1
|
García Tévar A, Herrero Ezquerro MT. [Demographic and prevalence study of parkinsonism in the region of Murcia]. Semergen 2025; 51:102388. [PMID: 39657500 DOI: 10.1016/j.semerg.2024.102388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 12/12/2024]
Abstract
OBJECTIVES To quantify parkinsonian patients in the Region of Murcia (RM), their health areas and zones, and find their prevalences and percentages. MATERIAL AND METHODS All RM patients registered in Primary Care of the Murcian Health Service with the CIAP-2 code N87 were included. We calculated number, prevalence and percentages by age and sex groups, means and age ranges and years of evolution. The study was carried out at the age of diagnosis and at the age of data collection, analyzing their differences. RESULTS We obtained 3050 parkinsonian patients (1476 men and 1574 women) with respective prevalences of 206.09 cases per 100,000 inhabitants (206.09/105), 199.06/105 and 213.15/105, not significant differences by sex or in number of patients (p=0.79) or in prevalence (P=.52). By age group, prevalences were higher in men (P<.05) between 50 and 99years of age (not between 90 and 94 and ≥100years). Of the 9 Health Areas, the highest prevalences were in areas IVNorthwest, with 322.31/105, and VAltiplano, with 304.30/105, and the lowest prevalence, of 171.13/105, was observed in Area VIIMurcia East (P<.05). Of the 85 Health Zones, the one with the highest prevalence was Lorca-La Paca, with 510.51/105, and the one with the lowest Murcia-Zarandona, with 78.48/105 (P<.05). CONCLUSIONS First demographic and detailed prevalence study of parkinsonism in the RM. The prevalence in RM was 206.09/105. By health areas, the highest prevalences were in the Northwest and Altiplano and by health areas a prevalence of 510.51/105 stood out. This work aims to be useful to facilitate resource planning, with consequent better health care.
Collapse
Affiliation(s)
- A García Tévar
- Neurociencia Clínica y Experimental (NiCE), Instituto de Investigación en Envejecimiento, Instituto Biomédico de Investigación Biosanitaria de Murcia (IMIB-Arrixaca), Facultad de Medicina, Campus Mare Nostrum, Universidad de Murcia, Murcia, España.
| | - M T Herrero Ezquerro
- Neurociencia Clínica y Experimental (NiCE), Instituto de Investigación en Envejecimiento, Instituto Biomédico de Investigación Biosanitaria de Murcia (IMIB-Arrixaca), Facultad de Medicina, Campus Mare Nostrum, Universidad de Murcia, Murcia, España
| |
Collapse
|
2
|
Zhao J, Wu Z, Cai F, Yu X, Song Z. Higher systemic immune-inflammation index is associated with increased risk of Parkinson's disease in adults: a nationwide population-based study. Front Aging Neurosci 2025; 17:1529197. [PMID: 39990106 PMCID: PMC11842390 DOI: 10.3389/fnagi.2025.1529197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/20/2025] [Indexed: 02/25/2025] Open
Abstract
Background This study aimed to explore the association between a new inflammatory marker, systemic immune-inflammation index (SII), and the risk of Parkinson's disease (PD) in adult population. Methods A cross-sectional design was used, participants were recruited from the National Health and Nutrition Examination Survey (NHANES) from 2005 to 2020. Three logistic regression models were used to explore the association between SII and the risk of PD, and subgroup analysis and sensitivity analysis were used. In addition, the restricted cubic spline (RCS) was used to explore the dose-response relationship between SII and PD. Receiver operating characteristic (ROC) curves was used to explore the diagnostic value of SII for PD. Results A total of 54,027 adults (mean age 35 years) were included in this study. The results of logistic regression showed that after adjusted for all covariates, compared with the Q1 group (lowest quartile in SII), the risk of PD in the Q3 group (OR = 1.82, 95%CI = 1.20-2.82, p < 0.001) and the Q4 group increased (OR = 2.49, 95%CI = 1.69-3.77, p < 0.001), with p-trend < 0.001. After excluding individuals with any missing values, sensitivity analysis also found a positive association between SII and PD. Subgroup analysis showed that this association was more significant in women, younger than 60 years old, non-smokers, alcohol drinkers, non-obese, and without a history of stroke, diabetes, or coronary heart disease. In addition, there was a positive dose-response relationship between SII and PD, and SII had an acceptable diagnostic value for PD (AUC = 0.72). Conclusion SII is positively correlated with the prevalence of PD in the adult population, and SII can help differentiate between PD and non-PD cases.
Collapse
Affiliation(s)
- Jiayu Zhao
- Department of Neurology, Shandong First Medical University Affiliated Provincial Hospital, Jinan, Shandong, China
| | - Zhipeng Wu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- China National Clinical Research Center on Mental Disorders, Changsha, Hunan, China
| | - Fengyin Cai
- Department of Nursing, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xuejv Yu
- Department of Neurology, Shandong First Medical University Affiliated Provincial Hospital, Jinan, Shandong, China
| | - Zhenyu Song
- Department of Neurology, Shandong First Medical University Affiliated Provincial Hospital, Jinan, Shandong, China
| |
Collapse
|
3
|
Ji A, Sui Y, Xue X, Ji X, Shi W, Shi Y, Terkeltaub R, Dalbeth N, Takei R, Yan F, Sun M, Li M, Lu J, Cui L, Liu Z, Wang C, Li X, Han L, Fang Z, Sun W, Liang Y, He Y, Zheng G, Wang X, Wang J, Zhang H, Pang L, Qi H, Li Y, Cheng Z, Li Z, Xiao J, Zeng C, Merriman TR, Qu H, Fang X, Li C. Novel Genetic Loci in Early-Onset Gout Derived From Whole-Genome Sequencing of an Adolescent Gout Cohort. Arthritis Rheumatol 2025; 77:107-115. [PMID: 39118347 DOI: 10.1002/art.42969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE Mechanisms underlying the adolescent-onset and early-onset gout are unclear. This study aimed to discover variants associated with early-onset gout. METHODS We conducted whole-genome sequencing in a discovery adolescent-onset gout cohort of 905 individuals (gout onset 12 to 19 years) to discover common and low-frequency single-nucleotide variants (SNVs) associated with gout. Candidate common SNVs were genotyped in an early-onset gout cohort of 2,834 individuals (gout onset ≤30 years old), and meta-analysis was performed with the discovery and replication cohorts to identify loci associated with early-onset gout. Transcriptome and epigenomic analyses, quantitative real-time polymerase chain reaction and RNA sequencing in human peripheral blood leukocytes, and knock-down experiments in human THP-1 macrophage cells investigated the regulation and function of candidate gene RCOR1. RESULTS In addition to ABCG2, a urate transporter previously linked to pediatric-onset and early-onset gout, we identified two novel loci (Pmeta < 5.0 × 10-8): rs12887440 (RCOR1) and rs35213808 (FSTL5-MIR4454). Additionally, we found associations at ABCG2 and SLC22A12 that were driven by low-frequency SNVs. SNVs in RCOR1 were linked to elevated blood leukocyte messenger RNA levels. THP-1 macrophage culture studies revealed the potential of decreased RCOR1 to suppress gouty inflammation. CONCLUSION This is the first comprehensive genetic characterization of adolescent-onset gout. The identified risk loci of early-onset gout mediate inflammatory responsiveness to crystals that could mediate gouty arthritis. This study will contribute to risk prediction and therapeutic interventions to prevent adolescent-onset gout.
Collapse
Affiliation(s)
- Aichang Ji
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yang Sui
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomei Xue
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiapeng Ji
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenrui Shi
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China
| | - Yongyong Shi
- Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China, and Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | | | | | - Riku Takei
- Asia Pacific Gout Consortium and University of Alabama at Birmingham
| | - Fei Yan
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mingshu Sun
- Shandong Provincial Clinical Research Center for Immune Diseases and Gout & Shandong Provincial Key Laboratory of Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Maichao Li
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jie Lu
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lingling Cui
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhen Liu
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Can Wang
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xinde Li
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lin Han
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhanjie Fang
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China
| | - Wenyan Sun
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yue Liang
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China
| | - Yuwei He
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guangmin Zheng
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China
| | - Xuefeng Wang
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jiayi Wang
- Development Center for Medical Science & Technology, National Health Commission of the People's Republic of China, Beijing, China
| | - Hui Zhang
- Institute of Metabolic Diseases, Qingdao University, Qingdao, China
| | - Lei Pang
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Han Qi
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yushuang Li
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zan Cheng
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhiqiang Li
- The Biomedical Sciences Institute and The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
| | - Jingfa Xiao
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China
| | - Changqing Zeng
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China
| | - Tony R Merriman
- Asia Pacific Gout Consortium, University of Alabama at Birmingham, Institute of Metabolic Diseases, Qingdao University, Qingdao, China, and University of Otago, Dunedin, New Zealand
| | - Hongzhu Qu
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, and Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing, China
| | - Xiangdong Fang
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, and Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing, China
| | - Changgui Li
- The Affiliated Hospital of Qingdao University, Qingdao, China, Asia Pacific Gout Consortium, and Institute of Metabolic Diseases, Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Rajan R, Holla VV, Kamble N, Yadav R, Pal PK. Genetic heterogeneity of early onset Parkinson disease: The dilemma of clinico-genetic correlation. Parkinsonism Relat Disord 2024; 129:107146. [PMID: 39313403 DOI: 10.1016/j.parkreldis.2024.107146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024]
Abstract
With advances in genetic testing increasing proportion of early onset Parkinson disease (EOPD) are being identified to have an underlying genetic aetiology. This is can be in the form of either highly penetrant genes associated with phenotypes with monogenic or mendelian inheritance patterns or those genes known as risk factor genes which confer an increased risk of PD in an individual. Both of them can modify the phenotypic manifestation in a patient with PD. This improved knowledge has helped in deciphering the intricate role of various cellular pathways in the pathophysiology of PD including both early and late and even sporadic PD. However, the phenotypic and genotypic heterogeneity is a major challenge. Different deleterious alterations in a same gene can result in a spectrum of presentation spanning from juvenile to late onset and typical to atypical parkinsonism manifestation. Similarly, a single phenotype can occur due to abnormality in two or more different genes. This conundrum poses a dilemma in the clinical approach and in understanding the clinico-genetic correlation. Understanding the clinico-genetic correlation carries even more importance especially when genetic testing is either not accessible or affordable or in many regions both. In this narrative review, we aim to discuss briefly the approach to various PARK gene related EOPD and describe in detail the clinico-genetic correlation of individual type of PARK gene related genetic EOPD with respect to their classical clinical presentation, pathophysiology, investigation findings and treatment response to medication and surgery.
Collapse
Affiliation(s)
- Roopa Rajan
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Vikram V Holla
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India.
| |
Collapse
|
5
|
N P D, Kondengadan MS, Sweilam SH, Rahman MH, Muhasina KM, Ghosh P, Bhargavi D, Palati DJ, Maiz F, Duraiswamy B. Neuroprotective role of coconut oil for the prevention and treatment of Parkinson's disease: potential mechanisms of action. Biotechnol Genet Eng Rev 2024; 40:3346-3378. [PMID: 36208039 DOI: 10.1080/02648725.2022.2122296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Neurodegenerative disease (ND) is a clinical condition in which neurons degenerate with a consequent loss of functions in the affected brain region. Parkinson's disease (PD) is the second most progressive ND after Alzheimer's disease (AD), which affects the motor system and is characterized by the loss of dopaminergic neurons from the nigrostriatal pathway in the midbrain, leading to bradykinesia, rigidity, resting tremor, postural instability and non-motor symptoms such as cognitive declines, psychiatric disturbances, autonomic failures, sleep difficulties, and pain syndrome. Coconut oil (CO) is an edible oil obtained from the meat of Cocos nucifera fruit that belongs to the palm family and contains 92% saturated fatty acids. CO has been shown to mediate oxidative stress, neuroinflammation, mitochondrial dysfunction, apoptosis and excitotoxicity-induced effects in PD in various in vitro and in vivo models as a multi-target bioagent. CO intake through diet has also been linked to a decreased incidence of PD in people. During digestion, CO is broken down into smaller molecules, like ketone bodies (KBs). The KBs then penetrate the blood-brain barrier (BBB) and are used as a source of energy its ability to cross BBB made this an important class of natural remedies for the treatment of ND. The current review describes the probable neuroprotective potential pathways of CO in PD, either prophylactic or therapeutic. In addition, we briefly addressed the important pathogenic pathways that might be considered to investigate the possible use of CO in neurodegeneration such as AD and PD.
Collapse
Affiliation(s)
- Deepika N P
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamilnadu, India
| | | | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Badr City, Egypt
| | | | - K M Muhasina
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamilnadu, India
| | - Puja Ghosh
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamilnadu, India
| | - Divya Bhargavi
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamilnadu, India
| | - Divya Jyothi Palati
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamilnadu, India
| | - Fathi Maiz
- Department of Physics, Faculty of Science, King Khalid University, Abha, Saudi Arabia, P.O. Box 9004
- Laboratory of Thermal Processes, Center for Energy Research and Technology, Borj-Cedria, BP:95 Tunisia
| | - B Duraiswamy
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamilnadu, India
| |
Collapse
|
6
|
Mackels L, Aktan D, Depierreux F. Early Levodopa-Induced Motor Complications in RAB39B X-Linked Parkinsonism. Tremor Other Hyperkinet Mov (N Y) 2024; 14:58. [PMID: 39619277 PMCID: PMC11606391 DOI: 10.5334/tohm.946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/08/2024] [Indexed: 01/04/2025] Open
Abstract
Background While levodopa may benefit some patients with monogenic Parkinson's Disease and parkinsonism, others may exhibit aberrant responses earlier after exposure. Reporting treatment responses in rare genetic parkinsonism will help tailor therapeutic approaches to specific patients subpopulations. Case Report We report the therapeutic response in a patient with RAB39B X-linked parkinsonism, who exhibited motor and non-motor complications within a few months of Levodopa. Discussion Severe and debilitating Levodopa-induced complications can occur very early in the treatment course of X-linked parkinsonism, highlighting the need for an individualized therapeutic approach and follow-up in rare parkinsonian syndromes.
Collapse
Affiliation(s)
- Laurane Mackels
- Neurology Department, Regional Hospital of Liege, Liege, Belgium
| | - David Aktan
- Neurology Department, University Hospital of Liege, Liege, Belgium
- GIGA –CRC in vivoimaging, Rare Movement Disorders Research Group, University of Liege, Liege, Belgium
| | | |
Collapse
|
7
|
Gonul Oner O, Biboulet Bruneau C, Fraix V, Bourg V, Defebvre L, Mutez E, Roze E, Laroche C, Béreau M, Nguyen-Morel MA, Moro E. Pediatric-onset PRKN disease: New insights into an understudied population. JOURNAL OF PARKINSON'S DISEASE 2024; 14:1631-1641. [PMID: 39957199 DOI: 10.1177/1877718x241296153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
BACKGROUND In pediatric age, the PRKN mutation is reported as one of the most common genetic causes of Parkinson's disease. However, detailed clinical data on PRKN patients with pediatric onset are scarce. OBJECTIVE To describe clinical characteristics, disease progression, and management of PRKN patients with pediatric onset. METHODS PRKN patients with onset of clinical signs before the age of 18 years were included in this retrospective multicenter study. Collected data included detailed clinical characteristics, progression, and disease management. Data presentation is descriptive due to the sample size. RESULTS Nine patients (five females) were included from five French movement disorders centers. The mean age at symptom onset was 10.78 ± 2.22 years (median, 11; range, 7-14). Dystonia was the first most common motor symptom (six patients). The mean time from symptom onset to genetic diagnosis was 13.33 ± 9.21 years (median, 11; range, 3-32). The most commonly reported non-motor symptoms were sleep disorders (seven patients), anxiety (six patients), and depression (five patients). The first treatment was L-dopa in four patients, dopamine agonist in two, carbamazepine in two, and rasagiline in one. Dyskinesia and impulse control disorders were the most common treatment-related side effects (nine and six patients, respectively). Four patients underwent deep brain stimulation surgery. The last available follow-up was at 27.22 ± 14.05 years (median, 28; range, 6-56) after the diagnosis. CONCLUSIONS This is the first study reporting detailed clinical features and long-term management of PRKN patients with pediatric onset. Prompt diagnosis and appropriate treatment strategies are important to optimize disease management.
