Glob Antimicrob Resist 2024; 38:332-338. [PMID: 39019398 DOI: 10.1016/j.jgar.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/19/2024] Open
Abstract
OBJECTIVE In Ecuador, data on molecular epidemiology, as well as circulating clones, are limited. Therefore, this study aims to know the population structure of Pseudomonas aeruginosa by identifying clones in clinical samples in Quito-Ecuador. METHODS A significant set (45) clinical P. aeruginosa isolates were selected, including multidrug and non-multidrug resistant isolates, which were assigned to sequence types (STs) and compared with their antibiotic susceptibility profile. The genetic diversity was assessed by applying the multilocus sequence typing (MLST) scheme and the genetic relationships between different STs were corroborated by phylogenetic networks. RESULTS The MLST analysis identified 24 different STs and the most prevalent STs were ST-3750 and ST-253. The majority of the multidrug-resistance (MDR) isolates were included in ST-3750 and ST-253, also 3 singleton STs were identified as MDR isolates. The 21 different STs were found in non-multidrug resistance (non-MDR) isolates, and only 3 STs were found in more the one isolate. CONCLUSIONS The population structure of clinical P. aeruginosa present in these isolates indicates a significant association between MDR isolates and the clonal types: all ST-3750 and ST-253 isolates were MDR. ST-3750 is a closely related strain to the clonal complex ST111 (CC111). ST-253 and ST111 are a group of successful high-risk clones widely distributed worldwide. The multiresistant isolates studied are grouped in the most prevalent STs found, and the susceptible isolates correspond mainly with singleton STs. Therefore, these high-risk clones and their association with MDR phenotypes are contributing to the spread of MDR in Quito, Ecuador.
Collapse
Affiliation(s)
- Jeannete Zurita
- Unidad de Investigaciones en Biomedicina. Zurita & Zurita Laboratorios, Quito, Ecuador; Facultad de Medicina. Pontificia Universidad Católica del Ecuador, Quito, Ecuador.
| | - Gabriela Sevillano
- Unidad de Investigaciones en Biomedicina. Zurita & Zurita Laboratorios, Quito, Ecuador
| | - María Belén Solís
- Unidad de Investigaciones en Biomedicina. Zurita & Zurita Laboratorios, Quito, Ecuador
| | - Ariane Paz Y Miño
- Unidad de Investigaciones en Biomedicina. Zurita & Zurita Laboratorios, Quito, Ecuador; Mass General Brigham Salem Hospital, Salem, MA, USA
| | | | - Jessica Changuan
- Unidad de Investigaciones en Biomedicina. Zurita & Zurita Laboratorios, Quito, Ecuador
| | - Pablo González
- Unidad de Investigaciones en Biomedicina. Zurita & Zurita Laboratorios, Quito, Ecuador
| |
Collapse
|
13
|
Wu H, Li M, Shou C, Shi F, Song X, Hu Q, Wang Y, Chen Y, Tong X. Pathogenic spectrum and drug resistance of bloodstream infection in patients with acute myeloid leukaemia: a single centre retrospective study. Front Cell Infect Microbiol 2024; 14:1390053. [PMID: 38912203 PMCID: PMC11190328 DOI: 10.3389/fcimb.2024.1390053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/10/2024] [Indexed: 06/25/2024] Open
Abstract
Background Bloodstream infection (BSI) represent a prevalent complication in haematological malignancies (HMs). Typically, Patients with BSI usually undergo empirical treatment pending pathogen identification. The timely and effective management of BSIs significantly influences patient prognosis. However, pathogen distribution in BSIs exhibits regional variation. In this study, we investigated the clinical characteristics, pathogen spectrum, drug resistance, risk factors of short-term prognosis and long-term prognostic factors of acute myeloid leukemia (AML) patients with BSI at Zhejiang Provincal People's Hospital. Methods From 2019 to 2021, a total of 56 AML patients with BSI were treated in the Department of Haematology at Zhejiang Province People's Hospital. Data regarding pathogen spectrum and drug resistance were collected for analysis. The patients were stratified into non-survivor cohort and survivor cohort within 30 days after BSI, and the predictors of 30-days mortality were identified through both univariate and multivariate Logistic regression analyses. Furthermore, Kaplan-Meier survival analysis and Cox regression analysis were employed to ascertain the risk factors associated with poor prognosis in AML patients complicated by BSI. Results A total of 70 strains of pathogenic bacteria were isolated from 56 AML patients with BSI. Gram-negative bacteria constituted the predominant pathogens (71.4%), with Klebsiella pneumoniae being the most prevalent (22.9%). Gram-positive bacteria and fungi accounted for 22.9% and 5.7%, respectively. Univariate and multivariate analyses revealed significant differences in total protein, albumin levels, and the presence of septic shock between the non-survivor cohort and the survior cohort 30 days post-BSI. COX regression analysis showed that agranulocytosis duration exceeding 20 days (HR:3.854; 95% CI: 1.451-10.242) and septic shock (HR:3.788; 95% CI: 1.729-8.299) were independent risk factors for poor prognosis in AML patients complicated by BSI. Notably, the mortality rate within 30 days after Stenotrophomonas maltophilia infection was up to 71.4%. Conclusions In this study, Gram-negative bacteria, predominantly Klebsiella pneumoniae, constituted the primary pathogens among AML patients with BSIs. Serum albumin levels and the presence of septic shock emerged as independent risk factors for mortality within 30 days among AML patients with BSI. In terms of long-term prognosis, extended agranulocytosis duration exceeding 20 days and septic shock were associated with elevated mortality rates in AML patients with BSI. Additionally, in our centre, Stenotrophomonas maltophilia infection was found to be associated with a poor prognosis. Early intervention for Stenotrophomonas maltophilia infection in our centre could potentially improve patient outcomes.
Collapse
Affiliation(s)
- Han Wu
- Graduate School of Clinical Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
- Cancer Center, Department of Hematology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Manning Li
- Graduate School of Clinical Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
- Cancer Center, Department of Hematology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chunyi Shou
- Cancer Center, Department of Hematology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fangfang Shi
- Cancer Center, Department of Hematology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaolu Song
- Cancer Center, Department of Hematology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qingfeng Hu
- Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou First People’s Hospital, Xihu University, Hangzhou, Zhejiang, China
| | - Yirui Chen
- Cancer Center, Department of Hematology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiangmin Tong
- Cancer Center, Department of Hematology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Hematology, Affiliated Hangzhou First People’s Hospital, Xihu University, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Rodriguez P, Blakely RD. Sink or swim: Does a worm paralysis phenotype hold clues to neurodegenerative disease? J Cell Physiol 2024; 239:e31125. [PMID: 37795580 DOI: 10.1002/jcp.31125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023]
Abstract
Receiving a neurodegenerative disease (NDD) diagnosis, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, or amyotrophic lateral sclerosis, is devastating, particularly given the limited options for treatment. Advances in genetic technologies have allowed for efficient modeling of NDDs in animals and brought hope for new disease-modifying medications. The complexity of the mammalian brain and the costs and time needed to identify and develop therapeutic leads limits progress. Modeling NDDs in invertebrates, such as the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans, offers orders of magnitude increases in speed of genetic analysis and manipulation, and can be pursued at substantially reduced cost, providing an important, platform complement and inform research with mammalian NDD models. In this review, we describe how our efforts to exploit C. elegans for the study of neural signaling and health led to the discovery of a paralytic phenotype (swimming-induced paralysis) associated with altered dopamine signaling and, surprisingly, to the discovery of a novel gene and pathway whose dysfunction in glial cells triggers neurodegeneration. Research to date on swip-10 and its putative mammalian ortholog MBLAC1, suggests that a tandem analysis will offer insights into NDD mechanisms and insights into novel, disease-modifying therapeutics.
Collapse
Affiliation(s)
- Peter Rodriguez
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Boca Raton, Florida, USA
| | - Randy D Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Boca Raton, Florida, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
| |
Collapse
|
15
|
Mallart E, Guerin F, Amoura A, Le Scouarnec M, Hamon A, El Meouche I, Chau F, Lefort A, Fantin B, Cattoir V, de Lastours V. Impact of the phenotypic expression of temocillin resistance in Escherichia coli on temocillin efficacy in a murine peritonitis model. J Antimicrob Chemother 2024; 79:1051-1059. [PMID: 38501355 DOI: 10.1093/jac/dkae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/29/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Temocillin is a narrow spectrum β-lactam active against MDR Enterobacterales. Mechanisms of acquired resistance to temocillin are poorly understood. We analysed resistance mechanisms in clinical isolates of Escherichia coli and evaluated their impact on temocillin efficacy in vitro and in a murine peritonitis model. METHODS Two sets of isogenic clinical E. coli strains were studied: a susceptible isolate (MLTEM16S) and its resistant derivative, MLTEM16R (mutation in nmpC porin gene); and temocillin-resistant derivatives of E. coli CFT073: CFT-ΔnmpC (nmpC deletion), CFTbaeS-TP and CFTbaeS-AP (two different mutations in the baeS efflux-pump gene).Fitness cost, time-kill curves and phenotypic expression of resistance were determined. Temocillin efficacy was assessed in a murine peritonitis model. RESULTS MICs of temocillin were 16 and 64 mg/L for MLTEM16S and MLTEM16R, respectively, and 8, 128, 256 and 256 mg/L for E. coli-CFT073, CFT-ΔnmpC, CFTbaeS-TP and CFTbaeS-AP, respectively. No fitness cost of resistance was evidenced. All resistant strains showed heteroresistant profiles, except for CFTbaeS-AP, which displayed a homogeneous pattern. In vitro, temocillin was bactericidal against MLTEM16R, CFT-ΔnmpC, CFTbaeS-TP and CFTbaeS-AP at 128, 256, 512 and 512 mg/L, respectively. In vivo, temocillin was as effective as cefotaxime against MLTEM16R, CFT-ΔnmpC and CFTbaeS-TP, but inefficient against CFTbaeS-AP (100% mortality). CONCLUSIONS Heteroresistant NmpC porin alteration and active efflux modification do not influence temocillin efficacy despite high MIC values, unfavourable pharmacokinetic/pharmacodynamic conditions and the absence of fitness cost, whereas homogeneously expressed BaeS efflux pump alteration yielding similar MICs leads to temocillin inefficacy. MIC as sole predictor of temocillin efficacy should be used with caution.
