1
|
Nayak S, Peto TJ, Kucharski M, Tripura R, Callery JJ, Quang Huy DT, Gendrot M, Lek D, Nghia HDT, van der Pluijm RW, Dong N, Long LT, Vongpromek R, Rekol H, Hoang Chau N, Miotto O, Mukaka M, Dhorda M, von Seidlein L, Imwong M, Roca X, Day NPJ, White NJ, Dondorp AM, Bozdech Z. Population genomics and transcriptomics of Plasmodium falciparum in Cambodia and Vietnam uncover key components of the artemisinin resistance genetic background. Nat Commun 2024; 15:10625. [PMID: 39639029 PMCID: PMC11621345 DOI: 10.1038/s41467-024-54915-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
The emergence of Plasmodium falciparum parasites resistant to artemisinins compromises the efficacy of Artemisinin Combination Therapies (ACTs), the global first-line malaria treatment. Artemisinin resistance is a complex genetic trait in which nonsynonymous SNPs in PfK13 cooperate with other genetic variations. Here, we present population genomic/transcriptomic analyses of P. falciparum collected from patients with uncomplicated malaria in Cambodia and Vietnam between 2018 and 2020. Besides the PfK13 SNPs, several polymorphisms, including nonsynonymous SNPs (N1131I and N821K) in PfRad5 and an intronic SNP in PfWD11 (WD40 repeat-containing protein on chromosome 11), appear to be associated with artemisinin resistance, possibly as new markers. There is also a defined set of genes whose steady-state levels of mRNA and/or splice variants or antisense transcripts correlate with artemisinin resistance at the base level. In vivo transcriptional responses to artemisinins indicate the resistant parasite's capacity to decelerate its intraerythrocytic developmental cycle (IDC), which can contribute to the resistant phenotype. During this response, PfRAD5 and PfWD11 upregulate their respective alternatively/aberrantly spliced isoforms, suggesting their contribution to the protective response to artemisinins. PfRAD5 and PfWD11 appear under selective pressure in the Greater Mekong Sub-region over the last decade, suggesting their role in the genetic background of the artemisinin resistance.
Collapse
Affiliation(s)
- Sourav Nayak
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Thomas J Peto
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Michal Kucharski
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Amsterdam UMC, University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| | - Rupam Tripura
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - James J Callery
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Duong Tien Quang Huy
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Mathieu Gendrot
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Dysoley Lek
- Centre for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
- National Institute for Public Health, Phnom Penh, Cambodia
| | - Ho Dang Trung Nghia
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
- Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Rob W van der Pluijm
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Institut Pasteur, Université Paris Cité, G5 Infectious Disease Epidemiology and Analytics, Paris, France
| | - Nguyen Dong
- Khanh Hoa Hospital for Tropical diseases, Ho Chi Minh City, Khanh Hoa province, Vietnam
| | - Le Thanh Long
- Phuoc Long Hospital, Ho Chi Minh City, Binh Phuoc province, Vietnam
| | - Ranitha Vongpromek
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- WorldWide Antimalarial Resistance Network - Asia-Pacific Regional Centre, Bangkok, Thailand
| | - Huy Rekol
- Amsterdam UMC, University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| | | | - Olivo Miotto
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Mavuto Mukaka
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Mehul Dhorda
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- WorldWide Antimalarial Resistance Network - Asia-Pacific Regional Centre, Bangkok, Thailand
| | - Lorenz von Seidlein
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Mallika Imwong
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
- Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam.
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
2
|
Baina MT, Djontu JC, Mbama Ntabi JD, Mfoutou Mapanguy CC, Lissom A, Vouvoungui CJ, Boumpoutou RK, Mouanga AM, Nguimbi E, Ntoumi F. Polymorphisms in the Pfcrt, Pfmdr1, and Pfk13 genes of Plasmodium falciparum isolates from southern Brazzaville, Republic of Congo. Sci Rep 2024; 14:27988. [PMID: 39543235 PMCID: PMC11564878 DOI: 10.1038/s41598-024-78670-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
This study aimed to analyze polymorphisms in Pfcrt, Pfmdr1, and Pfk13 genes' markers of resistance to Artemisinin-based combination therapy (ACT), in Plasmodium falciparum isolates from southern Brazzaville, 15 years after the adoption of ACT in the Republic of Congo. A total of 369 microscopy-confirmed malaria-infected individuals were enrolled from March to October 2021 in the community and in health facilities during a cross-sectional study. The K76T mutation in the Pfcrt gene, N86Y and Y184F mutations in the Pfmdr1 gene were investigated using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) while the codons region (1005-1300) of the Pfmdr1gene, and Pfk13 gene were sequenced. The prevalences of K76T, N86Y, Y184F mutations were 26.0%, 6.8%, and 27.7%, respectively. However, no mutations were detected in codons 1034, 1042, and 1246 of the Pfmdr1 gene. None of the mutations previously associated with artemisinin-based resistance were detected in the Pfk13 gene. The results reveal a significant decrease in the prevalence of K76T, N86Y, Y184F mutations, in Plasmodium falciparum isolates following the change of therapeutic policy. As artemisinin resistance is emerging throughout Africa, continued surveillance for early detection of these mutations and relevant partner markers of drug resistance are recommended in the Republic of Congo.
Collapse
Affiliation(s)
- Marcel Tapsou Baina
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Republic of Congo
| | - Jean Claude Djontu
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo.
- Biotechnology Center, University of Yaounde I, Yaounde, Cameroon.
| | - Jacques Dollon Mbama Ntabi
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Republic of Congo
| | - Claujens Chastel Mfoutou Mapanguy
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Republic of Congo
| | - Abel Lissom
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo
- Department of Zoology, Faculty of Science, University of Bamenda, Bamenda, Cameroon
| | - Christevy Jeannhey Vouvoungui
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Republic of Congo
| | | | - Alain Maxime Mouanga
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo
- Faculté des Sciences de la santé, Université Marien Ngouabi, Brazzaville, Republic of Congo
| | - Etienne Nguimbi
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Republic of Congo
| | - Francine Ntoumi
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo.
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
3
|
Delandre O, Pradines B, Javelle E. Dihydroartemisinin-Piperaquine Combination in the Treatment of Uncomplicated Plasmodium falciparum Malaria: Update on Clinical Failures in Africa and Tools for Surveillance. J Clin Med 2024; 13:6828. [PMID: 39597971 PMCID: PMC11594973 DOI: 10.3390/jcm13226828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024] Open
Abstract
Dihydroartemisinin (or artenimol)-piperaquine is one of the six artemisinin-based combination therapies recommended in uncomplicated malaria treatment. However, artemisinin partial resistance has been reported in Cambodia, Laos, Vietnam, India, and, recently, in Africa. Polymorphisms in the Pfk13 gene have been described as molecular markers of artemisinin resistance and the amplification of the plasmepsine II/III (Pfpmp2/Pfpmp3) gene has been associated with piperaquine resistance. However, some therapeutic failures with this combination remain unexplained by strains' characterization. We provide an overview on the use of dihydroartemisinin-piperaquine in malaria treatment and discuss tools available to monitor its efficacy.
Collapse
Affiliation(s)
- Océane Delandre
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (B.P.); (E.J.)
- Aix Marseille Univ, SSA, AP-HM, RITMES, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Bruno Pradines
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (B.P.); (E.J.)
- Aix Marseille Univ, SSA, AP-HM, RITMES, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
- Centre National de Référence du Paludisme, 13005 Marseille, France
| | - Emilie Javelle
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (B.P.); (E.J.)
- Aix Marseille Univ, SSA, AP-HM, RITMES, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
- Centre National de Référence du Paludisme, 13005 Marseille, France
| |
Collapse
|
4
|
Kucharski M, Nayak S, Gendrot M, Dondorp AM, Bozdech Z. Peeling the onion: how complex is the artemisinin resistance genetic trait of malaria parasites? Trends Parasitol 2024; 40:970-986. [PMID: 39358163 DOI: 10.1016/j.pt.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
The genetics of Plasmodium as an intracellular, mostly haploid, sexually reproducing, eukaryotic organism with a complex life cycle, presents unprecedented challenges in studying drug resistance. This article summarizes current knowledge on the genetic basis of artemisinin resistance (AR) - a main component of current drug therapies for falciparum malaria. Although centered on nonsynonymous single-nucleotide polymorphisms (nsSNPs), we describe multifaceted resistance mechanisms as part of a complex, cumulative genetic trait that involves regulation of expression by a wide array of polymorphisms in noncoding regions. These genetic variations alter transcriptome profiles linked to Plasmodium's development and population dynamics, ultimately influencing the emergence and spread of the resistance.
Collapse
Affiliation(s)
- Michal Kucharski
- School of Biological Sciences, Nanyang Technological University, Singapore; Amsterdam UMC, University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| | - Sourav Nayak
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Mathieu Gendrot
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore; Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Milong Melong CS, Peloewetse E, Russo G, Tamgue O, Tchoumbougnang F, Paganotti GM. An overview of artemisinin-resistant malaria and associated Pfk13 gene mutations in Central Africa. Parasitol Res 2024; 123:277. [PMID: 39023630 DOI: 10.1007/s00436-024-08301-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Malaria caused by Plasmodium falciparum is one of the deadliest and most common tropical infectious diseases. However, the emergence of artemisinin drug resistance associated with the parasite's Pfk13 gene, threatens the public health of individual countries as well as current efforts to reduce malaria burdens globally. It is of concern that artemisinin-resistant parasites may be selected or have already emerged in Africa. This narrative review aims to evaluate the published evidence concerning validated, candidate, and novel Pfk13 polymorphisms in ten Central African countries. Results show that four validated non-synonymous polymorphisms (M476I, R539T, P553L, and P574L), directly associated with a delayed therapy response, have been reported in the region. Also, two Pfk13 polymorphisms associated to artemisinin resistance but not validated (C469F and P527H) have been reported. Furthermore, several non-validated mutations have been observed in Central Africa, and one allele A578S, is commonly found in different countries, although additional molecular and biochemical studies are needed to investigate whether those mutations alter artemisinin effects. This information is discussed in the context of biochemical and genetic aspects of Pfk13, and related to the regional malaria epidemiology of Central African countries.
Collapse
Affiliation(s)
- Charlotte Sabine Milong Melong
- Department of Biochemistry, Faculty of Sciences, University of Douala, P.O. Box 24157, Douala, Cameroon
- Botswana-University of Pennsylvania Partnership, P.O. Box 45498, Gaborone, Riverwalk, Botswana
| | - Elias Peloewetse
- Department of Biological Sciences, Faculty of Sciences, University of Botswana, Private Bag, 0022, Gaborone, UB, Botswana
| | - Gianluca Russo
- Department of Public Health and Infectious Diseases, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.Le Aldo Moro 5, 00185, Rome, Italy
| | - Ousman Tamgue
- Department of Biochemistry, Faculty of Sciences, University of Douala, P.O. Box 24157, Douala, Cameroon
| | - Francois Tchoumbougnang
- Department of Processing and Quality Control of Aquatic Products, Institute of Fisheries and Aquatic Sciences, University of Douala, P.O. Box 7236, Douala, Cameroon
| | - Giacomo Maria Paganotti
- Botswana-University of Pennsylvania Partnership, P.O. Box 45498, Gaborone, Riverwalk, Botswana.
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
Sima-Biyang YV, Ontoua SS, Longo-Pendy NM, Mbou-Boutambe C, Makouloutou-Nzassi P, Moussadji CK, Lekana-Douki JB, Boundenga L. Epidemiology of malaria in Gabon: A systematic review and meta-analysis from 1980 to 2023. J Infect Public Health 2024; 17:102459. [PMID: 38870682 DOI: 10.1016/j.jiph.2024.05.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024] Open
Abstract
The objective of this were conducted to elucidate spatiotemporal variations in malaria epidemiology in Gabon since 1980. For that, five databases, were used to collect and identify all studies published between 1980 and 2023 on malaria prevalence, antimalarial drug resistance, markers of antimalarial drug resistance and insecticide resistance marker. The findings suggest that Gabon continues to face malaria as an urgent public health problem, with persistently high prevalence rates. Markers of resistance to CQ persist despite its withdrawal, and markers of resistance to SP have emerged with a high frequency, reaching 100 %, while ACTs remain effective. Also, recent studies have identified markers of resistance to the insecticides Kdr-w and Kdr-e at frequencies ranging from 25 % to 100 %. Ace1R mutation was reported with a frequency of 0.4 %. In conclusion, the efficacy of ACTs remains above the threshold recommended by the WHO. Organo-phosphates and carbamates could provide an alternative for vector control.
Collapse
Affiliation(s)
- Yann Vital Sima-Biyang
- Unit of Research in Ecology of Health (URES), Franceville Interdisciplinary Center for Medical Research (CIRMF), BP 769 Franceville, Gabon; Central African Regional Doctoral School in Tropical Infectiology (EDR), BP 876 Franceville, Gabon
| | - Steede Seinnat Ontoua
- Central African Regional Doctoral School in Tropical Infectiology (EDR), BP 876 Franceville, Gabon; Unit of Evolution, Epidemiology and Parasite Resistance (UNEEREP), Franceville Interdisciplinary Center for Medical Research (CIRMF), BP 769 Franceville, Gabon
| | - Neil Michel Longo-Pendy
- Unit of Research in Ecology of Health (URES), Franceville Interdisciplinary Center for Medical Research (CIRMF), BP 769 Franceville, Gabon
| | - Clark Mbou-Boutambe
- Unit of Research in Ecology of Health (URES), Franceville Interdisciplinary Center for Medical Research (CIRMF), BP 769 Franceville, Gabon; Central African Regional Doctoral School in Tropical Infectiology (EDR), BP 876 Franceville, Gabon
| | - Patrice Makouloutou-Nzassi
- Unit of Research in Ecology of Health (URES), Franceville Interdisciplinary Center for Medical Research (CIRMF), BP 769 Franceville, Gabon; Department of Animal Biology and Ecology, Tropical Ecology Research Institute (IRET/CENAREST), Libreville BP 13354, Gabon
| | - Cyr Kinga Moussadji
- Primatology Center, Franceville Interdisciplinary Center for Medical Research (CIRMF), BP 769 Franceville, Gabon
| | - Jean-Bernard Lekana-Douki
- Unit of Evolution, Epidemiology and Parasite Resistance (UNEEREP), Franceville Interdisciplinary Center for Medical Research (CIRMF), BP 769 Franceville, Gabon; Department of Parasitology-Mycology-Tropical Medicine, University of Health Sciences, Faculty of Medicine, BP 4009 Libreville, Gabon
| | - Larson Boundenga
- Unit of Research in Ecology of Health (URES), Franceville Interdisciplinary Center for Medical Research (CIRMF), BP 769 Franceville, Gabon; Department of Anthropology, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
7
|
Behrens HM, Schmidt S, Henshall IG, López-Barona P, Peigney D, Sabitzki R, May J, Maïga-Ascofaré O, Spielmann T. Impact of different mutations on Kelch13 protein levels, ART resistance, and fitness cost in Plasmodium falciparum parasites. mBio 2024; 15:e0198123. [PMID: 38700363 PMCID: PMC11237660 DOI: 10.1128/mbio.01981-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Reduced susceptibility to ART, the first-line treatment against malaria, is common in South East Asia (SEA). It is associated with point mutations, mostly in kelch13 (k13) but also in other genes, like ubp1. K13 and its compartment neighbors (KICs), including UBP1, are involved in endocytosis of host cell cytosol. We tested 135 mutations in KICs but none conferred ART resistance. Double mutations of k13C580Y with k13R539T or k13C580Y with ubp1R3138H, did also not increase resistance. In contrast, k13C580Y parasites subjected to consecutive RSAs did, but the k13 sequence was not altered. Using isogenic parasites with different k13 mutations, we found correlations between K13 protein amount, resistance, and fitness cost. Titration of K13 and KIC7 indicated that the cellular levels of these proteins determined resistance through the rate of endocytosis. While fitness cost of k13 mutations correlated with ART resistance, ubp1R3138H caused a disproportionately higher fitness cost. IMPORTANCE Parasites with lowered sensitivity to artemisinin-based drugs are becoming widespread. However, even in these "resistant" parasites not all parasites survive treatment. We found that the proportion of surviving parasites correlates with the fitness cost of resistance-inducing mutations which might indicate that the growth disadvantages prevents resistance levels where all parasites survive treatment. We also found that combining two common resistance mutations did not increase resistance levels. However, selection through repeated ART-exposure did, even-though the known resistance genes, including k13, were not further altered, suggesting other causes of increased resistance. We also observed a disproportionally high fitness cost of a resistance mutation in resistance gene ubp1. Such high fitness costs may explain why mutations in ubp1 and other genes functioning in the same pathway as k13 are rare. This highlights that k13 mutations are unique in their ability to cause resistance at a comparably low fitness cost.
