1
|
Guo Y, Lu J, Jin P, Qiu Z, Yu F, Zhu Y, Huang J. Genomic characterization of multidrug-resistant tuberculosis in Shanghai, China: antibiotic resistance, virulence and transmission. JAC Antimicrob Resist 2025; 7:dlaf064. [PMID: 40342723 PMCID: PMC12059630 DOI: 10.1093/jacamr/dlaf064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 04/10/2025] [Indexed: 05/11/2025] Open
Abstract
Objectives Whole-genome sequencing (WGS) was employed to investigate antibiotic resistance, virulence and transmission profiles of multidrug-resistant tuberculosis (MDR-TB) isolates from Shanghai, China. Methods A total of 306 MDR-TB clinical isolates were collected from Shanghai Pulmonary Hospital and underwent phenotypic drug susceptibility testing (DST) for common anti-TB drugs and WGS. Combined 778 published bacterial sequences, we performed phylogenetic analysis, resistance and virulence gene identification to understand the genetic relationships and resistance mechanisms among those strains. Results WGS determination, supported by DST, revealed high resistance rates for isoniazid (83.66%) and rifampicin (90.20%) among the MDR-TB isolates. Key resistance-associated mutations included katG Ser315Thr for isoniazid, rpoB mutations for rifampicin, and embB Met306Val for ethambutol. WGS demonstrated >90% concordance with culture-based DST for most drugs, except ethambutol that showed a 76.80% concordance. Analyses of virulence factors and phylogenetics revealed the genetically homogeneous, endemic MDR-TB population in Shanghai, with no evidence of recent transmission. Conclusions This study highlights the genetic homogeneity and endemic nature of MDR-TB in Shanghai, providing insights into key resistance mechanisms of TB.
Collapse
Affiliation(s)
- Yang Guo
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Jing Lu
- Institute of Infectious Disease, The Second Affiliated Hospital of Tianjin Medical University, Tianjin 300222, China
| | - Peipei Jin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201801, China
| | - Zhipeng Qiu
- Independent Researcher, Shenzhen, Guangdong 518000, China
| | - Fangyou Yu
- Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Yan Zhu
- Systems Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jiayuan Huang
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| |
Collapse
|
2
|
Misra R, Das P, Nath A, Neyaz Z. Detection of extensive drug resistance by the Xpert MTB/XDR assay in multidrug resistant tuberculosis cases at a tertiary care centre in northern India, and therapeutic decision making for the six-month BPaLM regimen. J Clin Tuberc Other Mycobact Dis 2025; 39:100520. [PMID: 40225357 PMCID: PMC11986519 DOI: 10.1016/j.jctube.2025.100520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025] Open
Abstract
The Xpert MTB/XDR assay has been approved by World Health Organization (WHO) as a reflex test on sputum samples after testing for rifampicin resistance. Recently, the Union Health Ministry of India in September 2024 approved the introduction of the six-month BPaLM regimen under its National TB Elimination Program (NTEP). In this study, the Xpert MTB/XDR assay was used to detect extensive drug resistance in pulmonary and extra-pulmonary tuberculosis patients with positive result for MTBC, and RIF resistance by the Xpert MTB/RIF ULTRA assay. We also aimed to assess the eligibility of patients for the BPaLM regimen based on the drug susceptibility profile of this test in a high burden Indian setting. We conducted a single centre prospective cohort study between January 2023 to August 2024 on 42 old, and 68 new patients presenting with MDR/RR tuberculosis. A total of 110 samples (82 pulmonary and 28 extra pulmonary samples) were included in the study. The Xpert MTB/XDR assay was used to determine the susceptibilities to isoniazid, fluoroquinolones, amikacin, kanamycin, capreomycin, and ethionamide. Out of 110 samples processed, 13 samples were 'not detected' by the assay while three gave invalid results. Resistance to isoniazid, fluoroquinolones, amikacin, kanamycin, capreomycin and ethionamide was detected in 85/94 cases (90·42%), 74/94 cases (78·72%), 08/94 cases (8·5%), 13/94 cases (13·83%), 08/94 cases (8·5%), and 14/94 cases (14·89%) respectively. With the updated definitions of drug-resistant TB and high burden of fluoroquinolone resistance the Xpert MTB/XDR assay has a limited application in India. Detection of extensive drug resistance by the Xpert MTB/XDR assay in multidrug resistant tuberculosis cases at a tertiary care centre in northern India, and therapeutic decision making for the six-month BPaLM regimen.
Collapse
Affiliation(s)
- Richa Misra
- Department of Microbiology, Division Mycobacteriology, Sanjay Gandhi Post-graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Parijat Das
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Post-graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Alok Nath
- Department of Pulmonary Medicine, Sanjay Gandhi Post-graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Zafar Neyaz
- Department of Radiodiagnosis, Sanjay Gandhi Post-graduate Institute of Medical Sciences, Lucknow 226014, India
| |
Collapse
|
3
|
He Y, Zhang R, Xie S, Yang X, Liu Y. An intelligent hydrogel detection platform based on colorimetric and SERS techniques for real-time and sensitive detection of kanamycin. Talanta 2025; 294:128246. [PMID: 40319645 DOI: 10.1016/j.talanta.2025.128246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/01/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Excessive use of kanamycin (KAN) in food can lead to ototoxicity, nephrotoxicity, and antibiotic resistance in humans. Therefore, developing a rapid and sensitive detection method to accurately identify KAN is urgent. In this study, we propose a sensitive and convenient detection technique based on an intelligent color-changing hydrogel. This hydrogel incorporates coral-shaped prussian blue (C-PB) nanozymes and Au polyhedra to achieve dual detection of KAN through colorimetric and Raman techniques. We first combined aptamer chains with DNA single strands to construct a "lock" structure within porous metal-organic frameworks, encapsulating numerous 3,3',5,5'-tetramethylbenzidine (TMB) molecules. In the presence of KAN, because of the higher affinity between the aptamer chain and KAN, the "lock" structure is disrupted, releasing a large amount of TMB. Subsequently, TMB is absorbed by the C-PB-based hydrogel and catalyzed into oxidized TMB with the assistance of hydrogen peroxide. Consequently, the hydrogel changes from pink to blue, accompanied by a significant Raman signal. This intelligent hydrogel platform enables ultrasensitive identification of KAN through both colorimetric and Raman modes with a detection limit of 1.58 × 10-13 mol/L and a linear range from 1.0 × 10-12 to 1.0 × 10-3 mol/L. We believe this dual-mode strategy offers a promising pathway for real-time detection and monitoring of actual samples.
Collapse
Affiliation(s)
- Yi He
- School of Science, Xihua University, Chengdu, 610039, PR China.
| | - Runzi Zhang
- School of Science, Xihua University, Chengdu, 610039, PR China
| | - Shunbi Xie
- Key Laboratory for Resource Utilization of Heavy Metal Wastewater, Chongqing University of Arts and Sciences, Chongqing, 402160, PR China.
| | - Xiaoyu Yang
- School of Science, Xihua University, Chengdu, 610039, PR China
| | - Yao Liu
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, PR China
| |
Collapse
|
4
|
Rahman SMM, Ruhee NN, Haider A, Hasan MJ, Nasrin R, Adel ASS, Uddin MKM, Ahmed S, Maug AKJ, Banu S. Xpert MTB/XDR Assay for Detection of Resistance to Isoniazid, Fluoroquinolone, Aminoglycoside, and Ethionamide Among Patients with Pulmonary Tuberculosis in Bangladesh. Infect Dis Ther 2025; 14:803-818. [PMID: 40126817 PMCID: PMC11993513 DOI: 10.1007/s40121-025-01127-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 02/27/2025] [Indexed: 03/26/2025] Open
Abstract
INTRODUCTION Early detection of drug resistance in patients with tuberculosis (TB) is crucial for prompt and effective treatment. This study evaluated the performance of Xpert MTB/XDR assay (Xpert XDR) for detecting resistance to isoniazid (INH), fluoroquinolones (FLQ), aminoglycosides (AMG), and ethionamide (ETH) in patients with pulmonary TB (PTB) in Bangladesh. METHODS Xpert XDR was performed on sputum samples from 793 Xpert MTB/RIF positive patients with PTB enrolled between April 2021 and March 2023. Results were compared with phenotypic drug susceptibility test (pDST) performed on Lowenstein-Jensen (L-J) media for the detection of resistance to INH, FLQ, AMG, and ETH. The performance of the assay was also compared between newly diagnosed or rifampicin (RIF)-sensitive versus re-treated or RIF-resistant patients with PTB. RESULTS Of 793 samples tested by Xpert XDR, indeterminate results for INH, FLQ, AMG, and ETH were observed for 3 (0.4%), 5 (0.6%), 33 (4.2%), and 0 (0%) isolates, respectively. The assay's sensitivity and specificity compared to pDST was 94.0% (95% CI 90.5-96.4; 264/281) and 97.3% (95% CI 95.4-98.5; 495/509), respectively for INH; 86.0% (95% CI 78.2-91.8; 98/114) and 99.3% (95% CI 98.3-99.3; 669/674), respectively for FLQ; 85.7% (95% CI 42.1-99.6; 6/7) and 99.9% (95% CI 99.3-100.0; 752/753), respectively for AMG; and 25.0% (95% CI 19.0-31.7; 48/192) and 96.7% (95% CI 94.9-98.0; 581/601), respectively for ETH. Agreement of Xpert XDR with pDST was almost perfect for detecting resistance to INH, FLQ, and AMG (kappa: 0.91, 0.89, and 0.86, respectively), but fair for ETH (kappa: 0.28). Xpert XDR performed significantly better among re-treated or RIF-resistant patients with TB compared to newly diagnosed or RIF-sensitive cases. CONCLUSIONS Given the high performance, Xpert XDR assay can be programmatically implemented nationwide for rapid and accurate detection of resistance to INH, FLQ, and AMG in patients with PTB, aiding clinicians in selecting appropriate regimens for the treatment of drug-resistant TB.
Collapse
Affiliation(s)
- S M Mazidur Rahman
- Program on Emerging Infections, Infectious Diseases Division, icddr,b, Dhaka, 1212, Bangladesh
| | - Noshin Nawer Ruhee
- Program on Emerging Infections, Infectious Diseases Division, icddr,b, Dhaka, 1212, Bangladesh
| | - Amiyo Haider
- Program on Emerging Infections, Infectious Diseases Division, icddr,b, Dhaka, 1212, Bangladesh
| | - Md Jahid Hasan
- Program on Emerging Infections, Infectious Diseases Division, icddr,b, Dhaka, 1212, Bangladesh
| | - Rumana Nasrin
- Program on Emerging Infections, Infectious Diseases Division, icddr,b, Dhaka, 1212, Bangladesh
| | | | | | - Shahriar Ahmed
- Program on Emerging Infections, Infectious Diseases Division, icddr,b, Dhaka, 1212, Bangladesh
| | - Aung Kya Jai Maug
- Program on Emerging Infections, Infectious Diseases Division, icddr,b, Dhaka, 1212, Bangladesh
| | - Sayera Banu
- Program on Emerging Infections, Infectious Diseases Division, icddr,b, Dhaka, 1212, Bangladesh.
| |
Collapse
|
5
|
Nyambo K, Soko V, Tapfuma KI, Motaung B, Adu-Amankwaah F, Julius L, Klein A, Keyster M, Baatjies L, Smith L, Govender KK, Ngxande M, Loxton AG, Mavumengwana V. Repurposing of apoptotic inducer drugs against Mycobacterium tuberculosis. Sci Rep 2025; 15:7109. [PMID: 40016256 PMCID: PMC11868625 DOI: 10.1038/s41598-025-91096-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/18/2025] [Indexed: 03/01/2025] Open
Abstract
Computational approaches complement traditional in-vitro or in-vivo assays, significantly accelerating the drug discovery process by increasing the probability of identifying promising lead compounds. In this study, the apoptotic compounds were assessed for antimycobacterial activity and immunomodulatory potential in infected THP-1 macrophage cells. The antimycobacterial activity of the apoptotic compounds was evaluated using the minimum inhibitory concentration (MIC) assay. The immunomodulatory potential of the apoptotic compounds was determined on mycobacterial-infected THP-1 and non-infected THP-1 macrophage cells. The potential binding dynamics of the compounds against InhA were predicted using molecular docking, molecular dynamics, and MM-GBSA binding free energies. The in-vitro MIC assay showed that cepharanthine (CEP) had the highest antimycobacterial activity against Mycobacterium smegmatis mc2155 and Mycobacterium tuberculosis H37Rv, with MICs of 3.1 and 1.5 µg/mL, respectively, followed by CP-31398 dihydrochloride hydrate (DIH) (MICs = 6.2 and 3.1 µg/mL, respectively), marinopyrrole A (MAR) (MICs = 25 and 12.5 µg/mL, respectively), and nutlin-3a (NUT) (MICs = 50 and 25 µg/mL, respectively). MICs for the rest of the drugs were > 200 µg/mL against both M. smegmatis mc2155 and M. tuberculosis H37Rv. Furthermore, the growth of M. smegmatis mc2155 in infected THP-1 macrophage cells treated with DIH, CEP, carboxyatractyloside potassium salt (CAR), and NUT was inhibited by the mentioned drugs. Cytokine profiling showed that DIH optimally regulated the secretion of IL-1β and TNF-α which potentially enhanced the clearance of the intracellular pathogen. Molecular dynamics simulations showed that NUT, MAR, 17-(allylamino)-17-demethoxygeldanamycin (17-AAG), and BV02 strongly bind to InhA. However, 17-AAG and BV02 did not show significant activity in-vitro. This study highlights the importance of probing already existing chemical scaffolds as a starting point for discovery of therapeutic agents against M. tuberculosis H37Rv using both pathogen and host directed approaches. The integration of molecular dynamics simulations provides valuable insights into potential scaffold modifications to enhance the affinity.
Collapse
Affiliation(s)
- Kudakwashe Nyambo
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Vivette Soko
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Kudzanai Ian Tapfuma
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Bongani Motaung
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Francis Adu-Amankwaah
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Lauren Julius
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Ashwil Klein
- Department of Biotechnology, University of Western Cape, Bellville, Cape Town, South Africa
| | - Marshall Keyster
- Department of Biotechnology, University of Western Cape, Bellville, Cape Town, South Africa
| | - Lucinda Baatjies
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Liezel Smith
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Krishna Kuben Govender
- Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, P. O. Box 17011, Johannesburg, 2028, South Africa
- National Institute for Theoretical and Computational Sciences (NITheCS), Stellenbosch, South Africa
| | - Mkhuseli Ngxande
- Computer Science Division, Department of Mathematical Sciences, Faculty of Science, University of Stellenbosch, Matieland, South Africa
| | - Andre G Loxton
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Vuyo Mavumengwana
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
6
|
Li M, Shen C, Lv M, Luo Y. Nanobiosensors Enable High-Efficiency Detection of Tuberculosis Nucleic Acid. JACS AU 2025; 5:536-549. [PMID: 40017783 PMCID: PMC11862950 DOI: 10.1021/jacsau.4c01206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/02/2025] [Accepted: 02/04/2025] [Indexed: 03/01/2025]
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb), with a complex pathogenesis that poses a long-term threat to human health globally. Early and accurate diagnosis of TB provides a critical window for timely and effective treatment. The development of nucleic acid testing (NAT) based on polymerase chain reaction (PCR) has greatly improved the diagnostic efficiency of TB. However, balancing detection accuracy, efficiency, and cost in TB NAT remains challenging. Functionalized nanomaterials-based nanobiosensors have demonstrated exceptional performance in detecting TB nucleic acid by integrating their unique physicochemical properties with diverse biological probes that exploit Mtb characteristics to effectively amplify biological signals. Compared to traditional NAT, nanobiosensors simplify nucleic acid detection, improve accuracy, and reduce reliance on external conditions, thereby contributing to more immediate and accurate TB diagnosis. In this perspective, we provide a comprehensive summary and discussion on current strategies for detecting Mtb biomarkers using nucleic acid along with novel solutions for TB diagnosis. Additionally, we explore the advantages and challenges associated with applying nanotechnology to the clinical management of TB, particularly point-of-care testing (POCT).