Collapse
Affiliation(s)
- Ozge Gonul Oner
- Université Grenoble Alpes, Inserm, Grenoble Institute Neurosciences, Grenoble, France
- Movement Disorders Unit, Division of Neurology, Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| | - Céline Biboulet Bruneau
- Service de Neurologie Pédiatrique, Hôpital Couple Mère Enfant, Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| | - Valérie Fraix
- Movement Disorders Unit, Division of Neurology, Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| | - Véronique Bourg
- Service De Médecine Physique Et Réadaptation Pédiatrique, Hôpital Couple-Enfant, Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| | - Luc Defebvre
- Université de Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Department of Neurology and Movement Disorders, CHU de Lille, Lille, France
| | - Eugénie Mutez
- Université de Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Department of Neurology and Movement Disorders, CHU de Lille, Lille, France
| | - Emmanuel Roze
- Neurology Department, Pitié-Salpêtrière Hospital, Paris, France
- Paris Brain Institute, Sorbonne University, Paris, France
| | - Cécile Laroche
- Department of Pediatric, Hôpital mère enfant, Limoges, France
| | - Matthieu Béreau
- Department of Neurology, Centre Hospitalier Universitaire de Besançon, France
| | - Marie-Ange Nguyen-Morel
- Service de Neurologie Pédiatrique, Hôpital Couple Mère Enfant, Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| | - Elena Moro
- Université Grenoble Alpes, Inserm, Grenoble Institute Neurosciences, Grenoble, France
- Movement Disorders Unit, Division of Neurology, Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| |
Collapse
|
8
|
Zimmers S, Flahault C, Bungener C. Navigating the challenge of pain when diagnosed at an early age with Parkinson's disease: an interpretative phenomenological analysis. Disabil Rehabil 2024:1-9. [PMID: 39460582 DOI: 10.1080/09638288.2024.2421440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/28/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
PURPOSE Despite the substantial impact of pain in Parkinson's, little attention has been given to understanding how individuals, especially those diagnosed at a younger age, perceive and manage their pain. This research aims to fill this gap by exploring the subjective experiences of pain in this population which is at a higher risk of experiencing pain. MATERIALS AND METHODS Interpretative Phenomenological Analysis (IPA) was used as a methodological framework. Non-directive, in-depth interviews were conducted with four French-speaking participants with Parkinson's (diagnosed before 50 years old, with various pain profiles), and analyzed using IPA. RESULTS Four major themes emerged: (1) the history of the disease, (2) adaptation to the disease, (3) losses related to pain and (4) strategies deployed to regain control over pain. Results highlight the participants' processes of adaptation, despite the major identity disruption caused by the disease and pain. They also shed light on how the experience of pain is influenced by its relational dimension. CONCLUSIONS Our results offer an understanding of the complexity and diversity of the experience of pain in this population. This complexity contributes to challenges in patients' ability to articulate and represent their pain accurately, advocating personalized, multidisciplinary pain management approaches within this population.
Collapse
Affiliation(s)
- Sylvia Zimmers
- Laboratoire de Psychopathologie et Processus de Santé, Université Paris Cité, Boulogne, Billancourt, France
| | - Cécile Flahault
- Laboratoire de Psychopathologie et Processus de Santé, Université Paris Cité, Boulogne, Billancourt, France
- Service de Psychiatrie de l'adulte et du sujet âgé, AP-HP, Hôpital Européen George Pompidou, Paris, France
- Département Interdisciplinaire d'Organisation du Parcours Patient, Hôpital Gustave Roussy, Villejuif, France
| | - Catherine Bungener
- Laboratoire de Psychopathologie et Processus de Santé, Université Paris Cité, Boulogne, Billancourt, France
| |
Collapse
|
9
|
Zhang F, Luo A, Liao S, Liu M, Zhang J, Xu Z. Progress of non‐motor symptoms in early‐onset Parkinson's disease. IBRAIN 2024. [DOI: 10.1002/ibra.12180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 09/08/2024] [Indexed: 01/03/2025]
Abstract
AbstractParkinson's disease (PD) is a common degenerative disease of the central nervous system that is characterized by movement disorders and non‐motor symptoms (NMSs). The associated NMSs primarily include neuropsychiatric symptoms, autonomic dysfunction, sleep‐wake disorders, pain, fatigue, and hyposmia. These NMSs can occur at any stage of PD, especially before the onset of motor symptoms, and may affect a patient's quality of life more than motor symptoms. Although PD is most commonly diagnosed in people over 65 years, some patients exhibit symptom onset before the age of 50, which is clinically known as early‐onset Parkinson's disease (EOPD). The high heterogeneity and incidence of EOPD‐associated NMSs can lead to the misdiagnosis of EOPD as other neurodegenerative diseases. In this review, we discuss the research progress related to NMSs in patients with EOPD, focusing on neuropsychiatric disorders, autonomic dysfunction, sleep disorders, and sensory impairment, and outline the association of NMSs with different genotypic alterations, with the aim of providing assistance in the clinical management of patients.
Collapse
Affiliation(s)
- Fanshi Zhang
- Department of Neurology Affiliated Hospital of Zunyi Medical University Zunyi China
| | - Aidi Luo
- Department of Neurology Affiliated Hospital of Zunyi Medical University Zunyi China
| | - Shusheng Liao
- Department of Neurology Affiliated Hospital of Zunyi Medical University Zunyi China
| | - Mei Liu
- Department of Neurology Affiliated Hospital of Zunyi Medical University Zunyi China
| | - Jun Zhang
- Department of Neurology Affiliated Hospital of Zunyi Medical University Zunyi China
| | - Zucai Xu
- Department of Neurology Affiliated Hospital of Zunyi Medical University Zunyi China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine Zunyi Medical University Zunyi China
| |
Collapse
|
10
|
Patwardhan A, Kamble N, Bhattacharya A, Holla V, Yadav R, Pal PK. Impact of Non-Motor Symptoms on Quality of Life in Patients with Early-Onset Parkinson's Disease. Can J Neurol Sci 2024; 51:650-659. [PMID: 38178714 DOI: 10.1017/cjn.2023.336] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
BACKGROUND Early-onset Parkinson's disease (EOPD) refers to patients with Parkinson's disease (PD) whose age at disease onset is less than 50 years. Literature on the non-motor symptoms (NMS) in these patients is very limited in the Indian context. We aimed to study the NMS in patients with EOPD and its impact on the quality of life (QoL). METHODS We included 124 patients with EOPD with a mean age at disease onset between 21 and 45 years and 60 healthy controls (HC). NMS were assessed using validated scales, and the QoL domains were evaluated using the PD QoL-39 scale (PDQ-39). RESULTS The mean age at disease onset in EOPD patients was 37.33 ± 6.36 years. Majority of the patients were male (66.12%). The average disease duration was 6.62 ± 5.3 years. EOPD patients exhibited a significantly higher number of NMS per patient (7.97 ± 4.69) compared to HC (1.3 ± 1.39; p < 0.001). The most common NMS reported were urinary dysfunction, body pain, poor sleep quality, constipation, anxiety, depression, cognitive impairment, and REM sleep behavior disorder. The total NMS burden correlated with the QoL measures. Distinctive patterns of QoL subdomain involvement were identified, with sleep/fatigue, mood/cognition, and urinary dysfunction independently influencing QoL metrics. CONCLUSIONS Our study provides valuable insights into the NMS profile and its impact on QoL in patients with EOPD, addressing an important knowledge gap in the Indian context. By understanding the specific NMS and their influence on QoL, healthcare professionals can develop targeted interventions to address these symptoms and improve the overall QoL.
Collapse
Affiliation(s)
- Ameya Patwardhan
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, Karnataka, India
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, Karnataka, India
| | - Amitabh Bhattacharya
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, Karnataka, India
| | - Vikram Holla
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, Karnataka, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, Karnataka, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, Karnataka, India
| |
Collapse
|
11
|
Rasing NB, van de Geest-Buit W, Chan OYA, Mul K, Lanser A, Erasmus CE, Groothuis JT, Holler J, Ingels KJAO, Post B, Siemann I, Voermans NC. Psychosocial functioning in patients with altered facial expression: a scoping review in five neurological diseases. Disabil Rehabil 2024; 46:3772-3791. [PMID: 37752723 DOI: 10.1080/09638288.2023.2259310] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 09/28/2023]
Abstract
PURPOSE To perform a scoping review to investigate the psychosocial impact of having an altered facial expression in five neurological diseases. METHODS A systematic literature search was performed. Studies were on Bell's palsy, facioscapulohumeral muscular dystrophy (FSHD), Moebius syndrome, myotonic dystrophy type 1, or Parkinson's disease patients; had a focus on altered facial expression; and had any form of psychosocial outcome measure. Data extraction focused on psychosocial outcomes. RESULTS Bell's palsy, myotonic dystrophy type 1, and Parkinson's disease patients more often experienced some degree of psychosocial distress than healthy controls. In FSHD, facial weakness negatively influenced communication and was experienced as a burden. The psychosocial distress applied especially to women (Bell's palsy and Parkinson's disease), and patients with more severely altered facial expression (Bell's palsy), but not for Moebius syndrome patients. Furthermore, Parkinson's disease patients with more pronounced hypomimia were perceived more negatively by observers. Various strategies were reported to compensate for altered facial expression. CONCLUSIONS This review showed that patients with altered facial expression in four of five included neurological diseases had reduced psychosocial functioning. Future research recommendations include studies on observers' judgements of patients during social interactions and on the effectiveness of compensation strategies in enhancing psychosocial functioning.
Collapse
Affiliation(s)
- Nathaniël B Rasing
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Willianne van de Geest-Buit
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - On Ying A Chan
- Medical Library, Radboud University, Nijmegen, The Netherlands
| | - Karlien Mul
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anke Lanser
- Patient Representative and Chairman FSHD Advocacy Group, Patient Organization for Muscular Disease Spierziekten Nederland, Baarn, The Netherlands
| | - Corrie E Erasmus
- Department of Pediatric Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan T Groothuis
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Judith Holler
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, and Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Koen J A O Ingels
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bart Post
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ietske Siemann
- Department of Medical Psychology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Su D, Zhang Z, Zhang Z, Zheng S, Yao T, Dong Y, Zhu W, Wei N, Suo Y, Liu X, Zhao H, Wang Z, Ma H, Li W, Zhou J, Lam JST, Wu T, Dusek P, Stoessl AJ, Wang X, Jing J, Feng T. Distinctive Pattern of Metal Deposition in Neurologic Wilson Disease: Insights From 7T Susceptibility-Weighted Imaging. Neurology 2024; 102:e209478. [PMID: 38830145 PMCID: PMC11244749 DOI: 10.1212/wnl.0000000000209478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/11/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Noninvasive and accurate biomarkers of neurologic Wilson disease (NWD), a rare inherited disorder, could reduce diagnostic error or delay. Excessive subcortical metal deposition seen on susceptibility imaging has suggested a characteristic pattern in NWD. With submillimeter spatial resolution and increased contrast, 7T susceptibility-weighted imaging (SWI) may enable better visualization of metal deposition in NWD. In this study, we sought to identify a distinctive metal deposition pattern in NWD using 7T SWI and investigate its diagnostic value and underlying pathophysiologic mechanism. METHODS Patients with WD, healthy participants with monoallelic ATP7B variant(s) on a single chromosome, and health controls (HCs) were recruited. NWD and non-NWD (nNWD) were defined according to the presence or absence of neurologic symptoms during investigation. Patients with other diseases with comparable clinical or imaging manifestations, including early-onset Parkinson disease (EOPD), multiple system atrophy (MSA), progressive supranuclear palsy (PSP), and neurodegeneration with brain iron accumulation (NBIA), were additionally recruited and assessed for exploratory comparative analysis. All participants underwent 7T T1, T2, and high-resolution SWI scanning. Quantitative susceptibility mapping and principal component analysis were performed to illustrate metal distribution. RESULTS We identified a linear signal intensity change consisting of a hyperintense strip at the lateral border of the globus pallidus in patients with NWD. We termed this feature "hyperintense globus pallidus rim sign." This feature was detected in 38 of 41 patients with NWD and was negative in all 31 nNWD patients, 15 patients with EOPD, 30 patients with MSA, 15 patients with PSP, and 12 patients with NBIA; 22 monoallelic ATP7B variant carriers; and 41 HC. Its sensitivity to differentiate between NWD and HC was 92.7%, and specificity was 100%. Severity of the hyperintense globus pallidus rim sign measured by a semiquantitative scale was positively correlated with neurologic severity (ρ = 0.682, 95% CI 0.467-0.821, p < 0.001). Patients with NWD showed increased susceptibility in the lenticular nucleus with high regional weights in the lateral globus pallidus and medial putamen. DISCUSSION The hyperintense globus pallidus rim sign showed high sensitivity and excellent specificity for diagnosis and differential diagnosis of NWD. It is related to a special metal deposition pattern in the lenticular nucleus in NWD and can be considered as a novel neuroimaging biomarker of NWD. CLASSIFICATION OF EVIDENCE The study provides Class II evidence that the hyperintense globus pallidus rim sign on 7T SWI MRI can accurately diagnose neurologic WD.