Collapse
Affiliation(s)
- Hannah M. Behrens
- Malaria Cell Biology, Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Sabine Schmidt
- Malaria Cell Biology, Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Isabelle G. Henshall
- Malaria Cell Biology, Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Patricia López-Barona
- Malaria Cell Biology, Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Domitille Peigney
- Malaria Cell Biology, Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ricarda Sabitzki
- Malaria Cell Biology, Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jürgen May
- Infectious Disease Epidemiology Department, Epidemiology and Diagnostics, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, Hamburg, Germany
| | - Oumou Maïga-Ascofaré
- Infectious Disease Epidemiology Department, Epidemiology and Diagnostics, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, Hamburg, Germany
| | - Tobias Spielmann
- Malaria Cell Biology, Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
8
|
Gilleran JA, Ashraf K, Delvillar M, Eck T, Fondekar R, Miller EB, Hutchinson A, Dong A, Seitova A, De Souza ML, Augeri D, Halabelian L, Siekierka J, Rotella DP, Gordon J, Childers WE, Grier MC, Staker BL, Roberge JY, Bhanot P. Structure-Activity Relationship of a Pyrrole Based Series of PfPKG Inhibitors as Anti-Malarials. J Med Chem 2024; 67:3467-3503. [PMID: 38372781 DOI: 10.1021/acs.jmedchem.3c01795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Controlling malaria requires new drugs against Plasmodium falciparum. The P. falciparum cGMP-dependent protein kinase (PfPKG) is a validated target whose inhibitors could block multiple steps of the parasite's life cycle. We defined the structure-activity relationship (SAR) of a pyrrole series for PfPKG inhibition. Key pharmacophores were modified to enable full exploration of chemical diversity and to gain knowledge about an ideal core scaffold. In vitro potency against recombinant PfPKG and human PKG were used to determine compound selectivity for the parasite enzyme. P. berghei sporozoites and P. falciparum asexual blood stages were used to assay multistage antiparasitic activity. Cellular specificity of compounds was evaluated using transgenic parasites expressing PfPKG carrying a substituted "gatekeeper" residue. The structure of PfPKG bound to an inhibitor was solved, and modeling using this structure together with computational tools was utilized to understand SAR and establish a rational strategy for subsequent lead optimization.
Collapse
Affiliation(s)
- John A Gilleran
- Rutgers Molecular Design and Synthesis Core, Office for Research, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Kutub Ashraf
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, 225 Warren Street, Newark, New Jersey 07103, United States
| | - Melvin Delvillar
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, 225 Warren Street, Newark, New Jersey 07103, United States
| | - Tyler Eck
- Department of Chemistry and Biochemistry and Sokol Institute of Pharmaceutical Life Sciences, Montclair State University, Montclair, New Jersey 07043, United States
| | - Raheel Fondekar
- Rutgers Molecular Design and Synthesis Core, Office for Research, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854, United States
- Rutgers School of Pharmacy, 160 Frelinghuysen Road, Piscataway, New Jersey 08854, United States
| | - Edward B Miller
- Schrödinger, Inc., 1540 Broadway, 24th Floor, New York, New York 10036, United States
| | - Ashley Hutchinson
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Alma Seitova
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Mariana Laureano De Souza
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, 225 Warren Street, Newark, New Jersey 07103, United States
| | - David Augeri
- Rutgers Molecular Design and Synthesis Core, Office for Research, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854, United States
- Schrödinger, Inc., 1540 Broadway, 24th Floor, New York, New York 10036, United States
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - John Siekierka
- Department of Chemistry and Biochemistry and Sokol Institute of Pharmaceutical Life Sciences, Montclair State University, Montclair, New Jersey 07043, United States
| | - David P Rotella
- Department of Chemistry and Biochemistry and Sokol Institute of Pharmaceutical Life Sciences, Montclair State University, Montclair, New Jersey 07043, United States
| | - John Gordon
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania 19140, United States
| | - Wayne E Childers
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania 19140, United States
| | - Mark C Grier
- Rutgers Molecular Design and Synthesis Core, Office for Research, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Bart L Staker
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington 98109, United States
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington 98109, United States
| | - Jacques Y Roberge
- Rutgers Molecular Design and Synthesis Core, Office for Research, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Purnima Bhanot
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, 225 Warren Street, Newark, New Jersey 07103, United States
| |
Collapse
|
9
|
Holzschuh A, Ewnetu Y, Carlier L, Lerch A, Gerlovina I, Baker SC, Yewhalaw D, Haileselassie W, Berhane N, Lemma W, Koepfli C. Plasmodium falciparum transmission in the highlands of Ethiopia is driven by closely related and clonal parasites. Mol Ecol 2024; 33:e17292. [PMID: 38339833 DOI: 10.1111/mec.17292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/28/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Malaria cases are frequently recorded in the Ethiopian highlands even at altitudes above 2000 m. The epidemiology of malaria in the Ethiopian highlands, and, in particular, the role of importation by human migration from the highly endemic lowlands is not well understood. We sequenced 187 Plasmodium falciparum samples from two sites in the Ethiopian highlands, Gondar (n = 159) and Ziway (n = 28), using a multiplexed droplet digital PCR (ddPCR)-based amplicon sequencing method targeting 35 microhaplotypes and drug resistance loci. Here, we characterize the parasite population structure and genetic relatedness. We identify moderate parasite diversity (mean HE : 0.54) and low infection complexity (74.9% monoclonal). A significant percentage of infections share microhaplotypes, even across transmission seasons and sites, indicating persistent local transmission. We identify multiple clusters of clonal or near-clonal infections, highlighting high genetic relatedness. Only 6.3% of individuals diagnosed with P. falciparum reported recent travel. Yet, in clonal or near-clonal clusters, infections of travellers were frequently observed first in time, suggesting that parasites may have been imported and then transmitted locally. 31.1% of infections are pfhrp2-deleted and 84.4% pfhrp3-deleted, and 28.7% have pfhrp2/3 double deletions. Parasites with pfhrp2/3 deletions and wild-type parasites are genetically distinct. Mutations associated with resistance to sulphadoxine-pyrimethamine or suggested to reduce sensitivity to lumefantrine are observed at near-fixation. In conclusion, genomic data corroborate local transmission and the importance of intensified control in the Ethiopian highlands.
Collapse
Affiliation(s)
- Aurel Holzschuh
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Yalemwork Ewnetu
- Department of Medical Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Lise Carlier
- Trinity Centre for Global Health, Trinity College Dublin, Dublin, Ireland
- Noul Inc., Seoul, Republic of Korea
| | - Anita Lerch
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Inna Gerlovina
- Department of Medicine, Division of HIV, ID and Global Medicine, EPPIcenter Research Program, University of California, San Francisco, California, USA
| | - Sarah Cate Baker
- Trinity Centre for Global Health, Trinity College Dublin, Dublin, Ireland
| | - Delenasaw Yewhalaw
- Tropical and Infectious Disease Research Center, Jimma University, Jimma, Ethiopia
| | | | - Nega Berhane
- Department of Medical Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Wossenseged Lemma
- Department of Medical Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Cristian Koepfli
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
10
|
Holzschuh A, Lerch A, Fakih BS, Aliy SM, Ali MH, Ali MA, Bruzzese DJ, Yukich J, Hetzel MW, Koepfli C. Using a mobile nanopore sequencing lab for end-to-end genomic surveillance of Plasmodium falciparum: A feasibility study. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002743. [PMID: 38300956 PMCID: PMC10833559 DOI: 10.1371/journal.pgph.0002743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/20/2023] [Indexed: 02/03/2024]
Abstract
Genomic epidemiology holds promise for malaria control and elimination efforts, for example by informing on Plasmodium falciparum genetic diversity and prevalence of mutations conferring anti-malarial drug resistance. Limited sequencing infrastructure in many malaria-endemic areas prevents the rapid generation of genomic data. To address these issues, we developed and validated assays for P. falciparum nanopore sequencing in endemic sites using a mobile laboratory, targeting key antimalarial drug resistance markers and microhaplotypes. Using two multiplexed PCR reactions, we amplified six highly polymorphic microhaplotypes and ten drug resistance markers. We developed a bioinformatics workflow that allows genotyping of polyclonal malaria infections, including minority clones. We validated the panels on mock dried blood spot (DBS) and rapid diagnostic test (RDT) samples and archived DBS, demonstrating even, high read coverage across amplicons (range: 580x to 3,212x median coverage), high haplotype calling accuracy, and the ability to explore within-sample diversity of polyclonal infections. We field-tested the feasibility of rapid genotyping in Zanzibar in close collaboration with the local malaria elimination program using DBS and routinely collected RDTs as sample inputs. Our assay identified haplotypes known to confer resistance to known antimalarials in the dhfr, dhps and mdr1 genes, but no evidence of artemisinin partial resistance. Most infections (60%) were polyclonal, with high microhaplotype diversity (median HE = 0.94). In conclusion, our assays generated actionable data within a few days, and we identified current challenges for implementing nanopore sequencing in endemic countries to accelerate malaria control and elimination.
Collapse
Affiliation(s)
- Aurel Holzschuh
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
| | - Anita Lerch
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Bakar S. Fakih
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania
| | - Safia Mohammed Aliy
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, United Republic of Tanzania
| | - Mohamed Haji Ali
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, United Republic of Tanzania
| | - Mohamed Ali Ali
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, United Republic of Tanzania
| | - Daniel J. Bruzzese
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Joshua Yukich
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, United States of America
| | - Manuel W. Hetzel
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
| | - Cristian Koepfli
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| |
Collapse
|
11
|
Jeang B, Zhong D, Lee MC, Atieli H, Yewhalaw D, Yan G. Molecular surveillance of Kelch 13 polymorphisms in Plasmodium falciparum isolates from Kenya and Ethiopia. Malar J 2024; 23:36. [PMID: 38287365 PMCID: PMC10823687 DOI: 10.1186/s12936-023-04812-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/30/2023] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Timely molecular surveillance of Plasmodium falciparum kelch 13 (k13) gene mutations is essential for monitoring the emergence and stemming the spread of artemisinin resistance. Widespread artemisinin resistance, as observed in Southeast Asia, would reverse significant gains that have been made against the malaria burden in Africa. The purpose of this study was to assess the prevalence of k13 polymorphisms in western Kenya and Ethiopia at sites representing varying transmission intensities between 2018 and 2022. METHODS Dried blood spot samples collected through ongoing passive surveillance and malaria epidemiological studies, respectively, were investigated. The k13 gene was genotyped in P. falciparum isolates with high parasitaemia: 775 isolates from four sites in western Kenya (Homa Bay, Kakamega, Kisii, and Kombewa) and 319 isolates from five sites across Ethiopia (Arjo, Awash, Gambella, Dire Dawa, and Semera). DNA sequence variation and neutrality were analysed within each study site where mutant alleles were detected. RESULTS Sixteen Kelch13 haplotypes were detected in this study. Prevalence of nonsynonymous k13 mutations was low in both western Kenya (25/783, 3.19%) and Ethiopia (5/319, 1.57%) across the study period. Two WHO-validated mutations were detected: A675V in three isolates from Kenya and R622I in four isolates from Ethiopia. Seventeen samples from Kenya carried synonymous mutations (2.17%). No synonymous mutations were detected in Ethiopia. Genetic variation analyses and tests of neutrality further suggest an excess of low frequency polymorphisms in each study site. Fu and Li's F test statistic in Semera was 0.48 (P > 0.05), suggesting potential population selection of R622I, which appeared at a relatively high frequency (3/22, 13.04%). CONCLUSIONS This study presents an updated report on the low frequency of k13 mutations in western Kenya and Ethiopia. The WHO-validated R622I mutation, which has previously only been reported along the north-west border of Ethiopia, appeared in four isolates collected from eastern Ethiopia. The rapid expansion of R622I across Ethiopia signals the need for enhanced monitoring of the spread of drug-resistant P. falciparum parasites in East Africa. Although ACT remains currently efficacious in the study areas, continued surveillance is necessary to detect early indicators of artemisinin partial resistance.
Collapse
Affiliation(s)
- Brook Jeang
- Program in Public Health, University of California Irvine, Irvine, CA, USA
| | - Daibin Zhong
- Program in Public Health, University of California Irvine, Irvine, CA, USA
| | - Ming-Chieh Lee
- Program in Public Health, University of California Irvine, Irvine, CA, USA
| | - Harrysone Atieli
- School of Public Health and Community Development, Maseno University, Kisumu, Kenya
- International Center of Excellence for Malaria Research, Tom Mboya University College, Homa Bay, Kenya
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - Guiyun Yan
- Program in Public Health, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
12
|
Kobpornchai P, Imwong M, Kulkeaw K. Trio fluorophore-based phenotypic assay for the detection of artemisinin-induced growth-arrested Plasmodium falciparum in human erythrocytes. Sci Rep 2024; 14:1802. [PMID: 38245618 PMCID: PMC10799909 DOI: 10.1038/s41598-024-52414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/18/2024] [Indexed: 01/22/2024] Open
Abstract
Artemisinin combination therapy remains effective for the treatment of falciparum malaria. However, Plasmodium falciparum can escape the effects of artemisinin by arresting their growth. The growth-arrested parasites cannot be distinguished from nonviable parasites with standard microscopy techniques due to their morphological similarities. Here, we demonstrated the efficacy of a new laboratory assay that is compatible with the artemisinin susceptibility test. As a result of the differential cell permeabilities of two DNA-binding fluorophores, growth-arrested P. falciparum can be distinguished from parasites killed by artemisinin, since the latter lose cell membrane permeability. This fluorescence-based assay increased the sensitivity and specificity of the ring survival assay in the assessment of artemisinin susceptibility. When combined with a third fluorophore-conjugated anti-human leukocyte antibody, this trio fluorophore assay became more useful in identifying growth-arrested parasites in mock human blood samples. This novel assay is a simple and rapid technique for monitoring artemisinin resistance with greater sensitivity and accuracy compared with morphology-based observations under a light microscope.
Collapse
Affiliation(s)
- Porntida Kobpornchai
- Siriraj Integrative Center for Neglected Parasitic Diseases, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj-Long Read Lab, Department of Bioinformatics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10700, Thailand
| | - Kasem Kulkeaw
- Siriraj Integrative Center for Neglected Parasitic Diseases, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
13
|
Grossman T, Vainer J, Paran Y, Studentsky L, Manor U, Dzikowski R, Schwartz E. Emergence of artemisinin-based combination treatment failure in patients returning from sub-Saharan Africa with P. falciparum malaria. J Travel Med 2023; 30:taad114. [PMID: 37606241 DOI: 10.1093/jtm/taad114] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Artemisinin-based combination therapies (ACTs) are recommended as first-line treatment against uncomplicated Plasmodium falciparum infection. Mutations in the PfKelch13 (PF3D7_1343700) gene led to resistance to artemisinin in Southeast Asia. Mutations in the Pfcoronin (PF3D7_1251200) gene confer reduced artemisinin susceptibility in vitro to an African Plasmodium strain, but their role in clinical resistance has not been established. METHODS We conducted a retrospective observational study of Israeli travellers returning from sub-Saharan Africa with P. falciparum malaria, including patients with artemether-lumefantrine (AL) failure. Blood samples from all malaria-positive patients are delivered to the national Parasitology Reference Laboratory along with personal information. Confirmation of malaria, species identification and comparative parasite load analysis were performed using real-time PCR. DNA extractions from stored leftover samples were analysed for the presence of mutations in Pfkelch13 and Pfcoronin. Age, weight, initial parasitaemia level and Pfcoronin status were compared in patients who failed treatment vs responders. RESULTS During 2009-2020, 338 patients had P. falciparum malaria acquired in Africa. Of those, 15 (24-69 years old, 14 males) failed treatment with AL. Four were still parasitemic at the end of treatment, and 11 had malaria recrudescence. Treatment failure rates were 0% during 2009-2012, 9.1% during 2013-2016 and 17.4% during 2017-2020. In all patients, the Pfkelch13 propeller domain had a wild-type sequence. We did find the P76S mutation in the propeller domain of Pfcoronin in 4/15 (28.6%) of the treatment-failure cases compared to only 3/56 (5.5%) in the successfully treated patients (P = 0.027). CONCLUSION AL treatment failure emergence was not associated with mutations in Pfkelch13. However, P76S mutation in the Pfcoronin gene was more frequently present in the treatment-failure group and merits further investigation. The increase of malaria incidence in sub-Saharan-Africa partly attributed to the COVID-19 pandemic might also reflect a wider spread of ACT resistance.