Collapse
Affiliation(s)
- Elise Mallart
- IAME Research Group, UMR1137 INSERM and Uiversité Paris Cité, F-75018 Paris, France
| | - François Guerin
- UMR1230, INSERM and Université Rennes 1, F-35043 Rennes, France
- Service de Bactériologie-Hygiène Hospitalière & CNR de la Résistance aux Antibiotiques (laboratoire associé 'Entérocoques'), CHU Pontchaillou, F-35033 Rennes, France
| | - Ariane Amoura
- IAME Research Group, UMR1137 INSERM and Uiversité Paris Cité, F-75018 Paris, France
| | - Matthieu Le Scouarnec
- Service de Bactériologie-Hygiène Hospitalière & CNR de la Résistance aux Antibiotiques (laboratoire associé 'Entérocoques'), CHU Pontchaillou, F-35033 Rennes, France
| | - Antoine Hamon
- IAME Research Group, UMR1137 INSERM and Uiversité Paris Cité, F-75018 Paris, France
| | - Imane El Meouche
- IAME Research Group, UMR1137 INSERM and Uiversité Paris Cité, F-75018 Paris, France
| | - Françoise Chau
- IAME Research Group, UMR1137 INSERM and Uiversité Paris Cité, F-75018 Paris, France
| | - Agnès Lefort
- IAME Research Group, UMR1137 INSERM and Uiversité Paris Cité, F-75018 Paris, France
- Service de Médecine Interne, Hôpital Beaujon, AP-HP, Université Paris Cité, F-92210 Clichy, France
| | - Bruno Fantin
- IAME Research Group, UMR1137 INSERM and Uiversité Paris Cité, F-75018 Paris, France
- Service de Médecine Interne, Hôpital Beaujon, AP-HP, Université Paris Cité, F-92210 Clichy, France
| | - Vincent Cattoir
- UMR1230, INSERM and Université Rennes 1, F-35043 Rennes, France
- Service de Bactériologie-Hygiène Hospitalière & CNR de la Résistance aux Antibiotiques (laboratoire associé 'Entérocoques'), CHU Pontchaillou, F-35033 Rennes, France
| | - Victoire de Lastours
- IAME Research Group, UMR1137 INSERM and Uiversité Paris Cité, F-75018 Paris, France
- Service de Médecine Interne, Hôpital Beaujon, AP-HP, Université Paris Cité, F-92210 Clichy, France
| |
Collapse
|
16
|
Moussa J, Nassour E, Jisr T, El Chaar M, Tokajian S. Characterization of blaNDM-19-producing IncX3 plasmid isolated from carbapenem-resistant Escherichia coli and Klebsiellapneumoniae. Heliyon 2024; 10:e29642. [PMID: 38655329 PMCID: PMC11036045 DOI: 10.1016/j.heliyon.2024.e29642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 04/01/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024] Open
Abstract
The increase in the prevalence of carbapenem-producing Enterobacterales (CPE) is a major threat, with the New Delhi metallo-β-lactamase (NDM) enzyme-producing CPEs being one of the major causative agents of healthcare settings infections. In this study, we characterized an IncX3 plasmid harboring blaNDM-19 in Lebanon, recovered from three Escherichia coli belonging to ST167 and one Klebsiella pneumoniae belonging to ST16 isolated from a clinical setting. Plasmid analysis using PBRT, Plasmid Finder, and PlasmidSPAdes showed that all four isolates carried a conjugative 47-kb plasmid having blaNDM-19, and was designated as pLAU-NDM19. We constructed a sequence-based maximum likelihood phylogenetic tree and compared pLAU-NDM19 to other representative IncX3 plasmids carrying NDM-variants and showed that it was closely linked to NDM-19 positive IncX3 plasmid from K. pneumoniae reported in China. Our findings also revealed the route mediating resistance transmission, the IncX3 dissemination among Enterobacterales, and the NDM-19 genetic environment. We showed that mobile elements contributed to the variability of IncX3 genomic environment and highlighted that clonal dissemination in healthcare settings facilitated the spread of resistance determinants. Antimicrobial stewardship programs implemented in hospitals should be coupled with genomic surveillance to better understand the mechanisms mediating the mobilization of resistance determinants among nosocomial pathogens and their subsequent clonal dissemination.
Collapse
Affiliation(s)
- Jennifer Moussa
- Department of Natural Sciences, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Elie Nassour
- Department of Natural Sciences, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Tamima Jisr
- Clinical Laboratory Department, Makassed General Hospital, P.O.Box 11-6301, Beirut, Lebanon
| | - Mira El Chaar
- Faculty of Health Sciences, University of Balamand, P.O. Box 55251, Beirut, Lebanon
| | - Sima Tokajian
- Department of Natural Sciences, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| |
Collapse
|
17
|
Freiberg JA, Tao L, Manuel C, Mike LA, Nelson GE, Harris BD, Mathers AJ, Talbot TR, Skaar EP, Humphries RM. A multi-species outbreak of VIM-producing carbapenem-resistant bacteria in a burn unit and subsequent investigation of rapid development of cefiderocol resistance. Antimicrob Agents Chemother 2024; 68:e0150723. [PMID: 38376188 PMCID: PMC10989021 DOI: 10.1128/aac.01507-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/25/2024] [Indexed: 02/21/2024] Open
Abstract
Carbapenem resistance due to metallo-β-lactamases (MBLs) such as the Verona integron-encoded metallo-β-lactamase (VIM) is particularly problematic due to the limited treatment options. We describe a case series of bacterial infections in a tertiary care hospital due to multi-species acquisition of a VIM gene along with our experience using novel β-lactam antibiotics and antibiotic combinations to treat these infections. Four patients were treated with the combination of ceftazidime-avibactam and aztreonam, with no resistance to the combination detected. However, cefiderocol-resistant Klebsiella pneumoniae isolates were detected in two out of the five patients who received cefiderocol within 3 weeks of having started the antibiotic. Strain pairs of sequential susceptible and resistant isolates from both patients were analyzed using whole-genome sequencing. This analysis revealed that the pairs of isolates independently acquired point mutations in both the cirA and fiu genes, which encode siderophore receptors. These point mutations were remade in a laboratory strain of K. pneumoniae and resulted in a significant increase in the MIC of cefiderocol, even in the absence of a beta-lactamase enzyme or a penicillin-binding protein 3 (PBP3) mutation. While newer β-lactam antibiotics remain an exciting addition to the antibiotic armamentarium, their use must be accompanied by diligent monitoring for the rapid development of resistance.
Collapse
Affiliation(s)
- Jeffrey A. Freiberg
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lili Tao
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Carmila Manuel
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Laura A. Mike
- Medical Microbiology and Immunology, University of Toledo, Toledo, Ohio, USA
| | - George E. Nelson
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Bryan D. Harris
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Amy J. Mathers
- Department of Medicine and Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Thomas R. Talbot
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Eric P. Skaar
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Romney M. Humphries
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
18
|
Sader HS, Carvalhaes CG, Kimbrough JH, Mendes RE, Castanheira M. Activity of aztreonam-avibactam against Enterobacterales resistant to recently approved beta-lactamase inhibitor combinations collected in Europe, Latin America, and the Asia-Pacific Region (2020-2022). Int J Antimicrob Agents 2024; 63:107113. [PMID: 38354826 DOI: 10.1016/j.ijantimicag.2024.107113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Aztreonam-avibactam is under clinical development for treatment of infections caused by carbapenem-resistant Enterobacterales (CRE), especially those resistant to recently approved β-lactamase inhibitor combinations (BLICs). OBJECTIVES To evaluate a large collection of CRE isolates, including those non-susceptible to ceftazidime-avibactam, meropenem-vaborbactam, and/or imipenem-relebactam. METHODS Overall, 24 580 Enterobacterales isolates were consecutively collected (1/patient) in 2020-2022 from 64 medical centres located in Western Europe (W-EU), Eastern Europe (E-EU), Latin America (LATAM), and the Asia-Pacific region (APAC). Of those, 1016 (4.1%) were CRE. Isolates were susceptibility tested by broth microdilution. CRE isolates were screened for carbapenemase genes by whole genome sequencing. RESULTS Aztreonam-avibactam inhibited 99.6% of CREs at ≤8 mg/L. Ceftazidime-avibactam, meropenem-vaborbactam, and imipenem-relebactam were active against 64.6%, 57.4%, and 50.7% of CRE isolates, respectively; most of the non-susceptible isolates carried metallo-beta-lactamases. Aztreonam-avibactam was active against ≥98.9% of isolates non-susceptible to these BLICs. The activity of these BLICs varied by region, with highest susceptibility rates observed in W-EU (76.9% for ceftazidime-avibactam, 72.5% for meropenem-vaborbactam, 63.8% for imipenem-relebactam) and the lowest susceptibility rates identified in the APAC region (39.9% for ceftazidime-avibactam, 37.8% for meropenem-vaborbactam, and 27.5% for imipenem-relebactam). The most common carbapenemase types overall were KPC (44.6% of CREs), NDM (29.9%), and OXA-48-like (16.0%). KPC predominated in LATAM (64.1% of CREs in the region) and W-EU (61.1%). MBL occurrence was highest in APAC (59.5% of CREs in the region), followed by LATAM (34.0%), E-EU (28.9%), and W-EU (23.6%). CONCLUSIONS Aztreonam-avibactam demonstrated potent activity against CRE isolates resistant to ceftazidime-avibactam, meropenem-vaborbactam, and/or imipenem-relebactam independent of the carbapenemase produced.
Collapse
Affiliation(s)
- Helio S Sader
- JMI Laboratories/Element Materials Technology, North Liberty, IA, USA.
| | | | - John H Kimbrough
- JMI Laboratories/Element Materials Technology, North Liberty, IA, USA
| | - Rodrigo E Mendes
- JMI Laboratories/Element Materials Technology, North Liberty, IA, USA
| | | |
Collapse
|
19
|
Zhang S, Liao X, Ding T, Ahn J. Role of β-Lactamase Inhibitors as Potentiators in Antimicrobial Chemotherapy Targeting Gram-Negative Bacteria. Antibiotics (Basel) 2024; 13:260. [PMID: 38534695 DOI: 10.3390/antibiotics13030260] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
Since the discovery of penicillin, β-lactam antibiotics have commonly been used to treat bacterial infections. Unfortunately, at the same time, pathogens can develop resistance to β-lactam antibiotics such as penicillins, cephalosporins, monobactams, and carbapenems by producing β-lactamases. Therefore, a combination of β-lactam antibiotics with β-lactamase inhibitors has been a promising approach to controlling β-lactam-resistant bacteria. The discovery of novel β-lactamase inhibitors (BLIs) is essential for effectively treating antibiotic-resistant bacterial infections. Therefore, this review discusses the development of innovative inhibitors meant to enhance the activity of β-lactam antibiotics. Specifically, this review describes the classification and characteristics of different classes of β-lactamases and the synergistic mechanisms of β-lactams and BLIs. In addition, we introduce potential sources of compounds for use as novel BLIs. This provides insights into overcoming current challenges in β-lactamase-producing bacteria and designing effective treatment options in combination with BLIs.
Collapse
Affiliation(s)
- Song Zhang
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Xinyu Liao
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Tian Ding
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| |
Collapse
|
20
|
Li H, Duan S, Li L, Zhao G, Wei L, Zhang B, Ma Y, Wu MX, Mao Y, Lu M. Bio-Responsive Sliver Peroxide-Nanocarrier Serves as Broad-Spectrum Metallo-β-lactamase Inhibitor for Combating Severe Pneumonia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310532. [PMID: 38095435 DOI: 10.1002/adma.202310532] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/04/2023] [Indexed: 12/22/2023]
Abstract
Metallo-β-lactamases (MBLs) represent a prevalent resistance mechanism in Gram-negative bacteria, rendering last-line carbapenem-related antibiotics ineffective. Here, a bioresponsive sliver peroxide (Ag2 O2 )-based nanovesicle, named Ag2 O2 @BP-MT@MM, is developed as a broad-spectrum MBL inhibitor for combating MBL-producing bacterial pneumonia. Ag2 O2 nanoparticle is first orderly modified with bovine serum albumin and polydopamine to co-load meropenem (MER) and [5-(p-fluorophenyl)-2-ureido]-thiophene-3-carboxamide (TPCA-1) and then encapsulated with macrophage membrane (MM) aimed to target inflammatory lung tissue specifically. The resultant Ag2 O2 @BP-MT@MM effectively abrogates MBL activity by displacing the Zn2+ cofactor in MBLs with Ag+ and displays potent bactericidal and anti-inflammatory properties, specific targeting abilities, and great bioresponsive characteristics. After intravenous injection, the nanoparticles accumulate prominently at infection sites through MM-mediated targeting . Ag+ released from Ag2 O2 decomposition at the infection sites effectively inhibits MBL activity and overcomes the resistance of MBL-producing bacteria to MER, resulting in synergistic elimination of bacteria in conjunction with MER. In two murine infection models of NDM-1+ Klebsiella pneumoniae-induced severe pneumonia and NDM-1+ Escherichia coli-induced sepsis-related bacterial pneumonia, the nanoparticles significantly reduce bacterial loading, pro-inflammatory cytokine levels locally and systemically, and the recruitment and activation of neutrophils and macrophages. This innovative approach presents a promising new strategy for combating infections caused by MBL-producing carbapenem-resistant bacteria.