Collapse
Affiliation(s)
- Dongning Su
- From the Department of Neurology (D.S., Zhijin Zhang, H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (D.S., Zhijin Zhang, Zhe Zhang, W.Z., N.W., Y.S., X.L., H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.); Tiantan Neuroimaging Center of Excellence (Zhe Zhang, W.Z., N.W., Y.S., X.L., J.J.), and Department of Hepatology (S.Z.), Beijing Youan Hospital, Capital Medical University; Department of Neurology (T.Y.), Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disorders; Senior Department of Hepatology (Y.D.), the Fifth Medical Center of PLA General Hospital, Beijing, China; Hinda and Arthur Marcus Institute for Aging Research (J.Z.), Hebrew SeniorLife, Roslindale; Harvard Medical School (J.Z.), Boston, MA; Pacific Parkinson's Research Centre (J.S.T.L., A.J.S.), Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; Department of Neurology and Centre of Clinical Neuroscience (P.D.), First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; Division of Neurology (A.J.S.), Department of Medicine, University of British Columbia, Vancouver, Canada; and Department of Neurology (X.W.), Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Zhijin Zhang
- From the Department of Neurology (D.S., Zhijin Zhang, H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (D.S., Zhijin Zhang, Zhe Zhang, W.Z., N.W., Y.S., X.L., H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.); Tiantan Neuroimaging Center of Excellence (Zhe Zhang, W.Z., N.W., Y.S., X.L., J.J.), and Department of Hepatology (S.Z.), Beijing Youan Hospital, Capital Medical University; Department of Neurology (T.Y.), Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disorders; Senior Department of Hepatology (Y.D.), the Fifth Medical Center of PLA General Hospital, Beijing, China; Hinda and Arthur Marcus Institute for Aging Research (J.Z.), Hebrew SeniorLife, Roslindale; Harvard Medical School (J.Z.), Boston, MA; Pacific Parkinson's Research Centre (J.S.T.L., A.J.S.), Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; Department of Neurology and Centre of Clinical Neuroscience (P.D.), First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; Division of Neurology (A.J.S.), Department of Medicine, University of British Columbia, Vancouver, Canada; and Department of Neurology (X.W.), Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Zhe Zhang
- From the Department of Neurology (D.S., Zhijin Zhang, H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (D.S., Zhijin Zhang, Zhe Zhang, W.Z., N.W., Y.S., X.L., H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.); Tiantan Neuroimaging Center of Excellence (Zhe Zhang, W.Z., N.W., Y.S., X.L., J.J.), and Department of Hepatology (S.Z.), Beijing Youan Hospital, Capital Medical University; Department of Neurology (T.Y.), Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disorders; Senior Department of Hepatology (Y.D.), the Fifth Medical Center of PLA General Hospital, Beijing, China; Hinda and Arthur Marcus Institute for Aging Research (J.Z.), Hebrew SeniorLife, Roslindale; Harvard Medical School (J.Z.), Boston, MA; Pacific Parkinson's Research Centre (J.S.T.L., A.J.S.), Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; Department of Neurology and Centre of Clinical Neuroscience (P.D.), First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; Division of Neurology (A.J.S.), Department of Medicine, University of British Columbia, Vancouver, Canada; and Department of Neurology (X.W.), Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Sujun Zheng
- From the Department of Neurology (D.S., Zhijin Zhang, H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (D.S., Zhijin Zhang, Zhe Zhang, W.Z., N.W., Y.S., X.L., H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.); Tiantan Neuroimaging Center of Excellence (Zhe Zhang, W.Z., N.W., Y.S., X.L., J.J.), and Department of Hepatology (S.Z.), Beijing Youan Hospital, Capital Medical University; Department of Neurology (T.Y.), Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disorders; Senior Department of Hepatology (Y.D.), the Fifth Medical Center of PLA General Hospital, Beijing, China; Hinda and Arthur Marcus Institute for Aging Research (J.Z.), Hebrew SeniorLife, Roslindale; Harvard Medical School (J.Z.), Boston, MA; Pacific Parkinson's Research Centre (J.S.T.L., A.J.S.), Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; Department of Neurology and Centre of Clinical Neuroscience (P.D.), First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; Division of Neurology (A.J.S.), Department of Medicine, University of British Columbia, Vancouver, Canada; and Department of Neurology (X.W.), Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Tingyan Yao
- From the Department of Neurology (D.S., Zhijin Zhang, H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (D.S., Zhijin Zhang, Zhe Zhang, W.Z., N.W., Y.S., X.L., H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.); Tiantan Neuroimaging Center of Excellence (Zhe Zhang, W.Z., N.W., Y.S., X.L., J.J.), and Department of Hepatology (S.Z.), Beijing Youan Hospital, Capital Medical University; Department of Neurology (T.Y.), Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disorders; Senior Department of Hepatology (Y.D.), the Fifth Medical Center of PLA General Hospital, Beijing, China; Hinda and Arthur Marcus Institute for Aging Research (J.Z.), Hebrew SeniorLife, Roslindale; Harvard Medical School (J.Z.), Boston, MA; Pacific Parkinson's Research Centre (J.S.T.L., A.J.S.), Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; Department of Neurology and Centre of Clinical Neuroscience (P.D.), First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; Division of Neurology (A.J.S.), Department of Medicine, University of British Columbia, Vancouver, Canada; and Department of Neurology (X.W.), Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Yi Dong
- From the Department of Neurology (D.S., Zhijin Zhang, H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (D.S., Zhijin Zhang, Zhe Zhang, W.Z., N.W., Y.S., X.L., H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.); Tiantan Neuroimaging Center of Excellence (Zhe Zhang, W.Z., N.W., Y.S., X.L., J.J.), and Department of Hepatology (S.Z.), Beijing Youan Hospital, Capital Medical University; Department of Neurology (T.Y.), Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disorders; Senior Department of Hepatology (Y.D.), the Fifth Medical Center of PLA General Hospital, Beijing, China; Hinda and Arthur Marcus Institute for Aging Research (J.Z.), Hebrew SeniorLife, Roslindale; Harvard Medical School (J.Z.), Boston, MA; Pacific Parkinson's Research Centre (J.S.T.L., A.J.S.), Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; Department of Neurology and Centre of Clinical Neuroscience (P.D.), First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; Division of Neurology (A.J.S.), Department of Medicine, University of British Columbia, Vancouver, Canada; and Department of Neurology (X.W.), Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Wanlin Zhu
- From the Department of Neurology (D.S., Zhijin Zhang, H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (D.S., Zhijin Zhang, Zhe Zhang, W.Z., N.W., Y.S., X.L., H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.); Tiantan Neuroimaging Center of Excellence (Zhe Zhang, W.Z., N.W., Y.S., X.L., J.J.), and Department of Hepatology (S.Z.), Beijing Youan Hospital, Capital Medical University; Department of Neurology (T.Y.), Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disorders; Senior Department of Hepatology (Y.D.), the Fifth Medical Center of PLA General Hospital, Beijing, China; Hinda and Arthur Marcus Institute for Aging Research (J.Z.), Hebrew SeniorLife, Roslindale; Harvard Medical School (J.Z.), Boston, MA; Pacific Parkinson's Research Centre (J.S.T.L., A.J.S.), Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; Department of Neurology and Centre of Clinical Neuroscience (P.D.), First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; Division of Neurology (A.J.S.), Department of Medicine, University of British Columbia, Vancouver, Canada; and Department of Neurology (X.W.), Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Ning Wei
- From the Department of Neurology (D.S., Zhijin Zhang, H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (D.S., Zhijin Zhang, Zhe Zhang, W.Z., N.W., Y.S., X.L., H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.); Tiantan Neuroimaging Center of Excellence (Zhe Zhang, W.Z., N.W., Y.S., X.L., J.J.), and Department of Hepatology (S.Z.), Beijing Youan Hospital, Capital Medical University; Department of Neurology (T.Y.), Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disorders; Senior Department of Hepatology (Y.D.), the Fifth Medical Center of PLA General Hospital, Beijing, China; Hinda and Arthur Marcus Institute for Aging Research (J.Z.), Hebrew SeniorLife, Roslindale; Harvard Medical School (J.Z.), Boston, MA; Pacific Parkinson's Research Centre (J.S.T.L., A.J.S.), Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; Department of Neurology and Centre of Clinical Neuroscience (P.D.), First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; Division of Neurology (A.J.S.), Department of Medicine, University of British Columbia, Vancouver, Canada; and Department of Neurology (X.W.), Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Yue Suo
- From the Department of Neurology (D.S., Zhijin Zhang, H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (D.S., Zhijin Zhang, Zhe Zhang, W.Z., N.W., Y.S., X.L., H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.); Tiantan Neuroimaging Center of Excellence (Zhe Zhang, W.Z., N.W., Y.S., X.L., J.J.), and Department of Hepatology (S.Z.), Beijing Youan Hospital, Capital Medical University; Department of Neurology (T.Y.), Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disorders; Senior Department of Hepatology (Y.D.), the Fifth Medical Center of PLA General Hospital, Beijing, China; Hinda and Arthur Marcus Institute for Aging Research (J.Z.), Hebrew SeniorLife, Roslindale; Harvard Medical School (J.Z.), Boston, MA; Pacific Parkinson's Research Centre (J.S.T.L., A.J.S.), Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; Department of Neurology and Centre of Clinical Neuroscience (P.D.), First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; Division of Neurology (A.J.S.), Department of Medicine, University of British Columbia, Vancouver, Canada; and Department of Neurology (X.W.), Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Xinyao Liu
- From the Department of Neurology (D.S., Zhijin Zhang, H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (D.S., Zhijin Zhang, Zhe Zhang, W.Z., N.W., Y.S., X.L., H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.); Tiantan Neuroimaging Center of Excellence (Zhe Zhang, W.Z., N.W., Y.S., X.L., J.J.), and Department of Hepatology (S.Z.), Beijing Youan Hospital, Capital Medical University; Department of Neurology (T.Y.), Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disorders; Senior Department of Hepatology (Y.D.), the Fifth Medical Center of PLA General Hospital, Beijing, China; Hinda and Arthur Marcus Institute for Aging Research (J.Z.), Hebrew SeniorLife, Roslindale; Harvard Medical School (J.Z.), Boston, MA; Pacific Parkinson's Research Centre (J.S.T.L., A.J.S.), Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; Department of Neurology and Centre of Clinical Neuroscience (P.D.), First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; Division of Neurology (A.J.S.), Department of Medicine, University of British Columbia, Vancouver, Canada; and Department of Neurology (X.W.), Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Huiqing Zhao
- From the Department of Neurology (D.S., Zhijin Zhang, H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (D.S., Zhijin Zhang, Zhe Zhang, W.Z., N.W., Y.S., X.L., H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.); Tiantan Neuroimaging Center of Excellence (Zhe Zhang, W.Z., N.W., Y.S., X.L., J.J.), and Department of Hepatology (S.Z.), Beijing Youan Hospital, Capital Medical University; Department of Neurology (T.Y.), Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disorders; Senior Department of Hepatology (Y.D.), the Fifth Medical Center of PLA General Hospital, Beijing, China; Hinda and Arthur Marcus Institute for Aging Research (J.Z.), Hebrew SeniorLife, Roslindale; Harvard Medical School (J.Z.), Boston, MA; Pacific Parkinson's Research Centre (J.S.T.L., A.J.S.), Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; Department of Neurology and Centre of Clinical Neuroscience (P.D.), First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; Division of Neurology (A.J.S.), Department of Medicine, University of British Columbia, Vancouver, Canada; and Department of Neurology (X.W.), Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Zhan Wang
- From the Department of Neurology (D.S., Zhijin Zhang, H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (D.S., Zhijin Zhang, Zhe Zhang, W.Z., N.W., Y.S., X.L., H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.); Tiantan Neuroimaging Center of Excellence (Zhe Zhang, W.Z., N.W., Y.S., X.L., J.J.), and Department of Hepatology (S.Z.), Beijing Youan Hospital, Capital Medical University; Department of Neurology (T.Y.), Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disorders; Senior Department of Hepatology (Y.D.), the Fifth Medical Center of PLA General Hospital, Beijing, China; Hinda and Arthur Marcus Institute for Aging Research (J.Z.), Hebrew SeniorLife, Roslindale; Harvard Medical School (J.Z.), Boston, MA; Pacific Parkinson's Research Centre (J.S.T.L., A.J.S.), Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; Department of Neurology and Centre of Clinical Neuroscience (P.D.), First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; Division of Neurology (A.J.S.), Department of Medicine, University of British Columbia, Vancouver, Canada; and Department of Neurology (X.W.), Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Huizi Ma
- From the Department of Neurology (D.S., Zhijin Zhang, H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (D.S., Zhijin Zhang, Zhe Zhang, W.Z., N.W., Y.S., X.L., H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.); Tiantan Neuroimaging Center of Excellence (Zhe Zhang, W.Z., N.W., Y.S., X.L., J.J.), and Department of Hepatology (S.Z.), Beijing Youan Hospital, Capital Medical University; Department of Neurology (T.Y.), Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disorders; Senior Department of Hepatology (Y.D.), the Fifth Medical Center of PLA General Hospital, Beijing, China; Hinda and Arthur Marcus Institute for Aging Research (J.Z.), Hebrew SeniorLife, Roslindale; Harvard Medical School (J.Z.), Boston, MA; Pacific Parkinson's Research Centre (J.S.T.L., A.J.S.), Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; Department of Neurology and Centre of Clinical Neuroscience (P.D.), First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; Division of Neurology (A.J.S.), Department of Medicine, University of British Columbia, Vancouver, Canada; and Department of Neurology (X.W.), Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Wei Li
- From the Department of Neurology (D.S., Zhijin Zhang, H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (D.S., Zhijin Zhang, Zhe Zhang, W.Z., N.W., Y.S., X.L., H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.); Tiantan Neuroimaging Center of Excellence (Zhe Zhang, W.Z., N.W., Y.S., X.L., J.J.), and Department of Hepatology (S.Z.), Beijing Youan Hospital, Capital Medical University; Department of Neurology (T.Y.), Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disorders; Senior Department of Hepatology (Y.D.), the Fifth Medical Center of PLA General Hospital, Beijing, China; Hinda and Arthur Marcus Institute for Aging Research (J.Z.), Hebrew SeniorLife, Roslindale; Harvard Medical School (J.Z.), Boston, MA; Pacific Parkinson's Research Centre (J.S.T.L., A.J.S.), Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; Department of Neurology and Centre of Clinical Neuroscience (P.D.), First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; Division of Neurology (A.J.S.), Department of Medicine, University of British Columbia, Vancouver, Canada; and Department of Neurology (X.W.), Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Junhong Zhou
- From the Department of Neurology (D.S., Zhijin Zhang, H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (D.S., Zhijin Zhang, Zhe Zhang, W.Z., N.W., Y.S., X.L., H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.); Tiantan Neuroimaging Center of Excellence (Zhe Zhang, W.Z., N.W., Y.S., X.L., J.J.), and Department of Hepatology (S.Z.), Beijing Youan Hospital, Capital Medical University; Department of Neurology (T.Y.), Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disorders; Senior Department of Hepatology (Y.D.), the Fifth Medical Center of PLA General Hospital, Beijing, China; Hinda and Arthur Marcus Institute for Aging Research (J.Z.), Hebrew SeniorLife, Roslindale; Harvard Medical School (J.Z.), Boston, MA; Pacific Parkinson's Research Centre (J.S.T.L., A.J.S.), Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; Department of Neurology and Centre of Clinical Neuroscience (P.D.), First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; Division of Neurology (A.J.S.), Department of Medicine, University of British Columbia, Vancouver, Canada; and Department of Neurology (X.W.), Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Joyce S T Lam
- From the Department of Neurology (D.S., Zhijin Zhang, H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (D.S., Zhijin Zhang, Zhe Zhang, W.Z., N.W., Y.S., X.L., H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.); Tiantan Neuroimaging Center of Excellence (Zhe Zhang, W.Z., N.W., Y.S., X.L., J.J.), and Department of Hepatology (S.Z.), Beijing Youan Hospital, Capital Medical University; Department of Neurology (T.Y.), Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disorders; Senior Department of Hepatology (Y.D.), the Fifth Medical Center of PLA General Hospital, Beijing, China; Hinda and Arthur Marcus Institute for Aging Research (J.Z.), Hebrew SeniorLife, Roslindale; Harvard Medical School (J.Z.), Boston, MA; Pacific Parkinson's Research Centre (J.S.T.L., A.J.S.), Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; Department of Neurology and Centre of Clinical Neuroscience (P.D.), First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; Division of Neurology (A.J.S.), Department of Medicine, University of British Columbia, Vancouver, Canada; and Department of Neurology (X.W.), Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Tao Wu
- From the Department of Neurology (D.S., Zhijin Zhang, H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (D.S., Zhijin Zhang, Zhe Zhang, W.Z., N.W., Y.S., X.L., H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.); Tiantan Neuroimaging Center of Excellence (Zhe Zhang, W.Z., N.W., Y.S., X.L., J.J.), and Department of Hepatology (S.Z.), Beijing Youan Hospital, Capital Medical University; Department of Neurology (T.Y.), Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disorders; Senior Department of Hepatology (Y.D.), the Fifth Medical Center of PLA General Hospital, Beijing, China; Hinda and Arthur Marcus Institute for Aging Research (J.Z.), Hebrew SeniorLife, Roslindale; Harvard Medical School (J.Z.), Boston, MA; Pacific Parkinson's Research Centre (J.S.T.L., A.J.S.), Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; Department of Neurology and Centre of Clinical Neuroscience (P.D.), First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; Division of Neurology (A.J.S.), Department of Medicine, University of British Columbia, Vancouver, Canada; and Department of Neurology (X.W.), Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Petr Dusek
- From the Department of Neurology (D.S., Zhijin Zhang, H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (D.S., Zhijin Zhang, Zhe Zhang, W.Z., N.W., Y.S., X.L., H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.); Tiantan Neuroimaging Center of Excellence (Zhe Zhang, W.Z., N.W., Y.S., X.L., J.J.), and Department of Hepatology (S.Z.), Beijing Youan Hospital, Capital Medical University; Department of Neurology (T.Y.), Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disorders; Senior Department of Hepatology (Y.D.), the Fifth Medical Center of PLA General Hospital, Beijing, China; Hinda and Arthur Marcus Institute for Aging Research (J.Z.), Hebrew SeniorLife, Roslindale; Harvard Medical School (J.Z.), Boston, MA; Pacific Parkinson's Research Centre (J.S.T.L., A.J.S.), Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; Department of Neurology and Centre of Clinical Neuroscience (P.D.), First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; Division of Neurology (A.J.S.), Department of Medicine, University of British Columbia, Vancouver, Canada; and Department of Neurology (X.W.), Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - A Jon Stoessl