Collapse
Affiliation(s)
- Tamar Grossman
- Parasitology Reference Laboratory, Public Health Laboratories-Jerusalem (PHL-J), Public Health Services (PHS), Ministry of Health (MOH), Jerusalem 9134302, Israel
| | - Julia Vainer
- Parasitology Reference Laboratory, Public Health Laboratories-Jerusalem (PHL-J), Public Health Services (PHS), Ministry of Health (MOH), Jerusalem 9134302, Israel
| | - Yael Paran
- Infectious Disease Department, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Liora Studentsky
- Parasitology Reference Laboratory, Public Health Laboratories-Jerusalem (PHL-J), Public Health Services (PHS), Ministry of Health (MOH), Jerusalem 9134302, Israel
| | - Uri Manor
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- The Center for Geographic Medicine, Sheba Medical Center, Tel HaShomer 5262000, Israel
| | - Ron Dzikowski
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Eli Schwartz
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- The Center for Geographic Medicine, Sheba Medical Center, Tel HaShomer 5262000, Israel
| |
Collapse
|
14
|
Kayiba NK, Tshibangu-Kabamba E, Rosas-Aguirre A, Kaku N, Nakagama Y, Kaneko A, Makaba DM, Malekita DY, Devleesschauwer B, Likwela JL, Zakayi PK, DeMol P, Lelo GM, Hayette MP, Dikassa PL, Kido Y, Speybroeck N. The landscape of drug resistance in Plasmodium falciparum malaria in the Democratic Republic of Congo: a mapping systematic review. Trop Med Health 2023; 51:64. [PMID: 37968745 PMCID: PMC10647042 DOI: 10.1186/s41182-023-00551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/16/2023] [Indexed: 11/17/2023] Open
Abstract
CONTEXT The Democratic Republic of Congo (DRC), one of the most malaria-affected countries worldwide, is a potential hub for global drug-resistant malaria. This study aimed at summarizing and mapping surveys of malaria parasites carrying molecular markers of drug-resistance across the country. METHODS A systematic mapping review was carried out before July 2023 by searching for relevant articles through seven databases (PubMed, Embase, Scopus, African Journal Online, African Index Medicus, Bioline and Web of Science). RESULTS We identified 1541 primary studies of which 29 fulfilled inclusion criteria and provided information related to 6385 Plasmodium falciparum clinical isolates (collected from 2000 to 2020). We noted the PfCRT K76T mutation encoding for chloroquine-resistance in median 32.1% [interquartile interval, IQR: 45.2] of analyzed malaria parasites. The proportion of parasites carrying this mutation decreased overtime, but wide geographic variations persisted. A single isolate had encoded the PfK13 R561H substitution that is invoked in artemisinin-resistance emergence in the Great Lakes region of Africa. Parasites carrying various mutations linked to resistance to the sulfadoxine-pyrimethamine combination were widespread and reflected a moderate resistance profile (PfDHPS A437G: 99.5% [IQR: 3.9]; PfDHPS K540E: 38.9% [IQR: 47.7]) with median 13.1% [IQR: 10.3] of them being quintuple IRN-GE mutants (i.e., parasites carrying the PfDHFR N51I-C59R-S108N and PfDHPS A437G-K540E mutations). These quintuple mutants tended to prevail in eastern regions of the country. Among circulating parasites, we did not record any parasites harboring mutations related to mefloquine-resistance, but we could suspect those with decreased susceptibility to quinine, amodiaquine, and lumefantrine based on corresponding molecular surrogates. CONCLUSIONS Drug resistance poses a serious threat to existing malaria therapies and chemoprevention options in the DRC. This review provides a baseline for monitoring public health efforts as well as evidence for decision-making in support of national malaria policies and for implementing regionally tailored control measures across the country.
Collapse
Affiliation(s)
- Nadine Kalenda Kayiba
- Research Institute of Health and Society, Université Catholique de Louvain, Brussels, Belgium
- Department of Public Health, Faculty of Medicine, University of Mbujimayi, Mbujimayi, Democratic Republic of Congo
- Research Center for Infectious Disease Science & Department of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Evariste Tshibangu-Kabamba
- Research Center for Infectious Disease Science & Department of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Department of Internal Medicine, Faculty of Medicine, University of Mbujimayi, Mbujimayi, Democratic Republic of Congo
| | - Angel Rosas-Aguirre
- Research Institute of Health and Society, Université Catholique de Louvain, Brussels, Belgium
| | - Natsuko Kaku
- Research Center for Infectious Disease Science & Department of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yu Nakagama
- Research Center for Infectious Disease Science & Department of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Akira Kaneko
- Research Center for Infectious Disease Science & Department of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Dieudonné Mvumbi Makaba
- Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
- Department of Quality of Laboratories, Sciensano, Brussels, Belgium
| | - Doudou Yobi Malekita
- Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Brecht Devleesschauwer
- Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, Merelbeke, Belgium
| | - Joris Losimba Likwela
- Department of Public Health, Faculty of Medicine, University of Kisangani, Kisangani, Democratic Republic of Congo
| | - Pius Kabututu Zakayi
- Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Patrick DeMol
- Laboratory of Clinical Microbiology, Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium
| | - Georges Mvumbi Lelo
- Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Marie-Pierre Hayette
- Laboratory of Clinical Microbiology, Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium
| | - Paul Lusamba Dikassa
- School of Public Health, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Yasutoshi Kido
- Research Center for Infectious Disease Science & Department of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan.
| | - Niko Speybroeck
- Research Institute of Health and Society, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
15
|
Holzschuh A, Lerch A, Gerlovina I, Fakih BS, Al-Mafazy AWH, Reaves EJ, Ali A, Abbas F, Ali MH, Ali MA, Hetzel MW, Yukich J, Koepfli C. Multiplexed ddPCR-amplicon sequencing reveals isolated Plasmodium falciparum populations amenable to local elimination in Zanzibar, Tanzania. Nat Commun 2023; 14:3699. [PMID: 37349311 PMCID: PMC10287761 DOI: 10.1038/s41467-023-39417-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
Zanzibar has made significant progress toward malaria elimination, but recent stagnation requires novel approaches. We developed a highly multiplexed droplet digital PCR (ddPCR)-based amplicon sequencing method targeting 35 microhaplotypes and drug-resistance loci, and successfully sequenced 290 samples from five districts covering both main islands. Here, we elucidate fine-scale Plasmodium falciparum population structure and infer relatedness and connectivity of infections using an identity-by-descent (IBD) approach. Despite high genetic diversity, we observe pronounced fine-scale spatial and temporal parasite genetic structure. Clusters of near-clonal infections on Pemba indicate persistent local transmission with limited parasite importation, presenting an opportunity for local elimination efforts. Furthermore, we observe an admixed parasite population on Unguja and detect a substantial fraction (2.9%) of significantly related infection pairs between Zanzibar and the mainland, suggesting recent importation. Our study provides a high-resolution view of parasite genetic structure across the Zanzibar archipelago and provides actionable insights for prioritizing malaria elimination efforts.
Collapse
Affiliation(s)
- Aurel Holzschuh
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Indiana, IN, USA.
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland.
| | - Anita Lerch
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Indiana, IN, USA
| | - Inna Gerlovina
- EPPIcenter Research Program, Division of HIV, ID and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Bakar S Fakih
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania
| | | | - Erik J Reaves
- U.S. Centers for Disease Control and Prevention, President's Malaria Initiative, Dar es Salaam, United Republic of Tanzania
| | - Abdullah Ali
- Zanzibar Malaria Elimination Programme, Zanzibar, United Republic of Tanzania
| | - Faiza Abbas
- Zanzibar Malaria Elimination Programme, Zanzibar, United Republic of Tanzania
| | - Mohamed Haji Ali
- Zanzibar Malaria Elimination Programme, Zanzibar, United Republic of Tanzania
| | - Mohamed Ali Ali
- Zanzibar Malaria Elimination Programme, Zanzibar, United Republic of Tanzania
| | - Manuel W Hetzel
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Joshua Yukich
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Cristian Koepfli
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Indiana, IN, USA.
| |
Collapse
|
16
|
da Silva C, Boene S, Datta D, Rovira-Vallbona E, Aranda-Díaz A, Cisteró P, Hathaway N, Tessema S, Chidimatembue A, Matambisso G, Nhama A, Macete E, Pujol A, Nhamussua L, Galatas B, Guinovart C, Enosse S, De Carvalho E, Rogier E, Plucinski MM, Colborn J, Zulliger R, Saifodine A, Alonso PL, Candrinho B, Greenhouse B, Aide P, Saute F, Mayor A. Targeted and whole-genome sequencing reveal a north-south divide in P. falciparum drug resistance markers and genetic structure in Mozambique. Commun Biol 2023; 6:619. [PMID: 37291425 PMCID: PMC10250372 DOI: 10.1038/s42003-023-04997-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
Mozambique is one of the four African countries which account for over half of all malaria deaths worldwide, yet little is known about the parasite genetic structure in that country. We performed P. falciparum amplicon and whole genome sequencing on 2251 malaria-infected blood samples collected in 2015 and 2018 in seven provinces of Mozambique to genotype antimalarial resistance markers and interrogate parasite population structure using genome-wide microhaplotyes. Here we show that the only resistance-associated markers observed at frequencies above 5% were pfmdr1-184F (59%), pfdhfr-51I/59 R/108 N (99%) and pfdhps-437G/540E (89%). The frequency of pfdhfr/pfdhps quintuple mutants associated with sulfadoxine-pyrimethamine resistance increased from 80% in 2015 to 89% in 2018 (p < 0.001), with a lower expected heterozygosity and higher relatedness of microhaplotypes surrounding pfdhps mutants than wild-type parasites suggestive of recent selection. pfdhfr/pfdhps quintuple mutants also increased from 72% in the north to 95% in the south (2018; p < 0.001). This resistance gradient was accompanied by a concentration of mutations at pfdhps-436 (17%) in the north, a south-to-north increase in the genetic complexity of P. falciparum infections (p = 0.001) and a microhaplotype signature of regional differentiation. The parasite population structure identified here offers insights to guide antimalarial interventions and epidemiological surveys.
Collapse
Affiliation(s)
- Clemente da Silva
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Simone Boene
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Debayan Datta
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | | | - Andrés Aranda-Díaz
- EPPIcenter Research Program, Division of HIV, ID, and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Pau Cisteró
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | | | - Sofonias Tessema
- EPPIcenter Research Program, Division of HIV, ID, and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | | | - Glória Matambisso
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Abel Nhama
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique
| | - Eusebio Macete
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Arnau Pujol
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Lidia Nhamussua
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Beatriz Galatas
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | | | - Sónia Enosse
- Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique
| | - Eva De Carvalho
- World Health Organization, WHO Country Office Maputo, Maputo, Mozambique
| | - Eric Rogier
- Malaria Branch, Division of Parasitic Diseases and Malaria, United States Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mateusz M Plucinski
- United States President's Malaria Initiative, Malaria Branch, Division of Parasitic Diseases and Malaria, United States Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - James Colborn
- Clinton Health Access Initiative, Maputo, Mozambique
| | - Rose Zulliger
- U.S. President's Malaria Initiative, USAID, Washington, DC, USA
| | | | - Pedro L Alonso
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Hospital Clinic-Universitat de Barcelona, Barcelona, Spain
| | - Baltazar Candrinho
- National Malaria Control Programme, Ministry of Health, Maputo, Mozambique
| | - Bryan Greenhouse
- EPPIcenter Research Program, Division of HIV, ID, and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Pedro Aide
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique
| | - Francisco Saute
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Alfredo Mayor
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.
- Spanish Consortium for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain.
- Department of Physiologic Sciences, Faculty of Medicine, Universidade Eduardo Mondlane, Maputo, Mozambique.
| |
Collapse
|
17
|
Azmi WA, Rizki AFM, Djuardi Y, Artika IM, Siregar JE. Molecular insights into artemisinin resistance in Plasmodium falciparum: An updated review. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023:105460. [PMID: 37269964 DOI: 10.1016/j.meegid.2023.105460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023]
Abstract
Malaria still poses a major burden on human health around the world, especially in endemic areas. Plasmodium resistance to several antimalarial drugs has been one of the major hindrances in control of malaria. Thus, the World Health Organization recommended artemisinin-based combination therapy (ACT) as a front-line treatment for malaria. The emergence of parasites resistant to artemisinin, along with resistant to ACT partner drugs, has led to ACT treatment failure. The artemisinin resistance is mostly related to the mutations in the propeller domain of the kelch13 (k13) gene that encodes protein Kelch13 (K13). The K13 protein has an important role in parasite reaction to oxidative stress. The most widely spread mutation in K13, with the highest degree of resistance, is a C580Y mutation. Other mutations, which are already identified as markers of artemisinin resistance, are R539T, I543T, and Y493H. The objective of this review is to provide current molecular insights into artemisinin resistance in Plasmodium falciparum. The trending use of artemisinin beyond its antimalarial effect is described. Immediate challenges and future research directions are discussed. Better understanding of the molecular mechanisms underlying artemisinin resistance will accelerate implementation of scientific findings to solve problems with malarial infection.
Collapse
Affiliation(s)
- Wihda Aisarul Azmi
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Bogor 16911, Indonesia; Master's Programme in Biomedical Sciences, Faculty of Medicine Universitas Indonesia, Jakarta 10430, Indonesia
| | - Andita Fitri Mutiara Rizki
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Bogor 16911, Indonesia; Master's Programme in Biomedical Sciences, Faculty of Medicine Universitas Indonesia, Jakarta 10430, Indonesia
| | - Yenny Djuardi
- Department of Parasitology, Faculty of Medicine Universitas Indonesia, Jakarta 10430, Indonesia
| | - I Made Artika
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Bogor 16911, Indonesia; Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor 16680, Indonesia
| | - Josephine Elizabeth Siregar
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Bogor 16911, Indonesia.
| |
Collapse
|
18
|
Choubey D, Deshmukh B, Rao AG, Kanyal A, Hati AK, Roy S, Karmodiya K. Genomic analysis of Indian isolates of Plasmodium falciparum: Implications for drug resistance and virulence factors. Int J Parasitol Drugs Drug Resist 2023; 22:52-60. [PMID: 37269630 PMCID: PMC10248731 DOI: 10.1016/j.ijpddr.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/04/2023] [Accepted: 05/18/2023] [Indexed: 06/05/2023]
Abstract
The emergence of drug resistance to frontline treatments such as Artemisinin-based combination therapy (ACT) is a major obstacle to the control and eradication of malaria. This problem is compounded by the inherent genetic variability of the parasites, as many established markers of resistance do not accurately predict the drug-resistant status. There have been reports of declining effectiveness of ACT in the West Bengal and Northeast regions of India, which have traditionally been areas of drug resistance emergence in the country. Monitoring the genetic makeup of a population can help to identify the potential for drug resistance markers associated with it and evaluate the effectiveness of interventions aimed at reducing the spread of malaria. In this study, we performed whole genome sequencing of 53 isolates of Plasmodium falciparum from West Bengal and compared their genetic makeup to isolates from Southeast Asia (SEA) and Africa. We found that the Indian isolates had a distinct genetic makeup compared to those from SEA and Africa, and were more similar to African isolates, with a high prevalence of mutations associated with antigenic variation genes. The Indian isolates also showed a high prevalence of markers of chloroquine resistance (mutations in Pfcrt) and multidrug resistance (mutations in Pfmdr1), but no known mutations associated with artemisinin resistance in the PfKelch13 gene. Interestingly, we observed a novel L152V mutation in PfKelch13 gene and other novel mutations in genes involved in ubiquitination and vesicular transport that have been reported to support artemisinin resistance in the early stages of ACT resistance in the absence of PfKelch13 polymorphisms. Thus, our study highlights the importance of region-specific genomic surveillance for artemisinin resistance and the need for continued monitoring of resistance to artemisinin and its partner drugs.