Collapse
Affiliation(s)
- Hanqing Li
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shuxian Duan
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Lixia Li
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Gang Zhao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Wei
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bohan Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yingying Ma
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mei X Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital Department of Dermatology, Harvard Medical School, 50 Blossom Street, Boston, MA, 02114, USA
| | - Yanfei Mao
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Min Lu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
21
|
Xie Y, Li J, Liu C, Zhang X, Zhang X, Wang Q, Zhang L, Yang S. Antimicrobial efficacy of aloe-emodin mediated photodynamic therapy against antibiotic-resistant Pseudomonas aeruginosa in vitro. Biochem Biophys Res Commun 2024; 690:149285. [PMID: 37995454 DOI: 10.1016/j.bbrc.2023.149285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Multidrug-resistant Pseudomonas aeruginosa is a common pathogen that causes topical infections following burn injuries. Antimicrobial photodynamic therapy (aPDT) has emerged as a promising approach for treating antibiotic-resistant bacterial infections. The objective of this study was to evaluate the aPDT efficacy of aloe-emodin (AE), which is a photosensitizer extracted from traditional Chinese herbs, on antibiotic-sensitive and antibiotic-resistant P. aeruginosa in vitro. In this study, we confirmed the effectiveness of AE-mediated aPDT against both standard and MDR P. aeruginosa, explored the effects of irradiation time and AE concentration on bacterial survival in AE-mediated aPDT, and observed the structural damage of P. aeruginosa by using transmission electron microscope. Our results showed that neither AE nor light irradiation alone caused cytotoxic effects on P. aeruginosa. However, AE-mediated aPDT effectively inactivated both antibiotic-sensitive and antibiotic-resistant P. aeruginosa. The transmission electron microscope investigation showed that aPDT mediated by AE primarily caused damage to the cytoplasm and cell membrane. Our findings suggest that AE is a photosensitizer in the aPDT of MDR P. aeruginosa-caused topical infections following burn injuries. Future investigations will concentrate on the safety and efficacy of AE-mediated aPDT in animal models and clinical trials.
Collapse
Affiliation(s)
- Yun Xie
- Department of Clinical Laboratory, Northwest Women's and Children's Hospital, Xi'an, China
| | - Jiao Li
- Department of Clinical Laboratory, Northwest Women's and Children's Hospital, Xi'an, China
| | - Chengcheng Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiaofei Zhang
- Department of Clinical Laboratory, Northwest Women's and Children's Hospital, Xi'an, China
| | - Xinran Zhang
- Department of Clinical Laboratory, Northwest Women's and Children's Hospital, Xi'an, China
| | - Qi Wang
- Department of Clinical Laboratory, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lixia Zhang
- Department of Clinical Laboratory, Shaanxi Provincial People's Hospital, Xi'an, China.
| | - Shaoqing Yang
- Department of Oral Biology, School of Stomatology, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
22
|
Tada T, Oshiro S, Watanabe S, Tohya M, Hishinuma T, Htoon TT, Tin HH, Kirikae T. Klebsiella pneumoniae co-harbouring bla NDM-1 , armA and mcr-10 isolated from blood samples in Myanmar. J Med Microbiol 2023; 72. [PMID: 37706679 DOI: 10.1099/jmm.0.001750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
Background. The spread of Enterobacteriaceae coproducing carbapenemases, 16S rRNA methylase and mobile colistin resistance proteins (MCRs) has become a serious public health problem worldwide. This study describes two clinical isolates of Klebsiella pneumoniae coharbouring bla IMP-1, armA and mcr-10.Methods. Two clinical isolates of K. pneumoniae resistant to carbapenems and aminoglycosides were obtained from two patients at a hospital in Myanmar. Their minimum inhibitory concentrations (MICs) were determined by broth microdilution methods. The whole-genome sequences were determined by MiSeq and MinION methods. Drug-resistant factors and their genomic environments were determined.Results. The two K. pneumoniae isolates showed MICs of ≥4 and ≥1024 µg ml-1 for carbapenems and aminoglycosides, respectively. Two K. pneumonaie harbouring mcr-10 were susceptible to colistin, with MICs of ≤0.015 µg ml-1 using cation-adjusted Mueller-Hinton broth, but those for colistin were significantly higher (0.5 and 4 µg ml-1) using brain heart infusion medium. Whole-genome analysis revealed that these isolates coharboured bla NDM-1, armA and mcr-10. These two isolates showed low MICs of 0.25 µg ml-1 for colistin. Genome analysis revealed that both bla NDM-1 and armA were located on IncFIIs plasmids of similar size (81 kb). The mcr-10 was located on IncM2 plasmids of sizes 220 or 313 kb in each isolate. These two isolates did not possess a qseBC gene encoding a two-component system, which is thought to regulate the expression of mcr genes.Conclusion. This is the first report of isolates of K. pneumoniae coharbouring bla NDM-1, armA and mcr-10 obtained in Myanmar.
Collapse
Affiliation(s)
- Tatsuya Tada
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Satoshi Oshiro
- Juntendo Advanced Research Institute for Health Science, Juntendo University, Tokyo, Japan
| | - Shin Watanabe
- Department of Microbiome Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mari Tohya
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Tomomi Hishinuma
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | - Teruo Kirikae
- Juntendo Advanced Research Institute for Health Science, Juntendo University, Tokyo, Japan
- Department of Microbiome Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
23
|
Mostafa SH, Saleh SE, Khaleel EF, Badi RM, Aboshanab KM, Hamed SM. Phenotypic and Genotypic Analysis of Bacterial Pathogens Recovered from Patients Diagnosed with Fever of Unknown Origin in Egypt. Antibiotics (Basel) 2023; 12:1294. [PMID: 37627714 PMCID: PMC10451874 DOI: 10.3390/antibiotics12081294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Fever of unknown origin (FUO) is a medical term describing fever that lasts for at least three weeks without a diagnosis being reached after extensive diagnostic evaluation. Therefore, this study aimed to identify the common pathogens causing FUO in patients admitted to Abbasia Fever Hospital in Egypt from January 2020 to December 2022, their antimicrobial susceptibility profiles, and associated resistance genes. The study also aimed to investigate the burden of multidrug-resistant (MDR) pathogens and the priority pathogens nominated by the World Health Organization (WHO) for posing the greatest threat to human health due to antibiotic resistance. During the study period, about 726 patients were diagnosed with FUO. After extensive investigations, the cause of the FUO was found to be infectious diseases in 479/726 patients (66.0%). Of them, 257 patients had positive bacterial cultures, including 202 Gram-negative isolates that comprised Klebsiella pneumoniae (85/202; 42.1%), Escherichia coli (71/202; 35.1%), Acinetobacter baumannii (26/202; 12.9%), and Pseudomonas aeruginosa (14/202; 6.9%) and 55 Gram-positive isolates, including Staphylococcus aureus (23/55; 41.8%), Streptococcus pneumoniae (7/55; 12.7%), and Enterococcus spp. (25/55; 45.5%). The MDR phenotype was shown by 68.3% and 65.5% of the Gram-negative and Gram-positive isolates, respectively. Carbapenem resistance (CR) was shown by 43.1% of the Gram-negative isolates. Of the 23 S. aureus isolates obtained from research participants, 15 (65.2%) were methicillin-resistant S. aureus (MRSA). A high-level aminoglycoside resistance (HLAR) phenotype was found in 52.0% of the Enterococcus sp. isolates. The PCR screening of resistance genes in the MDR isolates showed that blaOXA-48 was the most prevalent (84%) among the carbapenemase-coding genes, followed by blaVIM (9%) and then blaIMP (12%). The ESBL-coding genes blaTEM, blaCTX-M,aac(6')-Ib, and blaSHV, were prevalent in 100%, 93.2%, 85,% and 53.4% of the MDR isolates, respectively. This study updates the range of bacteria that cause FUO and emphasizes the burden of multidrug resistance and priority infections in the region. The obtained data is of relevant medical importance for the implementation of evidence-based antimicrobial stewardship programs and tailoring existing empirical treatment guidelines.
Collapse
Affiliation(s)
- Shimaa H. Mostafa
- Microbiology Lab Department, Abbasia Fever Hospital, Cairo 11566, Egypt;
| | - Sarra E. Saleh
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| | - Eman F. Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; (E.F.K.); (R.M.B.)
| | - Rehab Mustafa Badi
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; (E.F.K.); (R.M.B.)
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| | - Samira M. Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October, Giza 12451, Egypt;
| |
Collapse
|
24
|
Sarr H, Niang AA, Diop A, Mediannikov O, Zerrouki H, Diene SM, Lo S, Dia ML, Sow AI, Fenollar F, Rolain JM, Hadjadj L. The Emergence of Carbapenem- and Colistin-Resistant Enterobacteria in Senegal. Pathogens 2023; 12:974. [PMID: 37623934 PMCID: PMC10459028 DOI: 10.3390/pathogens12080974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Antibiotic resistance is a public health problem. The emergence of carbapenemase-producing Enterobacterales (CPE) infections is a concern, particularly in Senegal. (1) Methods: Between January 2019 and July 2022, 240 isolates of enterobacteria resistant to third-generation cephalosporins and imipenem from biological samples from Fann Hospital (Dakar) and Hôpital Paix (Ziguinchor) were selected. The isolates were identified by MALDI-TOF mass spectrometry, and susceptibility tests were performed by the disk diffusion method. Antibiotic-resistance genes for class A beta-lactamases, carbapenemases, and plasmid resistance to colistin resistance (mcr-1-8) were screened by RT-PCR. (2) Results: The 240 enterobacteria were composed of: Escherichia coli (60.83%), Klebsiella pneumoniae (21.67%), Enterobacter cloacae (13.75%), Citrobacter freundii (2.08%), Serratia marcescens (0.83%), Klebsiella aerogenes (0.42%), and Proteus mirabilis (0.42%). Class A beta-lactamase genes were found in 229 isolates (70.41% blaTEM, 37.5% blaSHV, 83.75% blaCTX-A, and 0.42% blaCTX-B). The carbapenemase genes blaOXA-48 and blaNDM were found in 25 isolates, including 14 isolates with blaOXA-48, 13 isolates with blaNDM, and 2 isolates with both genes simultaneously. The mcr-8 gene was found in one isolate of E. cloacae. (3) Conclusions: The epidemiology of antibiotic-resistance genes in enterobacteria in Senegal shows the emergence of CPEs. This phenomenon is worrying, and rigorous surveillance is necessary to avoid further spread.
Collapse
Affiliation(s)
- Habibou Sarr
- UFR des Sciences de la Santé, Université Assane Seck de Ziguinchor, Ziguinchor BP 523, Senegal;
- Unité de Bactériologie, Hôpital de la Paix de Ziguinchor, Ziguinchor BP 523, Senegal
- Faculté de Médecine et de Pharmacie, MEPHI IRD, APHM, Aix Marseille Université, 13005 Marseille, France; (O.M.); (H.Z.); (S.M.D.); (J.-M.R.)
- IHU Méditerranée Infection, 13005 Marseille, France;
| | - Aissatou Ahmet Niang
- Faculté de Médecine, Pharmacie et Odonto-Stomatologie, Université Cheikh-Anta-Diop, Dakar BP 5005, Senegal; (A.A.N.); (A.D.); (M.L.D.); (A.I.S.)
| | - Amadou Diop
- Faculté de Médecine, Pharmacie et Odonto-Stomatologie, Université Cheikh-Anta-Diop, Dakar BP 5005, Senegal; (A.A.N.); (A.D.); (M.L.D.); (A.I.S.)
| | - Oleg Mediannikov
- Faculté de Médecine et de Pharmacie, MEPHI IRD, APHM, Aix Marseille Université, 13005 Marseille, France; (O.M.); (H.Z.); (S.M.D.); (J.-M.R.)
- IHU Méditerranée Infection, 13005 Marseille, France;
| | - Hanane Zerrouki
- Faculté de Médecine et de Pharmacie, MEPHI IRD, APHM, Aix Marseille Université, 13005 Marseille, France; (O.M.); (H.Z.); (S.M.D.); (J.-M.R.)
- IHU Méditerranée Infection, 13005 Marseille, France;
| | - Seydina M. Diene
- Faculté de Médecine et de Pharmacie, MEPHI IRD, APHM, Aix Marseille Université, 13005 Marseille, France; (O.M.); (H.Z.); (S.M.D.); (J.-M.R.)
- IHU Méditerranée Infection, 13005 Marseille, France;
| | - Seynabou Lo
- UFR des Sciences de la Santé, Université Gaston Berger, Saint Louis BP 234, Senegal;
| | - Mouhamadou Lamine Dia
- Faculté de Médecine, Pharmacie et Odonto-Stomatologie, Université Cheikh-Anta-Diop, Dakar BP 5005, Senegal; (A.A.N.); (A.D.); (M.L.D.); (A.I.S.)
| | - Ahmad Iyane Sow
- Faculté de Médecine, Pharmacie et Odonto-Stomatologie, Université Cheikh-Anta-Diop, Dakar BP 5005, Senegal; (A.A.N.); (A.D.); (M.L.D.); (A.I.S.)
| | - Florence Fenollar
- IHU Méditerranée Infection, 13005 Marseille, France;
- VITROME, IRD, APHM, SSA, Aix Marseille Université, 13005 Marseille, France
| | - Jean-Marc Rolain
- Faculté de Médecine et de Pharmacie, MEPHI IRD, APHM, Aix Marseille Université, 13005 Marseille, France; (O.M.); (H.Z.); (S.M.D.); (J.-M.R.)