- From the Department of Neurology (D.S., Zhijin Zhang, H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (D.S., Zhijin Zhang, Zhe Zhang, W.Z., N.W., Y.S., X.L., H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.); Tiantan Neuroimaging Center of Excellence (Zhe Zhang, W.Z., N.W., Y.S., X.L., J.J.), and Department of Hepatology (S.Z.), Beijing Youan Hospital, Capital Medical University; Department of Neurology (T.Y.), Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disorders; Senior Department of Hepatology (Y.D.), the Fifth Medical Center of PLA General Hospital, Beijing, China; Hinda and Arthur Marcus Institute for Aging Research (J.Z.), Hebrew SeniorLife, Roslindale; Harvard Medical School (J.Z.), Boston, MA; Pacific Parkinson's Research Centre (J.S.T.L., A.J.S.), Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; Department of Neurology and Centre of Clinical Neuroscience (P.D.), First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; Division of Neurology (A.J.S.), Department of Medicine, University of British Columbia, Vancouver, Canada; and Department of Neurology (X.W.), Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Xiaoping Wang
- From the Department of Neurology (D.S., Zhijin Zhang, H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (D.S., Zhijin Zhang, Zhe Zhang, W.Z., N.W., Y.S., X.L., H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.); Tiantan Neuroimaging Center of Excellence (Zhe Zhang, W.Z., N.W., Y.S., X.L., J.J.), and Department of Hepatology (S.Z.), Beijing Youan Hospital, Capital Medical University; Department of Neurology (T.Y.), Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disorders; Senior Department of Hepatology (Y.D.), the Fifth Medical Center of PLA General Hospital, Beijing, China; Hinda and Arthur Marcus Institute for Aging Research (J.Z.), Hebrew SeniorLife, Roslindale; Harvard Medical School (J.Z.), Boston, MA; Pacific Parkinson's Research Centre (J.S.T.L., A.J.S.), Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; Department of Neurology and Centre of Clinical Neuroscience (P.D.), First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; Division of Neurology (A.J.S.), Department of Medicine, University of British Columbia, Vancouver, Canada; and Department of Neurology (X.W.), Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Jing Jing
- From the Department of Neurology (D.S., Zhijin Zhang, H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (D.S., Zhijin Zhang, Zhe Zhang, W.Z., N.W., Y.S., X.L., H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.); Tiantan Neuroimaging Center of Excellence (Zhe Zhang, W.Z., N.W., Y.S., X.L., J.J.), and Department of Hepatology (S.Z.), Beijing Youan Hospital, Capital Medical University; Department of Neurology (T.Y.), Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disorders; Senior Department of Hepatology (Y.D.), the Fifth Medical Center of PLA General Hospital, Beijing, China; Hinda and Arthur Marcus Institute for Aging Research (J.Z.), Hebrew SeniorLife, Roslindale; Harvard Medical School (J.Z.), Boston, MA; Pacific Parkinson's Research Centre (J.S.T.L., A.J.S.), Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; Department of Neurology and Centre of Clinical Neuroscience (P.D.), First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; Division of Neurology (A.J.S.), Department of Medicine, University of British Columbia, Vancouver, Canada; and Department of Neurology (X.W.), Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Tao Feng
- From the Department of Neurology (D.S., Zhijin Zhang, H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (D.S., Zhijin Zhang, Zhe Zhang, W.Z., N.W., Y.S., X.L., H.Z., Z.W., H.M., W.L., T.W., J.J., T.F.); Tiantan Neuroimaging Center of Excellence (Zhe Zhang, W.Z., N.W., Y.S., X.L., J.J.), and Department of Hepatology (S.Z.), Beijing Youan Hospital, Capital Medical University; Department of Neurology (T.Y.), Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disorders; Senior Department of Hepatology (Y.D.), the Fifth Medical Center of PLA General Hospital, Beijing, China; Hinda and Arthur Marcus Institute for Aging Research (J.Z.), Hebrew SeniorLife, Roslindale; Harvard Medical School (J.Z.), Boston, MA; Pacific Parkinson's Research Centre (J.S.T.L., A.J.S.), Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; Department of Neurology and Centre of Clinical Neuroscience (P.D.), First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; Division of Neurology (A.J.S.), Department of Medicine, University of British Columbia, Vancouver, Canada; and Department of Neurology (X.W.), Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
13
|
Hattori N, Funayama M, Imai Y, Hatano T. Pathogenesis of Parkinson's disease: from hints from monogenic familial PD to biomarkers. J Neural Transm (Vienna) 2024; 131:709-719. [PMID: 38478097 DOI: 10.1007/s00702-024-02747-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 06/22/2024]
Abstract
Twenty-five years have passed since the causative gene for familial Parkinson's disease (PD), Parkin (now PRKN), was identified in 1998; PRKN is the most common causative gene in young-onset PD. Parkin encodes a ubiquitin-protein ligase, and Parkin is involved in mitophagy, a type of macroautophagy, in concert with PTEN-induced kinase 1 (PINK1). Both gene products are also involved in mitochondrial quality control. Among the many genetic PD-causing genes discovered, discovering PRKN as a cause of juvenile-onset PD has significantly impacted other neurodegenerative disorders. This is because the involvement of proteolytic systems has been suggested as a common mechanism in neurodegenerative diseases in which inclusion body formation is observed. The discovery of the participation of PRKN in PD has brought attention to the involvement of the proteolytic system in neurodegenerative diseases. Our research group has successfully isolated and identified CHCHD2, which is involved in the mitochondrial electron transfer system, and prosaposin (PSAP), which is involved in the lysosomal system, in this Parkin mechanism. Hereditary PD is undoubtedly an essential clue to solitary PD, and at least 25 or so genes and loci have been reported so far. This number of genes indicates that PD is a very diverse group of diseases. Currently, the diagnosis of PD is based on clinical symptoms and imaging studies. Although highly accurate diagnostic criteria have been published, early diagnosis is becoming increasingly important in treatment strategies for neurodegenerative diseases. Here, we also describe biomarkers that our group is working on.
Collapse
Affiliation(s)
- Nobutaka Hattori
- Department of Neurology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan.
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan.
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan.
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan.
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, 2-1-Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| | - Manabu Funayama
- Department of Neurology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Yuzuru Imai
- Department of Neurology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Taku Hatano
- Department of Neurology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
| |
Collapse
|
14
|
Turcano P, Jacobson J, Ghoniem K, Mullan A, Camerucci E, Stang C, Piat C, Bower JH, Savica R. Impulse control disorders and use of dopamine agonists in early onset Parkinson's disease. Front Neurol 2024; 15:1404904. [PMID: 38841693 PMCID: PMC11150809 DOI: 10.3389/fneur.2024.1404904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024] Open
Abstract
Introduction Impulse control disorders (ICDs) are defined as excessive and repetitive behaviors that may affect Parkinson's disease (PD) patients exposed to dopamine agonists. Current data on ICDs in patients with early-onset Parkinson's disease (EOPD) is lacking. In this study we aim to assess the frequency of use of dopamine agonists, the prevalence of ICDs, and to explore potential factors associated with their development in patients with EOPD. Methods We used the Mayo Clinic Data Explorer system to investigate a population-based cohort of EOPD patients between 1990 and 2022 at Mayo Clinic, Rochester, MN. We used ICD coding for parkinsonism; then, we reviewed all the clinical records and included only those patients with a clinical diagnosis of PD with symptoms onset at or before the age of 50, and who developed ICDs after using therapeutic doses of dopamine agonists. Results A total of 831 (513 males and 318 females) patients with EOPD were included with a median age at symptom onset of 42 years of age (CI: 37-46). Dopamine agonists were used in 49.7% of all patients; of these, only 14.5% developed symptoms of one or more ICDs. Hypersexuality was the most commonly observed ICD (38.3%), and the only one having a statistically significant male predominance (p = 0.011). Conclusion ICDs are common in EOPD, particularly when associated with the use of dopamine agonists.
Collapse
Affiliation(s)
| | - Jessie Jacobson
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Khaled Ghoniem
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Aidan Mullan
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Emanuele Camerucci
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Cole Stang
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Capucine Piat
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - James H. Bower
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
15
|
Bej E, Cesare P, Volpe AR, d’Angelo M, Castelli V. Oxidative Stress and Neurodegeneration: Insights and Therapeutic Strategies for Parkinson's Disease. Neurol Int 2024; 16:502-517. [PMID: 38804477 PMCID: PMC11130796 DOI: 10.3390/neurolint16030037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative condition marked by the gradual deterioration of dopaminergic neurons in the substantia nigra. Oxidative stress has been identified as a key player in the development of PD in recent studies. In the first part, we discuss the sources of oxidative stress in PD, including mitochondrial dysfunction, dopamine metabolism, and neuroinflammation. This paper delves into the possibility of mitigating oxidative stress as a potential treatment approach for PD. In addition, we examine the hurdles and potential of antioxidant therapy, including the challenge of delivering antioxidants to the brain and the requirement for biomarkers to track oxidative stress in PD patients. However, even if antioxidant therapy holds promise, further investigation is needed to determine its efficacy and safety in PD treatment.
Collapse
Affiliation(s)
| | | | | | | | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (E.B.); (P.C.); (A.R.V.); (M.d.)
| |
Collapse
|
16
|
He R, Zeng Y, Wang C, Chen L, Cai G, Chen Y, Wang Y, Ye Q, Chen X. Associative role of HLA-DRB1 as a protective factor for susceptibility and progression of Parkinson's disease: a Chinese cross-sectional and longitudinal study. Front Aging Neurosci 2024; 16:1361492. [PMID: 38586829 PMCID: PMC10995924 DOI: 10.3389/fnagi.2024.1361492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/13/2024] [Indexed: 04/09/2024] Open
Abstract
Background Previous genome-wide association studies investigating the relationship between the HLA-DRB1 and the risk of Parkinson's disease (PD) have shown limited racial diversity and have not explored clinical heterogeneity extensively. Methods The study consisted of three parts: a case-control study, a cross-sectional study, and a longitudinal cohort study. The case-control study included 477 PD patients and 477 healthy controls to explore the relationship between rs660895 and PD susceptibility. The cross-sectional study utilized baseline data from 429 PD patients to examine the correlation between rs660895 and PD features. The longitudinal study included 388 PD patients who completed a 3-year follow-up to investigate the effects of rs660895 on PD progression. Results In the case-control study, HLA-DRB1 rs660895-G allele was associated with a decreased risk of PD in allele model (adjusted OR=0.72, p = 0.003) and dominant model (AG + GG vs. AA: adjusted OR = 0.67, p = 0.003). In the cross-sectional analysis, there was no association between rs660895 and the onset age, motor phenotype, or initial motor symptoms. In the longitudinal analysis, PD patients with the G allele exhibited a slower progression of motor symptoms (MDS-UPDRS-III total score: β = -5.42, p < 0.001, interaction ptime × genotype < 0.001) and non-motor symptoms (NMSS score: β = -4.78, p = 0.030, interaction ptime × genotype < 0.001). Conclusion Our findings support HLA-DRB1 rs660895-G allele is a protective genetic factor for PD risk in Chinese population. Furthermore, we also provide new evidence for the protective effect of rs660895-G allele in PD progression.
Collapse
Affiliation(s)
- Raoli He
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Yuqi Zeng
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Chaodong Wang
- Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Lina Chen
- Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Guoen Cai
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Ying Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Yingqing Wang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Qinyong Ye
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Xiaochun Chen
- Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
17
|
Rosh I, Tripathi U, Hussein Y, Rike WA, Djamus J, Shklyar B, Manole A, Houlden H, Winkler J, Gage FH, Stern S. Synaptic dysfunction and extracellular matrix dysregulation in dopaminergic neurons from sporadic and E326K-GBA1 Parkinson's disease patients. NPJ Parkinsons Dis 2024; 10:38. [PMID: 38374278 PMCID: PMC10876637 DOI: 10.1038/s41531-024-00653-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 02/06/2024] [Indexed: 02/21/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with both genetic and sporadic origins. In this study, we investigated the electrophysiological properties, synaptic activity, and gene expression differences in dopaminergic (DA) neurons derived from induced pluripotent stem cells (iPSCs) of healthy controls, sporadic PD (sPD) patients, and PD patients with E326K-GBA1 mutations. Our results demonstrate reduced sodium currents and synaptic activity in DA neurons derived from PD patients with E326K-GBA1 mutations, suggesting a potential contribution to PD pathophysiology. We also observed distinct electrophysiological alterations in sPD DA neurons, which included a decrease in synaptic currents. RNA sequencing analysis revealed unique dysregulated pathways in sPD neurons and E326K-GBA1 neurons, further supporting the notion that molecular mechanisms driving PD may differ between PD patients. In agreement with our previous reports, Extracellular matrix and Focal adhesion pathways were among the top dysregulated pathways in DA neurons from sPD patients and from patients with E326K-GBA1 mutations. Overall, our study further confirms that impaired synaptic activity is a convergent functional phenotype in DA neurons derived from PD patients across multiple genetic mutations as well as sPD. At the transcriptome level, we find that the brain extracellular matrix is highly involved in PD pathology across multiple PD-associated mutations as well as sPD.
Collapse
Affiliation(s)
- Idan Rosh
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Utkarsh Tripathi
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Yara Hussein
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Wote Amelo Rike
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Jose Djamus
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Boris Shklyar
- Bioimaging Unit, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Andreea Manole
- Laboratory of Genetics, Gage, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Henry Houlden
- UCL Queen Square Institute of Neurology, University College London, London, England
| | | | - Fred H Gage
- Laboratory of Genetics, Gage, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Shani Stern
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.
| |
Collapse
|
18
|
Ren J, Zhan X, Zhou H, Guo Z, Xing Y, Yin H, Xue C, Wu J, Liu W. Comparing the effects of GBA variants and onset age on clinical features and progression in Parkinson's disease. CNS Neurosci Ther 2024; 30:e14387. [PMID: 37563866 PMCID: PMC10848098 DOI: 10.1111/cns.14387] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 08/12/2023] Open
Abstract
OBJECTIVE Glucosylceramidase (GBA) variants and onset age significantly affect clinical phenotype and progression in Parkinson's disease (PD). The current study compared clinical characteristics at baseline and cognitive and motor progression over time among patients having GBA-related PD (GBA-PD), early-onset idiopathic PD (early-iPD), and late-onset idiopathic PD (late-iPD). METHODS We recruited 88 GBA-PD, 167 early-iPD, and 488 late-iPD patients in this study. A subset of 50 GBA-PD, 81 early-iPD, and 223 late-iPD patients was followed up at least once, with a 3.0-year mean follow-up time. Linear mixed-effects models helped evaluate the rate of change in the Unified Parkinson's Disease Rating Scale motor and Montreal Cognitive Assessment scores. RESULTS At baseline, the GBA-PD group showed more severe motor deficits and non-motor symptoms (NMSs) than the early-iPD group and more NMSs than the late-iPD group. Moreover, the GBA-PD group had more significant cognitive and motor progression, particularly bradykinesia and axial impairment, than the early-iPD and late-iPD groups at follow-up. However, the early-onset GBA-PD (early-GBA-PD) group was similar to the late-onset GBA-PD (late-GBA-PD) group in baseline clinical features and cognitive and motor progression. CONCLUSION GBA-PD patients exhibited faster cognitive and motor deterioration than early-iPD and late-iPD patients. Thus, subtype classification based on genetic characteristics rather than age at onset could enhance the prediction of PD disease progression.
Collapse
Affiliation(s)
- Jingru Ren
- Department of NeurologyThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Xiaoyan Zhan
- Jiangsu Province Hospital of Traditional Chinese MedicineNanjingChina
| | - Hao Zhou
- Department of NeurologyThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Zhiying Guo
- Department of NeurologyThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Yi Xing
- Department of NeurologyThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Hangxing Yin
- Department of NeurologyThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Chen Xue
- Department of RadiologyThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Jun Wu
- Department of Clinical LaboratoryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Weiguo Liu
- Department of NeurologyThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
19
|
Yoon SY, Lee SC, Suh JH, Yang SN, Han K, Kim YW. Different risks of early-onset and late-onset Parkinson disease in individuals with mental illness. NPJ Parkinsons Dis 2024; 10:17. [PMID: 38195604 PMCID: PMC10776668 DOI: 10.1038/s41531-023-00621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/08/2023] [Indexed: 01/11/2024] Open
Abstract
We aimed to investigate the association of various mental illnesses, including depression, bipolar disorder, schizophrenia, insomnia, and anxiety, with the risk of early-onset Parkinson's disease (EOPD) (age <50 years) and compare it with that of late-onset PD (LOPD) (age ≥50 years). This nationwide cohort study enrolled 9,920,522 people who underwent a national health screening examination in 2009, and followed up until 31 December 2018. There was a significantly increased risk of EOPD and LOPD in individuals with mental illness, and EOPD showed a stronger association than LOPD (EOPD, hazard ratio (HR) = 3.11, 95% CI: 2.61‒3.72; LOPD, HR = 1.70, 95% CI: 1.66‒1.74; p for interaction <0.0001). Our results suggest that people with mental illnesses aged < 50 years are at a higher risk of PD than those aged ≥50 years. Future studies are warranted to elucidate the pathomechanism of EOPD in relation to mental illness.