Collapse
Affiliation(s)
- Deepak Choubey
- Department of Technology, Savitribai Phule Pune University, Pune, India
| | - Bhagyashree Deshmukh
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Anjani Gopal Rao
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Abhishek Kanyal
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Amiya Kumar Hati
- Department of Medical Entomology, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India
| | - Somenath Roy
- Department of Human Physiology, Vidyasagar University, Paschim Medinipur, West Bengal, India
| | - Krishanpal Karmodiya
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India.
| |
Collapse
|
19
|
Yade MS, Dièye B, Coppée R, Mbaye A, Diallo MA, Diongue K, Bailly J, Mama A, Fall A, Thiaw AB, Ndiaye IM, Ndiaye T, Gaye A, Tine A, Diédhiou Y, Mbaye AM, Doderer-Lang C, Garba MN, Bei AK, Ménard D, Ndiaye D. Ex vivo RSA and pfkelch13 targeted-amplicon deep sequencing reveal parasites susceptibility to artemisinin in Senegal, 2017. Malar J 2023; 22:167. [PMID: 37237307 PMCID: PMC10223908 DOI: 10.1186/s12936-023-04588-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Malaria control is highly dependent on the effectiveness of artemisinin-based combination therapy (ACT), the current frontline malaria curative treatment. Unfortunately, the emergence and spread of parasites resistant to artemisinin (ART) derivatives in Southeast Asia and South America, and more recently in Rwanda and Uganda (East Africa), compromise their long-term use in sub-Saharan Africa, where most malaria deaths occur. METHODS Here, ex vivo susceptibility to dihydroartemisinin (DHA) was evaluated from 38 Plasmodium falciparum isolates collected in 2017 in Thiès (Senegal) expressed in the Ring-stage Survival Assay (RSA). Both major and minor variants were explored in the three conserved-encoding domains of the pfkelch13 gene, the main determinant of ART resistance using a targeted-amplicon deep sequencing (TADS) approach. RESULTS All samples tested in the ex vivo RSA were found to be susceptible to DHA (parasite survival rate < 1%). The non-synonymous mutations K189T and K248R in pfkelch13 were observed each in one isolate, as major (99%) or minor (5%) variants, respectively. CONCLUSION The results suggest that ART is still fully effective in the Thiès region of Senegal in 2017. Investigations combining ex vivo RSA and TADS are a useful approach for monitoring ART resistance in Africa.
Collapse
Affiliation(s)
- Mamadou Samb Yade
- Laboratory of Parasitology-Mycology, Aristide le Dantec Hospital, Université Cheikh Anta Diop, Dakar, Senegal
- International Research Training Center on Genomics and Health Surveillance (CIGASS), Dakar, Senegal
| | - Baba Dièye
- Laboratory of Parasitology-Mycology, Aristide le Dantec Hospital, Université Cheikh Anta Diop, Dakar, Senegal
- International Research Training Center on Genomics and Health Surveillance (CIGASS), Dakar, Senegal
| | - Romain Coppée
- Université Paris Cité and Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | - Aminata Mbaye
- Université Gamal Abdel Nasser de Conakry/Centre for Research and Training in Infectiology of Guinea (CERFIG), Conakry, Guinea
| | - Mamadou Alpha Diallo
- Laboratory of Parasitology-Mycology, Aristide le Dantec Hospital, Université Cheikh Anta Diop, Dakar, Senegal
- International Research Training Center on Genomics and Health Surveillance (CIGASS), Dakar, Senegal
| | - Khadim Diongue
- Laboratory of Parasitology-Mycology, Aristide le Dantec Hospital, Université Cheikh Anta Diop, Dakar, Senegal
- International Research Training Center on Genomics and Health Surveillance (CIGASS), Dakar, Senegal
- Service of Parasitology-Mycology, Faculty of Medecine, Pharmacy, and Odontostomatology, Cheikh Anta Diop University of Dakar, Dakar, 10700 Senegal
| | | | - Atikatou Mama
- Université de Paris, Institut Cochin, Inserm U1016, Service de Parasitologie Hôpital Cochin, 75014 Paris, France
| | - Awa Fall
- Laboratory of Parasitology-Mycology, Aristide le Dantec Hospital, Université Cheikh Anta Diop, Dakar, Senegal
- International Research Training Center on Genomics and Health Surveillance (CIGASS), Dakar, Senegal
| | - Alphonse Birane Thiaw
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Ibrahima Mbaye Ndiaye
- Laboratory of Parasitology-Mycology, Aristide le Dantec Hospital, Université Cheikh Anta Diop, Dakar, Senegal
- International Research Training Center on Genomics and Health Surveillance (CIGASS), Dakar, Senegal
| | - Tolla Ndiaye
- Laboratory of Parasitology-Mycology, Aristide le Dantec Hospital, Université Cheikh Anta Diop, Dakar, Senegal
- International Research Training Center on Genomics and Health Surveillance (CIGASS), Dakar, Senegal
| | - Amy Gaye
- Laboratory of Parasitology-Mycology, Aristide le Dantec Hospital, Université Cheikh Anta Diop, Dakar, Senegal
- International Research Training Center on Genomics and Health Surveillance (CIGASS), Dakar, Senegal
| | - Abdoulaye Tine
- Laboratory of Parasitology-Mycology, Aristide le Dantec Hospital, Université Cheikh Anta Diop, Dakar, Senegal
- International Research Training Center on Genomics and Health Surveillance (CIGASS), Dakar, Senegal
| | - Younouss Diédhiou
- Laboratory of Parasitology-Mycology, Aristide le Dantec Hospital, Université Cheikh Anta Diop, Dakar, Senegal
- International Research Training Center on Genomics and Health Surveillance (CIGASS), Dakar, Senegal
| | - Amadou Mactar Mbaye
- Laboratory of Parasitology-Mycology, Aristide le Dantec Hospital, Université Cheikh Anta Diop, Dakar, Senegal
- International Research Training Center on Genomics and Health Surveillance (CIGASS), Dakar, Senegal
| | - Cécile Doderer-Lang
- Université de Strasbourg, Institute of Parasitology and Tropical Diseases, UR7292 Dynamics of Host-Pathogen Interactions, 67000 Strasbourg, France
| | - Mamane Nassirou Garba
- Laboratory of Parasitology-Mycology, Aristide le Dantec Hospital, Université Cheikh Anta Diop, Dakar, Senegal
- International Research Training Center on Genomics and Health Surveillance (CIGASS), Dakar, Senegal
| | - Amy Kristine Bei
- Laboratory of Parasitology-Mycology, Aristide le Dantec Hospital, Université Cheikh Anta Diop, Dakar, Senegal
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT USA
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA 02115 USA
| | - Didier Ménard
- Université de Strasbourg, Institute of Parasitology and Tropical Diseases, UR7292 Dynamics of Host-Pathogen Interactions, 67000 Strasbourg, France
- CHU Strasbourg, Laboratory of Parasitology and Medical Mycology, 67000 Strasbourg, France
- Institut Pasteur, Université Paris Cité, Malaria Genetics and Resistance Unit, INSERM U1201, 75015 Paris, France
- Institut Pasteur, Université de Paris, Malaria Parasite Biology and Vaccines Unit, Paris, France
| | - Daouda Ndiaye
- Laboratory of Parasitology-Mycology, Aristide le Dantec Hospital, Université Cheikh Anta Diop, Dakar, Senegal
- International Research Training Center on Genomics and Health Surveillance (CIGASS), Dakar, Senegal
- Service of Parasitology-Mycology, Faculty of Medecine, Pharmacy, and Odontostomatology, Cheikh Anta Diop University of Dakar, Dakar, 10700 Senegal
| |
Collapse
|
20
|
Zhan W, Li D, Subramanyaswamy SB, Liu YJ, Yang C, Zhang H, Harris JC, Wang R, Zhu S, Rocha H, Sherman J, Qin J, Herring M, Simwela NV, Waters AP, Sukenick G, Cui L, Rodriguez A, Deng H, Nathan CF, Kirkman LA, Lin G. Dual-pharmacophore artezomibs hijack the Plasmodium ubiquitin-proteasome system to kill malaria parasites while overcoming drug resistance. Cell Chem Biol 2023; 30:457-469.e11. [PMID: 37148884 PMCID: PMC10240386 DOI: 10.1016/j.chembiol.2023.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/02/2023] [Accepted: 04/06/2023] [Indexed: 05/08/2023]
Abstract
Artemisinins (ART) are critical anti-malarials and despite their use in combination therapy, ART-resistant Plasmodium falciparum is spreading globally. To counter ART resistance, we designed artezomibs (ATZs), molecules that link an ART with a proteasome inhibitor (PI) via a non-labile amide bond and hijack parasite's own ubiquitin-proteasome system to create novel anti-malarials in situ. Upon activation of the ART moiety, ATZs covalently attach to and damage multiple parasite proteins, marking them for proteasomal degradation. When damaged proteins enter the proteasome, their attached PIs inhibit protease function, potentiating the parasiticidal action of ART and overcoming ART resistance. Binding of the PI moiety to the proteasome active site is enhanced by distal interactions of the extended attached peptides, providing a mechanism to overcome PI resistance. ATZs have an extra mode of action beyond that of each component, thereby overcoming resistance to both components, while avoiding transient monotherapy seen when individual agents have disparate pharmacokinetic profiles.
Collapse
Affiliation(s)
- Wenhu Zhan
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Daqiang Li
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | | | - Yi Jing Liu
- Department of Medicine, Division of Infectious Diseases, 1300 York Avenue, New York, NY 10065, USA
| | - Changmei Yang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hao Zhang
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Jacob C Harris
- Department of Medicine, Division of Infectious Diseases, 1300 York Avenue, New York, NY 10065, USA
| | - Rong Wang
- NMR Analytical Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Songbiao Zhu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hedy Rocha
- Division of Parasitology, Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Julian Sherman
- Division of Parasitology, Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Junling Qin
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Mikayla Herring
- Department of Medicine, Division of Infectious Diseases, 1300 York Avenue, New York, NY 10065, USA
| | - Nelson V Simwela
- School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Andrew P Waters
- School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - George Sukenick
- NMR Analytical Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Ana Rodriguez
- Division of Parasitology, Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Carl F Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Laura A Kirkman
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Department of Medicine, Division of Infectious Diseases, 1300 York Avenue, New York, NY 10065, USA.
| | - Gang Lin
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
21
|
Arzika II, Lobo NF, Lamine MM, Tidjani IA, Sandrine H, Sarrasin-Hubert V, Mahamadou A, Adehossi E, Sarr D, Mahmud O, Maman Laminou I. Plasmodium falciparum kelch13 polymorphisms identified after treatment failure with artemisinin-based combination therapy in Niger. Malar J 2023; 22:142. [PMID: 37127669 PMCID: PMC10150466 DOI: 10.1186/s12936-023-04571-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/24/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Artemisinin-based combination therapy (ACT) is the most effective treatment for malaria, and has significantly reduced morbimortality. Polymorphisms associated with the Plasmodium falciparum Kelch gene (Pfkelch13) have been associated with delayed parasite clearance even with ACT treatment. METHODS The Pfkelch13 gene was sequenced from P. falciparum infected patients (n = 159) with uncomplicated malaria in Niger. An adequate clinical and parasitological response (ACPR) was reported in 155 patients. Four (n = 4) patients had treatment failure (TF) that were not reinfections-two of which had late parasitological failures (LPF) and two had late clinical failures (LCF). RESULTS Thirteen single nucleotide polymorphisms (SNPs) were identified of which seven were non-synonymous (C469R, T508S, R515T, A578S, I465V, I437V, F506L,), and three were synonymous (P443P, P715P, L514L). Three SNP (C469R, F506L, P715P) were present before ACT treatment, while seven mutations (C469R, T508S, R515T, L514L, P443P, I437V, I465V) were selected by artemether/lumefantrine (AL)-five of which were non-synonymous (C469R, T508S, R515T, I437V, I465V). Artesunate/amodiaquine (ASAQ) has selected any mutation. One sample presented three cumulatively non-synonymous SNPs-C469R, T508S, R515T. CONCLUSIONS This study demonstrates intra-host selection of Pfkelch13 gene by AL. The study highlights the importance of LCF and LPF parasites in the selection of resistance to ACT. Further studies using gene editing are required to confirm the potential implication of resistance to ACT with the most common R515T and T508S mutations. It would also be important to elucidate the role of cumulative mutations.
Collapse
Affiliation(s)
| | | | - Mahaman Moustapha Lamine
- Centre de Recherche Médicale et Sanitaire de Niamey, Niamey, Niger.
- Université André Salifou de Zinder, Zinder, Niger.
| | | | - Houzé Sandrine
- Centre National de Référence du Paludisme, Paris, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Maniga JN, Samuel M, John O, Rael M, Muchiri JN, Bwogo P, Martin O, Sankarapandian V, Wilberforce M, Albert O, Onkoba SK, Adebayo IA, Adeyemo RO, Akinola SA. Novel Plasmodium falciparum k13 gene polymorphisms from Kisii County, Kenya during an era of artemisinin-based combination therapy deployment. Malar J 2023; 22:87. [PMID: 36894982 PMCID: PMC9996564 DOI: 10.1186/s12936-023-04517-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Currently, chemotherapy stands out as the major malaria intervention strategy, however, anti-malarial resistance may hamper global elimination programs. Artemisinin-based combination therapy (ACT) stands as the drug of choice for the treatment of Plasmodium falciparum malaria. Plasmodium falciparum kelch13 gene mutations are associated with artemisinin resistance. Thus, this study was aimed at evaluating the circulation of P. falciparum k13 gene polymorphisms from Kisii County, Kenya during an era of ACT deployment. METHODS Participants suspected to have malaria were recruited. Plasmodium falciparum was confirmed using the microscopy method. Malaria-positive patients were treated with artemether-lumefantrine (AL). Blood from participants who tested positive for parasites after day 3 was kept on filter papers. DNA was extracted using chelex-suspension method. A nested polymerase chain reaction (PCR) was conducted and the second-round products were sequenced using the Sanger method. Sequenced products were analysed using DNAsp 5.10.01 software and then blasted on the NCBI for k13 propeller gene sequence identity using the Basic Local Alignment Search Tool (BLAST). To assess the selection pressure in P. falciparum parasite population, Tajima' D statistic and Fu & Li's D test in DnaSP software 5.10.01 was used. RESULTS Out of 275 enrolled participants, 231 completed the follow-up schedule. 13 (5.6%) had parasites on day 28 hence characterized for recrudescence. Out of the 13 samples suspected of recrudescence, 5 (38%) samples were positively amplified as P. falciparum, with polymorphisms in the k13-propeller gene detected. Polymorphisms detected in this study includes R539T, N458T, R561H, N431S and A671V, respectively. The sequences have been deposited in NCBI with bio-project number PRJNA885380 and accession numbers SAMN31087434, SAMN31087433, SAMN31087432, SAMN31087431 and SAMN31087430 respectively. CONCLUSIONS WHO validated polymorphisms in the k13-propeller gene previously reported to be associated with ACT resistance were not detected in the P. falciparum isolates from Kisii County, Kenya. However, some previously reported un-validated k13 resistant single nucleotide polymorphisms were reported in this study but with limited occurrences. The study has also reported new SNPs. More studies need to be carried out in the entire country to understand the association of reported mutations if any, with ACT resistance.