Collapse
Affiliation(s)
- Mei Li
- Department
of Laboratory Medicine, Sichuan Medical Laboratory Clinical Medicine
Research Center, West China Hospital, Sichuan
University, Chengdu 610041, China
| | - Chen Shen
- Department
of Laboratory Medicine, Sichuan Medical Laboratory Clinical Medicine
Research Center, West China Hospital, Sichuan
University, Chengdu 610041, China
| | - Min Lv
- College
of Chemistry and Materials Science, Shanghai
Normal University, Shanghai 200000, China
| | - Yao Luo
- Department
of Laboratory Medicine, Sichuan Medical Laboratory Clinical Medicine
Research Center, West China Hospital, Sichuan
University, Chengdu 610041, China
- Department
of Pulmonary and Critical Care Medicine, Zigong First People’s Hospital, Zigong 643000, China
| |
Collapse
|
7
|
Pfurtscheller T, Tsutsunava A, Maghradze N, Gujabidze M, Bablishvili N, Yerlikaya S, Denkinger CM, Tukvadze N, Gupta-Wright A. Programmatic Diagnostic Accuracy and Clinical Utility of Xpert MTB/XDR in Patients With Rifampicin-Resistant Tuberculosis in Georgia. Open Forum Infect Dis 2025; 12:ofaf022. [PMID: 39906319 PMCID: PMC11793029 DOI: 10.1093/ofid/ofaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/11/2025] [Indexed: 02/06/2025] Open
Abstract
Background Xpert MTB/XDR (Cepheid) is recommended by the World Health Organization for drug susceptibility testing in patients with tuberculosis, with potential for rapid detection of isoniazid and fluoroquinolone resistance. However, diagnostic accuracy and clinical utility in a programmatic setting are unknown. Methods We evaluated the accuracy and clinical utility of Xpert MTB/XDR in patients with rifampicin-resistant pulmonary tuberculosis during programmatic implementation in Georgia between July 2022 and August 2024, using phenotypic drug susceptibility testing (DST) as a reference standard. Results An overall 140 patients were tested with Xpert MTB/XDR and phenotypic DST, and 94.9% and 33.8% had isoniazid and fluoroquinolone resistance by phenotypic DST, respectively. Xpert MTB/XDR showed 99.2% sensitivity (95% CI, 95.5%-100%) and 100% specificity (95% CI, 54.1%-100%) for isoniazid resistance. Sensitivity and specificity for fluoroquinolone resistance were 88.4% (95% CI, 74.9%-96.1%) and 100% (95% CI, 95.6%-100%). When indeterminate/invalid Xpert MTB/XDR results were included, 17.4% (8/46) and 6.2% (8/129) of patients with phenotypic fluoroquinolone and isoniazid resistance were missed. Median turnaround time for Xpert MTB/XDR was 1 day (IQR, 1-3) and median time to treatment was 4 days (IQR, 1-7). Phenotypic DST results took a median 43 days (IQR, 29-63) longer than Xpert MTB/XDR results. Finally, 95% (115/121; 95% CI, 89.5%-98.2%) of patients had fluoroquinolones appropriately prescribed based on Xpert MTB/XDR results. Conclusions Programmatic data confirm the high accuracy of Xpert MTB/XDR, despite being below the World Health Organization target product profile targets for fluoroquinolones, with significantly faster time to results than phenotypic DST.
Collapse
Affiliation(s)
- Theresa Pfurtscheller
- Department of Infectious Diseases and Tropical Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Ana Tsutsunava
- Scientific Department, National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Nino Maghradze
- Scientific Department, National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
- Tuberculosis Research Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Mariam Gujabidze
- Scientific Department, National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Nino Bablishvili
- Scientific Department, National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Seda Yerlikaya
- Department of Infectious Diseases and Tropical Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Claudia M Denkinger
- Department of Infectious Diseases and Tropical Medicine, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Infectious Disease Research, DZIF Partner Site Heidelberg, Heidelberg, Germany
| | - Nestani Tukvadze
- Scientific Department, National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
- University of Basel, Basel, Switzerland
- Clinical Research Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Ankur Gupta-Wright
- Department of Infectious Diseases and Tropical Medicine, University Hospital Heidelberg, Heidelberg, Germany
- Department of Infectious Diseases, Imperial College London, London, UK
| |
Collapse
|
8
|
Ketema T, Tadesse M, Bonsa Z, Balay G, Kebede W, Mekonnen M, Abebe G. Evaluation of extracts from used Xpert MTB/RIF cartridges for detection of resistance to second-line anti-tuberculosis drugs in patients with multidrug-resistant tuberculosis in Ethiopia. BMC Microbiol 2025; 25:26. [PMID: 39825226 PMCID: PMC11740401 DOI: 10.1186/s12866-025-03746-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/06/2025] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Early and accurate diagnosis of drug resistance, including resistance to second-line anti-tuberculosis (TB) drugs, is crucial for the effective control and management of pre-extensively drug-resistant TB (pre-XDR-TB) and extensively drug-resistant TB (XDR-TB). The Xpert MTB/XDR assay is the WHO recommended method for detecting resistance to isoniazid and second-line anti-TB drugs when rifampicin resistance is detected. Currently, the Xpert MTB/XDR assay is not yet implemented in Ethiopia, thus the MTBDRsl assay continues to be used. However, the MTBDRsl assay requires additional patient visits and specimen collection, which can lead to delays in diagnosis and treatment initiation. OBJECTIVE This study aimed to evaluate the feasibility of using extracts from used Xpert MTB/RIF cartridges for detecting resistance to second-line anti-TB drugs by MTBDRsl assay in patients with rifampicin resistant-TB (RR-TB) in Eastern and Western Oromia, Ethiopia. METHODS A cross-sectional diagnostic evaluation study was conducted from June 2020 to May 2021 at two TB Referral Laboratories in Eastern and Western Oromia, Ethiopia. Sputum samples from RR-TB patients were split, with one aliquot being subjected for Xpert testing and the other being cultured on Lowenstein-Jensen media. DNA extracted from the used Xpert cartridges was amplified by PCR and tested by MTBDRsl assay, and the results were compared to those obtained from culture isolates. To establish the detection limits, the MTBDRsl assay was performed on cartridge extracts (CEs) from a series of dilutions of drug-susceptible and multidrug-resistant TB strains. RESULTS The MTBDRsl on CEs from dilutions at ≥ 102 CFU/mL (CT ≤ 22) accurately identified susceptibility and resistance patterns for fluoroquinolones (FQL) and second-line injectable drugs (SLIDs). The MTBDRsl on rifampicin-resistant CEs from sputum samples (n = 40) yielded 100% interpretable results for FQL and 90% (4 indeterminate) interpretable results for SLIDs. All interpretable CE results showed complete agreement with the MTBDRsl results from the culture isolates. CONCLUSION This study demonstrated the feasibility of using extracts from used Xpert MTB/RIF cartridges for detecting resistance to second-line anti-TB drugs using the MTBDRsl assay. This approach could mitigate the need for additional specimen collection and allow for earlier treatment initiation, potentially improving patient outcomes and reducing the transmission of drug-resistant TB strains.
Collapse
Affiliation(s)
- Tilahun Ketema
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Mulualem Tadesse
- Mycobacteriology Research Center, Institute of Health, Jimma University, Jimma, Oromia, Ethiopia
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Oromia, Ethiopia
| | - Zegeye Bonsa
- Mycobacteriology Research Center, Institute of Health, Jimma University, Jimma, Oromia, Ethiopia.
| | - Getu Balay
- Mycobacteriology Research Center, Institute of Health, Jimma University, Jimma, Oromia, Ethiopia
| | - Wakjira Kebede
- Mycobacteriology Research Center, Institute of Health, Jimma University, Jimma, Oromia, Ethiopia
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Oromia, Ethiopia
| | - Mekidim Mekonnen
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Oromia, Ethiopia
| | - Gemeda Abebe
- Mycobacteriology Research Center, Institute of Health, Jimma University, Jimma, Oromia, Ethiopia
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Oromia, Ethiopia
| |
Collapse
|
9
|
Sethi S, Sharma S, Aggarwal AN, Dhatwalia SK, Rana R, Yadav R. Xpert MTB/XDR assay: rapid TB drug resistance detection. Infection 2024; 52:2207-2212. [PMID: 38709461 DOI: 10.1007/s15010-024-02260-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/03/2024] [Indexed: 05/07/2024]
Abstract
PURPOSE To assess the Xpert MTB/XDR assay's efficiency in promptly detecting resistance to isoniazid, fluoroquinolones, ethionamide, and second-line injectable drugs among tuberculosis (TB) patients. METHODS From August 2020 to July 2021, TB suspected patient samples were enrolled at a tertiary care center for our study. We conducted mycobacterial culture, phenotypic DST using proportion method in liquid culture at WHO-recommended concentrations, and the line probe assay (LPA). Simultaneously, the Index test, Xpert MTB/XDR, was performed following the manufacturer's instructions. RESULTS Among 360 samples, 107 were excluded due to incomplete information. Resistance to isoniazid, levofloxacin and moxifloxacin was found in 45/251, 21/251 and 20/251 samples, respectively by phenotypic DST. The diagnostic accuracy of Index test, taking phenotypic DST as a reference standard, was 95.8%, 99.04%, and 99.05% for isoniazid, levofloxacin, and moxifloxacin, respectively. The Index test assay demonstrated a specificity of 99.1% for detecting SLID resistance, yielding a diagnostic accuracy of 99.2. Comparing the Index test with LPA revealed a significant enhancement in sensitivity for detecting isoniazid resistance (86.7% vs. 82.2%). CONCLUSIONS The Index test exhibited promising outcomes in identifying resistance to isoniazid and fluoroquinolones, surpassing the performance of the LPA. This could be valuable for promptly initiating treatment in cases of drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Sunil Sethi
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Shelly Sharma
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ashutosh N Aggarwal
- Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunil Kumar Dhatwalia
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | | | - Rakesh Yadav
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| |
Collapse
|
10
|
Schwab TC, Perrig L, Göller PC, Guebely De la Hoz FF, Lahousse AP, Minder B, Günther G, Efthimiou O, Omar SV, Egger M, Fenner L. Targeted next-generation sequencing to diagnose drug-resistant tuberculosis: a systematic review and meta-analysis. THE LANCET. INFECTIOUS DISEASES 2024; 24:1162-1176. [PMID: 38795712 PMCID: PMC11881551 DOI: 10.1016/s1473-3099(24)00263-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Targeted next-generation sequencing (NGS) can rapidly and simultaneously detect mutations associated with resistance to tuberculosis drugs across multiple gene targets. The use of targeted NGS to diagnose drug-resistant tuberculosis, as described in publicly available data, has not been comprehensively reviewed. We aimed to identify targeted NGS assays that diagnose drug-resistant tuberculosis, determine how widely this technology has been used, and assess the diagnostic accuracy of these assays. METHODS In this systematic review and meta-analysis, we searched MEDLINE, Embase, Cochrane Library, Web of Science Core Collection, Global Index Medicus, Google Scholar, ClinicalTrials.gov, and the WHO International Clinical Trials Registry Platform for published and unpublished reports on targeted NGS for drug-resistant tuberculosis from Jan 1, 2005, to Oct 14, 2022, with updates to our search in Embase and Google Scholar until Feb 13, 2024. Studies eligible for the systematic review described targeted NGS approaches to predict drug resistance in Mycobacterium tuberculosis infections using primary samples, reference strain collections, or cultured isolates from individuals with presumed or confirmed tuberculosis. Our search had no limitations on study type or language, although only reports in English, German, and French were screened for eligibility. For the meta-analysis, we included test accuracy studies that used any reference standard, and we assessed risk of bias using the Quality Assessment of Diagnostic Accuracy Studies-2 tool. The primary outcomes for the meta-analysis were sensitivity and specificity of targeted NGS to diagnose drug-resistant tuberculosis compared to phenotypic and genotypic drug susceptibility testing. We used a Bayesian bivariate model to generate summary receiver operating characteristic plots and diagnostic accuracy measures, overall and stratified by drug and sample type. This study is registered with PROSPERO, CRD42022368707. FINDINGS We identified and screened 2920 reports, of which 124 were eligible for our systematic review, including 37 review articles and 87 reports of studies collecting samples for targeted NGS. Sequencing was mainly done in the USA (14 [16%] of 87), western Europe (ten [11%]), India (ten [11%]), and China (nine [10%]). We included 24 test accuracy studies in the meta-analysis, in which 23 different tuberculosis drugs or drug groups were assessed, covering first-line drugs, injectable drugs, and fluoroquinolones and predominantly comparing targeted NGS with phenotypic drug susceptibility testing. The combined sensitivity of targeted NGS across all drugs was 94·1% (95% credible interval [CrI] 90·9-96·3) and specificity was 98·1% (97·0-98·9). Sensitivity for individual drugs ranged from 76·5% (52·5-92·3) for capreomycin to 99·1% (98·3-99·7) for rifampicin; specificity ranged from 93·1% (88·0-96·3) for ethambutol to 99·4% (98·3-99·8) for amikacin. Diagnostic accuracy was similar for primary clinical samples and culture isolates overall and for rifampicin, isoniazid, ethambutol, streptomycin, and fluoroquinolones, and similar after excluding studies at high risk of bias (overall sensitivity 95·2% [95% CrI 91·7-97·1] and specificity 98·6% [97·4-99·3]). INTERPRETATION Targeted NGS is highly sensitive and specific for detecting drug resistance across panels of tuberculosis drugs and can be performed directly on clinical samples. There is a paucity of data on performance for some currently recommended drugs. The barriers preventing the use of targeted NGS to diagnose drug-resistant tuberculosis in high-burden countries need to be addressed. FUNDING National Institutes of Allergy and Infectious Diseases and Swiss National Science Foundation.
Collapse
Affiliation(s)
- Tiana Carina Schwab
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Lisa Perrig
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | | | | | | | - Beatrice Minder
- Public Health and Primary Care Library, University Library of Bern, University of Bern, Bern, Switzerland
| | - Gunar Günther
- Department of Pulmonology and Allergology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Medical Science, Faculty of Health Sciences, University of Namibia, Windhoek, Namibia
| | - Orestis Efthimiou
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland; Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland
| | - Shaheed Vally Omar
- Centre for Tuberculosis, National & WHO Supranational TB Reference Laboratory, National Institute for Communicable Diseases, a division of the National Health Laboratory Services, Johannesburg, South Africa
| | - Matthias Egger
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland; Centre for Infectious Disease Epidemiology & Research, School of Public Health & Family Medicine, University of Cape Town, Cape Town, South Africa; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Lukas Fenner
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|
11
|
Farhat M, Cox H, Ghanem M, Denkinger CM, Rodrigues C, Abd El Aziz MS, Enkh-Amgalan H, Vambe D, Ugarte-Gil C, Furin J, Pai M. Drug-resistant tuberculosis: a persistent global health concern. Nat Rev Microbiol 2024; 22:617-635. [PMID: 38519618 DOI: 10.1038/s41579-024-01025-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 03/25/2024]
Abstract
Drug-resistant tuberculosis (TB) is estimated to cause 13% of all antimicrobial resistance-attributable deaths worldwide and is driven by both ongoing resistance acquisition and person-to-person transmission. Poor outcomes are exacerbated by late diagnosis and inadequate access to effective treatment. Advances in rapid molecular testing have recently improved the diagnosis of TB and drug resistance. Next-generation sequencing of Mycobacterium tuberculosis has increased our understanding of genetic resistance mechanisms and can now detect mutations associated with resistance phenotypes. All-oral, shorter drug regimens that can achieve high cure rates of drug-resistant TB within 6-9 months are now available and recommended but have yet to be scaled to global clinical use. Promising regimens for the prevention of drug-resistant TB among high-risk contacts are supported by early clinical trial data but final results are pending. A person-centred approach is crucial in managing drug-resistant TB to reduce the risk of poor treatment outcomes, side effects, stigma and mental health burden associated with the diagnosis. In this Review, we describe current surveillance of drug-resistant TB and the causes, risk factors and determinants of drug resistance as well as the stigma and mental health considerations associated with it. We discuss recent advances in diagnostics and drug-susceptibility testing and outline the progress in developing better treatment and preventive therapies.