Collapse
Affiliation(s)
- Seo Yeon Yoon
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Chul Lee
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jee Hyun Suh
- Department of Rehabilitation Medicine, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Seung Nam Yang
- Department of Physical Medicine & Rehabilitation, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea.
| | - Yong Wook Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Angelopoulou E, Bougea A, Hatzimanolis A, Stefanis L, Scarmeas N, Papageorgiou S. Mild Behavioral Impairment in Parkinson's Disease: An Updated Review on the Clinical, Genetic, Neuroanatomical, and Pathophysiological Aspects. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:115. [PMID: 38256375 PMCID: PMC10820007 DOI: 10.3390/medicina60010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Neuropsychiatric symptoms (NPS), including depression, anxiety, apathy, visual hallucinations, and impulse control disorders, are very common during the course of Parkinson's disease (PD), occurring even at the prodromal and premotor stages. Mild behavioral impairment (MBI) represents a recently described neurobehavioral syndrome, characterized by the emergence of persistent and impactful NPS in later life, reflecting arisk of dementia. Accumulating evidence suggests that MBI is highly prevalent in non-demented patients with PD, also being associated with an advanced disease stage, more severe motor deficits, as well as global and multiple-domain cognitive impairment. Neuroimaging studies have revealed that MBI in patients with PD may be related todistinct patterns of brain atrophy, altered neuronal connectivity, and distribution of dopamine transporter (DAT) depletion, shedding more light on its pathophysiological background. Genetic studies in PD patients have also shown that specific single-nucleotide polymorphisms (SNPs) may be associated with MBI, paving the way for future research in this field. In this review, we summarize and critically discuss the emerging evidence on the frequency, associated clinical and genetic factors, as well as neuroanatomical and neurophysiological correlates of MBI in PD, aiming to elucidate the underlying pathophysiology and its potential role as an early "marker" of cognitive decline, particularly in this population. In addition, we aim to identify research gaps, and propose novel relative areas of interest that could aid in our better understanding of the relationship of this newly defined diagnostic entity with PD.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (L.S.); (N.S.); (S.P.)
| | - Anastasia Bougea
- Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (L.S.); (N.S.); (S.P.)
| | - Alexandros Hatzimanolis
- Department of Psychiatry, Aiginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Leonidas Stefanis
- Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (L.S.); (N.S.); (S.P.)
| | - Nikolaos Scarmeas
- Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (L.S.); (N.S.); (S.P.)
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Sokratis Papageorgiou
- Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (L.S.); (N.S.); (S.P.)
| |
Collapse
|
21
|
Bhat MA, Dhaneshwar S. Neurodegenerative Diseases: New Hopes and Perspectives. Curr Mol Med 2024; 24:1004-1032. [PMID: 37691199 DOI: 10.2174/1566524023666230907093451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 09/12/2023]
Abstract
Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, Huntington's disease, and Friedrich ataxia are all incurable neurodegenerative diseases defined by the continuous progressive loss of distinct neuronal subtypes. Despite their rising prevalence among the world's ageing population, fewer advances have been made in the concurrent massive efforts to develop newer drugs. Recently, there has been a shift in research focus towards the discovery of new therapeutic agents for neurodegenerative diseases. In this review, we have summarized the recently developed therapies and their status in the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Mohammad Aadil Bhat
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Noida, UP, India
| | - Suneela Dhaneshwar
- Amity Institute of Pharmacy, Amity University Maharashtra, Mumbai, Maharashtra, India
| |
Collapse
|
22
|
Marques A, Macias E, Pereira B, Durand E, Chassain C, Vidal T, Defebvre L, Carriere N, Fraix V, Moro E, Thobois S, Metereau E, Mangone G, Vidailhet M, Corvol JC, Lehéricy S, Menjot de Champfleur N, Geny C, Spampinato U, Meissner WG, Frismand S, Schmitt E, Doé de Maindreville A, Portefaix C, Remy P, Fénelon G, Houeto JL, Colin O, Rascol O, Peran P, Bonny JM, Fantini ML, Durif F. Volumetric changes and clinical trajectories in Parkinson's disease: a prospective multicentric study. J Neurol 2023; 270:6033-6043. [PMID: 37648911 DOI: 10.1007/s00415-023-11947-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/15/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Longitudinal measures of structural brain changes using MRI in relation to clinical features and progression patterns in PD have been assessed in previous studies, but few were conducted in well-defined and large cohorts, including prospective clinical assessments of both motor and non-motor symptoms. OBJECTIVE We aimed to identify brain volumetric changes characterizing PD patients, and determine whether regional brain volumetric characteristics at baseline can predict motor, psycho-behavioral and cognitive evolution at one year in a prospective cohort of PD patients. METHODS In this multicentric 1 year longitudinal study, PD patients and healthy controls from the MPI-R2* cohort were assessed for demographical, clinical and brain volumetric characteristics. Distinct subgroups of PD patients according to motor, cognitive and psycho-behavioral evolution were identified at the end of follow-up. RESULTS One hundred and fifty PD patients and 73 control subjects were included in our analysis. Over one year, there was no significant difference in volume variations between PD and control subjects, regardless of the brain region considered. However, we observed a reduction in posterior cingulate cortex volume at baseline in PD patients with motor deterioration at one year (p = 0.017). We also observed a bilateral reduction of the volume of the amygdala (p = 0.015 and p = 0.041) and hippocampus (p = 0.015 and p = 0.053) at baseline in patients with psycho-behavioral deterioration, regardless of age, dopaminergic treatment and center. CONCLUSION Brain volumetric characteristics at baseline may predict clinical trajectories at 1 year in PD as posterior cingulate cortex atrophy was associated with motor decline, while amygdala and hippocampus atrophy were associated with psycho-behavioral decline.
Collapse
Affiliation(s)
- Ana Marques
- University Clermont Auvergne, CNRS, Clermont Auvergne INP, IGCNC, Institute Pascal, Clermont-Ferrand, France.
- Neurology Department and NS-PARK/FCRIN Network, Clermont-Ferrand University Hospital, Clermont-Ferrand, France.
- Neurology Department, Parkinson Expert Center, CHRU Gabriel Montpied, 63000, Clermont-Ferrand, France.
| | - Elise Macias
- University Clermont Auvergne, CNRS, Clermont Auvergne INP, IGCNC, Institute Pascal, Clermont-Ferrand, France
- Neurology Department and NS-PARK/FCRIN Network, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Bruno Pereira
- Clermont-Ferrand University Hospital, Biostatistics Unit (DRCI), Clermont-Ferrand, France
| | - Elodie Durand
- University Clermont Auvergne, CNRS, Clermont Auvergne INP, IGCNC, Institute Pascal, Clermont-Ferrand, France
- Neurology Department and NS-PARK/FCRIN Network, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Carine Chassain
- University Clermont Auvergne, CNRS, Clermont Auvergne INP, IGCNC, Institute Pascal, Clermont-Ferrand, France
- Neurology Department and NS-PARK/FCRIN Network, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Tiphaine Vidal
- University Clermont Auvergne, CNRS, Clermont Auvergne INP, IGCNC, Institute Pascal, Clermont-Ferrand, France
- Neurology Department and NS-PARK/FCRIN Network, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Luc Defebvre
- Department of Movement Disorder and NS-PARK/FCRIN Network, Inserm 1172, University of Lille, Lille, France
| | - Nicolas Carriere
- Department of Movement Disorder and NS-PARK/FCRIN Network, Inserm 1172, University of Lille, Lille, France
| | - Valerie Fraix
- Université Grenoble Alpes, CHU de Grenoble, Service de Neurologie, Grenoble Institute of Neuroscience, and NS-PARK/FCRIN Network, Grenoble, France
| | - Elena Moro
- Université Grenoble Alpes, CHU de Grenoble, Service de Neurologie, Grenoble Institute of Neuroscience, and NS-PARK/FCRIN Network, Grenoble, France
| | - Stéphane Thobois
- CNRS, Institut des Sciences Cognitives Marc Jeannerod, UMR 5229 CNRS, Lyon, France
- Université Claude Bernard, Lyon I, Lyon, France
- Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C and NS-PARK/FCRIN Network, Lyon, France
| | - Elise Metereau
- CNRS, Institut des Sciences Cognitives Marc Jeannerod, UMR 5229 CNRS, Lyon, France
- Université Claude Bernard, Lyon I, Lyon, France
- Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C and NS-PARK/FCRIN Network, Lyon, France
| | - Graziella Mangone
- Département de Neurologie and NS-PARK/FCRIN Network, Sorbonne Université; Institut du Cerveau-ICM, Assistance Publique Hôpitaux de Paris; Inserm 1127, CNRS 7225, CIC Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France
| | - Marie Vidailhet
- Département de Neurologie and NS-PARK/FCRIN Network, Sorbonne Université; Institut du Cerveau-ICM, Assistance Publique Hôpitaux de Paris; Inserm 1127, CNRS 7225, CIC Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jean-Christophe Corvol
- Département de Neurologie and NS-PARK/FCRIN Network, Sorbonne Université; Institut du Cerveau-ICM, Assistance Publique Hôpitaux de Paris; Inserm 1127, CNRS 7225, CIC Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France
| | - Stéphane Lehéricy
- Département de Neuroradiologie and NS-PARK/FCRIN Network, Sorbonne Université; Institut du Cerveau-ICM, Assistance Publique Hôpitaux de Paris; Inserm 1127, CNRS 7225; Hôpital Pitié-Salpêtrière, Paris, France
| | - Nicolas Menjot de Champfleur
- Department of Neuroradiology, Montpellier University Hospital Center, Gui de Chauliac Hospital, Montpellier, France
- I2FH, Institut d'Imagerie Fonctionnelle Humaine, Hôpital Gui de Chauliac, CHRU de Montpellier, Montpellier, France
| | - Christian Geny
- Department of Geriatrics and NS-PARK/FCRIN Network, Montpellier University Hospital, Montpellier University, Montpellier, France
| | - Umberto Spampinato
- Service de Neurologie-Maladies Neurodégénératives and NS-PARK/FCRIN Network, CHU Bordeaux, 33000, Bordeaux, France
- INCIA-UMR 5287, Team P3TN, CNRS/Université de Bordeaux, Bordeaux, France
| | - Wassilios G Meissner
- Service de Neurologie-Maladies Neurodégénératives and NS-PARK/FCRIN Network, CHU Bordeaux, 33000, Bordeaux, France
- Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, 33000, Bordeaux, France
- Dept. Medicine, University of Otago, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Solène Frismand
- Department of Neurology and NS-PARK/FCRIN Network, Nancy University Hospital Center, Nancy, France
| | - Emmanuelle Schmitt
- Department of Neuroradiology, Nancy University Hospital Center, Nancy, France
| | | | - Christophe Portefaix
- Department of Radiology, Hôpital Maison Blanche, Reims, France
- CReSTIC Laboratory, University of Reims Champagne-Ardenne, Reims, France
| | - Philippe Remy
- Centre Expert Parkinson and NS-PARK/FCRIN Network, CHU Henri Mondor; AP-HP et Equipe Neuropsychologie Interventionnelle, INSERM-IMRB, Faculté de Santé, Université Paris-Est Créteil et Ecole Normale Supérieure Paris Sorbonne Université, Créteil, France
| | - Gilles Fénelon
- Centre Expert Parkinson and NS-PARK/FCRIN Network, CHU Henri Mondor; AP-HP et Equipe Neuropsychologie Interventionnelle, INSERM-IMRB, Faculté de Santé, Université Paris-Est Créteil et Ecole Normale Supérieure Paris Sorbonne Université, Créteil, France
| | - Jean Luc Houeto
- INSERM, CHU de Poitiers, Université de Poitiers, Centre d'Investigation Clinique CIC1402; Service de Neurologie and NS-PARK/FCRIN Network, Poitiers, France
- CHU-Centre Expert Parkinson de Limoges, Limoges, France
| | - Olivier Colin
- INSERM, CHU de Poitiers, Université de Poitiers, Centre d'Investigation Clinique CIC1402; Service de Neurologie and NS-PARK/FCRIN Network, CH Brive la Gaillarde, Poitiers, France
| | - Olivier Rascol
- Centre Expert Parkinson, Départements de Pharmacologie Clinique et Neurosciences, Centre d'Investigation Clinique CIC 1436, UMR 1214 TONIC, NeuroToul and NS-PARK/FCRIN Network, INSERM, CHU de Toulouse et Université de Toulouse3, Toulouse, France
| | - Patrice Peran
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, Toulouse, France
| | - Jean-Marie Bonny
- INRAE, UR QuaPA, 63122, Saint-Genès-Champanelle, France
- Nuclear Magnetic Resonance Facility for Agronomy, Food and Health, AgroResonance, INRAE, 2018, Saint-Genès-Champanelle, France
| | - Maria Livia Fantini
- University Clermont Auvergne, CNRS, Clermont Auvergne INP, IGCNC, Institute Pascal, Clermont-Ferrand, France
- Neurology Department and NS-PARK/FCRIN Network, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Franck Durif
- University Clermont Auvergne, CNRS, Clermont Auvergne INP, IGCNC, Institute Pascal, Clermont-Ferrand, France
- Neurology Department and NS-PARK/FCRIN Network, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| |
Collapse
|
23
|
Santos-García D, de Deus Fonticoba T, Cores Bartolomé C, Feal Painceiras MJ, García Díaz I, Íñiguez Alvarado MC, Paz JM, Jesús S, Cosgaya M, García Caldentey J, Caballol N, Legarda I, Hernández Vara J, Cabo I, López Manzanares L, González Aramburu I, Ávila Rivera MA, Gómez Mayordomo V, Nogueira V, Dotor García-Soto J, Borrué C, Solano Vila B, Álvarez Sauco M, Vela L, Escalante S, Cubo E, Mendoza Z, Martínez Castrillo JC, Sánchez Alonso P, Alonso Losada MG, López Ariztegui N, Gastón I, Kulisevsky J, Seijo M, Valero C, Alonso Redondo R, Buongiorno MT, Ordás C, Menéndez-González M, McAfee D, Martinez-Martin P, Mir P. Cognitive impairment and dementia in young onset Parkinson's disease. J Neurol 2023; 270:5793-5812. [PMID: 37578489 DOI: 10.1007/s00415-023-11921-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Patients with young-onset Parkinson's disease (YOPD) have a slower progression. Our aim was to analyze the change in cognitive function in YOPD compared to patients with a later onset and controls. PATIENTS AND METHODS Patients with Parkinson's disease (PD) and controls from the COPPADIS cohort were included. Cognitive function was assessed with the Parkinson's Disease Cognitive Rating Scale (PD-CRS) at baseline (V0), 2-year ± 1 month (V2y), and 4-year ± 3 months follow-up (V4y). Regarding age from symptoms onset, patients were classified as YOPD (< 50 years) or non-YOPD (≥ 50). A score in the PD-CRS < 81 was defined as cognitive impairment (CI): ≤ 64 dementia; 65-80 mild cognitive impairment (MCI). RESULTS One-hundred and twenty-four YOPD (50.7 ± 7.9 years; 66.1% males), 234 non-YOPD (67.8 ± 7.8 years; 59.3% males) patients, and 205 controls (61 ± 8.3 years; 49.5% males) were included. The score on the PD-CRS and its subscore domains was higher at all visits in YOPD compared to non-YOPD patients and to controls (p < 0.0001 in all analysis), but no differences were detected between YOPD patients and controls. Only non-YOPD patients had significant impairment in their cognitive function from V0 to V4y (p < 0.0001). At V4y, the frequency of dementia and MCI was 5% and 10% in YOPD compared to 25.2% and 22.3% in non-YOPD patients (p < 0.0001). A lower score on the Parkinson's Disease Sleep Scale at baseline was a predictor of CI at V4y in YOPD patients (Adjusted R2 = 0.61; OR = 0.965; p = 0.029). CONCLUSION Cognitive dysfunction progressed more slowly in YOPD than in non-YOPD patients.
Collapse
Affiliation(s)
- Diego Santos-García
- CHUAC, Complejo Hospitalario Universitario de A Coruña, A Coruña, Spain.