Collapse
Affiliation(s)
- Josephat Nyabayo Maniga
- Department of Medical Microbiology and Immunology, Kampala International University Western Campus, Bushenyi, Uganda.
| | | | - Odda John
- School of Pharmacy, Kampala International University Western Campus, Bushenyi, Uganda.,Department of Pharmacology and Therapeutics, Makerere University, Kampala, Uganda.,Department of Pharmacology and Toxicology, School of Medicine, King Caesor University, Kampala, Uganda
| | - Masai Rael
- Department of Biological Sciences, Kisii University, Kisii, Kenya
| | | | - Pacifica Bwogo
- Department of Biological Sciences, Kisii University, Kisii, Kenya
| | - Odoki Martin
- Department of Medical Microbiology and Immunology, Kampala International University Western Campus, Bushenyi, Uganda.,Department of Medical Microbiology and Immunology, School of Medicine, King Ceasor University, Kampala, Uganda.,Department of Applied Sciences, School of Sciences, Nkumba University, Entebbe, Uganda
| | - Vidya Sankarapandian
- Department of Medical Microbiology and Immunology, Kampala International University Western Campus, Bushenyi, Uganda
| | - Mfitundinda Wilberforce
- School of Pharmacy, Kampala International University Western Campus, Bushenyi, Uganda.,Department of Pharmacology and Toxicology, School of Medicine, King Caesor University, Kampala, Uganda
| | - Ochweri Albert
- School of Pharmacy, Kampala International University Western Campus, Bushenyi, Uganda
| | - Sarah Kemuma Onkoba
- Department of Medical Microbiology and Immunology, Kampala International University Western Campus, Bushenyi, Uganda
| | - Ismail Abiola Adebayo
- Department of Medical Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Butare, Rwanda
| | - Rasheed Omotayo Adeyemo
- Department of Medical Microbiology and Parasitology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Butare, Rwanda
| | - Saheed Adekunle Akinola
- Department of Medical Microbiology and Parasitology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Butare, Rwanda
| |
Collapse
|
23
|
Yade MS, Dièye B, Coppée R, Mbaye A, Diallo MA, Diongue K, Bailly J, Mama A, Fall A, Thiaw AB, Ndiaye IM, Ndiaye T, Gaye A, Tine A, Diédhiou Y, Mbaye AM, Doderer-Lang C, Garba MN, Bei AK, Ménard D, Ndiaye D. Ex vivo RSA and Pfkelch13 targeted-amplicon deep sequencing reveal parasites susceptibility to artemisinin in Senegal, 2017. RESEARCH SQUARE 2023:rs.3.rs-2538775. [PMID: 36798264 PMCID: PMC9934778 DOI: 10.21203/rs.3.rs-2538775/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION Malaria control is highly dependent on the effectiveness of artemisinin-based combination therapies (ACTs), the current frontline malaria curative treatments. Unfortunately, the emergence and spread of parasites resistant to artemisinin (ART) derivatives in Southeast Asia and South America, and more recently in Rwanda and Uganda (East Africa), compromise their long-term use in Sub-Saharan Africa where most malaria deaths occur. METHODS Here, we evaluated ex vivo susceptibility to dihydroartemisinin (DHA) from 38 P. falciparum isolates collected in 2017 in Thiès (Senegal) expressed with the Ring-stage Survival Assay (RSA). We explored major and minor variants in the full Pfkelch13 gene, the main determinant of ART resistance using a targeted-amplicon deep sequencing (TADS) approach. RESULTS All samples tested in the ex vivo RSA were found to be susceptible to DHA. Both non-synonymous mutations K189T and K248R were observed each in one isolate, as major (99%) or minor (5%) variants, respectively. CONCLUSION Altogether, investigations combining ex vivo RSA and TADS are a useful approach for monitoring ART resistance in Africa.
Collapse
Affiliation(s)
- Mamadou Samb Yade
- Centre International de Recherche et de Formation en Génomique Appliquée, et de Surveillance Sanitaire (CIGASS), Cheikh Anta Diop University of Dakar
| | - Baba Dièye
- Centre International de Recherche et de Formation en Génomique Appliquée, et de Surveillance Sanitaire (CIGASS), Cheikh Anta Diop University of Dakar
| | - Romain Coppée
- Université Paris Cité and Sorbone Paris Nord, Inserm, IAME
| | - Aminata Mbaye
- Centre for Research and Training in Infectiology of Guinea (CRTIG)
| | - Mamadou Alpha Diallo
- Centre International de Recherche et de Formation en Génomique Appliquée, et de Surveillance Sanitaire (CIGASS), Cheikh Anta Diop University of Dakar
| | | | | | | | - Awa Fall
- Centre International de Recherche et de Formation en Génomique Appliquée, et de Surveillance Sanitaire (CIGASS), Cheikh Anta Diop University of Dakar
| | - Alphonse Birane Thiaw
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences
| | - Ibrahima Mbaye Ndiaye
- Centre International de Recherche et de Formation en Génomique Appliquée, et de Surveillance Sanitaire (CIGASS), Cheikh Anta Diop University of Dakar
| | - Tolla Ndiaye
- Centre International de Recherche et de Formation en Génomique Appliquée, et de Surveillance Sanitaire (CIGASS), Cheikh Anta Diop University of Dakar
| | - Amy Gaye
- Centre International de Recherche et de Formation en Génomique Appliquée, et de Surveillance Sanitaire (CIGASS), Cheikh Anta Diop University of Dakar
| | - Abdoulaye Tine
- Centre International de Recherche et de Formation en Génomique Appliquée, et de Surveillance Sanitaire (CIGASS), Cheikh Anta Diop University of Dakar
| | - Younouss Diédhiou
- Centre International de Recherche et de Formation en Génomique Appliquée, et de Surveillance Sanitaire (CIGASS), Cheikh Anta Diop University of Dakar
| | - Amadou Mactar Mbaye
- Centre International de Recherche et de Formation en Génomique Appliquée, et de Surveillance Sanitaire (CIGASS), Cheikh Anta Diop University of Dakar
| | | | - Mamane Nassirou Garba
- Centre International de Recherche et de Formation en Génomique Appliquée, et de Surveillance Sanitaire (CIGASS), Cheikh Anta Diop University of Dakar
| | | | - Didier Ménard
- Université de Strasbourg, UR7292 Dynamics of Host-Pathogen Interactions
| | - Daouda Ndiaye
- Centre International de Recherche et de Formation en Génomique Appliquée, et de Surveillance Sanitaire (CIGASS), Cheikh Anta Diop University of Dakar
| |
Collapse
|
24
|
Gansane A, Lingani M, Yeka A, Nahum A, Bouyou-Akotet M, Mombo-Ngoma G, Kaguthi G, Barceló C, Laurijssens B, Cantalloube C, Macintyre F, Djeriou E, Jessel A, Bejuit R, Demarest H, Marrast AC, Debe S, Tinto H, Kibuuka A, Nahum D, Mawili-Mboumba DP, Zoleko-Manego R, Mugenya I, Olewe F, Duparc S, Ogutu B. Randomized, open-label, phase 2a study to evaluate the contribution of artefenomel to the clinical and parasiticidal activity of artefenomel plus ferroquine in African patients with uncomplicated Plasmodium falciparum malaria. Malar J 2023; 22:2. [PMID: 36597076 PMCID: PMC9809015 DOI: 10.1186/s12936-022-04420-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The contribution of artefenomel to the clinical and parasiticidal activity of ferroquine and artefenomel in combination in uncomplicated Plasmodium falciparum malaria was investigated. METHODS This Phase 2a, randomized, open-label, parallel-group study was conducted from 11th September 2018 to 6th November 2019 across seven centres in Benin, Burkina Faso, Gabon, Kenya, and Uganda. Patients aged ≥ 14-69 years with microscopically confirmed infection (≥ 3000 to ≤ 50,000 parasites/µL blood) were randomized 1:1:1:1 to 400 mg ferroquine, or 400 mg ferroquine plus artefenomel 300, 600, or 1000 mg, administered as a single oral dose. The primary efficacy analysis was a logistic regression evaluating the contribution of artefenomel exposure to Day 28 PCR-adjusted adequate clinical and parasitological response (ACPR). Safety was also evaluated. RESULTS The randomized population included 140 patients. For the primary analysis in the pharmacokinetic/pharmacodynamic efficacy population (N = 121), the contribution of artefenomel AUC0-∞ to Day 28 PCR-adjusted ACPR was not demonstrated when accounting for ferroquine AUC0-d28, baseline parasitaemia, and other model covariates: odds ratio 1.1 (95% CI 0.98, 1.2; P = 0.245). In the per-protocol population, Day 28 PCR-adjusted ACPR was 80.8% (21/26; 95% CI 60.6, 93.4) with ferroquine alone and 90.3% (28/31; 95% CI 74.2, 98.0), 90.9% (30/33; 95% CI 75.7, 98.1) and 87.1% (27/31; 95% CI 70.2, 96.4) with 300, 600, and 1000 mg artefenomel, respectively. Median time to parasite clearance (Kaplan-Meier) was 56.1 h with ferroquine, more rapid with artefenomel, but similar for all doses (30.0 h). There were no deaths. Adverse events (AEs) of any cause occurred in 51.4% (18/35) of patients with ferroquine 400 mg alone, and 58.3% (21/36), 66.7% (24/36), and 72.7% (24/33) with 300, 600, and 1000 mg artefenomel, respectively. All AEs were of mild-to-moderate severity, and consistent with the known profiles of the compounds. Vomiting was the most reported AE. There were no cases of QTcF prolongation ≥ 500 ms or > 60 ms from baseline. CONCLUSION The contribution of artefenomel exposure to the clinical and parasitological activity of ferroquine/artefenomel could not be demonstrated in this study. Parasite clearance was faster with ferroquine/artefenomel versus ferroquine alone. All treatments were well tolerated. TRIAL REGISTRATION ClinicalTrials.gov, NCT03660839 (7 September, 2018).
Collapse
Affiliation(s)
- Adama Gansane
- grid.507461.10000 0004 0413 3193Centre National de Recherche et de Formation sur le Paludisme (CNRFP), 01 BP 220801 BP 2208 Ouagadougou, Burkina Faso
| | - Moussa Lingani
- grid.457337.10000 0004 0564 0509Institut de Recherche en Science de la Santé - Unité de Recherche Clinique de Nanoro (IRSS-URCN), Ouagadougou, Burkina Faso
| | - Adoke Yeka
- grid.463352.50000 0004 8340 3103Infectious Diseases Research Collaboration (IDRC), Kampala, Uganda
| | - Alain Nahum
- Centre de Recherches Entomologique de Cotonou (CREC), Cotonou, Benin
| | - Marielle Bouyou-Akotet
- grid.502965.dDépartement de Parasitologie-Mycologie-Médecine Tropicale, Faculté de Médecine – Université des Sciences de la Santé, Libreville, Gabon
| | - Ghyslain Mombo-Ngoma
- grid.452268.fCentre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon ,Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine, and University Medical Center Hamburg-Eppendorf, Hamburg, Germany ,grid.10392.390000 0001 2190 1447Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Grace Kaguthi
- grid.33058.3d0000 0001 0155 5938Kenya Medical Research Institute-Centre for Respiratory Diseases Research (KEMRI-CRDR), Nairobi, Kenya
| | - Catalina Barceló
- grid.452605.00000 0004 0432 5267Medicines for Malaria Venture, Geneva, Switzerland
| | | | | | - Fiona Macintyre
- grid.452605.00000 0004 0432 5267Medicines for Malaria Venture, Geneva, Switzerland
| | | | | | | | - Helen Demarest
- grid.452605.00000 0004 0432 5267Medicines for Malaria Venture, Geneva, Switzerland
| | - Anne Claire Marrast
- grid.452605.00000 0004 0432 5267Medicines for Malaria Venture, Geneva, Switzerland
| | - Siaka Debe
- grid.507461.10000 0004 0413 3193Centre National de Recherche et de Formation sur le Paludisme (CNRFP), 01 BP 220801 BP 2208 Ouagadougou, Burkina Faso
| | - Halidou Tinto
- grid.457337.10000 0004 0564 0509Institut de Recherche en Science de la Santé - Unité de Recherche Clinique de Nanoro (IRSS-URCN), Ouagadougou, Burkina Faso
| | - Afizi Kibuuka
- grid.463352.50000 0004 8340 3103Infectious Diseases Research Collaboration (IDRC), Kampala, Uganda
| | - Diolinda Nahum
- Centre de Recherches Entomologique de Cotonou (CREC), Cotonou, Benin
| | - Denise Patricia Mawili-Mboumba
- grid.502965.dDépartement de Parasitologie-Mycologie-Médecine Tropicale, Faculté de Médecine – Université des Sciences de la Santé, Libreville, Gabon
| | - Rella Zoleko-Manego
- grid.452268.fCentre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon ,Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine, and University Medical Center Hamburg-Eppendorf, Hamburg, Germany ,grid.10392.390000 0001 2190 1447Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Irene Mugenya
- grid.33058.3d0000 0001 0155 5938Kenya Medical Research Institute-Centre for Respiratory Diseases Research (KEMRI-CRDR), Nairobi, Kenya
| | - Frederick Olewe
- grid.33058.3d0000 0001 0155 5938Centre for Clinical Research, Kenya Medical Research Institute, Kisumu, Kenya ,grid.442494.b0000 0000 9430 1509Centre for Research in Therapeutic Sciences (CREATES), Strathmore University, Nairobi, Kenya
| | - Stephan Duparc
- grid.452605.00000 0004 0432 5267Medicines for Malaria Venture, Geneva, Switzerland
| | - Bernhards Ogutu
- grid.33058.3d0000 0001 0155 5938Centre for Clinical Research, Kenya Medical Research Institute, Kisumu, Kenya ,grid.442494.b0000 0000 9430 1509Centre for Research in Therapeutic Sciences (CREATES), Strathmore University, Nairobi, Kenya
| |
Collapse
|
25
|
Ethical considerations in deploying triple artemisinin-based combination therapies for malaria: An analysis of stakeholders’ perspectives in Burkina Faso and Nigeria. PLoS One 2022; 17:e0273249. [PMID: 36083995 PMCID: PMC9462557 DOI: 10.1371/journal.pone.0273249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022] Open
Abstract
Background Artemisinin-based combination therapies (ACTs) are the recommended treatment for uncomplicated Plasmodium falciparum malaria in all malaria endemic countries. Artemisinin resistance, partner drug resistance, and subsequent ACT failure are widespread in Southeast Asia. The more recent independent emergence of artemisinin resistance in Africa is alarming. In response, triple artemisinin-based combination therapies (TACTs) are being developed to mitigate the risks associated with increasing drug resistance. Since ACTs are still effective in Africa, where malaria is mainly a paediatric disease, the potential deployment of TACTs raises important ethical questions. This paper presents an analysis of stakeholders’ perspectives regarding key ethical considerations to be considered in the deployment of TACTs in Africa provided they are found to be safe, well-tolerated and effective for the treatment of uncomplicated malaria. Methods We conducted a qualitative study in Burkina Faso and Nigeria assessing stakeholders’ (policy makers, suppliers and end-users) perspectives on ethical issues regarding the potential future deployment of TACTs through 68 in-depth interviews and 11 focus group discussions. Findings Some respondents suggested that there should be evidence of local artemisinin resistance before they consider deploying TACTs, while others suggested that TACTs should be deployed to protect the efficacy of current ACTs. Respondents suggested that additional side effects of TACTs compared to ACTs should be minimal and the cost of TACTs to end-users should not be higher than the cost of current ACTs. There was some disagreement among respondents regarding whether patients should have a choice of treatment options between ACTs and TACTs or only have TACTs available, while ACTs are still effective. The study also suggests that community, public and stakeholder engagement activities are essential to support the introduction and effective uptake of TACTs. Conclusion Addressing ethical issues regarding TACTs and engaging early with stakeholders will be important for their potential deployment in Africa.
Collapse
|
26
|
Cutts JC, O'Flaherty K, Zaloumis SG, Ashley EA, Chan JA, Onyamboko MA, Fanello C, Dondorp AM, Day NP, Phyo AP, Dhorda M, Imwong M, Fairhurst RM, Lim P, Amaratunga C, Pukrittayakamee S, Hien TT, Htut Y, Mayxay M, Abdul Faiz M, Takashima E, Tsuboi T, Beeson JG, Nosten F, Simpson JA, White NJ, Fowkes FJI. Comparison of antibody responses and parasite clearance in artemisinin therapeutic efficacy studies in Democratic Republic of Congo and Asia. J Infect Dis 2022; 226:324-331. [PMID: 35703955 PMCID: PMC9400417 DOI: 10.1093/infdis/jiac232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/12/2022] [Indexed: 12/05/2022] Open
Abstract
Background Understanding the effect of immunity on Plasmodium falciparum clearance is essential for interpreting therapeutic efficacy studies designed to monitor emergence of artemisinin drug resistance. In low-transmission areas of Southeast Asia, where resistance has emerged, P. falciparum antibodies confound parasite clearance measures. However, variation in naturally acquired antibodies across Asian and sub-Saharan African epidemiological contexts and their impact on parasite clearance re yet to be quantified. Methods In an artemisinin therapeutic efficacy study, antibodies to 12 pre-erythrocytic and erythrocytic P. falciparum antigens were measured in 118 children with uncomplicated P. falciparum malaria in the Democratic Republic of Congo (DRC) and compared with responses in patients from Asian sites, described elsewhere. Results Parasite clearance half-life was shorter in DRC patients (median, 2 hours) compared with most Asian sites (median, 2–7 hours), but P. falciparum antibody levels and seroprevalences were similar. There was no evidence for an association between antibody seropositivity and parasite clearance half-life (mean difference between seronegative and seropositive, −0.14 to +0.40 hour) in DRC patients. Conclusions In DRC, where artemisinin remains highly effective, the substantially shorter parasite clearance time compared with Asia was not explained by differences in the P. falciparum antibody responses studied.