- IHU Méditerranée Infection, 13005 Marseille, France;
| | - Linda Hadjadj
- Faculté de Médecine et de Pharmacie, MEPHI IRD, APHM, Aix Marseille Université, 13005 Marseille, France; (O.M.); (H.Z.); (S.M.D.); (J.-M.R.)
- IHU Méditerranée Infection, 13005 Marseille, France;
| |
Collapse
|
25
|
Elbehiry A, Marzouk E, Moussa I, Mushayt Y, Algarni AA, Alrashed OA, Alghamdi KS, Almutairi NA, Anagreyyah SA, Alzahrani A, Almuzaini AM, Alzaben F, Alotaibi MA, Anjiria SA, Abu-Okail A, Abalkhail A. The Prevalence of Multidrug-Resistant Acinetobacter baumannii and Its Vaccination Status among Healthcare Providers. Vaccines (Basel) 2023; 11:1171. [PMID: 37514987 PMCID: PMC10384490 DOI: 10.3390/vaccines11071171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
There is growing concern among healthcare providers worldwide regarding the prevalence of multidrug-resistant Acinetobacter baumannii (A. baumannii). Some of the worst hospital-acquired infections, often in intensive care units (ICUs), are caused by this bacterial pathogen. In recent years, the rise in multidrug-resistant A. baumannii has been linked to the overuse of antimicrobial drugs and the lack of adequate infection control measures. Infections caused by this bacterial pathogen are the result of prolonged hospitalization and ICU stays, and they are associated with increased morbidity and mortality. This review outlines the epidemiology, risk factors, and antimicrobial resistance associated with A. baumannii in various countries, with a special focus on the Kingdom of Saudi Arabia. In response to the growing concern regarding this drug-resistant bacteria, fundamental information about its pathology has been incorporated into the development of vaccines. Although these vaccines have been successful in animal models, their effectiveness in humans remains unproven. The review will discuss the development of A. baumannii vaccines, potential related obstacles, and efforts to find an effective strategy against this pathogen.
Collapse
Affiliation(s)
- Ayman Elbehiry
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32511, Egypt
| | - Eman Marzouk
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Ihab Moussa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yazeed Mushayt
- Department of Support Service, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | | | - Osama Ali Alrashed
- Family Medicine Department, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | - Khalid Saad Alghamdi
- Family Medicine Department, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | - Naif Ahmed Almutairi
- Family Medicine Department, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | | | - Anwar Alzahrani
- Cardiac Center, King Fahad Armed Forces Hospital, Jeddah 23311, Saudi Arabia
| | - Abdulaziz M Almuzaini
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Feras Alzaben
- Department of Food Service, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | | | | | - Akram Abu-Okail
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| |
Collapse
|
26
|
Junaid M, Thirapanmethee K, Khuntayaporn P, Chomnawang MT. CRISPR-Based Gene Editing in Acinetobacter baumannii to Combat Antimicrobial Resistance. Pharmaceuticals (Basel) 2023; 16:920. [PMID: 37513832 PMCID: PMC10384873 DOI: 10.3390/ph16070920] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial resistance (AMR) poses a significant threat to the health, social, environment, and economic sectors on a global scale and requires serious attention to addressing this issue. Acinetobacter baumannii was given top priority among infectious bacteria because of its extensive resistance to nearly all antibiotic classes and treatment options. Carbapenem-resistant A. baumannii is classified as one of the critical-priority pathogens on the World Health Organization (WHO) priority list of antibiotic-resistant bacteria for effective drug development. Although available genetic manipulation approaches are successful in A. baumannii laboratory strains, they are limited when employed on newly acquired clinical strains since such strains have higher levels of AMR than those used to select them for genetic manipulation. Recently, the CRISPR-Cas (Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein) system has emerged as one of the most effective, efficient, and precise methods of genome editing and offers target-specific gene editing of AMR genes in a specific bacterial strain. CRISPR-based genome editing has been successfully applied in various bacterial strains to combat AMR; however, this strategy has not yet been extensively explored in A. baumannii. This review provides detailed insight into the progress, current scenario, and future potential of CRISPR-Cas usage for AMR-related gene manipulation in A. baumannii.
Collapse
Affiliation(s)
- Muhammad Junaid
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Krit Thirapanmethee
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Piyatip Khuntayaporn
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Mullika Traidej Chomnawang
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
27
|
Di DYW, Cao G, Zhong C, Yan T. Diversity of bla POM in carbapenem-resistant opportunistic pathogenic Pseudomonas otitidis in municipal wastewater. JOURNAL OF WATER AND HEALTH 2023; 21:560-570. [PMID: 37254905 PMCID: wh_2023_255 DOI: 10.2166/wh.2023.255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Metallo-β-lactamases (MBLs) encoding carbapenem resistance in wastewater are a well-known serious threat to human health. Twelve Pseudomonas otitidis isolates obtained from a municipal wastewater treatment plant (WWTP) in Hawaii were found to possess a subclass B3 MBL - POM (P. otitidis MBL), with a minimum inhibition concentration (MIC) range of 8-16 mg/L. The unrooted neighbor-joining phylogenetic tree showed that these blaPOM genes isolated in wastewater samples (n = 12) were distinctly different from other reference genes isolated from clinical, freshwater, animal, and soil samples except for isolates MR7, MR8, and MR11. MR7, MR8, and MR11 were found to have 4, 3, and 3 amino acid substitutions when compared to the type strain MC10330T and were closely clustered to the clinical reference genes. The meropenem hydrolysis experiment showed that isolates with multiple amino acid substitutions completely hydrolyzed 64 mg/L of meropenem in 7 h. The emergence of the opportunistic pathogen P. otitidis chromosomally encoding blaPOM in the treated municipal wastewater is an alarming call for the spread of this MBL in the environment. Further studies are required to understand the mechanism and regulation of this carbapenem-resistant β-lactamase in order to fill in the knowledge gap.
Collapse
Affiliation(s)
- Doris Yoong Wen Di
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA E-mail: ; D.Y.W.D. and G.X.C contributed equally to the manuscript
| | - Guangxiang Cao
- School of Biomedical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China; D.Y.W.D. and G.X.C contributed equally to the manuscript
| | - Chuanqing Zhong
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Tao Yan
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA E-mail: ; Water Resources Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
28
|
Barbu IC, Gheorghe-Barbu I, Grigore GA, Vrancianu CO, Chifiriuc MC. Antimicrobial Resistance in Romania: Updates on Gram-Negative ESCAPE Pathogens in the Clinical, Veterinary, and Aquatic Sectors. Int J Mol Sci 2023; 24:7892. [PMID: 37175597 PMCID: PMC10178704 DOI: 10.3390/ijms24097892] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Multidrug-resistant Gram-negative bacteria such as Acinetobacter baumannii, Pseudomonas aeruginosa, and members of the Enterobacterales order are a challenging multi-sectorial and global threat, being listed by the WHO in the priority list of pathogens requiring the urgent discovery and development of therapeutic strategies. We present here an overview of the antibiotic resistance profiles and epidemiology of Gram-negative pathogens listed in the ESCAPE group circulating in Romania. The review starts with a discussion of the mechanisms and clinical significance of Gram-negative bacteria, the most frequent genetic determinants of resistance, and then summarizes and discusses the epidemiological studies reported for A. baumannii, P. aeruginosa, and Enterobacterales-resistant strains circulating in Romania, both in hospital and veterinary settings and mirrored in the aquatic environment. The Romanian landscape of Gram-negative pathogens included in the ESCAPE list reveals that all significant, clinically relevant, globally spread antibiotic resistance genes and carrying platforms are well established in different geographical areas of Romania and have already been disseminated beyond clinical settings.
Collapse
Affiliation(s)
- Ilda Czobor Barbu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Irina Gheorghe-Barbu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Georgiana Alexandra Grigore
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
- Academy of Romanian Scientists, 050044 Bucharest, Romania
- Romanian Academy, 010071 Bucharest, Romania
| |
Collapse
|
29
|
Sherif AH, Kassab AS. Multidrug-resistant Aeromonas bacteria prevalence in Nile tilapia broodstock. BMC Microbiol 2023; 23:80. [PMID: 36959570 PMCID: PMC10037768 DOI: 10.1186/s12866-023-02827-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/17/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Aeromonas hydrophila is an opportunistic pathogen. Thus, it has received significant attention mainly in the fish sectors with high production scales. Nile tilapia broodstock confined in the environment of fish hatcheries can be stressed. Hence, they are vulnerable to A. hydrophila. RESULTS Sequencing of the gyr B gene revealed the presence of 18 different A. hydrophila strains (kdy 10,620-10,637), which were deposited in the NCBI under accession numbers ON745861-ON745878. The median lethal doses of the isolates ranged from 2.62 × 104 to 3.02 × 106 CFU/mL. Antibiotic resistant genes, sulfonamide (sul1) and tetracycline (tetA) were found in the eighteen isolates. Approximately 83.3% of A. hydrophila strains were sensitive to ciprofloxacin and florfenicol. Further, eight A. hydrophila strains had high MDR indices at 0.27-0.45. All isolates presented with hemolysin activity. However, only 72.22% of them had proteolytic activity, and only 61.11% could form biofilms. Bacterial isolates harbored different pattern virulence genes, the heat-stable cytotonic enterotoxin (ast), cytotoxic enterotoxin (act), and hemolysin (hly) genes were the most prevalent. Also, a trial to inhibit bacterial growth was conducted using titanium dioxide nanoparticles (TiO2 NPs) with three sizes (13, 32, and 123 nm). If A. hydrophila strains with a high MDR index were tested against TiO2 NPs (20 µg/mL) for 1, 12, and 24 h, those with a small size had a greater bactericidal action than large ones. Bacterial strains were inhibited at different percentages in response to TiO2 NP treatment. CONCLUSIONS Nile tilapia broodstock, mortality is associated with different A. hydrophila strains, which harbored virulent and MDR genes. Furthermore, TiO2 NPs had bactericidal activity, thereby resulting in a considerable reduction in bacterial load.
Collapse
Affiliation(s)
- Ahmed H Sherif
- Fish Disease Department, Animal Health Research Institute AHRI, Agriculture Research Center ARC, Kafrelsheikh, Egypt.
| | - Amina S Kassab
- Fish Disease Department, Animal Health Research Institute AHRI, Agriculture Research Center ARC, Kafrelsheikh, Egypt
| |
Collapse
|
30
|
Reddy N, Girdhari L, Shungube M, Gouws AC, Peters BK, Rajbongshi KK, Baijnath S, Mdanda S, Ntombela T, Arumugam T, Bester LA, Singh SD, Chuturgoon A, Arvidsson PI, Maguire GEM, Kruger HG, Govender T, Naicker T. Neutralizing Carbapenem Resistance by Co-Administering Meropenem with Novel β-Lactam-Metallo-β-Lactamase Inhibitors. Antibiotics (Basel) 2023; 12:antibiotics12040633. [PMID: 37106995 PMCID: PMC10135050 DOI: 10.3390/antibiotics12040633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Virulent Enterobacterale strains expressing serine and metallo-β-lactamases (MBL) genes have emerged responsible for conferring resistance to hard-to-treat infectious diseases. One strategy that exists is to develop β-lactamase inhibitors to counter this resistance. Currently, serine β-lactamase inhibitors (SBLIs) are in therapeutic use. However, an urgent global need for clinical metallo-β-lactamase inhibitors (MBLIs) has become dire. To address this problem, this study evaluated BP2, a novel beta-lactam-derived β-lactamase inhibitor, co-administered with meropenem. According to the antimicrobial susceptibility results, BP2 potentiates the synergistic activity of meropenem to a minimum inhibitory concentration (MIC) of ≤1 mg/L. In addition, BP2 is bactericidal over 24 h and safe to administer at the selected concentrations. Enzyme inhibition kinetics showed that BP2 had an apparent inhibitory constant (Kiapp) of 35.3 µM and 30.9 µM against New Delhi Metallo-β-lactamase (NDM-1) and Verona Integron-encoded Metallo-β-lactamase (VIM-2), respectively. BP2 did not interact with glyoxylase II enzyme up to 500 µM, indicating specific (MBL) binding. In a murine infection model, BP2 co-administered with meropenem was efficacious, observed by the >3 log10 reduction in K. pneumoniae NDM cfu/thigh. Given the promising pre-clinical results, BP2 is a suitable candidate for further research and development as an (MBLI).