- Department of Neurology, Hospital Universitario de A Coruña (HUAC), Complejo Hospitalario Universitario de A Coruña (CHUAC), C/As Xubias 84, 15006, A Coruña, Spain.
| | | | | | | | - Iago García Díaz
- CHUAC, Complejo Hospitalario Universitario de A Coruña, A Coruña, Spain
| | | | - Jose Manuel Paz
- CHUAC, Complejo Hospitalario Universitario de A Coruña, A Coruña, Spain
| | - Silvia Jesús
- Servicio de Neurología y Neurofisiología Clínica, Unidad de Trastornos del Movimiento, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- CIBERNED (Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas), A Coruña, Spain
| | | | | | - Nuria Caballol
- Consorci Sanitari Integral, Hospital Moisés Broggi, Sant Joan Despí, Barcelona, Spain
| | - Ines Legarda
- Hospital Universitario Son Espases, Palma, Spain
| | - Jorge Hernández Vara
- CIBERNED (Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas), A Coruña, Spain
- Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Iria Cabo
- Complejo Hospitalario Universitario de Pontevedra (CHOP), Pontevedra, Spain
| | | | - Isabel González Aramburu
- CIBERNED (Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas), A Coruña, Spain
- Hospital Universitario Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Maria A Ávila Rivera
- Consorci Sanitari Integral, Hospital General de L'Hospitalet, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Víctor Gómez Mayordomo
- Neurology Department, Institute of Neuroscience, Vithas Madrid La Milagrosa University Hospital, Vithas Hospital Group, Madrid, Spain
| | | | | | | | - Berta Solano Vila
- Institut d'Assistència Sanitària (IAS), Institut Català de la Salut, Girona, Spain
| | | | - Lydia Vela
- Fundación Hospital de Alcorcón, Madrid, Spain
| | - Sonia Escalante
- Hospital de Tortosa Verge de la Cinta (HTVC), Tortosa, Tarragona, Spain
| | - Esther Cubo
- Complejo Asistencial Universitario de Burgos, Burgos, Spain
| | - Zebenzui Mendoza
- Hospital Universitario de Canarias, San Cristóbal de la Laguna, Santa Cruz de Tenerife, Spain
| | | | | | - Maria G Alonso Losada
- Hospital Álvaro CunqueiroComplejo Hospitalario Universitario de Vigo (CHUVI), Vigo, Spain
| | | | | | - Jaime Kulisevsky
- CIBERNED (Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas), A Coruña, Spain
- Hospital de Sant Pau, Barcelona, Spain
| | - Manuel Seijo
- Complejo Hospitalario Universitario de Pontevedra (CHOP), Pontevedra, Spain
| | | | | | | | | | | | - Darrian McAfee
- University of Maryland School of Medicine, College Park, USA
| | - Pablo Martinez-Martin
- CIBERNED (Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas), A Coruña, Spain
| | - Pablo Mir
- Servicio de Neurología y Neurofisiología Clínica, Unidad de Trastornos del Movimiento, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- CIBERNED (Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas), A Coruña, Spain
| |
Collapse
|
24
|
Seritan AL. Advances in the Diagnosis and Management of Psychotic Symptoms in Neurodegenerative Diseases: A Narrative Review. J Geriatr Psychiatry Neurol 2023; 36:435-460. [PMID: 36941085 PMCID: PMC10578041 DOI: 10.1177/08919887231164357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Background: Approximately 15% of older adults may experience psychotic phenomena. Primary psychiatric disorders that manifest with psychosis (delusions, hallucinations, and disorganized thought or behavior) account for less than half. Up to 60% of late-life psychotic symptoms are due to systemic medical or neurological conditions, particularly neurodegenerative diseases. A thorough medical workup including laboratory tests, additional procedures if indicated, and neuroimaging studies is recommended. This narrative review summarizes current evidence regarding the epidemiology and phenomenology of psychotic symptoms encountered as part of the neurodegenerative disease continuum (including prodromal and manifest stages). Results: Prodromes are constellations of symptoms that precede the onset of overt neurodegenerative syndromes. Prodromal psychotic features, particularly delusions, have been associated with an increased likelihood of receiving a neurodegenerative disease diagnosis within several years. Prompt prodrome recognition is crucial for early intervention. The management of psychosis associated with neurodegenerative diseases includes behavioral and somatic strategies, although evidence is scarce and mostly limited to case reports, case series, or expert consensus guidelines, with few randomized controlled trials. Conclusion: The complexity of psychotic manifestations warrants management by interprofessional teams that provide coordinated, integrated care.
Collapse
Affiliation(s)
- Andreea L. Seritan
- University of California, San Francisco Department of Psychiatry and UCSF Weill Institute for Neurosciences, CA, USA
| |
Collapse
|
25
|
Thanprasertsuk S, Phowthongkum P, Hopetrungraung T, Poorirerngpoom C, Sathirapatya T, Wichit P, Phokaewvarangkul O, Vongpaisarnsin K, Bongsebandhu-phubhakdi S, Bhidayasiri R. Levodopa-induced dyskinesia in early-onset Parkinson's disease (EOPD) associates with glucocerebrosidase mutation: A next-generation sequencing study in EOPD patients in Thailand. PLoS One 2023; 18:e0293516. [PMID: 37906549 PMCID: PMC10617711 DOI: 10.1371/journal.pone.0293516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/15/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND With the benefit of using next-generation sequencing (NGS), our aim was to examine the prevalence of known monogenic causes in early-onset Parkinson's disease (EOPD) patients in Thailand. The association between clinical features, such as levodopa-induced dyskinesia (LID), and genotypes were also explored. METHOD NGS studies were carried out for EOPD patients in the Tertiary-referral center for Parkinson's disease and movement disorders. EOPD patients who had LID symptoms were enrolled in this study (n = 47). We defined EOPD as a patient with onset of PD at or below 50 years of age. LID was defined as hyperkinetic movements including chorea, ballism, dystonia, myoclonus, or any combination of these movements resulting from levodopa therapy, which could be peak-dose, off-period, or diphasic dyskinesias. RESULTS Pathogenic variants were identified in 17% (8/47) of the Thai EOPD patients, of which 10.6% (5/47) were heterozygous GBA variants (c.1448T>C in 3 patients and c.115+1G>A in 2 patients), 4.3% (2/47) homozygous PINK1 variants (c.1474C>T) and 2.1% (1/47) a PRKN mutation (homozygous deletion of exon 7). The LID onset was earlier in patients with GBA mutations compared to those without (34.8±23.4 vs 106.2±59.5 months after starting levodopa, respectively, p = 0.001). LID onset within the first 30 months of the disease was also found to be independently associated with the GBA mutation (odds ratio [95% confidence interval] = 25.00 [2.12-295.06], p = 0.011). CONCLUSION Our study highlights the high prevalence of GBA pathogenic variants in Thai patients with EOPD and the independent association of these variants with the earlier onset of LID. This emphasizes the importance of genetic testing in this population.
Collapse
Affiliation(s)
- Sekh Thanprasertsuk
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Cognitive Clinical & Computational Neuroscience (CCCN) Center of Excellence, Chulalongkorn University, Bangkok, Thailand
- Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Prasit Phowthongkum
- Division of Medical Genetics and Genomics, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center of Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Thitipong Hopetrungraung
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Medicine, Queen Savang Vadhana Memorial Hospital, Chonburi, Thailand
| | - Chalalai Poorirerngpoom
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Saraburi Hospital, Saraburi, Thailand
| | - Tikumphorn Sathirapatya
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Forensic Genetics Research Unit, Ratchadapiseksompotch Fund, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Patsorn Wichit
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Faculty of Physical Therapy, Huachiew Chalermprakiet University, Samut Prakan, Thailand
| | - Onanong Phokaewvarangkul
- Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Kornkiat Vongpaisarnsin
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Forensic Genetics Research Unit, Ratchadapiseksompotch Fund, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Saknan Bongsebandhu-phubhakdi
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Roongroj Bhidayasiri
- Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
26
|
Heo JY, Park AH, Lee MJ, Ryu MJ, Kim YK, Jang YS, Kim SJ, Shin SY, Son HJ, Stein TD, Huh YH, Chung SK, Choi SY, Kim JM, Hwang O, Shong M, Hyeon SJ, Lee J, Ryu H, Kim D, Kweon GR. Crif1 deficiency in dopamine neurons triggers early-onset parkinsonism. Mol Psychiatry 2023; 28:4474-4484. [PMID: 37648779 DOI: 10.1038/s41380-023-02234-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Mitochondrial dysfunction has been implicated in Parkinson's Disease (PD) progression; however, the mitochondrial factors underlying the development of PD symptoms remain unclear. One candidate is CR6-interacting factor1 (CRIF1), which controls translation and membrane insertion of 13 mitochondrial proteins involved in oxidative phosphorylation. Here, we found that CRIF1 mRNA and protein expression were significantly reduced in postmortem brains of elderly PD patients compared to normal controls. To evaluate the effect of Crif1 deficiency, we produced mice lacking the Crif1 gene in dopaminergic neurons (DAT-CRIF1-KO mice). From 5 weeks of age, DAT-CRIF1-KO mice began to show decreased dopamine production with progressive neuronal degeneration in the nigral area. At ~10 weeks of age, they developed PD-like behavioral deficits, including gait abnormalities, rigidity, and resting tremor. L-DOPA, a medication used to treat PD, ameliorated these defects at an early stage, although it was ineffective in older mice. Taken together, the observation that CRIF1 expression is reduced in human PD brains and deletion of CRIF1 in dopaminergic neurons leads to early-onset PD with stepwise PD progression support the conclusion that CRIF1-mediated mitochondrial function is important for the survival of dopaminergic neurons.
Collapse
Affiliation(s)
- Jun Young Heo
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Ah Hyung Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Min Joung Lee
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Min Jeong Ryu
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Yong Kyung Kim
- Research Center for Endocrine and Metabolic Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Yun Seon Jang
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Soo Jeong Kim
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - So Yeon Shin
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Hyo Jin Son
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
- VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Yang Hoon Huh
- Electron Microscopy Research center, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Sookja K Chung
- Faculty of Medicine & Dr Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
| | - Song Yi Choi
- Department of Pathology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Jin Man Kim
- Department of Pathology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Onyou Hwang
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Minho Shong
- Graduate School of Medical Science and Education, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Seung Jae Hyeon
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Junghee Lee
- Boston University Alzheimer's Disease Research Center and Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
| | - Daesoo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| | - Gi Ryang Kweon
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
27
|
Bovenzi R, Conti M, Degoli GR, Cerroni R, Simonetta C, Liguori C, Salimei C, Pisani A, Pierantozzi M, Stefani A, Mercuri NB, Schirinzi T. Shaping the course of early-onset Parkinson's disease: insights from a longitudinal cohort. Neurol Sci 2023; 44:3151-3159. [PMID: 37140831 PMCID: PMC10415517 DOI: 10.1007/s10072-023-06826-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/20/2023] [Indexed: 05/05/2023]
Abstract
INTRODUCTION Early -onset Parkinson's disease (EOPD) labels those cases with onset earlier than fifty. Although peculiarities emerged either in clinical or pathological features, EOPD is managed alike typical, late-onset PD. A customized approach would be, instead, better appropriate. Accordingly, a deeper characterization of the clinical course, with an estimation of the disease progression rate, the therapy flow, and the main motor and non-motor complications occurrence, is needed. METHODS A longitudinal cohort of 193 EOPD patients (selected on a single-centre population of 2000 PD cases) was retrospectively analysed, providing descriptive statics on a series of clinical parameters (genetics, phenotype, comorbidities, therapies, motor and non-motor complications, marital and gender issues) and modelling the trajectories from diagnosis to 10 years later of both Hoehn and Yahr (H&Y) stage and levodopa equivalent daily dose (LEDD). RESULTS EOPD had a prevalence of 9.7%, including few monogenic cases. It mostly appeared as a motor syndrome, with asymmetric, rigid-akinetic presentation. H&Y linearly progressed with an increment of 0.92 points/10 years; LEDD flow had a non-linear trend, increasing of 526.90 mg/day in 0-5 years, and 166.83 mg/day in 5-10 years. Motor fluctuations started 6.5 ± 3.2 years from onset, affecting up to 80% of the cohort. Neuropsychiatric troubles interested the 50%, sexual complaints the 12%. Gender-specific motor disturbances emerged. CONCLUSION We shaped EOPD course, modelling a "brain-first" PD subtype, slowly progressive, with non-linear dopaminergic requirement. Major burden mostly resulted from motor fluctuations, neuropsychiatric complications, sexual and marital complaints, with a considerable gender-effect.
Collapse
Affiliation(s)
- Roberta Bovenzi
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
| | - Matteo Conti
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
| | - Giulia Rebecca Degoli
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
| | - Rocco Cerroni
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
| | - Clara Simonetta
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
| | - Claudio Liguori
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
| | - Chiara Salimei
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
| | - Antonio Pisani
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Mariangela Pierantozzi
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
| | - Alessandro Stefani
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
- UOSD Parkinson Centre, Tor Vergata University Hospital, Rome, Italy
| | - Nicola Biagio Mercuri
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
- IRCCS Fondazione Santa Lucia, European Centre for Brain Research, Rome, Italy
| | - Tommaso Schirinzi
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy.
| |
Collapse
|
28
|
Toś M, Grażyńska A, Antoniuk S, Siuda J. Impulse Control Disorders in the Polish Population of Patients with Parkinson's Disease. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1468. [PMID: 37629758 PMCID: PMC10456804 DOI: 10.3390/medicina59081468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
Background and Objectives: Parkinson's disease (PD) is one of the most common neurodegenerative diseases in the world. It is characterized by the presence of not only typical motor symptoms but also several less known and aware non-motor symptoms (NMS). The group of disorders included in the NMS is Impulse Control Disorders (ICDs). ICDs are a group of disorders in which patients are unable to resist temptations and feel a strong, pressing desire for specific activities such as gambling, hypersexuality, binge eating, and compulsive buying. The occurrence of ICDs is believed to be associated primarily with dopaminergic treatment, with the use of dopamine agonists (DA), and to a lesser extent with high doses of L-dopa. The aim of our study was to develop a profile of Polish ICDs patients and assess the frequency of occurrence of ICDs, as well as determine the risk factors associated with these disorders against the background of the PD population from other countries. Materials and Methods: Our prospective study included 135 patients with idiopathic PD who were hospitalized between 2020 and 2022 at the Neurological Department of University Central Hospital in Katowice. In the assessment of ICDs, we used the Questionnaire for Impulsive-Compulsive Disorders in Parkinson's Disease (QUIP). Other scales with which we assessed patients with PD were as follows: MDS-UPDRS part III and modified Hoehn-Yahr staging. Clinical data on age, gender, disease duration and onset, motor complications, and medications were collected from electronic records. Results: ICDs were detected in 27.41% of PD patients (binge eating in 12.59%, hypersexuality in 11.11%, compulsive buying in 10.37%, and pathological gambling occurred in only 5.19% of patients. In total, 8.89% had two or more ICDs). The major finding was that ICDs were more common in patients taking DA than in those who did not use medication from this group (83.78% vs. 54.07%, respectively; p = 0.0015). Patients with ICDs had longer disease duration, the presence of motor complications, and sleep disorders. An important finding was also a very low detection of ICDs in a routine medical examination; only 13.51% of all patients with ICDs had a positive medical history of this disorder. Conclusions: ICDs are relatively common in the population of Polish PD patients. The risk factors for developing ICDs include longer duration of the disease, presence of motor complications, sleep disorders, and use of DA and L-dopa. Due to the low detectability of ICDs in routine medical history, it is essential for physicians to pay more attention to the possibility of the occurrence of these symptoms, especially in patients with several risk factors. Further prospective studies on a larger group of PD patients are needed to establish a full profile of Polish PD patients with ICDs.