Collapse
Affiliation(s)
- Maha Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Helen Cox
- Institute of Infectious Disease and Molecular Medicine, Wellcome Centre for Infectious Disease Research and Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa
| | - Marwan Ghanem
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Claudia M Denkinger
- Division of Infectious Disease and Tropical Medicine, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg University Hospital, Heidelberg, Germany
| | | | - Mirna S Abd El Aziz
- Division of Infectious Disease and Tropical Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Debrah Vambe
- National TB Control Programme, Manzini, Eswatini
| | - Cesar Ugarte-Gil
- School of Public and Population Health, University of Texas Medical Branch, Galveston, TX, USA
| | - Jennifer Furin
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | - Madhukar Pai
- McGill International TB Centre, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
12
|
Auma E, Alberts R, Derendinger B, Venter R, Streicher EM, Pillay S, Ghebrekristos YT, Mburu M, Ruhwald M, Warren R, Penn-Nicholson A, Theron G, de Vos M. Diagnostic accuracy of LiquidArray MTB-XDR VER1.0 for the detection of Mycobacterium tuberculosis complex, fluoroquinolone, amikacin, ethambutol, and linezolid susceptibility. RESEARCH SQUARE 2024:rs.3.rs-4841978. [PMID: 39149464 PMCID: PMC11326368 DOI: 10.21203/rs.3.rs-4841978/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Drug susceptibility testing (DST) is essential for effectively starting people on effective tuberculosis (TB) regimens. No accuracy data exists for the new high-throughput LiquidArray MTB-XDR (LA-XDR) test, which detects Mycobacterium tuberculosis complex (MTBC) and susceptibility to the fluoroquinolones, amikacin, ethambutol, and linezolid (the latter two drugs have no rapid molecular DSTs available). We enrolled (n=720) people with presumptive TB who provided two sputa for Xpert MTB/RIF Ultra and culture (MTBC reference standard). Phenotypic DST and Sanger sequencing served as a composite reference standard. Manual FluoroLyse and automated GenoXtract-fleXT (fleXT) DNA extraction methods were compared. For MTBC, LA-XDR using fleXT-extracted or FluoroLyse-extracted DNA had similar sensitivities (85-87%; which improved upon eluate retesting) and specificities (99%). Drug susceptibility sensitivities varied: 94% (86, 98) for fluoroquinolones, 64% (45, 80) for amikacin, and 88% (79, 93) for ethambutol (specificities 97-100%). LA-XDR detected 86% (6/7) phenotypically resistant linezolid isolates. LA-XDR with fleXT had indeterminate proportions of 8% (21/251) for fluoroquinolones, 1% (2/251) for ethambutol, 25% (63/251) for amikacin, and 37% (93/251) for linezolid. In a hypothetical population of 100 smear-negative fluoroquinolones-resistant cases, 24% (24/100) could be missed due to an unsuccessful result (1 fleXT error and, for LA-XDR, 2 invalid results, 15 MTBC-negative, 6 fluoroquinolone-indeterminate, 1 false-susceptible). LA-XDR met the minimum WHO target product profile for a next-generation sputum-based moderate complexity DST with high sensitivity for fluoroquinolones and ethambutol resistance, moderate sensitivity for amikacin resistance, and promise for linezolid resistance, for which more data are needed. Improved MTBC detection would reduce missed resistance.
Collapse
Affiliation(s)
- Erick Auma
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Rencia Alberts
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Brigitta Derendinger
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Rouxjeane Venter
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Elizabeth M Streicher
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Samantha Pillay
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Yonas T Ghebrekristos
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- National Health Laboratory Service, Greenpoint Tuberculosis Laboratory, Cape Town, South Africa
| | | | | | - Robin Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | | - Grant Theron
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | |
Collapse
|
13
|
Auma E, Alberts R, Derendinger B, Venter R, Streicher EM, Pillay S, Ghebrekristos YT, Mburu M, Ruhwald M, Warren R, Penn-Nicholson A, Theron G, de Vos M. Diagnostic accuracy of LiquidArray MTB-XDR VER1.0 for the detection of Mycobacterium tuberculosis complex, fluoroquinolone, amikacin, ethambutol, and linezolid susceptibility. RESEARCH SQUARE 2024:rs.3.rs-4841978. [PMID: 39149464 PMCID: PMC11326368 DOI: 10.21203/rs.3.rs-4841978/v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Drug susceptibility testing (DST) is essential for effectively starting people on effective tuberculosis (TB) regimens. No accuracy data exists for the new high-throughput LiquidArray MTB-XDR (LA-XDR) test, which detects Mycobacterium tuberculosis complex (MTBC) and susceptibility to the fluoroquinolones, amikacin, ethambutol, and linezolid (the latter two drugs have no rapid molecular DSTs available). We enrolled (n=720) people with presumptive TB who provided two sputa for Xpert MTB/RIF Ultra and culture (MTBC reference standard). Phenotypic DST and Sanger sequencing served as a composite reference standard. Manual FluoroLyse and automated GenoXtract-fleXT (fleXT) DNA extraction methods were compared. For MTBC, LA-XDR using fleXT-extracted or FluoroLyse-extracted DNA had similar sensitivities (85-87%; which improved upon eluate retesting) and specificities (99%). Drug susceptibility sensitivities varied: 94% (86, 98) for fluoroquinolones, 64% (45, 80) for amikacin, and 88% (79, 93) for ethambutol (specificities 97-100%). LA-XDR detected 86% (6/7) phenotypically resistant linezolid isolates. LA-XDR with fleXT had indeterminate proportions of 8% (21/251) for fluoroquinolones, 1% (2/251) for ethambutol, 25% (63/251) for amikacin, and 37% (93/251) for linezolid. In a hypothetical population of 100 smear-negative fluoroquinolones-resistant cases, 24% (24/100) could be missed due to an unsuccessful result (1 fleXT error and, for LA-XDR, 2 invalid results, 15 MTBC-negative, 6 fluoroquinolone-indeterminate, 1 false-susceptible). LA-XDR met the minimum WHO target product profile for a next-generation sputum-based moderate complexity DST with high sensitivity for fluoroquinolones and ethambutol resistance, moderate sensitivity for amikacin resistance, and promise for linezolid resistance, for which more data are needed. Improved MTBC detection would reduce missed resistance.
Collapse
Affiliation(s)
- Erick Auma
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Rencia Alberts
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Brigitta Derendinger
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Rouxjeane Venter
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Elizabeth M Streicher
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Samantha Pillay
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Yonas T Ghebrekristos
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- National Health Laboratory Service, Greenpoint Tuberculosis Laboratory, Cape Town, South Africa
| | | | | | - Robin Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | | - Grant Theron
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | |
Collapse
|
14
|
Park M, Kumar K, Coleman M, Martin L, Russell G, Scheelbeek P, Lalvani A, Satta G, Kon OM. TB PCR in BAL and EBUS-TBNA samples for the diagnosis of pulmonary and mediastinal lymph node TB: retrospective TRiBE study. Thorax 2024; 79:870-877. [PMID: 38977374 PMCID: PMC11347229 DOI: 10.1136/thorax-2023-220647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 04/09/2024] [Indexed: 07/10/2024]
Abstract
INTRODUCTION The role of Xpert Ultra in bronchoalveolar lavage (BAL) and endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) samples for pulmonary and mediastinal lymph node tuberculosis (TB) remains unclear. METHODS This was a retrospective observational service evaluation at a tertiary TB centre in a low-incidence setting. The diagnostic indices of Xpert Ultra, smear and culture (with cytology for EBUS-TBNA samples) were compared with culture positivity or a composite reference standard of clinical TB diagnosis. Trace readouts, a new category of results for Xpert Ultra indicating low bacillary load, were analysed in two ways as a true positive or true negative result. 282 BAL and 139 EBUS-TBNA samples were included in the analysis. RESULTS BAL: sensitivity with 95% CI against culture-confirmed pulmonary TB from BAL samples for Xpert Ultra (trace as positive) was 0.91 (0.82 to 0.98), Xpert Ultra (trace as negative) was 0.76 (0.69 to 0.83), smear was 0.38 (p=0.0009) and culture was 1.00 (0.91 to 1.00). Specificities for all the tests were ≥0.99 (0.98 to 1.00). The addition of smear to Xpert Ultra did not improve the diagnostic accuracy.EBUS-TBNA: sensitivity against culture-confirmed TB from EBUS-TBNA samples for Xpert Ultra (trace as positive) was 0.71 (0.63 to 0.78), Xpert Ultra (trace as negative) was 0.59 (0.54 to 0.63), smear was 0.12 (p=0.002), culture was 1.00 (0.89 to 1.00), cytology was 0.87 (0.76 to 0.98) and rapid on-site evaluation of cytology (ROSE) was 0.92 (0.78 to 1.00). Specificities were 0.99 (0.97 to 1.00), 0.99 (0.97 to 1.00), 1.00 (0.98 to 1.00), 1.00 (0.98 to 1.00), 0.67 (0.67 to 0.68) and 0.42, respectively. CONCLUSION Xpert Ultra had a significantly higher sensitivity compared with smear in both BAL and EBUS-TBNA samples. Xpert Ultra had a lower sensitivity compared with culture but comparable specificity with results being available within <24 hours. Trace readings in our low-incidence setting were associated with culture positivity in all BAL samples.
Collapse
Affiliation(s)
- Mirae Park
- Department of Respiratory Medicine, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Kartik Kumar
- Department of Respiratory Medicine, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Meg Coleman
- Department of Respiratory Medicine, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Laura Martin
- Department of Respiratory Medicine, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Georgina Russell
- Department of Respiratory Medicine, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | | | - Ajit Lalvani
- Tuberculosis Research Unit, Imperial College London, London, UK
| | - Giovanni Satta
- University College Hospitals London NHS Foundation Trust, London, UK
| | - Onn Min Kon
- Department of Respiratory Medicine, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
15
|
Chacko B, Chaudhry D, Peter JV, Khilnani GC, Saxena P, Sehgal IS, Ahuja K, Rodrigues C, Modi M, Jaiswal A, Jasiel GJ, Sahasrabudhe S, Bose P, Ahuja A, Suprapaneni V, Prajapat B, Manesh A, Chawla R, Guleria R. ISCCM Position Statement on the Approach to and Management of Critically Ill Patients with Tuberculosis. Indian J Crit Care Med 2024; 28:S67-S91. [PMID: 39234233 PMCID: PMC11369919 DOI: 10.5005/jp-journals-10071-24783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 09/06/2024] Open
Abstract
Tuberculosis (TB) is an important cause of morbidity and mortality globally. About 3-4% of hospitalized TB patients require admission to the intensive care unit (ICU); the mortality in these patients is around 50-60%. There is limited literature on the evaluation and management of patients with TB who required ICU admission. The Indian Society of Critical Care Medicine (ISCCM) constituted a working group to develop a position paper that provides recommendations on the various aspects of TB in the ICU setting based on available evidence. Seven domains were identified including the categorization of TB in the critically ill, diagnostic workup, drug therapy, TB in the immunocompromised host, organ support, infection control, and post-TB sequelae. Forty-one questions pertaining to these domains were identified and evidence-based position statements were generated, where available, keeping in focus the critical care aspects. Where evidence was not available, the recommendations were based on consensus. This position paper guides the approach to and management of critically ill patients with TB. How to cite this article Chacko B, Chaudhry D, Peter JV, Khilnani G, Saxena P, Sehgal IS, et al. isccm Position Statement on the Approach to and Management of Critically Ill Patients with Tuberculosis. Indian J Crit Care Med 2024;28(S2):S67-S91.
Collapse
Affiliation(s)
- Binila Chacko
- Medical Intensive Care Unit, Christian Medical College, Vellore, Tamil Nadu, India
| | - Dhruva Chaudhry
- Department of Pulmonary and Critical Care Medicine, Pt BDS Post Graduate Institute of Medical Sciences, Rohtak, Haryana, India
| | - John V Peter
- Medical Intensive Care Unit, Christian Medical College, Vellore, Tamil Nadu, India
| | - Gopi C Khilnani
- Department of Pulmonary, Critical Care and Sleep Medicine, PSRI Hospital, New Delhi, India
| | - Prashant Saxena
- Department of Pulmonary, Critical Care and Sleep Medicine, Fortis Hospital, Vasant Kung, New Delhi, India
| | - Inderpaul S Sehgal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, Punjab, India
| | - Kunal Ahuja
- Department of Pulmonary, Critical Care and Sleep Medicine, PSRI Hospital, New Delhi, India
| | - Camilla Rodrigues
- Department of Lab Medicine, Hinduja Hospital, Mumbai, Maharashtra, India
| | - Manish Modi
- Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, Punjab, India
| | - Anand Jaiswal
- Deparment of Respiratory Diseases, Medanta Medicity, Gurugram, Haryana, India
| | - G Joel Jasiel
- Medical Intensive Care Unit, Christian Medical College, Vellore, Tamil Nadu, India
| | - Shrikant Sahasrabudhe
- Department of Critical Care Medicine and Pulmonology, KIMS Manavata Hospital, Nashik, Maharashtra, India
| | - Prithviraj Bose
- Medical Intensive Care Unit, Christian Medical College, Vellore, Tamil Nadu, India
| | - Aman Ahuja
- Department of Pulmonary and Critical Care Medicine, PGIMS, Rohtak, Haryana, India
| | - Vineela Suprapaneni
- Department of Pulmonary and Critical Care Medicine, PGIMS, Rohtak, Haryana, India
| | - Brijesh Prajapat
- Department of Pulmonary and Critical Care Medicine, Yashoda Group of Hospitals, Ghaziabad, Uttar Pradesh, India
| | - Abi Manesh
- Department of Infectious Diseases, Christian Medical College, Vellore, Tamil Nadu, India
| | - Rajesh Chawla
- Department of Respiratory Medicine, Critical Care and Sleep Medicine, Indraprastha Apollo Hospitals, New Delhi, India
| | - Randeep Guleria
- Institute of Internal Medicine and Respiratory and Sleep Medicine, Medanta Medical School, Gurugram, Haryana, India
| |
Collapse
|
16
|
Basile FW, Sweeney S, Singh MP, Bijker EM, Cohen T, Menzies NA, Vassall A, Indravudh P. Uncertainty in tuberculosis clinical decision-making: An umbrella review with systematic methods and thematic analysis. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0003429. [PMID: 39042611 PMCID: PMC11265660 DOI: 10.1371/journal.pgph.0003429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/12/2024] [Indexed: 07/25/2024]
Abstract
Tuberculosis is a major infectious disease worldwide, but currently available diagnostics have suboptimal accuracy, particularly in patients unable to expectorate, and are often unavailable at the point-of-care in resource-limited settings. Test/treatment decision are, therefore, often made on clinical grounds. We hypothesized that contextual factors beyond disease probability may influence clinical decisions about when to test and when to treat for tuberculosis. This umbrella review aimed to identify such factors, and to develop a framework for uncertainty in tuberculosis clinical decision-making. Systematic reviews were searched in seven databases (MEDLINE, CINAHL Complete, Embase, Scopus, Cochrane, PROSPERO, Epistemonikos) using predetermined search criteria. Findings were classified as barriers and facilitators for testing or treatment decisions, and thematically analysed based on a multi-level model of uncertainty in health care. We included 27 reviews. Study designs and primary aims were heterogeneous, with seven meta-analyses and three qualitative evidence syntheses. Facilitators for decisions to test included providers' advanced professional qualification and confidence in tests results, availability of automated diagnostics with quick turnaround times. Common barriers for requesting a diagnostic test included: poor provider tuberculosis knowledge, fear of acquiring tuberculosis through respiratory sampling, scarcity of healthcare resources, and complexity of specimen collection. Facilitators for empiric treatment included patients' young age, severe sickness, and test inaccessibility. Main barriers to treatment included communication obstacles, providers' high confidence in negative test results (irrespective of negative predictive value). Multiple sources of uncertainty were identified at the patient, provider, diagnostic test, and healthcare system levels. Complex determinants of uncertainty influenced decision-making. This could result in delayed or missed diagnosis and treatment opportunities. It is important to understand the variability associated with patient-provider clinical encounters and healthcare settings, clinicians' attitudes, and experiences, as well as diagnostic test characteristics, to improve clinical practices, and allow an impactful introduction of novel diagnostics.
Collapse
Affiliation(s)
- Francesca Wanda Basile
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Department of Global Health and Development, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Sedona Sweeney
- Department of Global Health and Development, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Maninder Pal Singh
- Department of Global Health and Development, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Else Margreet Bijker
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Department of Paediatrics, Maastricht University Medical Centre, MosaKids Children’s Hospital, Maastricht, the Netherlands
| | - Ted Cohen
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Nicolas A. Menzies
- Department of Global Health and Population, Harvard TH Chan School of Public Health, Boston, Massachusetts, United States of America
- Center for Health Decision Science, Harvard TH Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Anna Vassall
- Department of Global Health and Development, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Pitchaya Indravudh
- Department of Global Health and Development, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
17
|
Maya T, Wilfred A, Lubinza C, Mfaume S, Mafie M, Mtunga D, Kingalu A, Mgina N, Petrucka P, Doulla BE, Ngadaya E, Mfinanga SG, Mnyambwa NP. Diagnostic accuracy of the Xpert ® MTB/XDR assay for detection of Isoniazid and second-line antituberculosis drugs resistance at central TB reference laboratory in Tanzania. BMC Infect Dis 2024; 24:672. [PMID: 38965482 PMCID: PMC11229014 DOI: 10.1186/s12879-024-09562-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
INTRODUCTION Early diagnosis of tuberculosis (TB) and universal access to drug-susceptibility testing (DST) are critical elements of the WHO End TB Strategy. Current rapid tests (e.g., Xpert® MTB/RIF and Ultra-assays) can detect rifampicin resistance-conferring mutations, but cannot detect resistance to Isoniazid and second-line anti-TB agents. Although Line Probe Assay is capable of detecting resistance to second-line anti-TB agents, it requires sophisticated laboratory infrastructure and advanced skills which are often not readily available in settings replete with TB. A rapid test capable of detecting Isoniazid and second-line anti-TB drug resistance is highly needed. METHODS We conducted a diagnostic accuracy study to evaluate a new automated Xpert MTB/XDR 10-colour assay for rapid detection of Isoniazid and second-line drugs, including ethionamide, fluoroquinolones, and injectable drugs (Amikacin, Kanamycin, and Capreomycin). Positive Xpert MTB/RIF respiratory specimens were prospectively collected through routine diagnosis and surveillance of drug resistance at the Central TB Reference Laboratory in Tanzania. Specimens were tested by both Xpert XDR assay and LPA against culture-based phenotypic DST as the reference standard. FINDINGS We analysed specimens from 151 TB patients with a mean age (SD) of 36.2 (12.7) years. The majority (n = 109, 72.2%) were males. The sensitivity for Xpert MTB/XDR was 93.5% (95% CI, 87.4-96.7); for Isoniazid, 96.6 (95% CI, 92.1-98.6); for Fluoroquinolone, 98.7% (95% Cl 94.8-99.7); for Amikacin, 96.6%; and (95% CI 92.1-98.6) for Ethionamide. Ethionamide had the lowest specificity of 50% and the highest was 100% for Fluoroquinolone. The diagnostic performance was generally comparable to that of LPA with slight variations between the two assays. The non-determinate rate (i.e., invalid M. tuberculosis complex detection) of Xpert MTB/XDR was 2·96%. CONCLUSION The Xpert MTB/XDR demonstrated high sensitivity and specificity for detecting resistance to Isoniazid, Fluoroquinolones, and injectable agents. This assay can be used in clinical settings to facilitate rapid diagnosis of mono-isoniazid and extensively drug-resistant TB.