Collapse
Affiliation(s)
- Nakita Reddy
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Letisha Girdhari
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Mbongeni Shungube
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Arnoldus C Gouws
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Byron K Peters
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Kamal K Rajbongshi
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Sooraj Baijnath
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban 4001, South Africa
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2020, South Africa
| | - Sipho Mdanda
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Thandokuhle Ntombela
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Thilona Arumugam
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Linda A Bester
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Sanil D Singh
- Department of Pharmaceutical Sciences, University of KwaZulu-Natal, Westville Campus, Durban 3629, South Africa
| | - Anil Chuturgoon
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Per I Arvidsson
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban 4001, South Africa
- Science for Life Laboratory, Drug Discovery & Development Platform & Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban 4001, South Africa
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Thavendran Govender
- Department of Chemistry, University of Zululand, Private Bag X1001, KwaDlangezwa 3886, South Africa
| | - Tricia Naicker
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban 4001, South Africa
| |
Collapse
|
31
|
Chosidow S, Fantin B, Nicolas I, Mascary JB, Chau F, Bordeau V, Verdier MC, Rocheteau P, Guérin F, Cattoir V, de Lastours V. Synergistic Activity of Pep16, a Promising New Antibacterial Pseudopeptide against Multidrug-Resistant Organisms, in Combination with Colistin against Multidrug-Resistant Escherichia coli, In Vitro and in a Murine Peritonitis Model. Antibiotics (Basel) 2023; 12:antibiotics12010081. [PMID: 36671282 PMCID: PMC9854584 DOI: 10.3390/antibiotics12010081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/24/2022] [Accepted: 12/25/2022] [Indexed: 01/06/2023] Open
Abstract
Colistin is a drug of last resort to treat extreme drug-resistant Enterobacterales, but is limited by dose-dependent toxicity and the emergence of resistance. A recently developed antimicrobial pseudopeptide, Pep16, which acts on the cell membrane, may be synergistic with colistin and limit the emergence of resistance. We investigated Pep16 activity against Escherichia coli with varying susceptibility to colistin, in vitro and in a murine peritonitis model. Two isogenic derivatives of E. coli CFT073 (susceptible and resistant to colistin) and 2 clinical isolates (susceptible (B119) and resistant to colistin (Af31)) were used. Pep16 activity, alone and in combination with colistin, was determined in vitro (checkerboard experiments, time-kill curves, and flow cytometry to investigate membrane permeability). Toxicity and pharmacokinetic analyses of subcutaneous Pep16 were performed in mice, followed by the investigation of 10 mg/kg Pep16 + 10 mg/kg colistin (mimicking human concentrations) in a murine peritonitis model. Pep16 alone was inactive (MICs = 32-64 mg/L; no bactericidal effect). A concentration-dependent bactericidal synergy of Pep16 with colistin was evidenced on all strains, confirmed by flow cytometry. In vivo, Pep16 alone was ineffective. When Pep16 and colistin were combined, a significant decrease in bacterial counts in the spleen was evidenced, and the combination prevented the emergence of colistin-resistant mutants, compared to colistin alone. Pep16 synergizes with colistin in vitro, and the combination is more effective than colistin alone in a murine peritonitis by reducing bacterial counts and the emergence of resistance. Pep16 may optimize colistin use, by decreasing the doses needed, while limiting the emergence of colistin-resistant mutants.
Collapse
Affiliation(s)
- Samuel Chosidow
- IAME UMR-1137, INSERM, Université de Paris, F-75018 Paris, France
| | - Bruno Fantin
- IAME UMR-1137, INSERM, Université de Paris, F-75018 Paris, France
- Service de Médecine Interne, Hôpital Beaujon, AP-HP, F-92210 Clichy, France
| | | | - Jean-Baptiste Mascary
- SAS. Olgram, F-56580 Bréhan, France
- Unité Inserm U1230 BRM, Université de Rennes 1, F-35043 Rennes, France
- Laboratoire de Pharmacologie Biologique, CHU Pontchaillou, F-35033 Rennes, France
| | - Françoise Chau
- IAME UMR-1137, INSERM, Université de Paris, F-75018 Paris, France
| | - Valérie Bordeau
- Unité Inserm U1230 BRM, Université de Rennes 1, F-35043 Rennes, France
| | | | | | - Francois Guérin
- Service de Bactériologie-Hygiène Hospitalière & CNR de la Résistance aux Antibiotiques (Laboratoire Associé "Entérocoques"), CHU Pontchaillou, F-35033 Rennes, France
| | - Vincent Cattoir
- Unité Inserm U1230 BRM, Université de Rennes 1, F-35043 Rennes, France
- Service de Bactériologie-Hygiène Hospitalière & CNR de la Résistance aux Antibiotiques (Laboratoire Associé "Entérocoques"), CHU Pontchaillou, F-35033 Rennes, France
| | - Victoire de Lastours
- IAME UMR-1137, INSERM, Université de Paris, F-75018 Paris, France
- Service de Médecine Interne, Hôpital Beaujon, AP-HP, F-92210 Clichy, France
| |
Collapse
|
32
|
Zhang P, Wang J, Shi W, Wang N, Jiang Y, Chen H, Yang Q, Qu T. In vivo acquisition of bla KPC-2 with low biological cost in bla AFM-1-harboring ST463 hypervirulent Pseudomonas aeruginosa from a patient with hematologic malignancy. J Glob Antimicrob Resist 2022; 31:189-195. [PMID: 36182079 DOI: 10.1016/j.jgar.2022.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Klebsiella pneumoniae carbapenemase (KPC)-producing sequence type (ST) 463 Pseudomonas aeruginosa are increasingly prevalent in China. This study aims to investigate how blaKPC-2 is acquired in ST463 P. aeruginosa during antimicrobial therapy. METHODS Two extensively drug-resistant P. aeruginosa strains, B1122 and U1121, were respectively isolated from blood and urine of a patient during carbapenem therapy. Whole-genome sequences were obtained, and minimum inhibitory concentrations (MICs) were determined. Plasmid transferability and stability were examined. Bacterial growth kinetics, biofilm formation, and virulence level was assessed. RESULTS U1121 and B1122 were only susceptible to amikacin and intermediately susceptible to colistin. They were isogenic ST463 P. aeruginosa strains and shared the same chromosome-encoded resistance genes, including blaAFM-1. This is the first report of chromosomal integration of blaAFM-1 in P. aeruginosa mediated by ISCR29. pU1121 and pB1122, which shared almost identical backbone, were the sole plasmids in U1121 and B1122, respectively, differing by an insertion region containing two copies of blaKPC-2 genes observed on pU1121. Sequence alignment revealed that pU1121 might evolve in vivo from pB1122 via IS26-mediated continuous genetic rearrangement in response to selective challenge from carbapenem. pU1121 was not self-transmissible and could be stably maintained in the host in the absence of antibiotic. Both U1121 and B1122 were hypervirulent, and no differences on virulence were recorded between them. However, U1121 exhibited significant impaired growth in comparison with B1122. CONCLUSION ST463 P. aeruginosa can capture blaKPC-2 through horizontal transfer of insertion sequence under antibiotic selection pressure, which does decrease the fitness but does not impair the virulence of the ancestor.
Collapse
Affiliation(s)
- Piaopiao Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences
| | - Jie Wang
- Respiratory Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weixiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences
| | - Nanfei Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongchao Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qing Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences; Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Tingting Qu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences.
| |
Collapse
|
33
|
Kong WP, Chen YW, Wong KY. The crystal structure of the H116Q mutant of NDM-1: An enzyme devoid of zinc ions. J Struct Biol 2022; 214:107922. [PMID: 36375744 DOI: 10.1016/j.jsb.2022.107922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
New Delhi metallo-β-lactamase 1 (NDM-1) is an important causative factor of antimicrobial resistance due to its efficient hydrolysis of a broad range of β-lactam compounds. The two zinc ions at the active site play essential roles in the NDM-1 catalytic activities. In a previous work, H116, one of the three ligands at the Zn1 site, was mutated in order to investigate the nature of zinc ion chelation. We report here the crystal structure of the NDM-1 H116Q mutant, that was designed to convert a B1 di-zinc enzyme into a B3 type, which either still binds two zinc ions or binds only one at the Zn2 site. The effect of mutation on the overall structure is minimal. Unexpectedly, no zinc ion was observed in the crystal structure. The Zn2-site ligating residue C221 forms a covalent bond with the nearby K121, a residue important in maintaining the active-site structure. The largest conformational changes were found at main-chain and side-chain atoms at residues 232-236 (loop 10), the proper configuration of which is known to be essential for substrate binding. The catalytic-site mutation caused little local changes, yet the effects were amplified and propagated to the substrate binding residues. There were big changes in the ψ angles of residues G232 and L234, which resulted in the side chain of N233 being displaced away from the substrate-binding site. In summary, we failed in turning a B1 enzyme into a B3 enzyme, yet we produced a zinc-less NDM-1 with residual activities.
Collapse
Affiliation(s)
- Wai-Po Kong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Yu Wai Chen
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Kwok-Yin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
34
|
Zhu Y, Zhang X, Wang Y, Tao Y, Shao X, Li Y, Li W. Insight into carbapenem resistance and virulence of Acinetobacter baumannii from a children’s medical centre in eastern China. Ann Clin Microbiol Antimicrob 2022; 21:47. [PMCID: PMC9637306 DOI: 10.1186/s12941-022-00536-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/13/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractCarbapenem-resistant Acinetobacter baumannii (CRAB) appeared more frequently in children and caused a great threat to global public health. It is urgent to investigate the carbapenem resistance and virulence of CRAB for clinicians to choose appropriate antibiotics. A retrospective study of 77 nonduplicated CRAB isolates was conducted. The carbapenem resistance and virulence genes were characterized by polymerase chain reaction (PCR) and gel electrophoresis. In the present study, A. baumannii mainly came from the intensive care unit and was mostly isolated from sputum samples. The carbapenem resistant rate of A. baumannii in 2018–2020 increased significantly compared with that in 2016–2017. All isolates had carbapenem resistant genes. They were highly resistant to a variety of antibiotics but were relatively sensitive to fluoroquinolones and tetracyclines. blaVIM and blaOXA-23 were detected in all isolates, whereas blaOXA-51, blaIMP and blaNDM were present in 98.70%, 67.53% and 31.17% of isolates, respectively. Notably, 1 isolate A. baumannii was identified as multidrug-resistant A. baumannii (MDR-AB), and 76 other extensively drug-resistance (XDR) isolates were also detected. Virulence genes were present in 100% of all isolates, including genes in the iron acquisition system (basJ), secretion systems (ompA, plcD), quorum sensing system (abaI) and biofilm formation (csuA). adeH, pgaA, and ptk were present in 98.70%, 98.70% and 94.80% of isolates, respectively. CRAB, which is prevalent in east China, carries a large number of drug resistance and virulence genes. Fluoroquinolones and tetracyclines may be effective antibiotics for the treatment of CRAB infection in children. An in-depth understanding of the resistance and virulence of CRAB is conducive to timely guiding empirical drug use and controlling infection.