Collapse
Affiliation(s)
- Mateusz Toś
- Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Anna Grażyńska
- Department of Imaging Diagnostics and Interventional Radiology, Kornel Gibiński Independent Public Central Clinical Hospital, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Sofija Antoniuk
- St. Barbara Regional Specialist Hospital No. 5, 41-200 Sosnowiec, Poland;
| | - Joanna Siuda
- Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland;
| |
Collapse
|
29
|
Irmady K, Hale CR, Qadri R, Fak J, Simelane S, Carroll T, Przedborski S, Darnell RB. Blood transcriptomic signatures associated with molecular changes in the brain and clinical outcomes in Parkinson's disease. Nat Commun 2023; 14:3956. [PMID: 37407548 DOI: 10.1038/s41467-023-39652-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023] Open
Abstract
The ability to use blood to predict the outcomes of Parkinson's disease, including disease progression and cognitive and motor complications, would be of significant clinical value. We undertook bulk RNA sequencing from the caudate and putamen of postmortem Parkinson's disease (n = 35) and control (n = 40) striatum, and compared molecular profiles with clinical features and bulk RNA sequencing data obtained from antemortem peripheral blood. Cognitive and motor complications of Parkinson's disease were associated with molecular changes in the caudate (stress response) and putamen (endothelial pathways) respectively. Later and earlier-onset Parkinson's disease were molecularly distinct, and disease duration was associated with changes in caudate (oligodendrocyte development) and putamen (cellular senescence), respectively. Transcriptome patterns in the postmortem Parkinson's disease brain were also evident in antemortem peripheral blood, and correlated with clinical features of the disease. Together, these findings identify molecular signatures in Parkinson's disease patients' brain and blood of potential pathophysiologic and prognostic importance.
Collapse
Affiliation(s)
- Krithi Irmady
- Laboratory of Molecular Neuro-oncology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| | - Caryn R Hale
- Laboratory of Molecular Neuro-oncology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Rizwana Qadri
- Laboratory of Molecular Neuro-oncology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - John Fak
- Laboratory of Molecular Neuro-oncology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Sitsandziwe Simelane
- Laboratory of Molecular Neuro-oncology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Thomas Carroll
- Bioinformatics Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Serge Przedborski
- Department of Neurology, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Pathology & Cell Biology, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Neuroscience, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
| | - Robert B Darnell
- Laboratory of Molecular Neuro-oncology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
- Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
30
|
Samanta S, Bisht M, Kanimozhi M, Kumar N, Handu SS. Association of depression with disease duration, quality of life and adherence in Parkinson's disease: A cross sectional study. J Family Med Prim Care 2023; 12:1406-1411. [PMID: 37649742 PMCID: PMC10465023 DOI: 10.4103/jfmpc.jfmpc_2288_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/30/2023] [Accepted: 04/21/2023] [Indexed: 09/01/2023] Open
Abstract
Background Parkinson's disease (PD) is a progressive motor disorder often accompanied by non-motor symptoms such as depression. Objectives The objective was to estimate the prevalence of depression in PD patients, and assess its association with disease duration, quality of life and adherence to treatment. Materials and Methods This cross-sectional study was conducted in a tertiary care centre for patients diagnosed with PD. Depression was diagnosed using Hamilton Depression Rating Scale. The Chi-square test was used to assess the difference in proportions of depression in various types and severity of PD. Depression was also correlated with disease duration, quality of life (QOL) and adherence to treatment using the Pearson correlation test. A P value of <0.05 was considered statistically significant. Results Among 51 patients, 20 (39.22%) patients were found to have depression. The mean duration of disease in depressed patients was significantly longer compared to that in non-depressed patients (7.99 ± 4.53 vs. 3.62 ± 2.23, P < 0.001), respectively. The non-depressed patients were better adherent to treatment (1.71 ± 1.5 vs. 0.56 ± 0.91). The quality of life of patients was significantly low for depressed patients (21.90 ± 6.91 vs. 13.16 ± 6.93, P < 0.001). Depression in Parkinson's patients was positively correlated with the duration of the disease (P-value <0.001); disease staging (P-value <0.001). Quality of life (QOL) had a strong correlation with depression (P-value <0.001) and Hoehn and Yahr (HY) staging (P-value <0.05). Conclusion Depression was found in 39.22% of PD patients and was more significantly associated with disease duration, non-adherence to treatment and decreased quality of life.
Collapse
Affiliation(s)
- Subhash Samanta
- Department of Pharmacology, AIIMS Rishikesh, Rishikesh, Uttarakhand, India
| | - Manisha Bisht
- Department of Pharmacology, AIIMS Rishikesh, Rishikesh, Uttarakhand, India
| | - M Kanimozhi
- Department of Pharmacology, AIIMS Rishikesh, Rishikesh, Uttarakhand, India
| | - Niraj Kumar
- Department of Neurology, AIIMS Rishikesh, Rishikesh, Uttarakhand, India
| | | |
Collapse
|
31
|
Cao Y, Si Q, Tong R, Zhang X, Li C, Mao S. Abnormal dynamic functional connectivity changes correlated with non-motor symptoms of Parkinson’s disease. Front Neurosci 2023; 17:1116111. [PMID: 37008221 PMCID: PMC10062480 DOI: 10.3389/fnins.2023.1116111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
BackgroundNon-motor symptoms are common in Parkinson’s disease (PD) patients, decreasing quality of life and having no specific treatments. This research investigates dynamic functional connectivity (FC) changes during PD duration and its correlations with non-motor symptoms.MethodsTwenty PD patients and 19 healthy controls (HC) from PPMI dataset were collected and used in this study. Independent component analysis (ICA) was performed to select significant components from the entire brain. Components were grouped into seven resting-state intrinsic networks. Static and dynamic FC changes during resting-state functional magnetic resonance imaging (fMRI) were calculated based on selected components and resting state networks (RSN).ResultsStatic FC analysis results showed that there was no difference between PD-baseline (PD-BL) and HC group. Network averaged connection between frontoparietal network and sensorimotor network (SMN) of PD-follow up (PD-FU) was lower than PD-BL. Dynamic FC analysis results suggested four distinct states, and each state’s temporal characteristics, such as fractional windows and mean dwell time, were calculated. The state 2 of our study showed positive coupling within and between SMN and visual network, while the state 3 showed hypo-coupling through all RSN. The fractional windows and mean dwell time of PD-FU state 2 (positive coupling state) were statistically lower than PD-BL. Fractional windows and mean dwell time of PD-FU state 3 (hypo-coupling state) were statistically higher than PD-BL. Outcome scales in Parkinson’s disease–autonomic dysfunction scores of PD-FU positively correlated with mean dwell time of state 3 of PD-FU.ConclusionOverall, our finding indicated that PD-FU patients spent more time in hypo-coupling state than PD-BL. The increase of hypo-coupling state and decrease of positive coupling state might correlate with the worsening of non-motor symptoms in PD patients. Dynamic FC analysis of resting-state fMRI can be used as monitoring tool for PD progression.
Collapse
Affiliation(s)
- Yuanyan Cao
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Qian Si
- School of Cyber Science and Technology, Beihang University, Beijing, China
| | - Renjie Tong
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Xu Zhang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Chunlin Li
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
- Chunlin Li,
| | - Shanhong Mao
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
- *Correspondence: Shanhong Mao,
| |
Collapse
|
32
|
Olszewska DA, Lang AE. The definition of precision medicine in neurodegenerative disorders and the one disease-many diseases tension. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:3-20. [PMID: 36796946 DOI: 10.1016/b978-0-323-85538-9.00005-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Precision medicine is a patient-centered approach that aims to translate new knowledge to optimize the type and timing of interventions for the greatest benefit to individual patients. There is considerable interest in applying this approach to treatments designed to slow or halt the progression of neurodegenerative diseases. Indeed, effective disease-modifying treatment (DMT) remains the greatest unmet therapeutic need in this field. In contrast to the enormous progress in oncology, precision medicine in the field of neurodegeneration faces multiple challenges. These are related to major limitations in our understanding of many aspects of the diseases. A critical barrier to advances in this field is the question of whether the common sporadic neurodegenerative diseases (of the elderly) are single uniform disorders (particularly related to their pathogenesis) or whether they represent a collection of related but still very distinct disease states. In this chapter, we briefly touch on lessons from other fields of medicine that might be applied to the development of precision medicine for DMT in neurodegenerative diseases. We discuss why DMT trials may have failed to date, and particularly the importance of appreciating the multifaceted nature of disease heterogeneity and how this has and will impact on these efforts. We conclude with comments on how we can move from this complex disease heterogeneity to the successful application of precision medicine principles in DMT for neurodegenerative diseases.
Collapse
Affiliation(s)
- Diana A Olszewska
- Department of Neurology, Division of Movement Disorders, Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
| | - Anthony E Lang
- Department of Neurology, Division of Movement Disorders, Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada.
| |
Collapse
|
33
|
Zhang D, Shi Y, Yao J, Zhou L, Wei H, Liu J, Tong Q, Ma L, He H, Wu T. Free-Water Imaging of the Substantia Nigra in GBA Pathogenic Variant Carriers. Mov Disord 2023. [PMID: 36797645 DOI: 10.1002/mds.29356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Pathogenic variants in the glucocerebrosidase gene (GBA) have been identified as the most common genetic risk factor for Parkinson's disease (PD). However, the features of substantia nigra damage in GBA pathogenic variant carriers remain unclear. OBJECTIVE We aimed to evaluate the microstructural changes in the substantia nigra in non-manifesting GBA pathogenic variant carriers (GBA-NMC) and PD patients with GBA pathogenic variant (GBA-PD) with free-water imaging. METHODS First, we compared free water values in the posterior substantia nigra between non-manifesting non-carriers (NMNC, n = 29), GBA-NMC (n = 26), and GBA-PD (n = 16). Then, free water values in the posterior substantia nigra were compared between GBA-PD and early- (n = 19) and late-onset (n = 40) idiopathic PD (iPD) patients. Furthermore, we examined whether the baseline free water values could predict the progressions of clinical symptoms. RESULTS The free water values in the posterior substantia nigra were significantly higher in the GBA-NMC and GBA-PD groups compared to NMNC, and were significantly increased in the GBA-PD group than both early- and late-onset iPD. Free water values in the posterior substantia nigra could predict the progression of anxiety and cognitive decline in GBA-NMC and GBA-PD groups. CONCLUSIONS We demonstrate that free water values are elevated in the substantia nigra and predict the development of non-motor symptoms in GBA-NMC and GBA-PD. Our findings demonstrate that a significant nigral impairment already exists in GBA-NMC, and nigral injury may be more severe in GBA-PD than in iPD. These results support that free-water imaging can as a potential early marker of substantia nigra damage. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Dongling Zhang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Parkinson's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yuting Shi
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Junye Yao
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Liche Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiqi Tong
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China
| | - Lingyan Ma
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Parkinson's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Hongjian He
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.,School of Physics, Zhejiang University, Hangzhou, China
| | - Tao Wu
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Parkinson's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
34
|
Wu D, Zhao B, Xie H, Xu Y, Yin Z, Bai Y, Fan H, Zhang Q, Liu D, Hu T, Jiang Y, An Q, Zhang X, Yang A, Zhang J. Profiling the low-beta characteristics of the subthalamic nucleus in early- and late-onset Parkinson's disease. Front Aging Neurosci 2023; 15:1114466. [PMID: 36875708 PMCID: PMC9978704 DOI: 10.3389/fnagi.2023.1114466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Objectives Low-beta oscillation (13-20 Hz) has rarely been studied in patients with early-onset Parkinson's disease (EOPD, age of onset ≤50 years). We aimed to explore the characteristics of low-beta oscillation in the subthalamic nucleus (STN) of patients with EOPD and investigate the differences between EOPD and late-onset Parkinson's disease (LOPD). Methods We enrolled 31 EOPD and 31 LOPD patients, who were matched using propensity score matching. Patients underwent bilateral STN deep brain stimulation (DBS). Local field potentials were recorded using intraoperative microelectrode recording. We analyzed the low-beta band parameters, including aperiodic/periodic components, beta burst, and phase-amplitude coupling. We compared low-beta band activity between EOPD and LOPD. Correlation analyses were performed between the low-beta parameters and clinical assessment results for each group. Results We found that the EOPD group had lower aperiodic parameters, including offset (p = 0.010) and exponent (p = 0.047). Low-beta burst analysis showed that EOPD patients had significantly higher average burst amplitude (p = 0.016) and longer average burst duration (p = 0.011). Furthermore, EOPD had higher proportion of long burst (500-650 ms, p = 0.008), while LOPD had higher proportion of short burst (200-350 ms, p = 0.007). There was a significant difference in phase-amplitude coupling values between low-beta phase and fast high frequency oscillation (300-460 Hz) amplitude (p = 0.019). Conclusion We found that low-beta activity in the STN of patients with EOPD had characteristics that varied when compared with LOPD, and provided electrophysiological evidence for different pathological mechanisms between the two types of PD. These differences need to be considered when applying adaptive DBS on patients of different ages.
Collapse
Affiliation(s)
- Delong Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Baotian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hutao Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yichen Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Houyou Fan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Quan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Defeng Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tianqi Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yin Jiang
- Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Qi An
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xin Zhang
- Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
35
|
Kolicheski A, Turcano P, Tamvaka N, McLean PJ, Springer W, Savica R, Ross OA. Early-Onset Parkinson's Disease: Creating the Right Environment for a Genetic Disorder. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2353-2367. [PMID: 36502340 PMCID: PMC9837689 DOI: 10.3233/jpd-223380] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) by its common understanding is a late-onset sporadic movement disorder. However, there is a need to recognize not only the fact that PD pathogenesis expands beyond (or perhaps to) the brain but also that many early-onset patients develop motor signs before the age of 50 years. Indeed, studies have shown that it is likely the protein aggregation observed in the brains of patients with PD precedes the motor symptoms by perhaps a decade. Studies on early-onset forms of PD have shown it to be a heterogeneous disease with multiple genetic and environmental factors determining risk of different forms of disease. Genetic and neuropathological evidence suggests that there are α-synuclein centric forms (e.g., SNCA genomic triplication), and forms that are driven by a breakdown in mitochondrial function and specifically in the process of mitophagy and clearance of damaged mitochondria (e.g., PARKIN and PINK1 recessive loss-of-function mutations). Aligning genetic forms with recognized environmental influences will help better define patients, aid prognosis, and hopefully lead to more accurately targeted clinical trial design. Work is now needed to understand the cross-talk between these two pathomechanisms and determine a sense of independence, it is noted that autopsies studies for both have shown the presence or absence of α-synuclein aggregation. The integration of genetic and environmental data is critical to understand the etiology of early-onset forms of PD and determine how the different pathomechanisms crosstalk.
Collapse
Affiliation(s)
- Ana Kolicheski
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Pierpaolo Turcano
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA,
Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Nicole Tamvaka
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,
Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA
| | - Pamela J. McLean
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,
Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,
Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,
Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA,
Department of Medicine, University College Dublin, Dublin, Ireland,
Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA,Department of Biology, University of NorthFlorida, Jacksonville, FL, USA,Correspondence to: Owen A. Ross, PhD, Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224, USA. Tel.: +1 904 953 6280; Fax: +1 904 953 7370; E-mail:
| |
Collapse
|
36
|
Genetic Study of Early Onset Parkinson's Disease in Cyprus. Int J Mol Sci 2022; 23:ijms232315369. [PMID: 36499697 PMCID: PMC9739936 DOI: 10.3390/ijms232315369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Parkinson's Disease (PD) is a multifactorial neurodegenerative disease characterized by motor and non-motor symptoms. The etiology of PD remains unclear. However, several studies have demonstrated the interplay of genetic, epigenetic, and environmental factors in PD. Early-onset PD (EOPD) is a subgroup of PD diagnosed between the ages of 21 and 50. Population genetic studies have demonstrated great genetic variability amongst EOPD patients. Hence, this study aimed to obtain a genetic landscape of EOPD in the Cypriot population. Greek-Cypriot EOPD patients (n = 48) were screened for variants in the six most common EOPD-associated genes (PINK1, PRKN, FBXO7, SNCA, PLA2G6, and DJ-1). This included DNA sequencing and Multiplex ligation-dependent probe amplification (MLPA). One previously described frameshift variant in PINK1 (NM_032409.3:c.889del) was detected in five patients (10.4%)-the largest number to be detected to date. Copy number variations in the PRKN gene were identified in one homozygous and 3 compound heterozygous patients (8.3%). To date, the pathogenic variants identified in this study have explained the PD phenotype for 18.8% of the EOPD cases. The results of this study may contribute to the genetic screening of EOPD in Cyprus.