Collapse
Affiliation(s)
- Togolani Maya
- Central TB Reference Laboratory, Dar es Salaam, Tanzania
| | - Aman Wilfred
- Muhimbili Research Centre, National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Clara Lubinza
- Muhimbili Research Centre, National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Saidi Mfaume
- Central TB Reference Laboratory, Dar es Salaam, Tanzania
- Muhimbili Research Centre, National Institute for Medical Research, Dar es Salaam, Tanzania
| | | | - Daphne Mtunga
- Central TB Reference Laboratory, Dar es Salaam, Tanzania
| | - Amri Kingalu
- Central TB Reference Laboratory, Dar es Salaam, Tanzania
| | - Nicodem Mgina
- Central TB Reference Laboratory, Dar es Salaam, Tanzania
| | - Pammla Petrucka
- College of Nursing, University of Saskatchewan, Saskatoon, Canada
| | - Basra E Doulla
- Central TB Reference Laboratory, Dar es Salaam, Tanzania
| | - Esther Ngadaya
- Muhimbili Research Centre, National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Sayoki G Mfinanga
- Muhimbili Research Centre, National Institute for Medical Research, Dar es Salaam, Tanzania
- Alliance for Africa Health and Research, Dar es Salaam, Tanzania
- Kampala International University, Dar es Salaam, Tanzania
| | - Nicholaus P Mnyambwa
- Muhimbili Research Centre, National Institute for Medical Research, Dar es Salaam, Tanzania.
- Alliance for Africa Health and Research, Dar es Salaam, Tanzania.
| |
Collapse
|
18
|
Sharma K, Sharma M, Shree R, Singla N, Joshi H, Modi T, Goyal M, Sharma A, Sharma N, Modi M. Utilization of Truenat chips in defining XDR, pre-XDR and MDR in tuberculous meningitis. Tuberculosis (Edinb) 2024; 147:102513. [PMID: 38547569 DOI: 10.1016/j.tube.2024.102513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 06/14/2024]
Abstract
SETTING AND OBJECTIVE To develop and evaluate newer molecular tests that identify drug resistance according to contemporary definitions in Tuberculous meningitis (TBM), the most severe form of EPTB. DESIGN 93 cerebrospinal fluid (CSF) specimens [41 culture-positive and 52 culture-negative], were subjected to Truenat MTB Plus assay along with chips for rifampicin, isoniazid, fluoroquinolones and bedaquiline resistance. The performance was compared against phenotypic drug susceptibility testing (pDST), Line probe assay (LPA) and gene sequencing. RESULTS Against pDST, Truenat chips had a sensitivity and specificity of 100%; 94.47%, 100%; 94.47%, 100%; 97.14% and 100%; 100%, respectively for rifampicin, isoniazid, fluoroquinolones and bedaquiline. Against LPA, all Truenat chips detected resistant isolates with 100% sensitivity; but 2 cases each of false-rifampicin and false-isoniazid resistance and 1 case of false-fluoroquinolone resistance was reported. Truenat drug chips gave indeterminate results in ∼25% cases, which were excluded. All cases reported indeterminate were found to be susceptible by pDST/LPA. CONCLUSION The strategic drug resistance chips of Truenat Plus assay can contribute greatly to TB elimination by providing rapid and reliable detection of drug resistance pattern in TBM. Cases reported indeterminate require confirmation by other phenotypic and genotypic methods.
Collapse
Affiliation(s)
- Kusum Sharma
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Megha Sharma
- Department of Microbiology, All India Institute of Medical Sciences, Bilaspur, Himachal Pradesh, India
| | - Ritu Shree
- Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Neeraj Singla
- Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Himanshu Joshi
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Tanish Modi
- Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manoj Goyal
- Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aman Sharma
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Navneet Sharma
- Department of Emergency Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manish Modi
- Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
19
|
Zhang H, Li L, Liu Y, Xiao W, Xu R, Lu M, Hao W, Gao Y, Tang X, Dai Y. Serum cytokine biosignatures for identification of tuberculosis among HIV-positive inpatients. Thorax 2024; 79:465-471. [PMID: 38490721 PMCID: PMC11041549 DOI: 10.1136/thorax-2023-220782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 02/06/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Serum cytokines correlate with tuberculosis (TB) progression and are predictors of TB recurrence in people living with HIV. We investigated whether serum cytokine biosignatures could diagnose TB among HIV-positive inpatients. METHODS We recruited HIV-positive inpatients with symptoms of TB and measured serum levels of inflammation biomarkers including IL-2, IL-4, IL-6, IL-10, tumour necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ). We then built and tested our TB prediction model. RESULTS 236 HIV-positive inpatients were enrolled in the first cohort and all the inflammation biomarkers were significantly higher in participants with microbiologically confirmed TB than those without TB. A binary support vector machine (SVM) model was built, incorporating the data of four biomarkers (IL-6, IL-10, TNF-α and IFN-γ). Efficacy of the SVM model was assessed in training (n=189) and validation (n=47) sets with area under the curve (AUC) of 0.92 (95% CI 0.88 to 0.96) and 0.85 (95% CI 0.72 to 0.97), respectively. In an independent test set (n=110), the SVM model yielded an AUC of 0.85 (95% CI 0.76 to 0.94) with 78% (95% CI 68% to 87%) specificity and 85% (95% CI 66% to 96%) sensitivity. Moreover, the SVM model outperformed interferon-gamma release assay (IGRA) among advanced HIV-positive inpatients irrespective of CD4+ T-cell counts, which may be an alternative approach for identifying Mycobacterium tuberculosis infection among HIV-positive inpatients with negative IGRA. CONCLUSIONS The four-cytokine biosignature model successfully identified TB among HIV-positive inpatients. This diagnostic model may be an alternative approach to diagnose TB in advanced HIV-positive inpatients with low CD4+ T-cell counts.
Collapse
Affiliation(s)
- Huihua Zhang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - LingHua Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - YanXia Liu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Xiao
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, China
| | - RuiYao Xu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Medicine, Shenzhen University, Shenzhen, Guangdong, China
| | - MengRu Lu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - WenBiao Hao
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - YuChi Gao
- Clinical Laboratory, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Xiaoping Tang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Youchao Dai
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Dai C, Xiong H, He R, Zhu C, Li P, Guo M, Gou J, Mei M, Kong D, Li Q, Wee ATS, Fang X, Kong J, Liu Y, Wei D. Electro-Optical Multiclassification Platform for Minimizing Occasional Inaccuracy in Point-of-Care Biomarker Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312540. [PMID: 38288781 DOI: 10.1002/adma.202312540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/13/2024] [Indexed: 02/06/2024]
Abstract
On-site diagnostic tests that accurately identify disease biomarkers lay the foundation for self-healthcare applications. However, these tests routinely rely on single-mode signals and suffer from insufficient accuracy, especially for multiplexed point-of-care tests (POCTs) within a few minutes. Here, this work develops a dual-mode multiclassification diagnostic platform that integrates an electrochemiluminescence sensor and a field-effect transistor sensor in a microfluidic chip. The microfluidic channel guides the testing samples to flow across electro-optical sensor units, which produce dual-mode readouts by detecting infectious biomarkers of tuberculosis (TB), human rhinovirus (HRV), and group B streptococcus (GBS). Then, machine-learning classifiers generate three-dimensional (3D) hyperplanes to diagnose different diseases. Dual-mode readouts derived from distinct mechanisms enhance the anti-interference ability physically, and machine-learning-aided diagnosis in high-dimensional space reduces the occasional inaccuracy mathematically. Clinical validation studies with 501 unprocessed samples indicate that the platform has an accuracy approaching 99%, higher than the 77%-93% accuracy of rapid point-of-care testing technologies at 100% statistical power (>150 clinical tests). Moreover, the diagnosis time is 5 min without a trade-off of accuracy. This work solves the occasional inaccuracy issue of rapid on-site diagnosis, endowing POCT systems with the same accuracy as laboratory tests and holding unique prospects for complicated scenes of personalized healthcare.
Collapse
Affiliation(s)
- Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, China
| | - Huiwen Xiong
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Rui He
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 73000, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Chenxin Zhu
- Institute of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Pintao Li
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Mingquan Guo
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Jian Gou
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Miaomiao Mei
- Yizheng Hospital of Traditional Chinese Medicine, Yangzhou, 211400, China
| | - Derong Kong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Andrew Thye Shen Wee
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Xueen Fang
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Jilie Kong
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, China
| |
Collapse
|
21
|
Liu A, Liu S, Lv K, Zhu Q, Wen J, Li J, Liang C, Huang X, Gong C, Sun Q, Gu H. Rapid detection of multidrug resistance in tuberculosis using nanopore-based targeted next-generation sequencing: a multicenter, double-blind study. Front Microbiol 2024; 15:1349715. [PMID: 38495513 PMCID: PMC10940340 DOI: 10.3389/fmicb.2024.1349715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/13/2024] [Indexed: 03/19/2024] Open
Abstract
Background Resistance to anti-tuberculous drugs is a major challenge in the treatment of tuberculosis (TB). We aimed to evaluate the clinical availability of nanopore-based targeted next-generation sequencing (NanoTNGS) for the diagnosis of drug-resistant tuberculosis (DR-TB). Methods This study enrolled 253 patients with suspected DR-TB from six hospitals. The diagnostic efficacy of NanoTNGS for detecting Mycobacterium tuberculosis and its susceptibility or resistance to first- and second-line anti-tuberculosis drugs was assessed by comparing conventional phenotypic drug susceptibility testing (pDST) and Xpert MTB/RIF assays. NanoTNGS can be performed within 12 hours from DNA extraction to the result delivery. Results NanoTNGS showed a remarkable concordance rate of 99.44% (179/180) with the culture assay for identifying the Mycobacterium tuberculosis complex. The sensitivity of NanoTNGS for detecting drug resistance was 93.53% for rifampicin, 89.72% for isoniazid, 85.45% for ethambutol, 74.00% for streptomycin, and 88.89% for fluoroquinolones. Specificities ranged from 83.33% to 100% for all drugs tested. Sensitivity for rifampicin-resistant tuberculosis using NanoTNGS increased by 9.73% compared to Xpert MTB/RIF. The most common mutations were S531L (codon in E. coli) in the rpoB gene, S315T in the katG gene, and M306V in the embB gene, conferring resistance to rifampicin, isoniazid, and ethambutol, respectively. In addition, mutations in the pncA gene, potentially contributing to pyrazinamide resistance, were detected in 32 patients. Other prevalent variants, including D94G in the gyrA gene and K43R in the rpsL gene, conferred resistance to fluoroquinolones and streptomycin, respectively. Furthermore, the rv0678 R94Q mutation was detected in one sample, indicating potential resistance to bedaquiline. Conclusion NanoTNGS rapidly and accurately identifies resistance or susceptibility to anti-TB drugs, outperforming traditional methods. Clinical implementation of the technique can recognize DR-TB in time and provide guidance for choosing appropriate antituberculosis agents.
Collapse
Affiliation(s)
- Aimei Liu
- Department of Tuberculosis, Guangxi Zhuang Autonomous Region Chest Hospital, Liuzhou, Guangxi, China
| | - Sang Liu
- Department of Tuberculosis, Guangxi Zhuang Autonomous Region Chest Hospital, Liuzhou, Guangxi, China
| | - Kangyan Lv
- Department of Tuberculosis, Guangxi Zhuang Autonomous Region Chest Hospital, Liuzhou, Guangxi, China
| | - Qingdong Zhu
- Department of Tuberculosis, The Fourth People's Hospital of Nanning, Nanning, Guangxi, China
| | - Jun Wen
- Department of Pulmonary Medicine, The Third People's Hospital of Guilin, Guilin, Guangxi, China
| | - Jianpeng Li
- Department of Pulmonary Medicine, The Third People's Hospital of Wuzhou, Wuzhou, Guangxi, China
| | - Chengyuan Liang
- Department of Infectious Diseases, The People's Hospital of Baise, Baise, Guangxi, China
| | - Xuegang Huang
- Department of Infectious Diseases, The First People's Hospital of Fangchenggang, Fangchenggang, Guangxi, China
| | - Chunming Gong
- Department of Tuberculosis, Guangxi Zhuang Autonomous Region Chest Hospital, Liuzhou, Guangxi, China
| | - Qingfeng Sun
- Department of Tuberculosis, Guangxi Zhuang Autonomous Region Chest Hospital, Liuzhou, Guangxi, China
| | - Hongcang Gu
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| |
Collapse
|
22
|
Liang R, Li J, Zhao Y, Qi H, Bao S, Wang F, Duan H, Huang H. A comparative study of MassARRAY and GeneXpert assay in detecting rifampicin resistance in tuberculosis patients' clinical specimens. Front Microbiol 2024; 15:1287806. [PMID: 38384275 PMCID: PMC10879633 DOI: 10.3389/fmicb.2024.1287806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
Objectives Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has emerged as a potent tool for detecting drug resistance in tuberculosis (TB); however, concerns about its reliability have been raised. In this study, we assessed the reliability of MassARRAY (Sequenom, Inc.), which is a MALDI-TOF MS-based method, by comparing it to the well-established GeneXpert assay (Cepheid) as a reference method. Methods A retrospective study was conducted using laboratory data retrieved from Henan Chest Hospital (Zhengzhou, China). To ensure a rigorous evaluation, we adopted a comprehensive assessment approach by integrating multiple outcomes of the Xpert assay across various specimen types. Results Among the 170 enrolled TB cases, MassARRAY demonstrated significantly higher sensitivity (85.88%, 146 of 170) compared to the Xpert assay (76.62%, 118 of 154) in TB diagnosis (p < 0.05). The concordance in detecting rifampicin resistance between MassARRAY and the combined outcomes of the Xpert assay was 90%, while it was 97.37% (37 of 38) among smear-positive cases and 89.06% (57 of 64) among culture-positive cases. When compared to the phenotypic susceptibility outcomes of the 12 included drugs, consistency rates of 81.8 to 93.9% were obtained, with 87.9% for multiple drug resistance (MDR) identification. Conclusion MassARRAY demonstrates high reliability in detecting rifampicin resistance, and these findings may offer a reasonable basis for extrapolation to other drugs included in the test panel.
Collapse
Affiliation(s)
- Ruixia Liang
- Tuberculosis Department, Henan Chest Hospital, Zhengzhou, China
| | - Jiankang Li
- Tuberculosis Department, Henan Chest Hospital, Zhengzhou, China
| | - Yue Zhao
- Clinical Laboratory, Henan Chest Hospital, Zhengzhou, China
| | - Haoran Qi
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Institute, Capital Medical University, Beijing, China
| | - Shengjuan Bao
- Tuberculosis Department, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Fen Wang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Institute, Capital Medical University, Beijing, China
| | - Hongfei Duan
- Tuberculosis Department, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hairong Huang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Institute, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Boast A, How JA, Lau C, Sett A, Gilby D, Burke A, McWhinney B, Wright C, Tramontana A, Globan M, Denholm J, Graham SM, Osowicki J. Pre-extensively Drug-Resistant Congenital Tuberculosis in an Extremely Premature Baby. Clin Infect Dis 2024; 78:149-153. [PMID: 37681559 PMCID: PMC10810709 DOI: 10.1093/cid/ciad540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/06/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023] Open
Abstract
We describe a case of congenital tuberculosis in an extremely premature baby, with rapid molecular detection of a pre-extensively drug-resistant (XDR) pattern of drug resistance. The baby was treated successfully with a regimen including bedaquline and delamanid, drugs not previously described in the treatment of congenital tuberculosis (TB).