Collapse
|
35
|
Xu L, He Q, Tang Y, Wen W, Chen L, Li Y, Yi C, Fu B. Multi‑locus sequence and drug resistance analysis of Salmonella infection in children with diarrhea in Guangdong to identify the dominant ST and cause of antibiotic‑resistance. Exp Ther Med 2022; 24:678. [PMID: 36337293 PMCID: PMC9623445 DOI: 10.3892/etm.2022.11614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 08/08/2022] [Indexed: 02/05/2023] Open
Abstract
Multi-locus sequence typing (MLST) can be used to analyze the homology among the drug resistance gene cassettes in Salmonella and determine the prevalence. Information extracted using this technique can provide a theoretical basis for hospitals to devise protocols to control Salmonella infections. The aim of the present study was to investigate the possible association between drug resistance and integrons in clinical isolates of Salmonella from human fecal samples. Therefore, in the present study, 52 clinical fecal isolates of non-duplicate (i.e., not genome contamination) Salmonella were harvested from children with diarrhea and used for bacterial identification using biochemical tests, drug susceptibility analysis by antibiotic susceptibility testing and serotype identification using an agglutination assay. In total, seven Salmonella housekeeping genes (chorismate synthase, β sliding clamp of DNA polymerase III, uroporphyrinogen-III synthase, histidinol dehydrogenase, phosphoribosylaminoimidazole carboxylase catalytic subunit, 2-oxoglutarate dehydrogenase E1 component and homoserine dehydrogenase) were amplified and sequenced using MLST, before sequence alignment was performed against the Pub MLST database to determine the sequence-typed (ST) strains and construct genotypic evolutionary diagrams. Subsequently, the 52 Salmonella strains were subdivided into 11 serotypes and 11 sequence types. The dominant subtypes were found to be Salmonella typhimurium ST34 and ST19, which were diversely distributed. However, no new subtypes were found. Although the serotypes, including ST19, ST29, ST34, ST40, ST11, ST27, ST469, ST365, ST1499, ST413 and ST588, were closely associated with the MLST subtype, they did not correspond entirely. The detection rate of class I integrons was 38.46% (20/52), but no class II and III integrons were detected. The variable regions of three of 20 class I integrons were found to be amplified, whereas nine gene cassettes, including dihydrofolate reductase A12, open reading frame F, aminoglycoside-adenylyltransferase (aad)A2, aadA22, aadA23, aadA1, cadmium-translocating P-type ATPase 2, lincosamide and linF, were associated with drug resistance. These data suggest that Class I integrons are important factors underlying drug resistance in Salmonella, which may serve a role in the spread of drug resistance and warrant specific focus. In addition, MLST typing and serotyping should be applied cooperatively in epidemiological research.
Collapse
Affiliation(s)
- Lingqing Xu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Qianjun He
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Yinxian Tang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Weihong Wen
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Linjuan Chen
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Yuzhen Li
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Changhong Yi
- Department of Interventional Radiology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
| | - Bishi Fu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
- Department of Microbiology, School of Basic Medical Sciences, Guangzhou Medical University, Panyu, Guangzhou, Guangdong 511436, P.R. China
| |
Collapse
|
36
|
Gagaletsios LA, Papagiannitsis CC, Petinaki E. Prevalence and analysis of CRISPR/Cas systems in Pseudomonas aeruginosa isolates from Greece. Mol Genet Genomics 2022; 297:1767-1776. [PMID: 36197590 DOI: 10.1007/s00438-022-01957-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022]
Abstract
The objective of this study was to investigate the prevalence of CRISPR/Cas systems in P. aeruginosa, isolated from a Greek hospital. Additionally, we aimed to determine the origin of the sequenced spacers. A collection of 100 nonrepetitive P. aeruginosa was analyzed. Isolates were typed by MLST. The presence of CRISPR/Cas systems, as well as amplification of CRISPR arrays, was examined by PCR using specific primers. CRISPR/Cas systems were detected in 36 isolates, of which 27 isolates exhibited resistance to carbapenems, with 10 of the later isolates producing a VIM-type MβL. The majority (n = 19) of CRISPR/Cas-positive isolates harbored a type I-F system, while I-C and I-E systems were found in 9 and 8 isolates, respectively. Based on MLST, isolates carrying I-E and I-F systems belonged to different STs and included CRISPR arrays with diverse number of spacers. Isolates with I-C systems belonged to clonal complex 235 and exhibited identical CRISPR arrays. Among 425 unique spacers, identified during this study, BLASTn search showed that they matched with P. aeruginosa chromosomal sequences (47.0%), phages (31.9%), plasmids, PAGIs, and an ICE. 16.3% of the spacers exhibited no significant similarity with sequences submitted to GenBank database. In conclusion, we observed the presence of type I-C, I-E and I-F CRISPR/Cas systems in P. aeruginosa of clinical origin. CRISPR/Cas were also observed among isolates carrying the carbapenemase-encoding blaVIM gene, which is usually associated with integrons, questioning the defense role against mobile elements. Therefore, further experimental characterization is needed to clarify their functional role.
Collapse
Affiliation(s)
| | | | - Efthymia Petinaki
- Department of Microbiology, University Hospital of Larissa, Larissa, Greece
| |
Collapse
|
37
|
Assessing the genomic composition, putative ecological relevance and biotechnological potential of plasmids from sponge bacterial symbionts. Microbiol Res 2022; 265:127183. [PMID: 36108440 DOI: 10.1016/j.micres.2022.127183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/24/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022]
Abstract
Plasmid-mediated transfer of genes can have direct consequences in several biological processes within sponge microbial communities. However, very few studies have attempted genomic and functional characterization of plasmids from marine host-associated microbial communities in general and those of sponges in particular. In the present study, we used an endogenous plasmid isolation method to obtain plasmids from bacterial symbionts of the marine sponges Stylissa carteri and Paratetilla sp. and investigated the genomic composition, putative ecological relevance and biotechnological potential of these plasmids. In total, we isolated and characterized three complete plasmids, three plasmid prophages and one incomplete plasmid. Our results highlight the importance of plasmids to transfer relevant genetic traits putatively involved in microbial symbiont adaptation and host-microbe and microbe-microbe interactions. For example, putative genes involved in bacterial response to chemical stress, competition, metabolic versatility and mediation of bacterial colonization and pathogenicity were detected. Genes coding for enzymes and toxins of biotechnological potential were also detected. Most plasmid prophage coding sequences were, however, hypothetical proteins with unknown functions. Overall, this study highlights the ecological relevance of plasmids in the marine sponge microbiome and provides evidence that plasmids of sponge bacterial symbionts may represent an untapped resource of genes of biotechnological interest.
Collapse
|
38
|
Qader GM, Jarjees KK, Jarjees RK, Jarjees RK, Department of Food Technology, College of Agricultural Engineering Sciences, University of Salahaddin-Erbil, Kurdistan Region, Iraq, Khanzad Khudhur Jarjees, Department of Food Technology, College of Agriculture, University of Salahaddin, Erbil, Iraq. E-mail: khanzad.jarjees@su.edu.krd, Department of Pharmacy, Erbil Medical Technical Institute, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq. Molecular detection of Metallo-Beta-Lactamase and alginate in multidrug resistance Pseudomonas aeruginosa isolated from the clinical specimen. J Med Life 2022; 15:1105-1109. [PMID: 36415531 PMCID: PMC9635232 DOI: 10.25122/jml-2021-0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Pseudomonas aeruginosa pathogen is opportunistic. Several virulence factors and biofilms can cause its pathogenicity. Furthermore, infections triggered via multidrug-resistant P. aeruginosa among hospitalized patients are a public health concern. The primary antimicrobial agents in treating Gram-negative infection include Meropenem and Imipenem. Moreover, the spread of Carbapenem-resistant P. aeruginosa is a focal concern worldwide. The present research aims to determine the spread of Carbapenem-resistant P. aeruginosa, and the distribution of the Alginate and Metallo-beta-lactamase encoding gene in clinical isolates. In the present cross-sectional descriptive research, 50 wound and sputum clinical specimens were obtained. Isolates were all identified by applying cultural characteristics and biochemical tests. The Polymerase Chain Reaction (PCR) was conducted to distinguish algD, BLA-VIM, BLA-IMP, and 16SrRNA genes. Moreover, the phenotypic method was used to detect hemolysin. The disk diffusion technique was applied to screen clinical isolates for eight antimicrobial agents. The PCR results showed all isolates to be positive for algD and negative for BLA-VIM and BLA-IMP genes. Hemolysin and multidrug resistance prevalence was 100% and 76%, respectively. Furthermore, Meropenem proved to be the most efficient antibiotic against clinical isolates. Alginate and hemolysin are considered significant virulence factors for P. aeruginosa, playing a key role in triggering diseases and tissue or skin lesions. The emergence of Multidrug Resistant (MDR) isolates indicates that developing antibiotic stewardship in our regional community hospital is a top priority. Infection control measures could help control the distribution of virulence genes in P. aeruginosa isolates. Moreover, regular observation is needed to decrease public health threats, distributing virulence factors and Imipenem-resistance patterns in clinical isolates of P. aeruginosa.
Collapse
Affiliation(s)
- Govend Musa Qader
- Department of Biology, College of Science, University of Salahaddin-Erbil, Kurdistan Region, Iraq
| | - Khanzad Khudhur Jarjees
- Department of Food Technology, College of Agricultural Engineering Sciences, University of Salahaddin-Erbil, Kurdistan Region, Iraq,Corresponding Author: Khanzad Khudhur Jarjees, Department of Food Technology, College of Agriculture, University of Salahaddin, Erbil, Iraq. E-mail:
| | - Rozhhalat Khudhur Jarjees
- Department of Pharmacy, Erbil Medical Technical Institute, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq
| | | | | | | | | |
Collapse
|
39
|
de Lauzanne A, Sreng N, Foucaud E, Sok T, Chon T, Yem C, Hak V, Heng S, Soda M, Gouali M, Nadimpalli M, Inghammar M, Rabenandrasana MAN, Collard JM, Vray M, Hello SL, Kerleguer A, Piola P, Delarocque-Astagneau E, Guillemot D, Huynh BT, Borand L. Prevalence and factors associated with faecal carriage of extended-spectrum β-lactamase-producing Enterobacterales among peripartum women in the community in Cambodia. J Antimicrob Chemother 2022; 77:2658-2666. [PMID: 35794710 PMCID: PMC9525094 DOI: 10.1093/jac/dkac224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
Background In Southeast-Asia, where many conditions associated with dissemination of ESBL-producing Enterobacterales (ESBL-E) in the community are met, data from the community are scarce but show high ESBL-E carriage prevalence. Maternal ESBL-E colonization is considered a risk factor for neonatal colonization, which is the first step towards developing neonatal sepsis. Despite this, ESBL-E carriage prevalence and its risk factors during pregnancy or postpartum remain undefined in Southeast-Asia. Objectives To estimate the prevalence of ESBL-E faecal colonization among peripartum women in the community of an urban and a rural area in Cambodia, to investigate ESBL-E genomic characteristics and to identify associated risk factors. Methods Epidemiological data and faecal samples from 423 peripartum women were collected in an urban and rural areas in Cambodia (2015–16). Bacterial cultures, antibiotic susceptibility tests and ESBL gene sequencing were performed. Risk factor analysis was conducted using logistic regression. Results The prevalence of ESBL-E faecal carriage was 79.2% (95% CI 75.0%–82.8%) among which Escherichia coli (n = 315/335, 94.0%) were most frequent. All isolates were multidrug resistant. Among 318 ESBL-E, the genes most frequently detected were blaCTX-M-15 (41.5%), blaCTX-M-55 (24.8%), and blaCTX-M-27 (15.1%). Low income, undernutrition, multiparity, regular consumption of pork, dried meat, and raw vegetables, were associated with ESBL-E faecal carriage. Conclusions The high prevalence of ESBL-E carriage observed among peripartum women in Southeast-Asia and the identified associated factors underline the urgent need for public health measures to address antimicrobial resistance, including a ‘One Health’ approach.