Collapse
Affiliation(s)
- Julia C Cutts
- Burnet Institute, Melbourne, Victoria 3004, Australia.,Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | | | - Sophie G Zaloumis
- Centre for Epidemiology and Biostatistics, Melbourne, School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Elizabeth A Ashley
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom.,Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Mahosot Hospital, Vientiane, Lao PDR
| | - Jo Anne Chan
- Burnet Institute, Melbourne, Victoria 3004, Australia.,Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia.,Department of Immunology, Monash University, Melbourne Australia
| | - Marie A Onyamboko
- Kinshasa School of Public Health, Kinshasa, Democratic Republic of Congo
| | - Caterina Fanello
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom.,Kinshasa School of Public Health, Kinshasa, Democratic Republic of Congo
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom
| | - Nicholas P Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom
| | | | - Mehul Dhorda
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom.,Worldwide Antimalarial Resistance Network, Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom
| | - Mallika Imwong
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Pharath Lim
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Chanaki Amaratunga
- Worldwide Antimalarial Resistance Network, Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom
| | | | - Tran Tinh Hien
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Ye Htut
- Department of Medical Research, Yangon, Myanmar
| | - Mayfong Mayxay
- Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom.,Institute of Research and Education Development, University of Health Sciences, Vientiane, Lao PDR.,Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Mahosot Hospital, Vientiane, Lao PDR
| | - M Abdul Faiz
- Malaria Research Group & Dev Care Foundation, Chittagong, Bangladesh
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - James G Beeson
- Burnet Institute, Melbourne, Victoria 3004, Australia.,Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia.,Department of Immunology, Monash University, Melbourne Australia
| | - Francois Nosten
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom.,Shoklo Malaria Research Unit, Mae Sot, Thailand
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne, School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom
| | - Freya J I Fowkes
- Burnet Institute, Melbourne, Victoria 3004, Australia.,Centre for Epidemiology and Biostatistics, Melbourne, School of Population and Global Health, The University of Melbourne, Melbourne, Australia.,Department of Infectious Diseases and Department of Epidemiology and Preventative Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
27
|
Yobi DM, Kayiba NK, Mvumbi DM, Boreux R, Kabututu PZ, Akilimali PZ, Situakibanza HNT, De Mol P, Speybroeck N, Mvumbi GL, Hayette MP. Biennial surveillance of Plasmodium falciparum anti-malarial drug resistance markers in Democratic Republic of Congo, 2017 and 2019. BMC Infect Dis 2022; 22:145. [PMID: 35144535 PMCID: PMC8830975 DOI: 10.1186/s12879-022-07112-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/31/2022] [Indexed: 11/10/2022] Open
Abstract
Background Because of the loss of chloroquine (CQ) effectiveness, the Democratic Republic of Congo (DRC)’s malaria treatment policy replaced CQ by sulfadoxine–pyrimethamine (SP) as first-line treatment of uncomplicated malaria in 2003, which in turn was replaced by artemisinin-based combination therapies (ACT) in 2005. The World Health Organization (WHO) recommends monitoring of anti-malarial drug resistance every 2 years. The study aimed to provide baseline data for biennial molecular surveillance of anti-malarial drug resistance by comparing data from a study conducted in 2019 to previously published data from a similar study conducted in 2017 in the DRC. Methods From July to November 2019, a cross-sectional study was conducted in ten sites which were previously selected for a similar study conducted in 2017 across the DRC. P. falciparum malaria was diagnosed by a rapid diagnostic test (RDT) or by microscopy and dried blood samples (DBS) were taken from patients who had a positive test. Segments of interest in pfcrt and pfk13 genes were amplified by conventional PCR before sequencing. Results Out of 1087 enrolled patients, 906 (83.3%) were PCR-confirmed for P. falciparum. Like in the 2017-study, none of the mutations known to be associated with Artemisinine (ART) resistance in Southeast Asia was detected. However, non-synonymous (NS) mutations with unknown functions were observed among which, A578S was detected in both 2017 and 2019-studies. The overall prevalence of pfcrt-K76T mutation that confers CQ-resistance was 22.7% in 2019-study compared to 28.5% in 2017-study (p-value = 0.069), but there was high variability between sites in the two studies. Like in 2017-study, the pfcrt 72–76 SVMNT haplotype associated with resistance to amodiaquine was not detected. Conclusion The study reported, within 2 years, the non-presence of molecular markers currently known to be associated with resistance to ART and to AQ in P. falciparum isolated in the DRC. However, the presence of polymorphisms with as-yet unknown functions was observed, requiring further characterization. Moreover, an overall decrease in the prevalence of CQ-resistance marker was observed in the DRC, but this prevalence remained highly variable from region to region. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07112-z.
Collapse
Affiliation(s)
- Doudou M Yobi
- Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo.
| | - Nadine K Kayiba
- School of Public Health & Research Institute of Health and Society, Catholic University of Louvain, 1200, Brussels, Belgium.,School of Public Health, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo.,Department of Public Health, Faculty of Medicine, University of Mbujimayi, Mbuji-Mayi, Democratic Republic of Congo
| | - Dieudonné M Mvumbi
- Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Raphael Boreux
- Laboratory of Clinical Microbiology, University of Liège, 4000, Liège, Belgium
| | - Pius Z Kabututu
- Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Pierre Z Akilimali
- School of Public Health, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Hippolyte N T Situakibanza
- Department of Internal Medicine, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Patrick De Mol
- Laboratory of Clinical Microbiology, University of Liège, 4000, Liège, Belgium
| | - Niko Speybroeck
- School of Public Health & Research Institute of Health and Society, Catholic University of Louvain, 1200, Brussels, Belgium
| | - Georges L Mvumbi
- Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | | |
Collapse
|
28
|
Owoloye A, Olufemi M, Idowu ET, Oyebola KM. Prevalence of potential mediators of artemisinin resistance in African isolates of Plasmodium falciparum. Malar J 2021; 20:451. [PMID: 34856982 PMCID: PMC8638531 DOI: 10.1186/s12936-021-03987-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The devastating public health impact of malaria has prompted the need for effective interventions. Malaria control gained traction after the introduction of artemisinin-based combination therapy (ACT). However, the emergence of artemisinin (ART) partial resistance in Southeast Asia and emerging reports of delayed parasite sensitivity to ACT in African parasites signal a gradual trend towards treatment failure. Monitoring the prevalence of mutations associated with artemisinin resistance in African populations is necessary to stop resistance in its tracks. Mutations in Plasmodium falciparum genes pfk13, pfcoronin and pfatpase6 have been linked with ART partial resistance. METHODS Findings from published research articles on the prevalence of pfk13, pfcoronin and pfatpase6 polymorphisms in Africa were collated. PubMed, Embase and Google Scholar were searched for relevant articles reporting polymorphisms in these genes across Africa from 2014 to August 2021, for pfk13 and pfcoronin. For pfatpase6, relevant articles between 2003 and August 2021 were retrieved. RESULTS Eighty-seven studies passed the inclusion criteria for this analysis and reported 742 single nucleotide polymorphisms in 37,864 P. falciparum isolates from 29 African countries. Five validated-pfk13 partial resistance markers were identified in Africa: R561H in Rwanda and Tanzania, M476I in Tanzania, F446I in Mali, C580Y in Ghana, and P553L in an Angolan isolate. In Tanzania, three (L263E, E431K, S769N) of the four mutations (L263E, E431K, A623E, S769N) in pfatpase6 gene associated with high in vitro IC50 were reported. pfcoronin polymorphisms were reported in Senegal, Gabon, Ghana, Kenya, and Congo, with P76S being the most prevalent mutation. CONCLUSIONS This meta-analysis provides an overview of the prevalence and widespread distribution of pfk13, pfcoronin and pfatpase6 mutations in Africa. Understanding the phenotypic consequences of these mutations can provide information on the efficacy status of artemisinin-based treatment of malaria across the continent.
Collapse
Affiliation(s)
- Afolabi Owoloye
- Genomic Research in Biomedicine Laboratory, Biochemistry and Nutrition Department, Nigerian Institute of Medical Research, Lagos, Nigeria
- Parasitology and Bioinformatics Unit, Department of Zoology, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Michael Olufemi
- Genomic Research in Biomedicine Laboratory, Biochemistry and Nutrition Department, Nigerian Institute of Medical Research, Lagos, Nigeria
- Parasitology and Bioinformatics Unit, Department of Zoology, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Emmanuel T Idowu
- Parasitology and Bioinformatics Unit, Department of Zoology, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Kolapo M Oyebola
- Genomic Research in Biomedicine Laboratory, Biochemistry and Nutrition Department, Nigerian Institute of Medical Research, Lagos, Nigeria.
- Parasitology and Bioinformatics Unit, Department of Zoology, Faculty of Science, University of Lagos, Lagos, Nigeria.
- Sickle Cell Branch, National Heart Lung and Blood Institute, US National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
29
|
Synthesis and Structure-Activity Relationships of New 2-Phenoxybenzamides with Antiplasmodial Activity. Pharmaceuticals (Basel) 2021; 14:ph14111109. [PMID: 34832891 PMCID: PMC8625693 DOI: 10.3390/ph14111109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022] Open
Abstract
The 2-phenoxybenzamide 1 from the Medicines for Malaria Venture Malaria Box Project has shown promising multi-stage activity against different strains of P. falciparum. It was successfully synthesized via a retrosynthetic approach. Subsequently, twenty-one new derivatives were prepared and tested for their in vitro activity against blood stages of the NF54 strain of P. falciparum. Several insights into structure-activity relationships were revealed. The antiplasmodial activity and cytotoxicity of compounds strongly depended on the substitution pattern of the anilino partial structure as well as on the size of substituents. The diaryl ether partial structure had further impacts on the activity. Additionally, several physicochemical and pharmacokinetic parameters were calculated (log P, log D7.4 and ligand efficiency) or determined experimentally (passive permeability and CYP3A4 inhibition). The tert-butyl-4-{4-[2-(4-fluorophenoxy)-3-(trifluoromethyl)benzamido]phenyl}piperazine-1-carboxylate possesses high antiplasmodial activity against P. falciparum NF54 (PfNF54 IC50 = 0.2690 µM) and very low cytotoxicity (L-6 cells IC50 = 124.0 µM) resulting in an excellent selectivity index of 460. Compared to the lead structure 1 the antiplasmodial activity was improved as well as the physicochemical and some pharmacokinetic parameters.
Collapse
|
30
|
Saidi AM, Guenther G, Izem R, Chen X, Seydel K, Postels D. Plasmodium falciparum clearance time in Malawian children with cerebral malaria: a retrospective cohort study. Malar J 2021; 20:408. [PMID: 34663346 PMCID: PMC8524966 DOI: 10.1186/s12936-021-03947-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/07/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Standard treatment for both uncomplicated and severe malaria is artemisinin derivatives. Delayed parasite clearance times preceded the appearance of artemisinin treatment failures in Southeast Asia. Most worldwide malaria cases are in sub-Saharan Africa (SSA), where clinically significant artemisinin resistance or treatment failure has not yet been detected. The recent emergence of a resistance-conferring genetic mutation in the Plasmodium falciparum parasite in Africa warrants continued monitoring throughout the continent. METHODS An analysis was performed on data from a retrospective cohort study of Malawian children with cerebral malaria admitted between 2010 and 2019 to a public referral hospital, ascertaining parasite clearance times across years. Data were collected from patients treated for severe malaria with quinine or artesunate, an artemisinin derivative. Parasite density was determined at admission and every subsequent 6 h until parasitaemia was below 1000 parasites/µl.The mean parasite clearance time in all children admitted in any one year was compared to the parasite clearance time in 2014, the first year of artesunate use in Malawi. RESULTS The median population parasite clearance time was slower from 2010 to 2013 (quinine-treated patients) compared to 2014, the first year of artesunate use in Malawi (30 h (95% CI: 30-30) vs 18 h (95% CI: 18-24)). After adjustment for admission parasite count, there was no statistically significant difference in the median population parasite clearance time when comparing 2014 with any subsequent year. CONCLUSION Malaria parasite clearance times in Malawian children with cerebral malaria remained constant between 2014 and 2019, arguing against evolving artemisinin resistance in parasites in this region.
Collapse
Affiliation(s)
- Alexuse M Saidi
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi.
| | - Geoffrey Guenther
- Department of Pediatrics, Children's National Medical Center, Washington, DC, USA
| | - Rima Izem
- Division of Biostatistics and Study Methodology, Children's National Research Institute, Washington, DC, USA
- Department of Epidemiology, The George Washington University School of Public Health, Washington, DC, USA
- Statistical Methods and Consulting, Novartis, Basel, Switzerland
| | - Xiaojun Chen
- Department of Biostatistics and Bioinformatics, The George Washington University, Washington, DC, USA
| | - Karl Seydel
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Douglas Postels
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
- Division of Neurology, The George Washington University/Children's National Medical Center, Washington, DC, USA
| |
Collapse
|
31
|
Nsanzabana C. Time to scale up molecular surveillance for anti-malarial drug resistance in sub-saharan Africa. Malar J 2021; 20:401. [PMID: 34645475 PMCID: PMC8513315 DOI: 10.1186/s12936-021-03942-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/05/2021] [Indexed: 02/02/2023] Open
Abstract
Artemisinin resistance has emerged and spread in the Greater Mekong Sub-region (GMS), followed by artemisinin-based combination therapy failure, due to both artemisinin and partner drug resistance. More worrying, artemisinin resistance has been recently reported and confirmed in Rwanda. Therefore, there is an urgent need to strengthen surveillance systems beyond the GMS to track the emergence or spread of artemisinin and partner drug resistance in other endemic settings. Currently, anti-malarial drug efficacy is monitored primarily through therapeutic efficacy studies (TES). Even though essential for anti-malarial drug policy change, these studies are difficult to conduct, expensive, and may not detect the early emergence of resistance. Additionally, results from TES may take years to be available to the stakeholders, jeopardizing their usefulness. Molecular markers are additional and useful tools to monitor anti-malarial drug resistance, as samples collected on dried blood spots are sufficient to monitor known and validated molecular markers of resistance, and could help detecting and monitoring the early emergence of resistance. However, molecular markers are not monitored systematically by national malaria control programmes, and are often assessed in research studies, but not in routine surveillance. The implementation of molecular markers as a routine tool for anti-malarial drug resistance surveillance could greatly improve surveillance of anti-malarial drug efficacy, making it possible to detect resistance before it translates to treatment failures. When possible, ex vivo assays should be included as their data could be useful complementary, especially when no molecular markers are validated.
Collapse
Affiliation(s)
- Christian Nsanzabana
- Department of Medicine, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland. .,University of Basel, P.O. Box, 4003, Basel, Switzerland.
| |
Collapse
|
32
|
Dhorda M, Amaratunga C, Dondorp AM. Artemisinin and multidrug-resistant Plasmodium falciparum - a threat for malaria control and elimination. Curr Opin Infect Dis 2021; 34:432-439. [PMID: 34267045 PMCID: PMC8452334 DOI: 10.1097/qco.0000000000000766] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW Artemisinin-based combination therapies (ACTs) are globally the first-line treatment for uncomplicated falciparum malaria and new compounds will not be available within the next few years. Artemisinin-resistant Plasmodium falciparum emerged over a decade ago in the Greater Mekong Subregion (GMS) and, compounded by ACT partner drug resistance, has caused significant ACT treatment failure. This review provides an update on the epidemiology, and mechanisms of artemisinin resistance and approaches to counter multidrug-resistant falciparum malaria. RECENT FINDINGS An aggressive malaria elimination programme in the GMS has helped prevent the spread of drug resistance to neighbouring countries. However, parasites carrying artemisinin resistance-associated mutations in the P. falciparum Kelch13 gene (pfk13) have now emerged independently in multiple locations elsewhere in Asia, Africa and South America. Notably, artemisinin-resistant infections with parasites carrying the pfk13 R561H mutation have emerged and spread in Rwanda. SUMMARY Enhancing the geographic coverage of surveillance for resistance will be key to ensure prompt detection of emerging resistance in order to implement effective countermeasures without delay. Treatment strategies designed to prevent the emergence and spread of multidrug resistance must be considered, including deployment of triple drug combination therapies and multiple first-line therapies.