Collapse
Affiliation(s)
- Alison Boast
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- Infectious Diseases Unit, Department of General Medicine, Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
- Antimicrobials Research Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Jeu Ann How
- Newborn Services, Joan Kirner Women's and Children's Hospital, St Albans, Victoria, Australia
| | - Charis Lau
- Newborn Services, Joan Kirner Women's and Children's Hospital, St Albans, Victoria, Australia
- Pharmacy Department, Joan Kirner Women's and Children's Hospital, St Albans, Victoria, Australia
| | - Arun Sett
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, Australia
- Newborn Research Centre, The Royal Women's Hospital, Parkville, Victoria, Australia
- Centre of Research Excellence in Newborn Medicine, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Damien Gilby
- Newborn Services, Joan Kirner Women's and Children's Hospital, St Albans, Victoria, Australia
| | - Andrew Burke
- Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, Queensland, Australia
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Brett McWhinney
- Department of Chemical Pathology, Pathology Queensland, Queensland Health, Herston, Australia
| | - Connor Wright
- Department of Infectious Diseases, Western Health, St Albans, Victoria, Australia
| | - Adrian Tramontana
- Department of Infectious Diseases, Western Health, St Albans, Victoria, Australia
| | - Maria Globan
- Mycobacterium Reference Laboratory, Victorian Infectious Diseases Reference Laboratory, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Justin Denholm
- Victorian Tuberculosis Program, Melbourne Health, Parkville, Victoria, Australia
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Stephen M Graham
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Joshua Osowicki
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- Infectious Diseases Unit, Department of General Medicine, Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| |
Collapse
|
24
|
Ou X, Song Z, Zhao B, Pei S, Teng C, Zheng H, He W, Xing R, Wang Y, Wang S, Xia H, Zhou Y, He P, Zhao Y. Diagnostic efficacy of an optimized nucleotide MALDI-TOF-MS assay for anti-tuberculosis drug resistance detection. Eur J Clin Microbiol Infect Dis 2024; 43:105-114. [PMID: 37980301 DOI: 10.1007/s10096-023-04700-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/01/2023] [Indexed: 11/20/2023]
Abstract
PURPOSE We aimed at evaluating the diagnostic efficacy of a nucleotide matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) assay to detect drug resistance of Mycobacterium tuberculosis. METHODS Overall, 263 M. tuberculosis clinical isolates were selected to evaluate the performance of nucleic MALDI-TOF-MS for rifampin (RIF), isoniazid (INH), ethambutol (EMB), moxifloxacin (MXF), streptomycin (SM), and pyrazinamide (PZA) resistance detection. The results for RIF, INH, EMB, and MXF were compared with phenotypic microbroth dilution drug susceptibility testing (DST) and whole-genome sequencing (WGS), and the results for SM and PZA were compared with those obtained by WGS. RESULTS Using DST as the gold standard, the sensitivity, specificity, and kappa values of the MALDI-TOF-MS assay for the detection of resistance were 98.2%, 98.7%, and 0.97 for RIF; 92.8%, 99%, and 0.90 for INH; 82.4%, 98.0%, and 0.82 for EMB; and 92.6%, 99.5%, and 0.94 for MXF, respectively. Compared with WGS as the reference standard, the sensitivity, specificity, and kappa values of the MALDI-TOF-MS assay for the detection of resistance were 97.4%, 100.0%, and 0.98 for RIF; 98.7%, 92.9%, and 0.92 for INH; 96.3%, 100.0%, and 0.98 for EMB; 98.1%, 100.0%, and 0.99 for MXF; 98.0%, 100.0%, and 0.98 for SM; and 50.0%, 100.0%, and 0.65 for PZA. CONCLUSION The nucleotide MALDI-TOF-MS assay yielded highly consistent results compared to DST and WGS, suggesting that it is a promising tool for the rapid detection of sensitivity to RIF, INH, EMB, and MXF.
Collapse
Affiliation(s)
- Xichao Ou
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, No. 155 Chang Bai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Zexuan Song
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, No. 155 Chang Bai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Bing Zhao
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, No. 155 Chang Bai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Shaojun Pei
- School of Public Health, Peking University, Beijing, 100191, China
| | - Chong Teng
- Department of Tuberculosis, Beijing Dongcheng District Center for Disease Control, Beijing, 100050, China
| | - Huiwen Zheng
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Wencong He
- Clinical Laboratory, Beijing Tong Ren Hospital, Capital Medical University, Beijing, 100730, China
| | - Ruida Xing
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, No. 155 Chang Bai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Yiting Wang
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, No. 155 Chang Bai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Shengfen Wang
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, No. 155 Chang Bai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Hui Xia
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, No. 155 Chang Bai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Yang Zhou
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, No. 155 Chang Bai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Ping He
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, No. 155 Chang Bai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Yanlin Zhao
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, No. 155 Chang Bai Road, Changping District, Beijing, 102206, People's Republic of China.
| |
Collapse
|
25
|
Dudnyk A, Hempel M, Lytvyniuk O, Liudkevych H, Matsera V, Nikitchenko T, Blyzniuk S, Molina-Moya B, Preyer R, Domínguez J. Impact of line probe assay-based molecular testing on individualized treatment in patients with rifampicin-resistant tuberculosis: data from the prospective INNOVA4TB cohort study in Ukraine. Ther Adv Respir Dis 2024; 18:17534666241249841. [PMID: 38817020 PMCID: PMC11143817 DOI: 10.1177/17534666241249841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/10/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Ukraine remains a high World Health Organization priority country for drug-resistant tuberculosis (TB). Rifampicin-resistant TB (RR-TB) has a more protracted, more complicated, and more expensive treatment. In 2021, Ukraine reported 4025 RR-TB cases - 5.4 times more (751) than all 30 European Union/ European Economic Area countries together. OBJECTIVES The objective of the study was to determine the diagnostic accuracy of line probe assay (LPA), AID Autoimmun Diagnostika GmbH, for detecting resistance to anti-TB drugs and its clinical application for selecting treatment regimens. DESIGN A prospective observational cohort study. METHODS From May 2019 to June 2020, we consecutively enrolled patients with active TB hospitalized at the Regional Phthisiopulmonology Center (Vinnytsia, Ukraine), aged between 18 and 82 years. The LPA was performed in the Genetic Research Laboratory at National Pirogov Memorial Medical University, Vinnytsia, Ukraine. RESULTS A total of 84 clinical specimens and 97 culture isolates from 126 TB patients were tested during the study. Accuracy (95% confidence interval) of LPA for clinical samples in comparison with phenotypic drug susceptibility test (DST) was 80.1 (68.5-89.0) for isoniazid (H), 74.7 (62.4-84.6) for rifampicin (R), 74.4 (62.5-84.1) for ethambutol, 71.4 (41.9-91.6) for streptomycin, 84.6 (62.4-96.5) for prothionamide/ethionamide, and 84.6 (73.6-92.3) for levofloxacin (Lfx), respectively. We found a significantly higher sensitivity of LPA for H, R, and Lfx for the culture isolates compared to clinical specimens (p < 0.05). LPA detected different mutations in 6 out of 17 (35.5%) patients susceptible to R by Xpert. A shorter treatment regimen with an injectable agent demonstrated a low suitability rate of 5% (8/156) in a cohort of RR-TB patients from Ukraine. CONCLUSION Initial LPA testing accurately identifies resistance to anti-TB drugs and facilitates the selection of an appropriate treatment regimen, minimizing exposure to empirical therapy.
Collapse
Affiliation(s)
- Andrii Dudnyk
- Department of Tuberculosis, Clinical Immunology and Allergy, National Pirogov Memorial Medical University, 56 Pyrogova St., Vinnytsia 21018, Ukraine
- Institut d’Investigació Germans Trias i Pujol (IGTP), Mar Building, P1-18, Carretera de Can Ruti, Camí de les Escoles s/n, Badalona 08916, Barcelona, Spain
| | | | - Oksana Lytvyniuk
- Department of Tuberculosis, Clinical Immunology and Allergy, National Pirogov Memorial Medical University, Vinnytsia, Ukraine
| | - Halyna Liudkevych
- Genetic Research Laboratory, National Pirogov Memorial Medical University, Vinnytsia, Ukraine
| | - Volodymyr Matsera
- Department of Drug-Resistant Tuberculosis, Regional Phthisiopulmonology Center, Bohonyky, Vinnytsia Region, Ukraine
| | - Tetiana Nikitchenko
- Department of Drug-Resistant Tuberculosis, Regional Phthisiopulmonology Center, Bohonyky, Vinnytsia Region, Ukraine
| | - Svitlana Blyzniuk
- Department of Drug-Susceptible Tuberculosis, Regional Phthisiopulmonology Center, Bohonyky, Vinnytsia Region, Ukraine
| | - Barbara Molina-Moya
- Institut d’Investigació Germans Trias i Pujol (IGTP), Badalona, Barcelona, Spain
| | | | - José Domínguez
- Institut d’Investigació Germans Trias i Pujol (IGTP), Badalona, Barcelona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
- CIBER Enfermedades Respiratorias, Badalona, Barcelona, Spain
| |
Collapse
|
26
|
Morey-León G, Mejía-Ponce PM, Granda Pardo JC, Muñoz-Mawyin K, Fernández-Cadena JC, García-Moreira E, Andrade-Molina D, Licona-Cassani C, Berná L. A precision overview of genomic resistance screening in Ecuadorian isolates of Mycobacterium tuberculosis using web-based bioinformatics tools. PLoS One 2023; 18:e0294670. [PMID: 38051742 DOI: 10.1371/journal.pone.0294670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023] Open
Abstract
INTRODUCTION Tuberculosis (TB) is among the deadliest diseases worldwide, and its impact is mainly due to the continuous emergence of resistant isolates during treatment due to the laborious process of resistance diagnosis, nonadherence to treatment and circulation of previously resistant isolates of Mycobacterium tuberculosis. In this study, we evaluated the performance and functionalities of web-based tools, including Mykrobe, TB-profiler, PhyResSE, KvarQ, and SAM-TB, for detecting resistance in 88 Ecuadorian isolates of Mycobacterium tuberculosis drug susceptibility tested previously. Statistical analysis was used to determine the correlation between genomic and phenotypic analysis. Our results showed that with the exception of KvarQ, all tools had the highest correlation with the conventional drug susceptibility test (DST) for global resistance detection (98% agreement and 0.941 Cohen's kappa), while SAM-TB, PhyResSE, TB-profiler and Mykrobe had better correlations with DST for first-line drug analysis individually. We also identified that in our study, only 50% of mutations characterized by the web-based tools in the rpoB, katG, embB, pncA, gyrA and rrs regions were canonical and included in the World Health Organization (WHO) catalogue. Our findings suggest that SAM-TB, PhyResSE, TB-profiler and Mykrobe were efficient in determining canonical resistance-related mutations, but more analysis is needed to improve second-line detection. Improving surveillance programs using whole-genome sequencing tools for first-line drugs, MDR-TB and XDR-TB is essential to understand the molecular epidemiology of TB in Ecuador. IMPORTANCE Tuberculosis, an infectious disease caused by Mycobacterium tuberculosis, most commonly affects the lungs and is often spread through the air when infected people cough, sneeze, or spit. However, despite the existence of effective drug treatment, patient adherence, long duration of treatment, and late diagnosis have reduced the effectiveness of therapy and increased drug resistance. The increase in resistant cases, added to the impact of the COVID-19 pandemic, has highlighted the importance of implementing efficient and timely diagnostic methodologies worldwide. The significance of our research is in evaluating and identifying a more efficient and user-friendly web-based tool to characterize resistance in Mycobacterium tuberculosis by whole-genome sequencing, which will allow more routine application to improve TB strain surveillance programs locally.
Collapse
Affiliation(s)
- Gabriel Morey-León
- Facultad de Ciencias de la Salud, Universidad Espíritu Santo, Samborondón, Ecuador
- Universidad de la República, Montevideo, Uruguay
- University of Guayaquil, Guayaquil, Ecuador
| | - Paulina M Mejía-Ponce
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, México
| | - Juan Carlos Granda Pardo
- Centro de Referencia Nacional de Micobacterias, Instituto Nacional de Investigación en Salud Pública Dr Leopoldo Izquieta Perez, INSPI-LIP, Guayaquil, Ecuador
| | - Karen Muñoz-Mawyin
- Laboratorio de Ciencias Ómicas, Universidad Espíritu Santo, Samborondón, Ecuador
| | | | | | - Derly Andrade-Molina
- Facultad de Ciencias de la Salud, Universidad Espíritu Santo, Samborondón, Ecuador
- Laboratorio de Ciencias Ómicas, Universidad Espíritu Santo, Samborondón, Ecuador
| | | | - Luisa Berná
- Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Unidad de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
27
|
Gavina K, Franco LC, Khan H, Lavik JP, Relich RF. Molecular point-of-care devices for the diagnosis of infectious diseases in resource-limited settings - A review of the current landscape, technical challenges, and clinical impact. J Clin Virol 2023; 169:105613. [PMID: 37866094 DOI: 10.1016/j.jcv.2023.105613] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Molecular point-of-care (POC) tests offer high sensitivity, rapid turnaround times, relative ease of use, and the convenience of laboratory-grade testing in the absence of formal laboratory spaces and equipment, making them appealing options for infectious disease diagnosis in resource-limited settings. In this review, we discuss the role and potential of molecular POC tests in resource-limited settings and their associated logistical challenges. We discuss U.S. Food and Drug Administration approval, Clinical Laboratory Improvement Amendments complexity levels, and the REASSURED criteria as a starting point for assessing options currently available inside and outside of the United States. We then present POC tests currently in research and development phases that have potential for commercialization and implementation in limited-resource settings. Finally, we review published studies that have assessed the clinical impact of molecular POC testing in limited- and moderate-resource settings.
Collapse
Affiliation(s)
- Kenneth Gavina
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Division of Clinical Microbiology, Indiana University Health, Indianapolis, IN, USA
| | - Lauren C Franco
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Haseeba Khan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - John-Paul Lavik
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Division of Clinical Microbiology, Indiana University Health, Indianapolis, IN, USA
| | - Ryan F Relich
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Division of Clinical Microbiology, Indiana University Health, Indianapolis, IN, USA.
| |
Collapse
|
28
|
Koleske BN, Jacobs WR, Bishai WR. The Mycobacterium tuberculosis genome at 25 years: lessons and lingering questions. J Clin Invest 2023; 133:e173156. [PMID: 37781921 PMCID: PMC10541200 DOI: 10.1172/jci173156] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
First achieved in 1998 by Cole et al., the complete genome sequence of Mycobacterium tuberculosis continues to provide an invaluable resource to understand tuberculosis (TB), the leading cause of global infectious disease mortality. At the 25-year anniversary of this accomplishment, we describe how insights gleaned from the M. tuberculosis genome have led to vital tools for TB research, epidemiology, and clinical practice. The increasing accessibility of whole-genome sequencing across research and clinical settings has improved our ability to predict antibacterial susceptibility, to track epidemics at the level of individual outbreaks and wider historical trends, to query the efficacy of the bacille Calmette-Guérin (BCG) vaccine, and to uncover targets for novel antitubercular therapeutics. Likewise, we discuss several recent efforts to extract further discoveries from this powerful resource.
Collapse
Affiliation(s)
- Benjamin N. Koleske
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - William R. Bishai
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
29
|
Li MC, Lu Y, Liu HC, Lin SQ, Qian C, Nan XT, Li GL, Zhao XQ, Wan KL, Zhao LL. Rapid detection of fluoroquinolone resistance in Mycobacterium tuberculosis using a novel multienzyme isothermal rapid assay. J Antibiot (Tokyo) 2023; 76:598-602. [PMID: 37402884 DOI: 10.1038/s41429-023-00639-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 07/06/2023]
Abstract
Simple, rapid, and accurate detection of Fluoroquinolone (FQ) resistance is essential for early initiation of appropriate anti-tuberculosis treatment regimen among rifampicin-resistant tuberculosis (RR-TB). In this study, we developed a new assay, which combines multienzyme isothermal rapid amplification and a lateral flow strip (MIRA-LF), to identify the mutations on codons 90 and 94 of gyrA for detecting levofloxacin (LFX) resistance. Compared to conventional phenotypic drug susceptibility testing, the new assay detected fluoroquinolone resistance with a sensitivity, specificity, and accuracy of 92.4%, 98.5%, and 96.5%, respectively. Thus, these characteristics of the newly developed MIRA-LF assay make it particularly useful and accurate for detecting FQ resistance in Mycobacterium tuberculosis in resource-limited condition.