Collapse
Affiliation(s)
| | - Navin Sreng
- Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Elsa Foucaud
- Assistance Publique/Hôpitaux de Paris, Hôpital Jean Verdier, Paris, France
| | - Touch Sok
- Cambodian Communicable Disease Control Department, Phnom Penh, Cambodia
| | - Thida Chon
- Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Chhaily Yem
- Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Veasna Hak
- Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sothada Heng
- Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Meng Soda
- Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | | | | | - Malin Inghammar
- Institut Pasteur du Cambodge, Phnom Penh, Cambodia.,Lund University, Department of Clinical Sciences Lund, Section for Infection Medicine, Lund, Sweden
| | | | | | - Muriel Vray
- Institut Pasteur, Paris, France.,Institut Pasteur, Dakar, Senegal
| | | | | | | | - Elisabeth Delarocque-Astagneau
- Institut National de la Santé et de la Recherche Médicale, Université de Versailles Saint-Quentin-en-Yvelines and Université Paris-Saclay, Paris, France.,Assistance Publique/Hôpitaux de Paris, Hôpital Raymond-Poincaré, Garches, France
| | - Didier Guillemot
- Institut Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Université de Versailles Saint-Quentin-en-Yvelines and Université Paris-Saclay, Paris, France.,Assistance Publique/Hôpitaux de Paris, Hôpital Raymond-Poincaré, Garches, France
| | - Bich Tram Huynh
- Institut Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Université de Versailles Saint-Quentin-en-Yvelines and Université Paris-Saclay, Paris, France
| | | | | |
Collapse
|
40
|
Mutuku C, Gazdag Z, Melegh S. Occurrence of antibiotics and bacterial resistance genes in wastewater: resistance mechanisms and antimicrobial resistance control approaches. World J Microbiol Biotechnol 2022; 38:152. [PMID: 35781751 PMCID: PMC9250919 DOI: 10.1007/s11274-022-03334-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/10/2022] [Indexed: 12/14/2022]
Abstract
Antimicrobial pharmaceuticals are classified as emergent micropollutants of concern, implying that even at low concentrations, long-term exposure to the environment can have significant eco-toxicological effects. There is a lack of a standardized regulatory framework governing the permissible antibiotic content for monitoring environmental water quality standards. Therefore, indiscriminate discharge of antimicrobials at potentially active concentrations into urban wastewater treatment facilities is rampant. Antimicrobials may exert selective pressure on bacteria, leading to resistance development and eventual health consequences. The emergence of clinically important multiple antibiotic-resistant bacteria in untreated hospital effluents and wastewater treatment plants (WWTPs) has been linked to the continuous exposure of bacteria to antimicrobials. The levels of environmental exposure to antibiotics and their correlation to the evolution and spread of resistant bacteria need to be elucidated to help in the formulation of mitigation measures. This review explores frequently detected antimicrobials in wastewater and gives a comprehensive coverage of bacterial resistance mechanisms to different antibiotic classes through the expression of a wide variety of antibiotic resistance genes either inherent and/or exchanged among bacteria or acquired from the reservoir of antibiotic resistance genes (ARGs) in wastewater systems. To complement the removal of antibiotics and ARGs from WWTPs, upscaling the implementation of prospective interventions such as vaccines, phage therapy, and natural compounds as alternatives to widespread antibiotic use provides a multifaceted approach to minimize the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Christopher Mutuku
- Department of General and Environmental Microbiology, Faculty of Sciences, University of Pécs, Ifjúság u. 6, Pecs, 7624, Hungary.
| | - Zoltan Gazdag
- Department of General and Environmental Microbiology, Faculty of Sciences, University of Pécs, Ifjúság u. 6, Pecs, 7624, Hungary
| | - Szilvia Melegh
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 7622, Pecs, Hungary
| |
Collapse
|
41
|
Nwafia IN, Ike AC, Orabueze IN, Nwafia WC. Carbapenemase producing Enterobacteriaceae: Environmental reservoirs as primary targets for control and prevention strategies. Niger Postgrad Med J 2022; 29:183-191. [PMID: 35900453 DOI: 10.4103/npmj.npmj_95_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Carbapenemase-producing Enterobacteriaceae (CPE) have become one of the greatest public health challenges globally. In the past decade, antimicrobial resistance (AMR) was viewed as a clinical problem in many parts of the world; hence, the role and magnitude of the contribution of the environment were not well appreciated. This review article was done with online published articles extracted from different databases using search terms related to the work. Evidence has shown that there exists the presence of carbapenemase genes in the environment, consequently fuelling the dissemination with alarming consequences. CPE when acquired causes life-threatening infections in humans. The health and economic impact of these infections are numerous, including treatment failure due to limited therapeutic options which hamper the containment of infectious diseases, further contaminating the environment and worsening the public health challenge. It is a well-known fact that the rate of emergence of resistant genes has outpaced the production of new antimicrobial agents, so it is pertinent to institute effective environmental measures to combat the spread of AMR organisms before it will completely gain a foothold and take us back to 'the pre-antibiotic era'. Environmental sources and reservoirs of resistant genes should therefore be amongst the primary targets for the control and prevention of the spread of resistant genes in the environment. This calls for the effective implementation of the 'one health' strategy with stakeholders committed to the design and enforcement of environmental mitigation policies and guidelines.
Collapse
Affiliation(s)
- Ifeyinwa Nkeiruka Nwafia
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka; Department of Medical Microbiology, University of Nigeria Teaching Hospital Enugu, Enugu State, Nigeria
| | - Anthony Chibuogwu Ike
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Ibuchukwu Nkeonyenasoya Orabueze
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka; Department of Medical Microbiology, University of Nigeria Teaching Hospital Enugu, Enugu State, Nigeria
| | - Walter Chukwuma Nwafia
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, Chukwuemeka Odumegwu Ojukwu University, Uli, Anambra State, Nigeria
| |
Collapse
|
42
|
Álvarez-Marín MT, Zarzuela L, Camacho EM, Santero E, Flores A. Detection by metagenomic functional analysis and improvement by experimental evolution of β-lactams resistance genes present in oil contaminated soils. Sci Rep 2022; 12:10059. [PMID: 35768448 PMCID: PMC9243250 DOI: 10.1038/s41598-022-13883-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/30/2022] [Indexed: 11/09/2022] Open
Abstract
The spread of antibiotic resistance genes has become a global health concern identified by the World Health Organization as one of the greatest threats to health. Many of antimicrobial resistance determinants found in bacterial pathogens originate from environmental bacteria, so identifying the genes that confer resistance to antibiotics in different habitats is mandatory to better understand resistance mechanisms. Soil is one of the most diverse environments considered reservoir of antimicrobial resistance genes. The aim of this work is to study the presence of genes that provide resistance to antibiotics used in clinical settings in two oil contaminated soils by metagenomic functional analysis. Using fosmid vectors that efficiently transcribe metagenomic DNA, we have selected 12 fosmids coding for two class A β-lactamases, two subclass B1 and two subclass B3 metallo-β-lactamases, one class D β-lactamase and three efflux pumps that confer resistance to cefexime, ceftriaxone, meropenem and/or imipenem. In some of them, detection of the resistance required heterologous expression from the fosmid promoter. Although initially, these environmental genes only provide resistance to low concentrations of antibiotics, we have obtained, by experimental evolution, fosmid derivatives containing β-lactamase ORFs with a single base substitution, which substantially increase their β-lactamase activity and resistance level. None of the mutations affect β-lactamase coding sequences and are all located upstream of them. These results demonstrate the presence of enzymes that confer resistance to relevant β-lactams in these soils and their capacity to rapidly adapt to provide higher resistance levels.
Collapse
Affiliation(s)
- M Teresa Álvarez-Marín
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Junta de Andalucía, Carretera de Utrera, Km. 1, 41013, Sevilla, Spain
| | - Laura Zarzuela
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Junta de Andalucía, Carretera de Utrera, Km. 1, 41013, Sevilla, Spain
| | - Eva M Camacho
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Junta de Andalucía, Carretera de Utrera, Km. 1, 41013, Sevilla, Spain
| | - Eduardo Santero
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Junta de Andalucía, Carretera de Utrera, Km. 1, 41013, Sevilla, Spain
| | - Amando Flores
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Junta de Andalucía, Carretera de Utrera, Km. 1, 41013, Sevilla, Spain.
| |
Collapse
|
43
|
Dihydroxyphenyl-substituted thiosemicarbazone: A potent scaffold for the development of metallo-β-lactamases inhibitors and antimicrobial. Bioorg Chem 2022; 127:105928. [PMID: 35717802 DOI: 10.1016/j.bioorg.2022.105928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/21/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022]
Abstract
The superbug infection mediated by metallo-β-lactamases (MβLs) has grown into anemergent health threat, and development of MβL inhibitors is an ideal strategy to combat the infection. In this work, twenty-five thiosemicarbazones 1a-e, 2a-e, 3a-e, 4a-d, 5a-d and 6a-b were synthesized and assayed against MβLs ImiS, NDM-1 and L1. The gained molecules specifically inhibited NDM-1 and ImiS, exhibiting an IC50 value in the range of 0.37-21.35 and 0.45-8.76 µM, and 2a was found to be the best inhibitor, with an IC50 of 0.37 and 0.45 µM, respectively, using meropenem (MER) as substrate. Enzyme kinetics and dialysis tests revealed and confirmed by ITC that 2a is a time-and dose-dependent inhibitor of ImiS and NDM-1, it competitively and reversibly inhibited ImiS with a Ki value of 0.29 µM, but irreversibly inhibited NDM-1. Structure-activity relationship disclosed that the substitute dihydroxylbenzene significantly enhanced inhibitory activity of thiosemicarbazones on ImiS and NDM-1. Most importantly, 1a-e, 2a-e and 3a-b alone more strongly sterilized E. coli-ImiS and E. coli-NDM-1 than the MER, displaying a MIC value in the range of 8-128 μg/mL, and 2a was found to be the best reagent with a MIC of 8 and 32 μg/mL. Also, 2a alone strongly sterilized the clinical isolates EC01, EC06-EC08, EC24 and K. pneumonia-KPC-NDM, showing a MIC value in the range of 16-128 μg/mL, and exhibited synergistic inhibition with MER on these bacteria tested, resulting in 8-32-fold reduction in MIC of MER. SEM images shown that the bacteria E. coli-ImiS, E. coli-NDM-1, EC24, K. pneumonia-KPC and K. pneumonia-KPC-NDM treated with 2a (64 μg/mL) suffered from distortion, emerging adhesion between individual cells and crumpled membranes. Mice tests shown that monotherapy of 2a evidently limited growth of EC24 cells, and in combination with MER, it significantly reduced the bacterial load in liver and spleen. Docking studies suggest that the 2,4-dihydroxylbenzene of 2a acts as zinc-binding group with the Zn(II) and the residual amino acids in CphA active center, tightly anchoring the inhibitor at active site. This work offered a promising scaffold for the development of MβLs inhibitors, specifically the antimicrobial for clinically drug-resistant isolates.
Collapse
|
44
|
Sadek M, Bouvier M, Kerbol A, Poirel L, Nordmann P. Evaluation of novel immunological rapid test (K.N.I.V.O. Detection K-Set) for Rapid Detection of Carbapenemase Producers in Multidrug-Resistant Gram Negatives. Diagn Microbiol Infect Dis 2022; 104:115761. [DOI: 10.1016/j.diagmicrobio.2022.115761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 11/26/2022]
|
45
|
Zahornacký O, Porubčin Š, Rovňáková A, Jarčuška P. Gram-Negative Rods on Inanimate Surfaces of Selected Hospital Facilities and Their Nosocomial Significance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19106039. [PMID: 35627578 PMCID: PMC9141962 DOI: 10.3390/ijerph19106039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 01/21/2023]
Abstract
Inanimate surfaces are often referred to as nosocomial bacterial reservoirs and represent an important vector in the process of spreading pathogens to patients. Most gram-negative rods can survive on inanimate surfaces for several months. The aim of this study is to determine the prevalence and resistance of gram-negative bacteria isolated from the inanimate surfaces of two selected hospital departments. MALDI-TOF identified gram-negative rods isolated from inanimate surfaces. Antibiotic resistance was determined using a disk diffusion method, and the phenotype of resistance was determined using an inhibitory analyzer. From the inanimate surfaces, 98 strains of gram-negative nosocomial bacteria were identified by the MALDI-TOF MS. The most frequently isolated bacterium occurring in both departments was Pseudomonas aeruginosa (n = 33), followed by Acinetobacter baumannii (n = 20) and Enterobacter cloacae (n = 14). The most common phenotypic type of resistance in both departments was ampicillin resistance—AmpC (n = 38), then production of extended-spectrum β-lactamase (ESBL) (n = 33), followed by SHV-1 (n = 11), TEM-1 (n = 11), and fluoroquinolone resistance—Qnr (n = 22). The nosocomial important enzymes capable of hydrolyzing carbapenems, OXA-48 and metallo-β-lactamases, were confirmed in 12 and 2 cases, respectively. The results of our study prove that inanimate surfaces in hospitals are a reservoir of resistant gram-negative bacteria, which directly threaten hospitalized patients.