Collapse
Affiliation(s)
- Mehul Dhorda
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chanaki Amaratunga
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Arjen M. Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
33
|
Serrano D, Santos-Reis A, Silva C, Dias A, Dias B, Toscano C, Conceição C, Baptista-Fernandes T, Nogueira F. Imported Malaria in Portugal: Prevalence of Polymorphisms in the Anti-Malarial Drug Resistance Genes pfmdr1 and pfk13. Microorganisms 2021; 9:microorganisms9102045. [PMID: 34683365 PMCID: PMC8538333 DOI: 10.3390/microorganisms9102045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 02/04/2023] Open
Abstract
Malaria is one of the ‘big three’ killer infectious diseases, alongside tuberculosis and HIV. In non-endemic areas, malaria may occur in travelers who have recently been to or visited endemic regions. The number of imported malaria cases in Portugal has increased in recent years, mostly due to the close relationship with the community of Portuguese language countries. Samples were collected from malaria-infected patients attending Centro Hospitalar Lisboa Ocidental (CHLO) or the outpatient clinic of Instituto de Higiene e Medicina Tropical (IHMT-NOVA) between March 2014 and May 2021. Molecular characterization of Plasmodium falciparum pfk13 and pfmdr1 genes was performed. We analyzed 232 imported malaria cases. The majority (68.53%) of the patients came from Angola and only three patients travelled to a non-African country; one to Brazil and two to Indonesia. P. falciparum was diagnosed in 81.47% of the cases, P. malariae in 7.33%, P. ovale 6.47% and 1.72% carried P. vivax. No mutations were detected in pfk13. Regarding pfmdr1, the wild-type haplotype (N86/Y184/D1246) was also the most prevalent (64.71%) and N86/184F/D1246 was detected in 26.47% of the cases. The typical imported malaria case was middle-aged male, traveling from Angola, infected with P. falciparum carrying wild type pfmdr1 and pfk13. Our study highlights the need for constant surveillance of malaria parasites imported into Portugal as an important pillar of public health.
Collapse
Affiliation(s)
- Debora Serrano
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa (IHMT-NOVA), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (D.S.); (A.S.-R.); (C.S.); (B.D.); (C.C.)
| | - Ana Santos-Reis
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa (IHMT-NOVA), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (D.S.); (A.S.-R.); (C.S.); (B.D.); (C.C.)
| | - Clemente Silva
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa (IHMT-NOVA), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (D.S.); (A.S.-R.); (C.S.); (B.D.); (C.C.)
| | - Ana Dias
- Laboratório de Microbiologia Clínica e Biologia Molecular, Serviço de Patologia Clínica, Centro Hospitalar Lisboa Ocidental (CHLO), Rua da Junqueira 126, 1349-019 Lisboa, Portugal; (A.D.); (C.T.); (T.B.-F.)
| | - Brigite Dias
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa (IHMT-NOVA), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (D.S.); (A.S.-R.); (C.S.); (B.D.); (C.C.)
| | - Cristina Toscano
- Laboratório de Microbiologia Clínica e Biologia Molecular, Serviço de Patologia Clínica, Centro Hospitalar Lisboa Ocidental (CHLO), Rua da Junqueira 126, 1349-019 Lisboa, Portugal; (A.D.); (C.T.); (T.B.-F.)
| | - Cláudia Conceição
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa (IHMT-NOVA), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (D.S.); (A.S.-R.); (C.S.); (B.D.); (C.C.)
| | - Teresa Baptista-Fernandes
- Laboratório de Microbiologia Clínica e Biologia Molecular, Serviço de Patologia Clínica, Centro Hospitalar Lisboa Ocidental (CHLO), Rua da Junqueira 126, 1349-019 Lisboa, Portugal; (A.D.); (C.T.); (T.B.-F.)
| | - Fatima Nogueira
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa (IHMT-NOVA), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (D.S.); (A.S.-R.); (C.S.); (B.D.); (C.C.)
- Correspondence: ; Tel.: +351-213652600
| |
Collapse
|
34
|
Balikagala B, Fukuda N, Ikeda M, Katuro OT, Tachibana SI, Yamauchi M, Opio W, Emoto S, Anywar DA, Kimura E, Palacpac NMQ, Odongo-Aginya EI, Ogwang M, Horii T, Mita T. Evidence of Artemisinin-Resistant Malaria in Africa. N Engl J Med 2021; 385:1163-1171. [PMID: 34551228 DOI: 10.1056/nejmoa2101746] [Citation(s) in RCA: 461] [Impact Index Per Article: 115.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND In the six Southeast Asian countries that make up the Greater Mekong Subregion, Plasmodium falciparum has developed resistance to derivatives of artemisinin, the main component of first-line treatments for malaria. Clinical resistance to artemisinin monotherapy in other global regions, including Africa, would be problematic. METHODS In this longitudinal study conducted in Northern Uganda, we treated patients who had P. falciparum infection with intravenous artesunate (a water-soluble artemisinin derivative) and estimated the parasite clearance half-life. We evaluated ex vivo susceptibility of the parasite using a ring-stage survival assay and genotyped resistance-related genes. RESULTS From 2017 through 2019, a total of 14 of 240 patients who received intravenous artesunate had evidence of in vivo artemisinin resistance (parasite clearance half-life, >5 hours). Of these 14 patients, 13 were infected with P. falciparum parasites with mutations in the A675V or C469Y allele in the kelch13 gene. Such mutations were associated with prolonged parasite clearance half-lives (geometric mean, 3.95 hours for A675V and 3.30 hours for C469Y, vs. 1.78 hours for wild-type allele; P<0.001 and P = 0.05, respectively). The ring-stage survival assay showed a higher frequency of parasite survival among organisms with the A675V allele than among those with the wild-type allele. The prevalence of parasites with kelch13 mutations increased significantly, from 3.9% in 2015 to 19.8% in 2019, due primarily to the increased frequency of the A675V and C469Y alleles (P<0.001 and P = 0.004, respectively). Single-nucleotide polymorphisms flanking the A675V mutation in Uganda were substantially different from those in Southeast Asia. CONCLUSIONS The independent emergence and local spread of clinically artemisinin-resistant P. falciparum has been identified in Africa. The two kelch13 mutations may be markers for detection of these resistant parasites. (Funded by the Japan Society for the Promotion of Science and others.).
Collapse
Affiliation(s)
- Betty Balikagala
- From the Department of Tropical Medicine and Parasitology, School of Medicine (B.B., N.F., M.I., S.-I.T., M.Y., S.E., T.M.), and the Atopy Research Center, Graduate School of Medicine (B.B.), Juntendo University, Tokyo, the School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki (E.K.), and the Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka (N.M.Q.P., T.H.) - all in Japan; and Mildmay Uganda, Nazibwa Hill, Kampala (O.T.K.), and St. Mary's Hospital Lacor (W.O., M.O.) and the Faculty of Medicine, Gulu University (D.A.A., E.I.O.-A.), Gulu - all in Uganda
| | - Naoyuki Fukuda
- From the Department of Tropical Medicine and Parasitology, School of Medicine (B.B., N.F., M.I., S.-I.T., M.Y., S.E., T.M.), and the Atopy Research Center, Graduate School of Medicine (B.B.), Juntendo University, Tokyo, the School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki (E.K.), and the Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka (N.M.Q.P., T.H.) - all in Japan; and Mildmay Uganda, Nazibwa Hill, Kampala (O.T.K.), and St. Mary's Hospital Lacor (W.O., M.O.) and the Faculty of Medicine, Gulu University (D.A.A., E.I.O.-A.), Gulu - all in Uganda
| | - Mie Ikeda
- From the Department of Tropical Medicine and Parasitology, School of Medicine (B.B., N.F., M.I., S.-I.T., M.Y., S.E., T.M.), and the Atopy Research Center, Graduate School of Medicine (B.B.), Juntendo University, Tokyo, the School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki (E.K.), and the Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka (N.M.Q.P., T.H.) - all in Japan; and Mildmay Uganda, Nazibwa Hill, Kampala (O.T.K.), and St. Mary's Hospital Lacor (W.O., M.O.) and the Faculty of Medicine, Gulu University (D.A.A., E.I.O.-A.), Gulu - all in Uganda
| | - Osbert T Katuro
- From the Department of Tropical Medicine and Parasitology, School of Medicine (B.B., N.F., M.I., S.-I.T., M.Y., S.E., T.M.), and the Atopy Research Center, Graduate School of Medicine (B.B.), Juntendo University, Tokyo, the School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki (E.K.), and the Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka (N.M.Q.P., T.H.) - all in Japan; and Mildmay Uganda, Nazibwa Hill, Kampala (O.T.K.), and St. Mary's Hospital Lacor (W.O., M.O.) and the Faculty of Medicine, Gulu University (D.A.A., E.I.O.-A.), Gulu - all in Uganda
| | - Shin-Ichiro Tachibana
- From the Department of Tropical Medicine and Parasitology, School of Medicine (B.B., N.F., M.I., S.-I.T., M.Y., S.E., T.M.), and the Atopy Research Center, Graduate School of Medicine (B.B.), Juntendo University, Tokyo, the School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki (E.K.), and the Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka (N.M.Q.P., T.H.) - all in Japan; and Mildmay Uganda, Nazibwa Hill, Kampala (O.T.K.), and St. Mary's Hospital Lacor (W.O., M.O.) and the Faculty of Medicine, Gulu University (D.A.A., E.I.O.-A.), Gulu - all in Uganda
| | - Masato Yamauchi
- From the Department of Tropical Medicine and Parasitology, School of Medicine (B.B., N.F., M.I., S.-I.T., M.Y., S.E., T.M.), and the Atopy Research Center, Graduate School of Medicine (B.B.), Juntendo University, Tokyo, the School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki (E.K.), and the Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka (N.M.Q.P., T.H.) - all in Japan; and Mildmay Uganda, Nazibwa Hill, Kampala (O.T.K.), and St. Mary's Hospital Lacor (W.O., M.O.) and the Faculty of Medicine, Gulu University (D.A.A., E.I.O.-A.), Gulu - all in Uganda
| | - Walter Opio
- From the Department of Tropical Medicine and Parasitology, School of Medicine (B.B., N.F., M.I., S.-I.T., M.Y., S.E., T.M.), and the Atopy Research Center, Graduate School of Medicine (B.B.), Juntendo University, Tokyo, the School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki (E.K.), and the Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka (N.M.Q.P., T.H.) - all in Japan; and Mildmay Uganda, Nazibwa Hill, Kampala (O.T.K.), and St. Mary's Hospital Lacor (W.O., M.O.) and the Faculty of Medicine, Gulu University (D.A.A., E.I.O.-A.), Gulu - all in Uganda
| | - Sakurako Emoto
- From the Department of Tropical Medicine and Parasitology, School of Medicine (B.B., N.F., M.I., S.-I.T., M.Y., S.E., T.M.), and the Atopy Research Center, Graduate School of Medicine (B.B.), Juntendo University, Tokyo, the School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki (E.K.), and the Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka (N.M.Q.P., T.H.) - all in Japan; and Mildmay Uganda, Nazibwa Hill, Kampala (O.T.K.), and St. Mary's Hospital Lacor (W.O., M.O.) and the Faculty of Medicine, Gulu University (D.A.A., E.I.O.-A.), Gulu - all in Uganda
| | - Denis A Anywar
- From the Department of Tropical Medicine and Parasitology, School of Medicine (B.B., N.F., M.I., S.-I.T., M.Y., S.E., T.M.), and the Atopy Research Center, Graduate School of Medicine (B.B.), Juntendo University, Tokyo, the School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki (E.K.), and the Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka (N.M.Q.P., T.H.) - all in Japan; and Mildmay Uganda, Nazibwa Hill, Kampala (O.T.K.), and St. Mary's Hospital Lacor (W.O., M.O.) and the Faculty of Medicine, Gulu University (D.A.A., E.I.O.-A.), Gulu - all in Uganda
| | - Eisaku Kimura
- From the Department of Tropical Medicine and Parasitology, School of Medicine (B.B., N.F., M.I., S.-I.T., M.Y., S.E., T.M.), and the Atopy Research Center, Graduate School of Medicine (B.B.), Juntendo University, Tokyo, the School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki (E.K.), and the Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka (N.M.Q.P., T.H.) - all in Japan; and Mildmay Uganda, Nazibwa Hill, Kampala (O.T.K.), and St. Mary's Hospital Lacor (W.O., M.O.) and the Faculty of Medicine, Gulu University (D.A.A., E.I.O.-A.), Gulu - all in Uganda
| | - Nirianne M Q Palacpac
- From the Department of Tropical Medicine and Parasitology, School of Medicine (B.B., N.F., M.I., S.-I.T., M.Y., S.E., T.M.), and the Atopy Research Center, Graduate School of Medicine (B.B.), Juntendo University, Tokyo, the School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki (E.K.), and the Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka (N.M.Q.P., T.H.) - all in Japan; and Mildmay Uganda, Nazibwa Hill, Kampala (O.T.K.), and St. Mary's Hospital Lacor (W.O., M.O.) and the Faculty of Medicine, Gulu University (D.A.A., E.I.O.-A.), Gulu - all in Uganda
| | - Emmanuel I Odongo-Aginya
- From the Department of Tropical Medicine and Parasitology, School of Medicine (B.B., N.F., M.I., S.-I.T., M.Y., S.E., T.M.), and the Atopy Research Center, Graduate School of Medicine (B.B.), Juntendo University, Tokyo, the School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki (E.K.), and the Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka (N.M.Q.P., T.H.) - all in Japan; and Mildmay Uganda, Nazibwa Hill, Kampala (O.T.K.), and St. Mary's Hospital Lacor (W.O., M.O.) and the Faculty of Medicine, Gulu University (D.A.A., E.I.O.-A.), Gulu - all in Uganda
| | - Martin Ogwang
- From the Department of Tropical Medicine and Parasitology, School of Medicine (B.B., N.F., M.I., S.-I.T., M.Y., S.E., T.M.), and the Atopy Research Center, Graduate School of Medicine (B.B.), Juntendo University, Tokyo, the School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki (E.K.), and the Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka (N.M.Q.P., T.H.) - all in Japan; and Mildmay Uganda, Nazibwa Hill, Kampala (O.T.K.), and St. Mary's Hospital Lacor (W.O., M.O.) and the Faculty of Medicine, Gulu University (D.A.A., E.I.O.-A.), Gulu - all in Uganda
| | - Toshihiro Horii
- From the Department of Tropical Medicine and Parasitology, School of Medicine (B.B., N.F., M.I., S.-I.T., M.Y., S.E., T.M.), and the Atopy Research Center, Graduate School of Medicine (B.B.), Juntendo University, Tokyo, the School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki (E.K.), and the Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka (N.M.Q.P., T.H.) - all in Japan; and Mildmay Uganda, Nazibwa Hill, Kampala (O.T.K.), and St. Mary's Hospital Lacor (W.O., M.O.) and the Faculty of Medicine, Gulu University (D.A.A., E.I.O.-A.), Gulu - all in Uganda
| | - Toshihiro Mita
- From the Department of Tropical Medicine and Parasitology, School of Medicine (B.B., N.F., M.I., S.-I.T., M.Y., S.E., T.M.), and the Atopy Research Center, Graduate School of Medicine (B.B.), Juntendo University, Tokyo, the School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki (E.K.), and the Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka (N.M.Q.P., T.H.) - all in Japan; and Mildmay Uganda, Nazibwa Hill, Kampala (O.T.K.), and St. Mary's Hospital Lacor (W.O., M.O.) and the Faculty of Medicine, Gulu University (D.A.A., E.I.O.-A.), Gulu - all in Uganda
| |
Collapse
|
35
|
de Haan F, Bolarinwa OA, Guissou R, Tou F, Tindana P, Boon WPC, Moors EHM, Cheah PY, Dhorda M, Dondorp AM, Ouedraogo JB, Mokuolu OA, Amaratunga C. To what extent are the antimalarial markets in African countries ready for a transition to triple artemisinin-based combination therapies? PLoS One 2021; 16:e0256567. [PMID: 34464398 PMCID: PMC8407563 DOI: 10.1371/journal.pone.0256567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/09/2021] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Triple artemisinin-based combination therapies (TACTs) are being developed as a response to artemisinin and partner drug resistance in the treatment of falciparum malaria in Southeast Asia. In African countries, where current artemisinin-based combination therapies (ACTs) are still effective, TACTs have the potential to benefit the larger community and future patients by mitigating the risk of drug resistance. This study explores the extent to which the antimalarial drug markets in African countries are ready for a transition to TACTs. METHODS A qualitative study was conducted in Nigeria and Burkina Faso and comprised in-depth interviews (n = 68) and focus group discussions (n = 11) with key actor groups in the innovation system of antimalarial therapies. RESULTS Evidence of ACT failure in African countries and explicit support for TACTs by the World Health Organization (WHO) and international funders were perceived important determinants for the market prospects of TACTs in Nigeria and Burkina Faso. At the country level, slow regulatory and implementation procedures were identified as potential barriers towards rapid TACTs deployment. Integrating TACTs in public sector distribution channels was considered relatively straightforward. More challenges were expected for integrating TACTs in private sector distribution channels, which are characterized by patient demand and profit motives. Finally, several affordability and acceptability issues were raised for which ACTs were suggested as a benchmark. CONCLUSION The market prospects of TACTs in Nigeria and Burkina Faso will depend on the demonstration of the added value of TACTs over ACTs, their advocacy by the WHO, the inclusion of TACTs in financial and regulatory arrangements, and their alignment with current distribution and deployment practices. Further clinical, health-economic and feasibility studies are required to inform decision makers about the broader implications of a transition to TACTs in African counties. The recent reporting of artemisinin resistance and ACT failure in Africa might change important determinants of the market readiness for TACTs.