Collapse
Affiliation(s)
- Ma-Chao Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China
| | - Yao Lu
- Department of Laboratory Medicine, Ningbo First Hospital, Ningbo Hospital of Ningbo University, Ningbo, 315010, China
| | - Hai-Can Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China
| | - Shi-Qiang Lin
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Cheng Qian
- Beijing Center for Disease Control and Prevention, 100013, Beijing, China
| | - Xiao-Tian Nan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China
| | - Gui-Lian Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China
| | - Xiu-Qin Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China
| | - Kang-Lin Wan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China
| | - Li-Li Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China.
| |
Collapse
|
30
|
Lange C. [Management of drug-resistant tuberculosis]. Dtsch Med Wochenschr 2023; 148:1236-1241. [PMID: 37714164 DOI: 10.1055/a-1939-0000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
The spread of multidrug-resistant Mycobacterium tuberculosis bacteria jeopardizes tuberculosis control, especially in the WHO Europe region. Following the availability of novel drugs and treatment regimens the World Health Organization has updated management recommendations for patients affected by drug-resistant tuberculosis. These novel recommendations include a significant reduction in the duration of therapy. This review presents the epidemiology and diagnostics of antibiotic-resistant tuberculosis as well as up-to-date treatment recommendations.
Collapse
|
31
|
Cao WF, Leng EL, Liu SM, Zhou YL, Luo CQ, Xiang ZB, Cai W, Rao W, Hu F, Zhang P, Wen A. Recent advances in microbiological and molecular biological detection techniques of tuberculous meningitis. Front Microbiol 2023; 14:1202752. [PMID: 37700862 PMCID: PMC10494440 DOI: 10.3389/fmicb.2023.1202752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/21/2023] [Indexed: 09/14/2023] Open
Abstract
Tuberculous meningitis (TBM) is the most common type of central nervous system tuberculosis (TB) and has the highest mortality and disability rate. Early diagnosis is key to improving the prognosis and survival rate of patients. However, laboratory diagnosis of TBM is often difficult due to its paucibacillary nature and sub optimal sensitivity of conventional microbiology and molecular tools which often fails to detect the pathogen. The gold standard for TBM diagnosis is the presence of MTB in the CSF. The recognised methods for the identification of MTB are acid-fast bacilli (AFB) detected under CSF smear microscopy, MTB cultured in CSF, and MTB detected by polymerase chain reaction (PCR). Currently, many studies consider that all diagnostic techniques for TBM are not perfect, and no single technique is considered simple, fast, cheap, and efficient. A definite diagnosis of TBM is still difficult in current clinical practice. In this review, we summarise the current state of microbiological and molecular biological diagnostics for TBM, the latest advances in research, and discuss the advantages of these techniques, as well as the issues and challenges faced in terms of diagnostic effectiveness, laboratory infrastructure, testing costs, and clinical expertise, for clinicians to select appropriate testing methods.
Collapse
Affiliation(s)
- Wen-Feng Cao
- Department of Neurology, Jiangxi Provincial People’s Hospital (The First Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi, China
- Department of neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, Nanchang, Jiangxi, China
| | - Er-Ling Leng
- Department of Pediatrics, Jiangxi Provincial People’s Hospital (The First Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi, China
| | - Shi-Min Liu
- Department of Neurology, Jiangxi Provincial People’s Hospital (The First Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi, China
- Department of neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, Nanchang, Jiangxi, China
| | - Yong-Liang Zhou
- Department of Neurology, Jiangxi Provincial People’s Hospital (The First Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi, China
- Department of neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, Nanchang, Jiangxi, China
| | - Chao-Qun Luo
- Department of Neurology, Jiangxi Provincial People’s Hospital (The First Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi, China
- Department of neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, Nanchang, Jiangxi, China
| | - Zheng-Bing Xiang
- Department of Neurology, Jiangxi Provincial People’s Hospital (The First Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi, China
- Department of neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, Nanchang, Jiangxi, China
| | - Wen Cai
- Department of Neurology, Jiangxi Provincial People’s Hospital (The First Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi, China
- Department of neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, Nanchang, Jiangxi, China
| | - Wei Rao
- Department of Neurology, Jiangxi Provincial People’s Hospital (The First Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi, China
- Department of neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, Nanchang, Jiangxi, China
| | - Fan Hu
- Department of Neurology, Jiangxi Provincial People’s Hospital (The First Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi, China
- Department of neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, Nanchang, Jiangxi, China
| | - Ping Zhang
- Department of Neurology, Jiangxi Provincial People’s Hospital (The First Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi, China
- Department of neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, Nanchang, Jiangxi, China
| | - An Wen
- Department of Neurology, Jiangxi Provincial People’s Hospital (The First Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi, China
- Department of neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, Nanchang, Jiangxi, China
| |
Collapse
|
32
|
Katamba A, Ssengooba W, Sserubiri J, Semugenze D, Kasule GW, Nyombi A, Byaruhanga R, Turyahabwe S, Joloba ML. Evaluation of Xpert MTB/XDR test for susceptibility testing of Mycobacterium tuberculosis to first and second-line drugs in Uganda. PLoS One 2023; 18:e0284545. [PMID: 37590288 PMCID: PMC10434885 DOI: 10.1371/journal.pone.0284545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Drug-Resistant Tuberculosis (DR-TB) is one of the major challenges to TB control. DESIGN AND METHODS This was a blinded, laboratory-based cross-sectional study using sputum samples or culture isolates. Samples were from patients with rifampicin-resistant-TB and/or with high risk for isoniazid (INH) resistance and/or 2nd line fluoroquinolones (FQ) and injectable agents (IAs). The diagnostic accuracy of the Xpert® MTB/XDR test was compared to MGIT960 and the Hain Genotype® MTBDRplus and MDRsl assays (LPA) as reference DST methods. Factors for laboratory uptake of the Xpert® MTB/XDR test were also evaluated. RESULTS Of the 100 stored sputum samples included in this study, 65/99 (65.6%) were resistant to INH, 5/100 (5.0%) were resistant to FQ and none were resistant to IAs using MGIT960. The sensitivity and specificity, n (%; 95% Confidence Interval, CI) of Xpert® MTB/XDR test for; INH was 58 (89.2; 79.1-95.5) and 30 (88.2; 72.5-96.6) and for FQ; 4 (80.0; 28.3-99.4) and 95 (100; 96.2-100), respectively. Using LPA as a reference standard, a total of 52/98 (53.1%) were resistant to INH, 3/100 (3.0%) to FQ, and none to IA. The sensitivity and specificity, n (%; 95%CI) of Xpert® MTB/XDR test compared to LPA for; INH was 50 (96.1; 86.7-99.5) and 34 (74.0; 58.8-85.7) for FQ 3 (100; 29.2-100) and 96 (99.0; 94.3-99.9) respectively. The factors for laboratory uptake and roll-out of the Xpert® MTB/XDR test included: no training needed for technicians with, and one day for those without, previous Xpert-ultra experience, recording and reporting needs were not different from those of Xpert-ultra, the error rate was 4/100 (4%), one (1%) indeterminate rate and test turn-around-time were 1hr/45 minutes. CONCLUSION There is high sensitivity and specificity of Xpert® MTB/XDR test for isoniazid and fluoroquinolones. There are acceptable Xpert® MTB/XDR test attributes for the test uptake and roll-out.
Collapse
Affiliation(s)
- Achilles Katamba
- Department of Medicine, School of Medicine, Clinical Epidemiology and Biostatistics Unit and Uganda Implementation Research Consortium, Makerere University, Kampala, Uganda
| | - Willy Ssengooba
- Department of Medical Microbiology, Makerere University, Kampala, Uganda
- Lung Institute, Makerere University, Kampala, Uganda
- Biomedical Research Center, Makerere University, Kampala, Uganda
| | - James Sserubiri
- Department of Medical Microbiology, Makerere University, Kampala, Uganda
- Biomedical Research Center, Makerere University, Kampala, Uganda
| | - Derrick Semugenze
- Department of Medical Microbiology, Makerere University, Kampala, Uganda
- Biomedical Research Center, Makerere University, Kampala, Uganda
| | | | - Abdunoor Nyombi
- Ministry of Health, National Tuberculosis, and Leprosy Programme, Kampala, Uganda
| | - Raymond Byaruhanga
- Ministry of Health, National Tuberculosis, and Leprosy Programme, Kampala, Uganda
| | - Stavia Turyahabwe
- Ministry of Health, National Tuberculosis, and Leprosy Programme, Kampala, Uganda
| | - Moses L. Joloba
- Department of Medical Microbiology, Makerere University, Kampala, Uganda
- Biomedical Research Center, Makerere University, Kampala, Uganda
- Ministry of Health, National Tuberculosis, and Leprosy Programme, Kampala, Uganda
| |
Collapse
|
33
|
Kyrbashov B, Kulzhabaeva A, Kadyrov A, Toktogonova A, Timire C, Satyanarayana S, Istamov K. Time to Treatment and Risk Factors for Unsuccessful Treatment Outcomes among People Who Started Second-Line Treatment for Rifampicin-Resistant or Multi-Drug-Resistant Tuberculosis in the Kyrgyz Republic, 2021. Trop Med Infect Dis 2023; 8:407. [PMID: 37624346 PMCID: PMC10459505 DOI: 10.3390/tropicalmed8080407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
The Kyrgyz Republic is a high-burden country for rifampicin resistant/multi-drug resistant tuberculosis (RR/MDR-TB). TB control efforts rely on early diagnosis and initiation of people on effective regimens. We studied the interval from diagnosis of RR-TB to starting treatment and risk factors for unsuccessful outcomes among people who started RR/MDR-TB treatment in 2021. We conducted a cohort study using country-wide programme data and used binomial regression to determine associations between unsuccessful outcomes and predictor variables. Of the 535 people included in the study, three-quarters were in the age category 18-59 years, and 68% had past history of TB. The median (IQR) time from onset of TB symptoms to diagnosis was 30 (11-62) days, 1 (0-4) days from diagnosis to starting treatment, and 35 (24-65) days from starting treatment to receipt of second-line drug susceptibility test (SL-DST) results. Overall, 136 (25%) had unsuccessful outcomes. Risk factors for unsuccessful outcomes were being homeless, fluroquinolone resistance, having unknown HIV status, past TB treatment, male gender and being unemployed. Treatment outcomes and the interval from diagnosis to starting treatment were commendable. Further reductions in unsuccessful outcomes by be achieved through ensuring timely diagnosis and access to SL-DSTs and by reducing the proportion of people who are lost to follow-up.
Collapse
Affiliation(s)
- Bolot Kyrbashov
- National Center for Phthisiology, Bishkek 720020, Kyrgyzstan; (A.K.); (A.T.)
| | - Aizat Kulzhabaeva
- Public Foundation KNCV-KG, Bishkek 720000, Kyrgyzstan;
- Public Health Department, Kyrgyz State Medical Academy, Bishkek 720020, Kyrgyzstan
| | - Abdullaat Kadyrov
- National Center for Phthisiology, Bishkek 720020, Kyrgyzstan; (A.K.); (A.T.)
| | - Atyrkul Toktogonova
- National Center for Phthisiology, Bishkek 720020, Kyrgyzstan; (A.K.); (A.T.)
| | - Collins Timire
- International Union against Tuberculosis and Lung Disease, 2 Rue Jean Lantier, 75001 Paris, France; (C.T.); (S.S.)
| | - Srinath Satyanarayana
- International Union against Tuberculosis and Lung Disease, 2 Rue Jean Lantier, 75001 Paris, France; (C.T.); (S.S.)
| | - Kylychbek Istamov
- School of Medicine, Osh State University, Osh City 723500, Kyrgyzstan;
| |
Collapse
|
34
|
Zhang M, Lu Y, Zhu Y, Wu K, Chen S, Zhou L, Wang F, Peng Y, Li X, Pan J, Chen B, Liu Z, Wang X. Whole-Genome Sequencing to Predict Mycobacterium tuberculosis Drug Resistance: A Retrospective Observational Study in Eastern China. Antibiotics (Basel) 2023; 12:1257. [PMID: 37627677 PMCID: PMC10451829 DOI: 10.3390/antibiotics12081257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Pulmonary tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (MTB). Whole-genome sequencing (WGS) holds great promise as an advanced technology for accurately predicting anti-TB drug resistance. The development of a reliable method for detecting drug resistance is crucial in order to standardize anti-TB treatments, enhance patient prognosis, and effectively reduce the risk of transmission. In this study, our primary objective was to explore and determine the potential of WGS for assessing drug resistance based on genetic variants recommended by the World Health Organization (WHO). A total of 1105 MTB strains were selected from samples collected from 2014-2018 in Zhejiang Province, China. Phenotypic drug sensitivity tests (DST) of the anti-TB drugs were conducted for isoniazid (INH), rifampicin (RFP), streptomycin, ethambutol, fluoroquinolones (levofloxacin and moxifloxacin), amikacin, kanamycin, and capreomycin, and the drug-resistance rates were calculated. The clean WGS data of the 1105 strains were acquired and analyzed. The predictive performance of WGS was evaluated by the comparison between genotypic and phenotypic DST results. For all anti-TB drugs, WGS achieved good specificity values (>90%). The sensitivity values for INH and RFP were 91.78% and 82.26%, respectively; however, they were ≤60% for other drugs. The positive predictive values for anti-TB drugs were >80%, except for ethambutol and moxifloxacin, and the negative predictive values were >90% for all drugs. In light of the findings from our study, we draw the conclusion that WGS is a valuable tool for identifying genome-wide variants. Leveraging the genetic variants recommended by the WHO, WGS proves to be effective in detecting resistance to RFP and INH, enabling the identification of multi-drug resistant TB patients. However, it is evident that the genetic variants recommended for predicting resistance to other anti-TB drugs require further optimization and improvement.
Collapse
Affiliation(s)
- Mingwu Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (M.Z.); (Y.Z.); (K.W.); (S.C.); (L.Z.); (F.W.); (Y.P.); (J.P.); (B.C.)
| | - Yewei Lu
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310020, China; (Y.L.); (X.L.)
| | - Yelei Zhu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (M.Z.); (Y.Z.); (K.W.); (S.C.); (L.Z.); (F.W.); (Y.P.); (J.P.); (B.C.)
| | - Kunyang Wu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (M.Z.); (Y.Z.); (K.W.); (S.C.); (L.Z.); (F.W.); (Y.P.); (J.P.); (B.C.)
| | - Songhua Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (M.Z.); (Y.Z.); (K.W.); (S.C.); (L.Z.); (F.W.); (Y.P.); (J.P.); (B.C.)
| | - Lin Zhou
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (M.Z.); (Y.Z.); (K.W.); (S.C.); (L.Z.); (F.W.); (Y.P.); (J.P.); (B.C.)
| | - Fei Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (M.Z.); (Y.Z.); (K.W.); (S.C.); (L.Z.); (F.W.); (Y.P.); (J.P.); (B.C.)
| | - Ying Peng
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (M.Z.); (Y.Z.); (K.W.); (S.C.); (L.Z.); (F.W.); (Y.P.); (J.P.); (B.C.)
| | - Xiangchen Li
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310020, China; (Y.L.); (X.L.)
| | - Junhang Pan
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (M.Z.); (Y.Z.); (K.W.); (S.C.); (L.Z.); (F.W.); (Y.P.); (J.P.); (B.C.)
| | - Bin Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (M.Z.); (Y.Z.); (K.W.); (S.C.); (L.Z.); (F.W.); (Y.P.); (J.P.); (B.C.)
| | - Zhengwei Liu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (M.Z.); (Y.Z.); (K.W.); (S.C.); (L.Z.); (F.W.); (Y.P.); (J.P.); (B.C.)
| | - Xiaomeng Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (M.Z.); (Y.Z.); (K.W.); (S.C.); (L.Z.); (F.W.); (Y.P.); (J.P.); (B.C.)
| |
Collapse
|
35
|
Chen X, Li R, Ge S, Li Y, Cai C, Weng T, Zhang Y, Jiang J, Feng Z, Chen Y, Zhang Y, Ma J, Persing DH, Chen J, Tang YW, Sun F, Zhang W. Rapid Detection of Extensive Drug Resistance by Xpert MTB/XDR Optimizes Therapeutic Decision-Making in Rifampin-Resistant Tuberculosis Patients. J Clin Microbiol 2023; 61:e0183222. [PMID: 37249422 PMCID: PMC10281159 DOI: 10.1128/jcm.01832-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/14/2023] [Indexed: 05/31/2023] Open
Abstract
The Xpert MTB/XDR assay met the critical need for etiologic diagnosis of tuberculosis and rifampin resistance in previous studies. However, its benefits in tailoring the treatment regimen and improving the outcome for patients with rifampin-resistant tuberculosis (RR-TB) require further investigation. In this study, the Xpert MTB/XDR assay was used to determine the resistance profile of second-line drugs for RR-TB patients in two registered multicenter clinical trials, TB-TRUST (NCT03867136) and TB-TRUST-plus (NCT04717908), with the aim of testing the efficacy of all-oral shorter regimens in RR-TB patients in China. Patients would receive the fluoroquinolone-based all-oral shorter regimen, the injectable-containing regimen, or the bedaquiline-based regimen depending on fluoroquinolone susceptibility by using Xpert MTB/XDR. Among the 497 patients performed with Xpert MTB/XDR, 128 (25.8%) had infections resistant to fluoroquinolones and/or second-line injectable drugs (SLIDs). A total of 371 participants were recruited for the trials, and whole-genome sequencing (WGS) was performed on all corresponding culture-positive baseline strains. Taking the WGS results as the standard, the accuracy of the Xpert MTB/XDR assay in terms of resistance detection was 95.2% to 99.0% for all drugs. A total of 33 cases had inconsistent results, 9 of which were due to resistance heterogeneity. Most of the patients (241/281, 85.8%) had sputum culture conversion at 2 months. In conclusion, the Xpert MTB/XDR assay has the potential to serve as a quick reflex test in patients with RR-TB, as detected via Xpert MTB/RIF, to provide a reliable drug susceptibility profile of the infecting Mycobacterium tuberculosis strain and to initiate optimized treatment promptly.