Collapse
|
46
|
de Oliveira Santos JV, da Costa Júnior SD, de Fátima Ramos Dos Santos Medeiros SM, Cavalcanti IDL, de Souza JB, Coriolano DL, da Silva WRC, Alves MHME, Cavalcanti IMF. Panorama of Bacterial Infections Caused by Epidemic Resistant Strains. Curr Microbiol 2022; 79:175. [PMID: 35488983 PMCID: PMC9055366 DOI: 10.1007/s00284-022-02875-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/11/2022] [Indexed: 12/24/2022]
Abstract
Antimicrobial resistance (AMR) represents a critical obstacle to public health worldwide, due to the high incidence of strains resistant to available antibiotic therapies. In recent years, there has been a significant increase in the prevalence of resistant epidemic strains, associated with this, public health authorities have been alarmed about a possible scenario of uncontrolled dissemination of these microorganisms and the difficulty in interrupting their transmission, as nosocomial pathogens with resistance profiles previously considered sporadic. They become frequent bacteria in the community. In addition, therapy for infections caused by these pathogens is based on broad-spectrum antibiotic therapy, which favors an increase in the tolerance of remaining bacterial cells and is commonly associated with a poor prognosis. In this review, we present the current status of epidemic strains of methicillin-resistant Staphylococcus aureus (MRSA), Vancomycin-resistant Enterococcus (VRE), MDR Mycobacterium tuberculosis, extended-spectrum β-lactamase-producing Enterobacterales (ESBL), Klebsiella pneumoniae carbapenemase (KPC), and—New Delhi Metallo-beta-lactamase-producing Pseudomonas aeruginosa (NDM).
Collapse
Affiliation(s)
- João Victor de Oliveira Santos
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - Sérgio Dias da Costa Júnior
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | | | - Iago Dillion Lima Cavalcanti
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - Jaqueline Barbosa de Souza
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - Davi Lacerda Coriolano
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - Wagner Roberto Cirilo da Silva
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - Maria Helena Menezes Estevam Alves
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - Isabella Macário Ferro Cavalcanti
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil.
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão, Rua Do Alto Do Reservatório S/N, Bela Vista, Vitória de Santo Antão, Pernambuco, CEP: 55608-680, Brazil.
| |
Collapse
|
47
|
Wei H, Kong L, Wang Y, Huang Z, Yang X, Zhou C, Li C, Ma B, Li C, Lei C, Wang H. Characterization and Public Health Insights of the New Delhi Metallo-β-Lactamase-Producing Enterobacterales from Laying Hens in China. Microorganisms 2022; 10:microorganisms10040800. [PMID: 35456850 PMCID: PMC9029685 DOI: 10.3390/microorganisms10040800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/26/2022] [Accepted: 04/09/2022] [Indexed: 02/04/2023] Open
Abstract
The New Delhi metallo-β-lactamase (NDM) is a major element for the rapid expansion of the carbapenem-resistant Enterobacterales, which poses a great challenge to public health security. NDM-producing Enterobacterales strains (50 Escherichia coli, 40 Klebsiella pneumoniae, and 5 Enterobacter cloacae) were isolated from laying hens in China for the surveillance of antibiotic-resistant pathogens, and all were found to be multi-drug resistant bacteria. The genomic analysis of these NDM-positive bacteria revealed the ST167, ST617, and ST410 of the fifteen ST-type E. coli clones and ST37 of the four ST-type K. pneumoniae clones to be the same types as the human-derived strains. Among them, some new clone types were also found. Most of the blaNDM genes (blaNDM-1 or blaNDM-5) were on the IncX3 plasmids (n = 80) and were distributed in E. coli, K. pneumoniae, and E. cloacae, while the remaining blaNDM-5 genes were harbored in the E. coli ST167 with IncFII plasmids (n = 15). The typeⅠ1 of the eight IncX3 plasmid subtypes was consistent with the human-derived pNDM5_020001 plasmid (accession no. CP032424). In addition, these two plasmids did not affect the growth of the host bacteria and could be reproduced stably without antibiotics. Our study revealed the high genetic propensity of the NDM-positive Enterobacterales from the laying hens and human commensal Enterobacterales, suggesting the potentially enormous risk of its transmission to humans.
Collapse
Affiliation(s)
- Hongcheng Wei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.W.); (L.K.); (Y.W.); (Z.H.); (X.Y.); (C.Z.); (C.L.); (B.M.); (C.L.); (C.L.)
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610065, China
| | - Linghan Kong
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.W.); (L.K.); (Y.W.); (Z.H.); (X.Y.); (C.Z.); (C.L.); (B.M.); (C.L.); (C.L.)
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610065, China
| | - Yulong Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.W.); (L.K.); (Y.W.); (Z.H.); (X.Y.); (C.Z.); (C.L.); (B.M.); (C.L.); (C.L.)
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610065, China
| | - Zheren Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.W.); (L.K.); (Y.W.); (Z.H.); (X.Y.); (C.Z.); (C.L.); (B.M.); (C.L.); (C.L.)
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610065, China
| | - Xue Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.W.); (L.K.); (Y.W.); (Z.H.); (X.Y.); (C.Z.); (C.L.); (B.M.); (C.L.); (C.L.)
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610065, China
| | - Changyu Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.W.); (L.K.); (Y.W.); (Z.H.); (X.Y.); (C.Z.); (C.L.); (B.M.); (C.L.); (C.L.)
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610065, China
| | - Chao Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.W.); (L.K.); (Y.W.); (Z.H.); (X.Y.); (C.Z.); (C.L.); (B.M.); (C.L.); (C.L.)
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610065, China
| | - Boheng Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.W.); (L.K.); (Y.W.); (Z.H.); (X.Y.); (C.Z.); (C.L.); (B.M.); (C.L.); (C.L.)
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610065, China
| | - Cui Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.W.); (L.K.); (Y.W.); (Z.H.); (X.Y.); (C.Z.); (C.L.); (B.M.); (C.L.); (C.L.)
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610065, China
| | - Changwei Lei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.W.); (L.K.); (Y.W.); (Z.H.); (X.Y.); (C.Z.); (C.L.); (B.M.); (C.L.); (C.L.)
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610065, China
| | - Hongning Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.W.); (L.K.); (Y.W.); (Z.H.); (X.Y.); (C.Z.); (C.L.); (B.M.); (C.L.); (C.L.)
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610065, China
- Correspondence: ; Tel.: +86-28-8547-1599
| |
Collapse
|
48
|
Gervasoni S, Spencer J, Hinchliffe P, Pedretti A, Vairoletti F, Mahler G, Mulholland AJ. A multiscale approach to predict the binding mode of metallo beta-lactamase inhibitors. Proteins 2022; 90:372-384. [PMID: 34455628 PMCID: PMC8944931 DOI: 10.1002/prot.26227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/09/2021] [Accepted: 08/18/2021] [Indexed: 02/03/2023]
Abstract
Antibiotic resistance is a major threat to global public health. β-lactamases, which catalyze breakdown of β-lactam antibiotics, are a principal cause. Metallo β-lactamases (MBLs) represent a particular challenge because they hydrolyze almost all β-lactams and to date no MBL inhibitor has been approved for clinical use. Molecular simulations can aid drug discovery, for example, predicting inhibitor complexes, but empirical molecular mechanics (MM) methods often perform poorly for metalloproteins. Here we present a multiscale approach to model thiol inhibitor binding to IMP-1, a clinically important MBL containing two catalytic zinc ions, and predict the binding mode of a 2-mercaptomethyl thiazolidine (MMTZ) inhibitor. Inhibitors were first docked into the IMP-1 active site, testing different docking programs and scoring functions on multiple crystal structures. Complexes were then subjected to molecular dynamics (MD) simulations and subsequently refined through QM/MM optimization with a density functional theory (DFT) method, B3LYP/6-31G(d), increasing the accuracy of the method with successive steps. This workflow was tested on two IMP-1:MMTZ complexes, for which it reproduced crystallographically observed binding, and applied to predict the binding mode of a third MMTZ inhibitor for which a complex structure was crystallographically intractable. We also tested a 12-6-4 nonbonded interaction model in MD simulations and optimization with a SCC-DFTB QM/MM approach. The results show the limitations of empirical models for treating these systems and indicate the need for higher level calculations, for example, DFT/MM, for reliable structural predictions. This study demonstrates a reliable computational pipeline that can be applied to inhibitor design for MBLs and other zinc-metalloenzyme systems.
Collapse
Affiliation(s)
- Silvia Gervasoni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | | | - Franco Vairoletti
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR), Avda. General Flores 2124, Montevideo, Uruguay
| | - Graciela Mahler
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR), Avda. General Flores 2124, Montevideo, Uruguay
| | | |
Collapse
|
49
|
Chigan JZ, Hu Z, Liu L, Xu YS, Ding HH, Yang KW. Quinolinyl sulfonamides and sulphonyl esters exhibit inhibitory efficacy against New Delhi metallo-β-lactamase-1 (NDM-1). Bioorg Chem 2022; 120:105654. [DOI: 10.1016/j.bioorg.2022.105654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/14/2022] [Accepted: 02/01/2022] [Indexed: 11/27/2022]
|
50
|
Lazzaro A, De Girolamo G, Filippi V, Innocenti GP, Santinelli L, Ceccarelli G, Trecarichi EM, Torti C, Mastroianni CM, d’Ettorre G, Russo A. The Interplay between Host Defense, Infection, and Clinical Status in Septic Patients: A Narrative Review. Int J Mol Sci 2022; 23:ijms23020803. [PMID: 35054993 PMCID: PMC8776148 DOI: 10.3390/ijms23020803] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/09/2022] [Indexed: 01/08/2023] Open
Abstract
Sepsis is a life-threatening condition that arises when the body's response to an infection injures its own tissues and organs. Despite significant morbidity and mortality throughout the world, its pathogenesis and mechanisms are not clearly understood. In this narrative review, we aimed to summarize the recent developments in our understanding of the hallmarks of sepsis pathogenesis (immune and adaptive immune response, the complement system, the endothelial disfunction, and autophagy) and highlight novel laboratory diagnostic approaches. Clinical management is also discussed with pivotal consideration for antimicrobic therapy management in particular settings, such as intensive care unit, altered renal function, obesity, and burn patients.
Collapse
Affiliation(s)
- Alessandro Lazzaro
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00161 Rome, Italy; (A.L.); (G.D.G.); (V.F.); (G.P.I.); (L.S.); (G.C.); (C.M.M.); (G.d.)
| | - Gabriella De Girolamo
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00161 Rome, Italy; (A.L.); (G.D.G.); (V.F.); (G.P.I.); (L.S.); (G.C.); (C.M.M.); (G.d.)
| | - Valeria Filippi
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00161 Rome, Italy; (A.L.); (G.D.G.); (V.F.); (G.P.I.); (L.S.); (G.C.); (C.M.M.); (G.d.)
| | - Giuseppe Pietro Innocenti
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00161 Rome, Italy; (A.L.); (G.D.G.); (V.F.); (G.P.I.); (L.S.); (G.C.); (C.M.M.); (G.d.)
| | - Letizia Santinelli
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00161 Rome, Italy; (A.L.); (G.D.G.); (V.F.); (G.P.I.); (L.S.); (G.C.); (C.M.M.); (G.d.)
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00161 Rome, Italy; (A.L.); (G.D.G.); (V.F.); (G.P.I.); (L.S.); (G.C.); (C.M.M.); (G.d.)
| | - Enrico Maria Trecarichi
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (E.M.T.); (C.T.)
| | - Carlo Torti
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (E.M.T.); (C.T.)
| | - Claudio Maria Mastroianni
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00161 Rome, Italy; (A.L.); (G.D.G.); (V.F.); (G.P.I.); (L.S.); (G.C.); (C.M.M.); (G.d.)
| | - Gabriella d’Ettorre
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00161 Rome, Italy; (A.L.); (G.D.G.); (V.F.); (G.P.I.); (L.S.); (G.C.); (C.M.M.); (G.d.)
| | - Alessandro Russo
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (E.M.T.); (C.T.)
- Correspondence:
| |
Collapse
|