Collapse
Affiliation(s)
- Freek de Haan
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| | | | - Rosemonde Guissou
- Institut de Recherche en Sciences de la Sante, Bobo-Dioulasso, Burkina Faso
| | - Fatoumata Tou
- Institut des Sciences et Techniques, Bobo-Dioulasso, Burkina Faso
| | - Paulina Tindana
- School of Public Health, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Wouter P. C. Boon
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| | - Ellen H. M. Moors
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| | - Phaik Yeong Cheah
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Center for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Mehul Dhorda
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Center for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Arjen M. Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Center for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jean Bosco Ouedraogo
- Institut de Recherche en Sciences de la Sante, Bobo-Dioulasso, Burkina Faso
- Institut des Sciences et Techniques, Bobo-Dioulasso, Burkina Faso
| | | | - Chanaki Amaratunga
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Center for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
36
|
Stokes BH, Dhingra SK, Rubiano K, Mok S, Straimer J, Gnädig NF, Deni I, Schindler KA, Bath JR, Ward KE, Striepen J, Yeo T, Ross LS, Legrand E, Ariey F, Cunningham CH, Souleymane IM, Gansané A, Nzoumbou-Boko R, Ndayikunda C, Kabanywanyi AM, Uwimana A, Smith SJ, Kolley O, Ndounga M, Warsame M, Leang R, Nosten F, Anderson TJ, Rosenthal PJ, Ménard D, Fidock DA. Plasmodium falciparum K13 mutations in Africa and Asia impact artemisinin resistance and parasite fitness. eLife 2021; 10:66277. [PMID: 34279219 PMCID: PMC8321553 DOI: 10.7554/elife.66277] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 07/17/2021] [Indexed: 12/22/2022] Open
Abstract
The emergence of mutant K13-mediated artemisinin (ART) resistance in Plasmodium falciparum malaria parasites has led to widespread treatment failures across Southeast Asia. In Africa, K13-propeller genotyping confirms the emergence of the R561H mutation in Rwanda and highlights the continuing dominance of wild-type K13 elsewhere. Using gene editing, we show that R561H, along with C580Y and M579I, confer elevated in vitro ART resistance in some African strains, contrasting with minimal changes in ART susceptibility in others. C580Y and M579I cause substantial fitness costs, which may slow their dissemination in high-transmission settings, in contrast with R561H that in African 3D7 parasites is fitness neutral. In Cambodia, K13 genotyping highlights the increasing spatio-temporal dominance of C580Y. Editing multiple K13 mutations into a panel of Southeast Asian strains reveals that only the R561H variant yields ART resistance comparable to C580Y. In Asian Dd2 parasites C580Y shows no fitness cost, in contrast with most other K13 mutations tested, including R561H. Editing of point mutations in ferredoxin or mdr2, earlier associated with resistance, has no impact on ART susceptibility or parasite fitness. These data underline the complex interplay between K13 mutations, parasite survival, growth and genetic background in contributing to the spread of ART resistance.
Collapse
Affiliation(s)
- Barbara H Stokes
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Satish K Dhingra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Kelly Rubiano
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Judith Straimer
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Nina F Gnädig
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Ioanna Deni
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Kyra A Schindler
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Jade R Bath
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Kurt E Ward
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States.,Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Josefine Striepen
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Leila S Ross
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Eric Legrand
- Malaria Genetics and Resistance Unit, Institut Pasteur, INSERM U1201, CNRS ERL9195, Paris, France
| | - Frédéric Ariey
- Institut Cochin, INSERM U1016, Université Paris Descartes, Paris, France
| | - Clark H Cunningham
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Issa M Souleymane
- Programme National de Lutte Contre le Paludisme au Tchad, Ndjamena, Chad
| | - Adama Gansané
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Romaric Nzoumbou-Boko
- Laboratoire de Parasitologie, Institut Pasteur de Bangui, Bangui, Central African Republic
| | | | | | - Aline Uwimana
- Malaria and Other Parasitic Diseases Division, Rwanda Biomedical Centre, Kigali, Rwanda
| | - Samuel J Smith
- National Malaria Control Program, Freetown, Sierra Leone
| | | | - Mathieu Ndounga
- Programme National de Lutte Contre le Paludisme, Brazzaville, Democratic Republic of the Congo
| | - Marian Warsame
- School of Public Health and Community Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Rithea Leang
- National Center for Parasitology, Entomology & Malaria Control, Phnom Penh, Cambodia
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, San Francisco, United States
| | - Didier Ménard
- Malaria Genetics and Resistance Unit, Institut Pasteur, INSERM U1201, CNRS ERL9195, Paris, France
| | - David A Fidock
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, United States
| |
Collapse
|
37
|
Ndwiga L, Kimenyi KM, Wamae K, Osoti V, Akinyi M, Omedo I, Ishengoma DS, Duah-Quashie N, Andagalu B, Ghansah A, Amambua-Ngwa A, Tukwasibwe S, Tessema SK, Karema C, Djimde AA, Dondorp AM, Raman J, Snow RW, Bejon P, Ochola-Oyier LI. A review of the frequencies of Plasmodium falciparum Kelch 13 artemisinin resistance mutations in Africa. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2021; 16:155-161. [PMID: 34146993 PMCID: PMC8219943 DOI: 10.1016/j.ijpddr.2021.06.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 12/23/2022]
Abstract
Artemisinin resistance (AR) emerged in South East Asia 13 years ago and the identification of the resistance conferring molecular marker, Plasmodium falciparum Kelch 13 (Pfk13), 7 years ago has provided an invaluable tool for monitoring AR in malaria endemic countries. Molecular Pfk13 surveillance revealed the resistance foci in the Greater Mekong Subregion, an independent emergence in Guyana, South America, and a low frequency of mutations in Africa. The recent identification of the R561H Pfk13 AR associated mutation in Tanzania, Uganda and in Rwanda, where it has been associated with delayed parasite clearance, should be a concern for the continent. In this review, we provide a summary of Pfk13 resistance associated propeller domain mutation frequencies across Africa from 2012 to 2020, to examine how many other countries have identified these mutations. Only four African countries reported a recent identification of the M476I, P553L, R561H, P574L, C580Y and A675V Pfk13 mutations at low frequencies and with no reports of clinical treatment failure, except for Rwanda. These mutations present a threat to malaria control across the continent, since the greatest burden of malaria remains in Africa. A rise in the frequency of these mutations and their spread would reverse the gains made in the reduction of malaria over the last 20 years, given the lack of new antimalarial treatments in the event artemisinin-based combination therapies fail. The review highlights the frequency of Pfk13 propeller domain mutations across Africa, providing an up-to-date perspective of Pfk13 mutations, and appeals for an urgent and concerted effort to monitoring antimalarial resistance markers in Africa and the efficacy of antimalarials by re-establishing sentinel surveillance systems.
Collapse
Affiliation(s)
- Leonard Ndwiga
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, 80108, Kilifi, Kenya
| | - Kelvin M Kimenyi
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, 80108, Kilifi, Kenya; Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi, Kenya
| | - Kevin Wamae
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, 80108, Kilifi, Kenya
| | - Victor Osoti
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, 80108, Kilifi, Kenya
| | - Mercy Akinyi
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, 80108, Kilifi, Kenya; Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| | - Irene Omedo
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, 80108, Kilifi, Kenya; Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Deus S Ishengoma
- National Institute for Medical Research (NIMR), Dar es Salaam, Tanzania
| | - Nancy Duah-Quashie
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Ben Andagalu
- United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute/Walter Reed Project, Kisumu, Kenya
| | - Anita Ghansah
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), Accra, Ghana
| | | | | | | | - Corine Karema
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland; Quality and Equity Healthcare, Kigali, Rwanda
| | - Abdoulaye A Djimde
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Arjen M Dondorp
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jaishree Raman
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Disease, Sandringham, Gauteng, South Africa; Wits Research Institute for Malaria, Univerisity of Witwatersrand, Johannesburg, South Africa
| | - Robert W Snow
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, 80108, Kilifi, Kenya; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Philip Bejon
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, 80108, Kilifi, Kenya; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
38
|
Ghanchi NK, Qurashi B, Raees H, Beg MA. Molecular surveillance of drug resistance: Plasmodium falciparum artemisinin resistance single nucleotide polymorphisms in Kelch protein propeller (K13) domain from Southern Pakistan. Malar J 2021; 20:176. [PMID: 33827592 PMCID: PMC8028081 DOI: 10.1186/s12936-021-03715-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/27/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND K13 propeller (k13) polymorphism are useful molecular markers for tracking the emergence and spread of artemisinin resistance in Plasmodium falciparum. Polymorphisms are reported from Cambodia with rapid invasion of the population and almost near fixation in south East Asia. The study describes single nucleotide polymorphisms in Kelch protein propeller domain of P. falciparum associated with artemisinin resistance from Southern Pakistan. METHODS Two hundred and forty-nine samples were collected from patients with microscopy confirmed P. falciparum malaria attending Aga Khan University Hospital during September 2015-April 2018. DNA was isolated using the whole blood protocol for the QIAmp DNA Blood Kit. The k13 propeller gene (k13) was amplified using nested PCR. Double-strand sequencing of PCR products was performed using Sanger sequencing methodology. Sequences were analysed with MEGA 6 and Bio edit software to identify specific SNP combinations. RESULTS All isolates analysed for k13 propeller allele were observed as wild-type in samples collected post implementation of ACT in Pakistan. C580Y, A675V, Y493H and R539T variants associated with reduced susceptibility to artemisinin-based combination therapy (ACT) were not found. Low frequency of M476I and C469Y polymorphisms was found, which is significantly associated with artemisinin resistance. CONCLUSION Low frequencies of both nonsynonymous and synonymous polymorphisms were observed in P. falciparum isolates circulating in Southern Pakistan. The absence of known molecular markers of artemisinin resistance in this region is favourable for anti-malarial efficacy of ACT. Surveillance of anti-malarial drug resistance to detect its emergence and spread need to be strengthened in Pakistan.
Collapse
Affiliation(s)
- Najia Karim Ghanchi
- Section of Microbiology, Department of Pathology and Laboratory Medicine, Aga Khan University, Stadium Road, P.O. Box 3500, Karachi, 74800, Pakistan
| | - Bushra Qurashi
- Section of Microbiology, Department of Pathology and Laboratory Medicine, Aga Khan University, Stadium Road, P.O. Box 3500, Karachi, 74800, Pakistan
| | | | - Mohammad Asim Beg
- Section of Microbiology, Department of Pathology and Laboratory Medicine, Aga Khan University, Stadium Road, P.O. Box 3500, Karachi, 74800, Pakistan.
| |
Collapse
|
39
|
Yobi DM, Kayiba NK, Mvumbi DM, Boreux R, Kabututu PZ, Situakibanza HNT, Umesumbu SE, De Mol P, Speybroeck N, Mvumbi GL, Hayette MP. Assessment of Plasmodium falciparum anti-malarial drug resistance markers in pfk13-propeller, pfcrt and pfmdr1 genes in isolates from treatment failure patients in Democratic Republic of Congo, 2018-2019. Malar J 2021; 20:144. [PMID: 33706773 PMCID: PMC7953712 DOI: 10.1186/s12936-021-03636-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/09/2021] [Indexed: 11/14/2022] Open
Abstract
Background The national policy for malaria treatment of the Democratic Republic of Congo recommends two first-line artemisinin-based combinations for the treatment of uncomplicated malaria: artesunate-amodiaquine and artemether-lumefantrine. This study investigated the presence of markers associated with resistance to the current first-line artemisinin-based combination therapy (ACT) in isolates of Plasmodium falciparum from treatment failure patients in the Democratic Republic of Congo. Methods From November 2018 to November 2019, dried blood spots were taken from patients returning to health centres for fever within 28 days after an initial malaria treatment in six sentinel sites of the National Malaria Control Programme across Democratic Republic of Congo. The new episode of malaria was first detected by a rapid diagnostic test and then confirmed by a real-time PCR assay to define treatment failure. Fragments of interest in pfk13 and pfcrt genes were amplified by conventional PCR before sequencing and the Pfmdr1 gene copy number was determined by a TaqMan real-time PCR assay. Results Out of 474 enrolled patients, 364 (76.8%) were confirmed positive by PCR for a new episode of P. falciparum malaria, thus considered as treatment failure. Of the 325 P. falciparum isolates obtained from 364 P. falciparum-positive patients and successfully sequenced in the pfk13-propeller gene, 7 (2.2%) isolates carried non-synonymous mutations, among which 3 have been previously reported (N498I, N554K and A557S) and 4 had not yet been reported (F506L, E507V, D516E and G538S). Of the 335 isolates successfully sequenced in the pfcrt gene, 139 (41.5%) harboured the K76T mutation known to be associated with chloroquine resistance. The SVMNT haplotype associated with resistance to amodiaquine was not found. None of the isolates carried an increased copy number of the pfmdr1 gene among the 322 P. falciparum isolates successfully analysed. Conclusion No molecular markers currently known to be associated with resistance to the first-line ACT in use were detected in isolates of P. falciparum from treatment failure patients. Regular monitoring through in vivo drug efficacy and molecular studies must continue to ensure the effectiveness of malaria treatment in Democratic Republic of Congo.
Collapse
Affiliation(s)
- Doudou M Yobi
- Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo.
| | - Nadine K Kayiba
- School of Public Health and Research Institute of Health and Society, Catholic University of Louvain, 1200, Brussels, Belgium.,School of Public Health, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo.,Department of Public Health, Faculty of Medicine, University of Mbujimayi, Mbujimayi, Democratic Republic of Congo
| | - Dieudonné M Mvumbi
- Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Raphael Boreux
- Laboratory of Clinical Microbiology, University of Liège, 4000, Liège, Belgium
| | - Pius Z Kabututu
- Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Hippolyte N T Situakibanza
- Department of Internal Medicine, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Solange E Umesumbu
- National Malaria Control Programme, Kinshasa, Democratic Republic of Congo
| | - Patrick De Mol
- Laboratory of Clinical Microbiology, University of Liège, 4000, Liège, Belgium
| | - Niko Speybroeck
- School of Public Health and Research Institute of Health and Society, Catholic University of Louvain, 1200, Brussels, Belgium
| | - Georges L Mvumbi
- Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | | |
Collapse
|