Collapse
Affiliation(s)
- Xinchang Chen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rong Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shijia Ge
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cui Cai
- Department of Tuberculosis, Guiyang Public Health Clinical Center, Guiyang, China
| | - Taoping Weng
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Respiratory Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yilin Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingwen Jiang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhen Feng
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuanyuan Chen
- Zhejiang Prevention and Treatment Center of Tuberculosis, Zhejiang TCM & WM Hospital, Hangzhou, China
| | - Yungui Zhang
- Department of Tuberculosis, Yunnan Provincial Infectious Diseases Hospital, Kunming, Yunan, China
| | - Jian Ma
- Medical Affairs, Danaher Diagnostic Platform/Cepheid, Shanghai, China
| | - David H. Persing
- Medical Affairs, Danaher Diagnostic Platform/Cepheid, Shanghai, China
| | - Jiazhen Chen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Wei Tang
- Medical Affairs, Danaher Diagnostic Platform/Cepheid, Shanghai, China
| | - Feng Sun
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Huashen Institute of Microbes and Infections, Shanghai, China
| |
Collapse
|
36
|
Hu Y, Chi Y, Feng X, Yu F, Li H, Shang Y, Pan J, Pang Y. Comparison of the Diagnostic Performance of MeltPro and Next-Generation Sequencing in Determining Fluoroquinolone Resistance in Multidrug-Resistant Tuberculosis Isolates. J Mol Diagn 2023; 25:342-351. [PMID: 37208048 DOI: 10.1016/j.jmoldx.2023.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/20/2022] [Accepted: 02/09/2023] [Indexed: 05/21/2023] Open
Abstract
This study systematically investigated the performance of MeltPro and next-generation sequencing in the diagnosis of fluoroquinolone (FQ) resistance among multidrug-resistant tuberculosis patients and explored the relationship between nucleotide alteration and the level of phenotypic susceptibility to FQs. From March 2019 to June 2020, a feasibility and validation study with both MeltPro and next-generation sequencing was performed in 126 patients with multidrug-resistant tuberculosis. Using phenotypic drug susceptibility testing as the gold standard, 95.3% (82 of 86) of ofloxacin-resistant isolates were identified correctly by MeltPro. In addition, whole-genome sequencing was able to detect 83 phenotypically ofloxacin-resistant isolates. The isolates with an individual gyrB mutation outside the quinolone resistance-determining region (QRDR) had minimum inhibitory concentrations (MICs) of ≤2 μg/mL. Despite showing low MICs close to the breakpoint for isolates carrying only gyrA_Ala90Val, the combined mutation gyrB_Asp461Asn caused the ofloxacin MIC to be eight higher than that obtained in Mycobacterium tuberculosis (MTB) isolates with the Ala90Val mutation alone (median, 32 μg/mL; P = 0.038). Heteroresistance was observed in 12 of 88 isolates harboring mutations in the QRDRs. In conclusion, our data show that MeltPro and the whole-genome sequencing assay correctly can identify FQ resistance caused by mutations in the gyrA QRDR. The combined gyrB_Asp461Asn mutation may significantly decrease in vitro FQ susceptibility of MTB isolates with low-level-resistance-associated gyrA mutations.
Collapse
Affiliation(s)
- Yan Hu
- Tuberculosis Reference Laboratory, Chongqing Municipal Institute of Tuberculosis, Chongqing, China
| | - Yuqing Chi
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xin Feng
- Tuberculosis Reference Laboratory, Chongqing Municipal Institute of Tuberculosis, Chongqing, China
| | - Fengping Yu
- Tuberculosis Reference Laboratory, Chongqing Municipal Institute of Tuberculosis, Chongqing, China
| | - Haoran Li
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yuanyuan Shang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Junhua Pan
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.
| |
Collapse
|
37
|
Cao B, Mijiti X, Deng LL, Wang Q, Yu JJ, Anwaierjiang A, Qian C, Li M, Fang DA, Jiang Y, Zhao LL, Zhao X, Wan K, Liu H, Li G, Yuan X. Genetic Characterization Conferred Co-Resistance to Isoniazid and Ethionamide in Mycobacterium tuberculosis Isolates from Southern Xinjiang, China. Infect Drug Resist 2023; 16:3117-3135. [PMID: 37228658 PMCID: PMC10204763 DOI: 10.2147/idr.s407525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Abstract
Background Ethionamide (ETH), a structural analogue of isoniazid (INH), is used for treating multidrug-resistant tuberculosis (MDR-TB). Due to the common target InhA, INH and ETH showed cross-resistance in M. tuberculosis. This study aimed to explore the INH and ETH resistant profiles and genetic mutations conferring independent INH- or ETH-resistance and INH-ETH cross-resistance in M. tuberculosis circulating in south of Xinjiang, China. Methods From Sep 2017 to Dec 2018, 312 isolates were included using drug susceptibility testing (DST), spoligotyping, and whole genome sequencing (WGS) to analyze the resistance characteristics for INH and/or ETH. Results Among the 312 isolates, 185 (58.3%) and 127 (40.7%) belonged to the Beijing family and non-Beijing family, respectively; 90 (28.9%) were INH-resistant (INHR) with mutation rates of 74.4% in katG, 13.3% in inhA and its promoter, 11.1% in ahpC and its upstream region, 2.2% in ndh, 0.0% in mshA, whilst 34 (10.9%) were ETH-resistant (ETHR) with mutation rates of 38.2% in ethA, 26.2% in inhA and its promoter, and 5.9% in ndh, 0.0% in ethR or mshA; and 25 (8.0%) were INH-ETH co-resistant (INHRETHR) with mutation rates of 40.0% in inhA and its promoter, and 8% in ndh. katG mutants tended to display high-level resistant to INH; and more inhA and its promoter mutants showed low-level of INH and ETH resistance. The optimal gene combinations by WGS for the prediction of INHR, ETHR, and INHRETHR were, respectively, katG+inhA and its promoter (sensitivity: 81.11%, specificity: 90.54%), ethA+inhA and its promoter+ndh (sensitivity: 61.76%, specificity: 76.62%), and inhA and its promoter+ndh (sensitivity: 48.00%, specificity: 97.65%). Conclusion This study revealed the high diversity of genetic mutations conferring INH and/or ETH resistance among M. tuberculosis isolates, which would facilitate the study on INHR and/or ETHR mechanisms and provide clues for choosing ETH for MDR treatment and molecular DST methods in south of Xinjiang, China.
Collapse
Affiliation(s)
- Bin Cao
- School of Public Health, University of South China, Hengyang, 421001, People’s Republic of China
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
| | - Xiaokaiti Mijiti
- The Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, People’s Republic of China
| | - Le-Le Deng
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Quan Wang
- The Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, People’s Republic of China
| | - Jin-Jie Yu
- School of Public Health, University of South China, Hengyang, 421001, People’s Republic of China
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
| | | | - Chengyu Qian
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People’s Republic of China
| | - Machao Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
| | - Dan-Ang Fang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People’s Republic of China
| | - Yi Jiang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
| | - Li-Li Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
| | - Xiuqin Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
| | - Kanglin Wan
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
| | - Haican Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
| | - Guilian Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
| | - Xiuqin Yuan
- School of Public Health, University of South China, Hengyang, 421001, People’s Republic of China
| |
Collapse
|
38
|
Li W, Zhou L, Tian B, Chen K, Feng Y, Wang T, Wang N, Huang X, Hao H. Polymorphism of Pradofloxacin: Crystal Structure Analysis, Stability Study, and Phase Transformation Behavior. Pharm Res 2023; 40:999-1012. [PMID: 37029294 DOI: 10.1007/s11095-023-03509-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/26/2023] [Indexed: 04/09/2023]
Abstract
PURPOSE Pradofloxacin is an important antibiotic with poor physical stability. At present, there is no systematic study on its polymorphic form. The purpose of this study is to develop new crystal forms to improve the stability of Pradofloxacin and systematically study the crystal transformation relationships to guide industrial production. METHOD In this work, three solvent-free forms (Form A, Form B and Form C), a new dimethyl sulfoxide solvate (Form PL-DMSO) and a new hydrate (Form PL-H) were successfully obtained and the single crystal data of Form A, Form B and Form PL-DMSO were solved for the first time. Various solid state analysis techniques and slurry experiments have been used to evaluate the stability and determine phase transformation relationships of five crystal forms, the analysis of crystal structure provided theoretical support for the results. RESULT The water vapor adsorption and desorption experiences of Forms A, B, C and Form PL-H were studied, and the results show that the new hydrate has good hygroscopic stability and certain development potential. The thermal stability of different forms was determined by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) and the crystal structure shows that there are more hydrogen bonds and C - H···π interactions in form B, which is the reason why Form B is more stable than form A. Finally, the phase transformation relationships of the five crystal forms were systematically studied and discussed. CONCLUSION These results are helpful to provide guiding methods in the production and storage of pradofloxacin.
Collapse
Affiliation(s)
- Wenlei Li
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Lina Zhou
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Beiqian Tian
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Kui Chen
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yaoguang Feng
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Ting Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 30072, China
| | - Na Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 30072, China
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 30072, China.
- Zhejiang Institute of Tianjin University, Ningbo, 315200, China.
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 30072, China.
- School of Chemical Engineering and Technology, Hainan University, Haikou, 570208, China.
| |
Collapse
|
39
|
Katamba A, Ssengooba W, Sserubiri J, Semugenze D, William KG, Abdunoor N, Byaruhanga R, Turyahabwe S, Joloba ML. Evaluation of Xpert ® MTB/XDR test for susceptibility testing of Mycobacterium tuberculosis to first and second-line drugs in Uganda. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.03.23288099. [PMID: 37066316 PMCID: PMC10104194 DOI: 10.1101/2023.04.03.23288099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Background Drug-Resistant Tuberculosis (DR-TB) is one of the key challenges toward TB control. There is an urgent need for rapid and accurate drug susceptibility tests (DST) for the most commonly used 1 st and 2 nd line TB drugs. Design and Methods In a blinded, laboratory-based cross-sectional study, we set out to validate the performance of the Xpert ® MTB/XDR test for DST of M. tuberculosis . Sputum samples or culture isolates collected between January 2020 and December 2021 from patients with rifampicin resistance -TB and/or with higher suspicion index for isoniazid (INH) resistance and/or 2 nd line fluoroquinolones (FQ) and injectable agents (IAs) were tested using the Xpert ® MTB/XDR test from 11/September 2021 to 26/May /2022. Diagnostic accuracy and factors for laboratory uptake of Xpert ® MTB/XDR test were compared to MGIT960 and the Hain Genotype® MTBDR plus and MDRsl assays (LPA) as reference DST methods. Results A total of 100 stored sputum samples were included in this study. Of the samples tested using MGIT960, 65/99 (65.6%) were resistant to INH, 5/100 (5.0%) resistant to FQ and none were resistant to IAs. The sensitivity and specificity, n (%; 95%Confidence Interval, CI) of Xpert ® MTB/XDR test for; INH were 58 (89.2; 79.1-95.5) and 30 (88.2; 72.5-96.6), FQ; 4 (80.0; 28.3-99.4) and 95 (100; 96.2-100), respectively. The specificity for AIs was 100 (100; 96.3-100). Using LPA as a reference standard, a total of 52/98 (53.1%) were resistant to INH, 3/100 (3.0%) to FQ, and none to IA. The sensitivity and specificity, n (%; 95%CI) of Xpert ® MTB/XDR test compared to LPA for; INH was 50 (96.1; 86.7-99.5) and 34 (74.0; 58.8-85.7) and FQ 3 (100; 29.2-100) and 96 (99.0; 94.3-99.9) respectively. The specificity of IAs was 96 (100; 96.2-100). The factors for laboratory uptake and roll-out included; no training needed for technicians with previous Xpert-ultra experience and one day for those without, recording and reporting needs were not different from those of Xpert ultra, the error rate was 4/100 (4%), no uninterpretable results reported, test turn-around-time was 1hr/45 minutes and workflow similar to that of the Xpert-ultra test. Conclusion There is high sensitivity and specificity of Xpert ® MTB/XDR test for isoniazid, fluoroquinolones, and Injectable agents. There are acceptable Xpert ® MTB/XDR test attributes for test uptake and roll-out.
Collapse
Affiliation(s)
- Achilles Katamba
- Makerere University, Department of Medicine, school of Medicine, Clinical Epidemiology and Biostatistics Unit, Uganda Implementation Research Consortium, Kampala, Uganda
| | - Willy Ssengooba
- Makerere University, Department of Medical Microbiology
- Makerere University Lung Institute
- Makerere University, Biomedical Research Center
| | - James Sserubiri
- Makerere University, Department of Medical Microbiology
- Makerere University, Biomedical Research Center
| | - Derrick Semugenze
- Makerere University, Department of Medical Microbiology
- Makerere University, Biomedical Research Center
| | | | - Nyombi Abdunoor
- Ministry of Health, National Tuberculosis and Leprosy Programme
| | | | | | - Moses L Joloba
- Makerere University, Department of Medical Microbiology
- Makerere University, Biomedical Research Center
- Ministry of Health, National Tuberculosis and Leprosy Programme
| |
Collapse
|
40
|
Naidoo K, Perumal R. Advances in tuberculosis control during the past decade. THE LANCET. RESPIRATORY MEDICINE 2023; 11:311-313. [PMID: 36966793 PMCID: PMC10036130 DOI: 10.1016/s2213-2600(23)00090-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/25/2023]
Affiliation(s)
- Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa, Medical Research Council-CAPRISA HIV-Tuberculosis Pathogenesis and Treatment Research Unit, University of KwaZulu-Natal, Durban 4001, South Africa.
| | - Rubeshan Perumal
- Centre for the AIDS Programme of Research in South Africa, Medical Research Council-CAPRISA HIV-Tuberculosis Pathogenesis and Treatment Research Unit, University of KwaZulu-Natal, Durban 4001, South Africa
| |
Collapse
|
41
|
Truden S, Sodja E, Žolnir-Dovč M. Drug-Resistant Tuberculosis on the Balkan Peninsula: Determination of Drug Resistance Mechanisms with Xpert MTB/XDR and Whole-Genome Sequencing Analysis. Microbiol Spectr 2023; 11:e0276122. [PMID: 36877052 PMCID: PMC10100718 DOI: 10.1128/spectrum.02761-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/12/2023] [Indexed: 03/07/2023] Open
Abstract
The new molecular assay Xpert MTB/XDR (Cepheid, Sunnyvale, CA, USA) was launched in 2021 to detect Mycobacterium tuberculosis (MT) complex with mutations conferring resistance to isoniazid (INH), ethionamide (ETH), fluoroquinolone (FQ), and second-line injectable drugs (SLIDs). The aim of our study was to evaluate the performance of the Xpert MTB/XDR rapid molecular assay on rifampicin-resistant, multidrug-resistant, and pre-extensively resistant tuberculosis (TB) isolates in a clinical laboratory in the Balkan Peninsula compared to a phenotypic drug susceptibility test (pDST). Xpert MTB/XDR was used to test positive Bactec MGIT 960 (Becton, Dickinson and Co., Franklin Lakes, NJ, USA) cultures or DNA isolates. In the case of discrepant results between Xpert MTB/XDR and pDST, the usefulness of whole-genome sequencing (WGS) was emphasized. In our study, 80 MT isolates from different Balkan countries were selectively chosen from the National Mycobacterial Strain Collection in Golnik, Slovenia. Isolates were tested with the Xpert MTB/XDR assay, conventional pDST, and WGS. Xpert MTB/XDR showed high sensitivities of 91.9%, 100%, and 100% for detecting INH, FQ, and SLID resistance, respectively, compared to pDST. In contrast, low sensitivity (51.9%) for ETH resistance was achieved because isolates harbored widespread mutations across the ethA gene. The specificity of Xpert MTB/XDR was 100% for all drugs except for INH (66.7%). Further investigation with WGS revealed -57c→t mutations in the oxyR-ahpC region marked with uncertain significance, which caused the low specificity for detecting INH resistance with the new assay. Xpert MTB/XDR can be used in clinical laboratories for the rapid detection of INH, FQ, and SLID resistance. Moreover, it can be used to rule in resistance to ETH. Additional use of WGS is recommended in cases of discrepant results between pDST and Xpert MTB/XDR. Future improvements of Xpert MTB/XDR with the inclusion of additional genes may increase the usefulness of the assay. IMPORTANCE The Xpert MTB/XDR was tested on drug-resistant Mycobacterium tuberculosis complex isolates from the Balkan Peninsula. Positive Bactec MGIT 960 cultures or DNA isolates were tested as starting material. According to the results of our study with Xpert MTB/XDR, sensitivities for the detection of SLID, FQ, and INH resistance were sufficient (>90%) for the assay to be implemented into diagnostic algorithms. In our study, WGS revealed lesser-known mutations in genes conferring INH and ETH resistance, and their impact on resistance is still unknown. Mutations in the ethA gene causing resistance to ETH were scattered along structural gene without high-confidence markers for resistance. Therefore, resistance to ETH should be reported based on a combination of methods. Because the Xpert MTB/XDR assay was found to have good performance, we propose that it should be the method of choice for confirming resistance to INH, FQ, and SLID and conditionally for resistance to ETH.
Collapse
Affiliation(s)
- Sara Truden
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
| | - Eva Sodja
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
| | - Manca Žolnir-Dovč
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
| |
Collapse
|
42
|
Warner DF, Wood R. New tricks for an old dog: opportunities for better tuberculosis control. J Int AIDS Soc 2023; 26:e26081. [PMID: 36951496 PMCID: PMC10035324 DOI: 10.1002/jia2.26081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/24/2023] Open
Affiliation(s)
- Digby F. Warner
- Molecular Mycobacteriology Research Unit & DSI/NRF Centre of Excellence for Biomedical TB ResearchDepartment of PathologyFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular MedicineFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Wellcome Centre for Infectious Diseases Research in AfricaFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Robin Wood
- Institute of Infectious Disease and Molecular MedicineFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Desmond Tutu Health FoundationFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
43
|
Pillay S, de Vos M, Derendinger B, Streicher EM, Dolby T, Scott LA, Steinhobel AD, Warren RM, Theron G. Non-actionable Results, Accuracy, and Effect of First- and Second-line Line Probe Assays for Diagnosing Drug-Resistant Tuberculosis, Including on Smear-Negative Specimens, in a High-Volume Laboratory. Clin Infect Dis 2023; 76:e920-e929. [PMID: 35788278 PMCID: PMC7614164 DOI: 10.1093/cid/ciac556] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Rapid tuberculosis (TB) drug susceptibility testing (DST) is crucial. Genotype MTBDRsl is a widely deployed World Health Organization (WHO)-endorsed assay. Programmatic performance data, including non-actionable results from smear-negative sputum, are scarce. METHODS Sputa from Xpert MTB/RIF individuals (n = 951) were routinely-tested using Genotype MTBDRplus and MTBDRsl (both version 2). Phenotypic DST was the second-line drug reference standard. Discrepant results underwent Sanger sequencing. FINDINGS 89% (849 of 951) of individuals were culture-positive (56%, 476 of 849 smear-negative). MTBDRplus had at least 1 nonactionable result (control and/or TB-detection bands absent or invalid, precluding resistance reporting) in 19% (92 of 476) of smear-negatives; for MTBDRsl, 40% (171 of 427) were nonactionable (28%, 120 of 427 false-negative TB; 17%, 51 of 427 indeterminate). In smear-negatives, MTBDRsl sensitivity for fluoroquinolones was 84% (95% confidence interval, 67%-93), 81% (54%-95%) for second-line injectable drugs, and 57% (28%-82%) for both. Specificities were 93% (89%-98%), 88% (81%-93%), and 97% (91%-99%), respectively. Twenty-three percent (172 of 746) of Xpert rifampicin-resistant specimens were MTBDRplus isoniazid-susceptible. Days-to-second-line-susceptibility reporting with the programmatic advent of MTBDRsl improved (6 [5-7] vs 37 [35-46]; P < .001). CONCLUSIONS MTBDRsl did not generate a result in 4 of 10 smear-negatives, resulting in substantial missed resistance. However, if MTBDRsl generates an actionable result, that is accurate in ruling-in resistance. Isoniazid DST remains crucial. This study provides real-world, direct, second-line susceptibility testing performance data on non-actionable results (that, if unaccounted for, cause an overestimation of test utility), accuracy, and care cascade impact.
Collapse
Affiliation(s)
- Samantha Pillay
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
- National Health Laboratory Services, Green Point, Cape Town, South Africa
| | - Margaretha de Vos
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Brigitta Derendinger
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Elizabeth Maria Streicher
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Tania Dolby
- National Health Laboratory Services, Green Point, Cape Town, South Africa
| | - Leeré Ann Scott
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Amy Debra Steinhobel
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Rob Mark Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Grant Theron
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
44
|
Feasibility, Ease-of-Use, and Operational Characteristics of World Health Organization-Recommended Moderate-Complexity Automated Nucleic Acid Amplification Tests for the Detection of Tuberculosis and Resistance to Rifampicin and Isoniazid. J Mol Diagn 2023; 25:46-56. [PMID: 36243289 PMCID: PMC9830532 DOI: 10.1016/j.jmoldx.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 09/02/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
Four moderate-complexity automated nucleic acid amplification tests for the diagnosis of tuberculosis are reported as having laboratory analytical and clinical performance similar to that of the Cepheid Xpert MTB/RIF assay. These assays are the Abbott RealTime MTB and RealTime MTB RIF/INH Resistance, Becton Dickinson MAX MDR-TB, the Hain Lifescience/Bruker FluoroType MTBDR, and the Roche cobas MTB and MTB RIF/INH assays. The study compared feasibility, ease of use, and operational characteristics of these assays/platforms. Manufacturer input was obtained for technical characteristics. Laboratory operators were requested to complete a questionnaire on the assays' ease of use. A time-in-motion analysis was also undertaken for each platform. For ease-of-use and operational requirements, the BD MAX MDR-TB assay achieved the highest scores (86% and 90%) based on information provided by the user and manufacturer, respectively, followed by the cobas MTB and MTB-RIF/INH assay (68% and 86%), the FluoroType MTBDR assay (67% and 80%), and the Abbott RT-MTB and RT MTB RIF/INH assays (64% and 76%). The time-in-motion analysis revealed that for 94 specimens, the RealTime MTB assay required the longest processing time, followed by the cobas MTB assay and the FluoroType MTBDR assay. The BD MAX MDR-TB assay required 4.6 hours for 22 specimens. These diagnostic assays exhibited different strengths and weaknesses that should be taken into account, in addition to affordability, when considering placement of a new platform.
Collapse
|
45
|
Dookie N, Ngema SL, Perumal R, Naicker N, Padayatchi N, Naidoo K. The Changing Paradigm of Drug-Resistant Tuberculosis Treatment: Successes, Pitfalls, and Future Perspectives. Clin Microbiol Rev 2022; 35:e0018019. [PMID: 36200885 PMCID: PMC9769521 DOI: 10.1128/cmr.00180-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Drug-resistant tuberculosis (DR-TB) remains a global crisis due to the increasing incidence of drug-resistant forms of the disease, gaps in detection and prevention, models of care, and limited treatment options. The DR-TB treatment landscape has evolved over the last 10 years. Recent developments include the remarkable activity demonstrated by the newly approved anti-TB drugs bedaquiline and pretomanid against Mycobacterium tuberculosis. Hence, treatment of DR-TB has drastically evolved with the introduction of the short-course regimen for multidrug-resistant TB (MDR-TB), transitioning to injection-free regimens and the approval of the 6-month short regimens for rifampin-resistant TB and MDR-TB. Moreover, numerous clinical trials are under way with the aim to reduce pill burden and shorten the DR-TB treatment duration. While there have been apparent successes in the field, some challenges remain. These include the ongoing inclusion of high-dose isoniazid in DR-TB regimens despite a lack of evidence for its efficacy and the inclusion of ethambutol and pyrazinamide in the standard short regimen despite known high levels of background resistance to both drugs. Furthermore, antimicrobial heteroresistance, extensive cavitary disease and intracavitary gradients, the emergence of bedaquiline resistance, and the lack of biomarkers to monitor DR-TB treatment response remain serious challenges to the sustained successes. In this review, we outline the impact of the new drugs and regimens on patient treatment outcomes, explore evidence underpinning current practices on regimen selection and duration, reflect on the disappointments and pitfalls in the field, and highlight key areas that require continued efforts toward improving treatment approaches and rapid biomarkers for monitoring treatment response.
Collapse
Affiliation(s)
- Navisha Dookie
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Senamile L. Ngema
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Rubeshan Perumal
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council–CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Nikita Naicker
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council–CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Nesri Padayatchi
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council–CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council–CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| |
Collapse
|
46
|
Ou X, Zhang Z, Zhao B, Song Z, Wang S, He W, Pei S, Liu D, Xing R, Xia H, Zhao Y. Evaluation Study of xMAP TIER Assay on a Microsphere-Based Platform for Detecting First-Line Anti-Tuberculosis Drug Resistance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192417068. [PMID: 36554951 PMCID: PMC9779588 DOI: 10.3390/ijerph192417068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 05/09/2023]
Abstract
Early diagnosis of drug susceptibility for tuberculosis (TB) patients could guide the timely initiation of effective treatment. We evaluated a novel multiplex xMAP TIER (Tuberculosis-Isoniazid-Ethambutol-Rifampicin) assay based on the Luminex xMAP system to detect first-line anti-tuberculous drug resistance. Deoxyribonucleic acid samples from 353 Mycobacterium tuberculosis clinical isolates were amplified by multiplex polymerase chain reaction, followed by hybridization and analysis through the xMAP system. Compared with the broth microdilution method, the sensitivity and specificity of the xMAP TIER assay for detecting resistance was 94.9% (95%CI, 90.0-99.8%) and 98.9% (95%CI, 97.7-100.0%) for rifampicin; 89.1% (95%CI, 83.9-94.3%) and 100.0% (95%CI, 100.0-100.0%) for isoniazid; 82.1% (95% CI, 68.0-96.3%) and 99.7% (95% CI, 99.0-100.0%) for ethambutol. With DNA sequencing as the reference standard, the sensitivity and specificity of xMAP TIER for detecting resistance were 95.0% (95% CI, 90.2-99.8%) and 99.6% (95% CI, 98.9-100.0%) for rifampicin; 96.9% (95% CI, 93.8-99.9%) and 100.0% (95% CI, 100.0-100.0%) for isoniazid; 86.1% (95% CI, 74.8-97.4%) and 100.0% (95% CI, 100.0-100.0%) for ethambutol. The results achieved showed that the xMAP TIER assay had good performance for detecting first-line anti-tuberculosis drug resistance, and it has the potential to diagnose drug-resistant tuberculosis more accurately due to the addition of more optimal design primers and probes on open architecture xMAP system.
Collapse
Affiliation(s)
- Xichao Ou
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Zhiguo Zhang
- Tuberculosis Dispensary of Changping District, Beijing 102202, China
| | - Bing Zhao
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Zexuan Song
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Shengfen Wang
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Wencong He
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Shaojun Pei
- School of Public Health, Peking University, Beijing 100191, China
| | - Dongxin Liu
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ruida Xing
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Hui Xia
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yanlin Zhao
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Correspondence:
| |
Collapse
|
47
|
Brankin A, Seifert M, Georghiou SB, Walker TM, Uplekar S, Suresh A, Colman RE. In silico evaluation of WHO-endorsed molecular methods to detect drug resistant tuberculosis. Sci Rep 2022; 12:17741. [PMID: 36273016 PMCID: PMC9587982 DOI: 10.1038/s41598-022-21025-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/21/2022] [Indexed: 01/18/2023] Open
Abstract
Universal drug susceptibility testing (DST) for tuberculosis is a major goal of the END TB strategy. PCR-based molecular diagnostic tests have been instrumental in increasing DST globally and several assays have now been endorsed by the World Health Organization (WHO) for use in the diagnosis of drug resistance. These endorsed assays, however, each interrogate a limited number of mutations associated with resistance, potentially limiting their sensitivity compared to sequencing-based methods. We applied an in silico method to compare the sensitivity and specificity of WHO-endorsed molecular based diagnostics to the mutation set identified by the WHO mutations catalogue using phenotypic DST as the reference. We found that, in silico, the mutation sets used by probe-based molecular diagnostic tests to identify rifampicin, isoniazid, pyrazinamide, levofloxacin, moxifloxacin, amikacin, capreomycin and kanamycin resistance produced similar sensitivities and specificities to the WHO mutation catalogue. PCR-based diagnostic tests were most sensitive for drugs where mechanisms of resistance are well established and localised to small genetic regions or a few prevalent mutations. Approaches using sequencing technologies can provide advantages for drugs where our knowledge of resistance is limited, or where complex resistance signatures exist.
Collapse
Affiliation(s)
- Alice Brankin
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- FIND, the Global Alliance for Diagnostics, Geneva, Switzerland
| | - Marva Seifert
- FIND, the Global Alliance for Diagnostics, Geneva, Switzerland
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Timothy M Walker
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Swapna Uplekar
- FIND, the Global Alliance for Diagnostics, Geneva, Switzerland
| | - Anita Suresh
- FIND, the Global Alliance for Diagnostics, Geneva, Switzerland
| | - Rebecca E Colman
- FIND, the Global Alliance for Diagnostics, Geneva, Switzerland.
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
48
|
Stanley S, Liu Q, Fortune SM. Mycobacterium tuberculosis functional genetic diversity, altered drug sensitivity, and precision medicine. Front Cell Infect Microbiol 2022; 12:1007958. [PMID: 36262182 PMCID: PMC9574059 DOI: 10.3389/fcimb.2022.1007958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/14/2022] [Indexed: 01/27/2023] Open
Abstract
In the face of the unrelenting global burden of tuberculosis (TB), antibiotics remain our most effective tools to save lives and control the spread of Mycobacterium tuberculosis (Mtb). However, we confront a dual challenge in our use of antibiotics: simplifying and shortening the TB drug regimen while also limiting the emergence and propagation of antibiotic resistance. This task is now more feasible due to the increasing availability of bacterial genomic data at or near the point of care. These resources create an opportunity to envision how integration of bacterial genetic determinants of antibiotic response into treatment algorithms might transform TB care. Historically, Mtb drug resistance studies focused on mutations in genes encoding antibiotic targets and the resulting increases in the minimal inhibitory concentrations (MICs) above a breakpoint value. But recent progress in elucidating the effects of functional genetic diversity in Mtb has revealed various genetic loci that are associated with drug phenotypes such as low-level MIC increases and tolerance which predict the development of resistance and treatment failure. As a result, we are now poised to advance precision medicine approaches in TB treatment. By incorporating information regarding Mtb genetic characteristics into the development of drug regimens, clinical care which tailors antibiotic treatment to maximize the likelihood of success has come into reach.
Collapse
Affiliation(s)
| | | | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
49
|
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), continues to pose a major public health problem and is the leading cause of mortality in people infected with human immunodeficiency virus (HIV). HIV infection greatly increases the risk of developing TB even before CD4+ T-cell counts decrease. Co-infection provides reciprocal advantages to both pathogens and leads to acceleration of both diseases. In HIV-coinfected persons, the diagnosis and treatment of tuberculosis are particularly challenging. Intensifying integration of HIV and tuberculosis control programmes has an impact on reducing diagnostic delays, increasing early case detection, providing prompt treatment onset, and ultimately reducing transmission. In this Review, we describe our current understanding of how these two pathogens interact with each other, new sensitive rapid assays for TB, several new prevention methods, new drugs and regimens.
Collapse
Affiliation(s)
- Qiaoli Yang
- Department of Infectious Diseases, Changzhi Medical College, Changzhi, Shanxi Province, China
| | - Jinjin Han
- Department of Infectious Diseases, Changzhi Medical College, Changzhi, Shanxi Province, China
| | - Jingjing Shen
- Department of Infectious Diseases, Changzhi people’s Hospital, Changzhi, Shanxi Province, China
| | - Xinsen Peng
- Department of Cardiology, Changzhi Medical College, Changzhi, Shanxi Province, China
| | - Lurong Zhou
- Department of Infectious Diseases, Changzhi Medical College, Changzhi, Shanxi Province, China
- *Correspondence: Lurong Zhou, Vice President, Chief Physician, Professor, Department of Infectious Diseases, Changzhi People’s Hospital, No.502 Changzhi Middle Road, Changzhi 046000, Shanxi Province, China. (e-mail: )
| | - Xuejing Yin
- Department of Neurology, Changzhi Medical College, Changzhi, Shanxi Province, China
| |
Collapse
|
50
|
Rapid diagnosis of XDR and pre-XDR TB: a systematic review of available tools. Arch Bronconeumol 2022; 58:809-820. [DOI: 10.1016/j.arbres.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 11/23/2022]
|