Collapse
|
37
|
Relevance of Fluorodopa PET Scan in Dopamine Responsive Dystonia and Juvenile Parkinsonism: A Systematic Review. Neurol Int 2022; 14:997-1006. [PMID: 36548184 PMCID: PMC9781753 DOI: 10.3390/neurolint14040079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Dopamine Responsive Dystonia (DRD) and Juvenile Parkinsonism (JP) are two diseases commonly presenting with parkinsonian symptoms in young patients. Current clinical guidelines offer a diagnostic approach based on molecular analysis. However, developing countries have limitations in terms of accessibility to these tests. We aimed to assess the utility of imaging equipment, usually more available worldwide, to help diagnose and improve patients' quality of life with these diseases. METHODS We performed a systematic literature review in English using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) and meta-analysis of observational studies in epidemiology (MOOSE) protocols. We only used human clinical trials about dopamine responsive dystonia and juvenile parkinsonism patients in which a fluorodopa (FD) positron emission tomography (PET) scan was performed to identify its use in these diseases. RESULTS We included six studies that fulfilled our criteria. We found a clear pattern of decreased uptake in the putamen and caudate nucleus in JP cases. At the same time, the results in DRD were comparable to normal subjects, with only a slightly decreased marker uptake in the previously mentioned regions by the FD PET scan. CONCLUSIONS We found a distinctive pattern for each of these diseases. Identifying these findings with FD PET scans can shorten the delay in making a definitive diagnosis when genetic testing is unavailable, a common scenario in developing countries.
Collapse
|
38
|
Sarasola LI, Del Torrent CL, Pérez-Arévalo A, Argerich J, Casajuana-Martín N, Chevigné A, Fernández-Dueñas V, Ferré S, Pardo L, Ciruela F. The ADORA1 mutation linked to early-onset Parkinson's disease alters adenosine A 1-A 2A receptor heteromer formation and function. Biomed Pharmacother 2022; 156:113896. [PMID: 36279718 PMCID: PMC11969171 DOI: 10.1016/j.biopha.2022.113896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 01/14/2023] Open
Abstract
Adenosine modulates neurotransmission through inhibitory adenosine A1 receptors (A1Rs) and stimulatory A2A receptors (A2ARs). These G protein-coupled receptors are involved in motor function and related to neurodegenerative diseases such as Parkinson's disease (PD). An autosomal-recessive mutation (G2797.44S) within the transmembrane helix (TM) 7 of A1R (A1RG279S) has been associated with the development of early onset PD (EOPD). Here, we aimed at investigating the impact of this mutation on the structure and function of the A1R and the A1R-A2AR heteromer. Our results revealed that the G2797.44S mutation does not alter A1R expression, ligand binding, constitutive activity or coupling to transducer proteins (Gαi, Gαq, Gα12/13, Gαs, β-arrestin2 and GRK2) in transfected HEK-293 T cells. However, A1RG279S weakened the ability of A1R to heteromerize with A2AR, as shown in a NanoBiT assay, which led to the disappearance of the heteromerization-dependent negative allosteric modulation that A1R imposes on the constitutive activity and agonist-induced activation of the A2AR. Molecular dynamic simulations allowed to propose an indirect mechanism by which the G2797.44S mutation in TM 7 of A1R weakens the TM 5/6 interface of the A1R-A2AR heteromer. Therefore, it is demonstrated that a PD linked ADORA1 mutation is associated with dysfunction of adenosine receptor heteromerization. We postulate that a hyperglutamatergic state secondary to increased constitutive activity and sensitivity to adenosine of A2AR not forming heteromers with A1R could represent a main pathogenetic mechanism of the EOPD associated with the G2797.44S ADORA1 mutation.
Collapse
Affiliation(s)
- Laura I Sarasola
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L'Hospitalet de Llobregat, Spain; Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907 L'Hospitalet de Llobregat, Spain
| | - Claudia Llinas Del Torrent
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Andrea Pérez-Arévalo
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L'Hospitalet de Llobregat, Spain; Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907 L'Hospitalet de Llobregat, Spain
| | - Josep Argerich
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L'Hospitalet de Llobregat, Spain; Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907 L'Hospitalet de Llobregat, Spain
| | - Nil Casajuana-Martín
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Víctor Fernández-Dueñas
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L'Hospitalet de Llobregat, Spain; Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907 L'Hospitalet de Llobregat, Spain
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
| | - Leonardo Pardo
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, Bellaterra, 08193 Barcelona, Spain.
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L'Hospitalet de Llobregat, Spain; Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907 L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
39
|
Jensen I, Hendrich C, Klietz M, Berding G, Höglinger GU, Wegner F. Case report: Early-onset Parkinson's disease with initial spastic paraparesis and hyperreflexia caused by compound heterozygous PRKN-gene exon 2 and 4 deletions. Front Neurol 2022; 13:969232. [DOI: 10.3389/fneur.2022.969232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/28/2022] [Indexed: 11/19/2022] Open
Abstract
Pathogenic variants in the Parkin-gene (PRKN) are among the most common genetic causes of early onset Parkinson's disease (EOPD). Patients with EOPD can present with atypical clinical features and misdiagnosis is frequent. Here, we report a clinical phenotype with atypical signs and symptoms of a 35-year-old male patient with EOPD caused by a compound heterozygous PRKN-gene deletion of exons 2 and 4. After the initial diagnosis of stiff person syndrome, the patient was admitted to our department for a second opinion after 8 years of untreated disease progression. The patient presented with prominent spastic paraparesis pronounced on the right side and hyperreflexia as well as Parkinsonism with rigidity predominantly affecting the upper limbs, bradykinesia, and resting tremor. In the diagnostic assessment, magnetic evoked potentials to the anterior tibial muscles showed a low amplitude on the right side, compatible with pyramidal tract disturbance. However, an MRI of the head and the spine did not show any pathologies or atrophy. A [123I] FP-CIT SPECT scan revealed profoundly and left-pronounced reduced striatal uptake suggesting a neurodegenerative Parkinson's syndrome. Even though an acute levodopa challenge did not show marked improvement of symptoms, the chronic levodopa challenge with up to 450 mg/day significantly reduced the rigidity and bradykinesia. Surprisingly, spastic paraparesis and hyperreflexia diminished under dopaminergic treatment. Finally, genetic analysis by next-generation sequencing via copy number variant analysis (CNV) and multiplex ligation-dependent probe amplification (MLPA) confirmed compound heterozygous deletions of exons 2 and 4 in the PRKN-gene. As presented in this case, the awareness of atypical clinical symptoms of EOPD is essential to prevent misdiagnosis in young patients.
Collapse
|
40
|
Krause P, Reimer J, Kaplan J, Borngräber F, Schneider GH, Faust K, Kühn AA. Deep brain stimulation in Early Onset Parkinson's disease. Front Neurol 2022; 13:1041449. [PMID: 36468049 PMCID: PMC9713840 DOI: 10.3389/fneur.2022.1041449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/24/2022] [Indexed: 10/27/2023] Open
Abstract
INTRODUCTION Subthalamic Deep Brain Stimulation (STN-DBS) is a safe and well-established therapy for the management of motor symptoms refractory to best medical treatment in patients with Parkinson's disease (PD). Early intervention is discussed especially for Early-onset PD (EOPD) patients that present with an age of onset ≤ 45-50 years and see themselves often confronted with high psychosocial demands. METHODS We retrospectively assessed the effect of STN-DBS at 12 months follow-up (12-MFU) in 46 EOPD-patients. Effects of stimulation were evaluated by comparison of disease-specific scores for motor and non-motor symptoms including impulsiveness, apathy, mood, quality of life (QoL), cognition before surgery and in the stimulation ON-state without medication. Further, change in levodopa equivalent dosage (LEDD) after surgery, DBS parameter, lead localization, adverse and serious adverse events as well as and possible additional clinical features were assessed. RESULTS PD-associated gene mutations were found in 15% of our EOPD-cohort. At 12-MFU, mean motor scores had improved by 52.4 ± 17.6% in the STIM-ON/MED-OFF state compared to the MED-OFF state at baseline (p = 0.00; n = 42). These improvements were accompanied by a significant 59% LEDD reduction (p < 0.001), a significant 6.6 ± 16.1 points reduction of impulsivity (p = 0.02; n = 35) and a significant 30 ± 50% improvement of QoL (p = 0.01). At 12-MFU, 9 patients still worked full- and 6 part-time. Additionally documented motor and/or neuropsychiatric features decreased from n = 41 at baseline to n = 14 at 12-MFU. CONCLUSION The present study-results demonstrate that EOPD patients with and without known genetic background benefit from STN-DBS with significant improvement in motor as well as non-motor symptoms. In line with this, patients experienced a meaningful reduction of additional neuropsychiatric features. Physicians as well as patients have an utmost interest in possible predictors for the putative DBS outcome in a cohort with such a highly complex clinical profile. Longitudinal monitoring of DBS-EOPD-patients over long-term intervals with standardized comprehensive clinical assessment, accurate phenotypic characterization and documentation of clinical outcomes might help to gain insights into disease etiology, to contextualize genomic information and to identify predictors of optimal DBS candidates as well as those in danger of deterioration and/or non-response in the future.
Collapse
Affiliation(s)
- Patricia Krause
- Movement Disorder and Neuromodulation Unit, Charité University Medicine Berlin, Berlin, Germany
| | - Johanna Reimer
- Movement Disorder and Neuromodulation Unit, Charité University Medicine Berlin, Berlin, Germany
| | - Jonathan Kaplan
- Movement Disorder and Neuromodulation Unit, Charité University Medicine Berlin, Berlin, Germany
| | - Friederike Borngräber
- Movement Disorder and Neuromodulation Unit, Charité University Medicine Berlin, Berlin, Germany
| | | | - Katharina Faust
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Andrea A. Kühn
- Movement Disorder and Neuromodulation Unit, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
41
|
Zhou Z, Zhou X, Xiang Y, Zhao Y, Pan H, Wu J, Xu Q, Chen Y, Sun Q, Wu X, Zhu J, Wu X, Li J, Yan X, Guo J, Tang B, Lei L, Liu Z. Subtyping of early-onset Parkinson's disease using cluster analysis: A large cohort study. Front Aging Neurosci 2022; 14:1040293. [PMID: 36437996 PMCID: PMC9692000 DOI: 10.3389/fnagi.2022.1040293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/27/2022] [Indexed: 08/15/2023] Open
Abstract
BACKGROUND Increasing evidence suggests that early-onset Parkinson's disease (EOPD) is heterogeneous in its clinical presentation and progression. Defining subtypes of EOPD is needed to better understand underlying mechanisms, predict disease course, and eventually design more efficient personalized management strategies. OBJECTIVE To identify clinical subtypes of EOPD, assess the clinical characteristics of each EOPD subtype, and compare the progression between EOPD subtypes. MATERIALS AND METHODS A total of 1,217 patients were enrolled from a large EOPD cohort of the Parkinson's Disease & Movement Disorders Multicenter Database and Collaborative Network in China (PD-MDCNC) between January 2017 and September 2021. A comprehensive spectrum of motor and non-motor features were assessed at baseline. Cluster analysis was performed using data on demographics, motor symptoms and signs, and other non-motor manifestations. In 454 out of total patients were reassessed after a mean follow-up time of 1.5 years to compare progression between different subtypes. RESULTS Three subtypes were defined: mild motor and non-motor dysfunction/slow progression, intermediate and severe motor and non-motor dysfunction/malignant. Compared to patients with mild subtype, patients with the severe subtype were more likely to have rapid eye movement sleep behavior disorder, wearing-off, and dyskinesia, after adjusting for age and disease duration at baseline, and showed a more rapid progression in Unified Parkinson's Disease Rating Scale (UPDRS) total score (P = 0.002), UPDRS part II (P = 0.014), and III (P = 0.001) scores, Hoehn and Yahr stage (P = 0.001), and Parkinson's disease questionnaire-39 item version score (P = 0.012) at prospective follow-up. CONCLUSION We identified three different clinical subtypes (mild, intermediate, and severe) using cluster analysis in a large EOPD cohort for the first time, which is important for tailoring therapy to individuals with EOPD.
Collapse
Affiliation(s)
- Zhou Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxia Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yaqin Xiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuwen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Wu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yase Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xinyin Wu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jianping Zhu
- Hunan KeY Health Technology Co., Ltd., Changsha, China
| | - Xuehong Wu
- Hunan KeY Health Technology Co., Ltd., Changsha, China
| | - Jianhua Li
- Hunan Creator Information Technology Co., Ltd., Changsha, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Lifang Lei
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhenhua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
42
|
Salim S, Ahmad F, Banu A, Mohammad F. Gut microbiome and Parkinson's disease: Perspective on pathogenesis and treatment. J Adv Res 2022:S2090-1232(22)00242-9. [PMID: 36332796 PMCID: PMC10403695 DOI: 10.1016/j.jare.2022.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/26/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a disease of ⍺-synuclein aggregation-mediated dopaminergic neuronal loss in the substantia nigra pars compacta, which leads to motor and non-motor symptoms. Through the last two decades of research, there has been growing consensus that inflammation-mediated oxidative stress, mitochondrial dysfunction, and cytokine-induced toxicity are mainly involved in neuronal damage and loss associated with PD. However, it remains unclear how these mechanisms relate to sporadic PD, a more common form of PD. Both enteric and central nervous systems have been implicated in the pathogenesis of sporadic PD, thus highlighting the crosstalk between the gut and brain. AIM of Review: In this review, we summarize how alterations in the gut microbiome can affect PD pathogenesis. We highlight various mechanisms increasing/decreasing the risk of PD development. Based on the previous supporting evidence, we suggest how early interventions could protect against PD development and how controlling specific factors, including our diet, could modify our perspective on disease mechanisms and therapeutics. We explain the strong relationship between the gut microbiota and the brain in PD subjects, by delineating the multiple mechanisms involved inneuroinflammation and oxidative stress. We conclude that the neurodetrimental effects of western diet (WD) and the neuroprotective effects of Mediterranean diets should be further exploredin humans through clinical trials. Key Scientific Concepts of Review: Alterations in the gut microbiome and associated metabolites may contribute to pathogenesis in PD. In some studies, probiotics have been shown to exert anti-oxidative effects in PD via improved mitochondrial dynamics and homeostasis, thus reducing PD-related consequences. However, there is a significant unmet need for randomized clinical trials to investigate the effectiveness of microbial products, probiotic-based supplementation, and dietary intervention in reversing gut microbial dysbiosis in PD.
Collapse
|
43
|
Mehanna R, Smilowska K, Fleisher J, Post B, Hatano T, Pimentel Piemonte ME, Kumar KR, McConvey V, Zhang B, Tan E, Savica R. Age Cutoff for Early-Onset Parkinson's Disease: Recommendations from the International Parkinson and Movement Disorder Society Task Force on Early Onset Parkinson's Disease. Mov Disord Clin Pract 2022; 9:869-878. [PMID: 36247919 PMCID: PMC9547138 DOI: 10.1002/mdc3.13523] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/09/2022] Open
Abstract
Background Early-onset Parkinson's disease (EOPD)/young-onset Parkinson's disease (YOPD) is defined as Parkinson's disease (PD) with an age at onset (AAO) after age 21 years but before the usual AAO for PD. Consensus is lacking, and the reported maximal age for EOPD/YOPD has varied from 40 to 60 years, leading to a lack of uniformity in published studies and difficulty in harmonization of data. EOPD and YOPD have both been used in the literature, somewhat interchangeably. Objective To define the nomenclature and AAO cutoff for EOPD/YOPD. Methods An extensive review of the literature and task force meetings were conducted. Conclusions were reached by consensus. Results First, the literature has seen a shift from the use of YOPD toward EOPD. This seems motivated by an attempt to avoid age-related stigmatization of patients. Second, in defining EOPD, 56% of the countries use 50 or 51 years as the cutoff age. Third, the majority of international genetic studies in PD use an age cutoff of younger than 50 years to define EOPD. Fourth, many studies suggest that changes in the estrogen level can affect the predisposition to develop PD, making the average age at menopause of 50 years an important factor to consider when defining EOPD. Fifth, considering the differential impact of the AAO of PD on professional and social life, using 50 years as the upper cutoff for the definition of EOPD seems reasonable. Conclusions This task force recommends the use of EOPD rather than YOPD. It defines EOPD as PD with AAO after 21 years but before 50 years.
Collapse
Affiliation(s)
- Raja Mehanna
- UTMove, Departement of NeurologyUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Katarzyna Smilowska
- Department of NeurologySilesian Center of NeurologyKatowicePoland
- Department of Neurology5th Regional HospitalSosnowiecPoland
| | - Jori Fleisher
- Department of Neurological SciencesRush University School of MedicineChicagoIllinoisUSA
| | - Bart Post
- Department of NeurologyRadboudumcNijmegenThe Netherlands
| | - Taku Hatano
- Department of NeurologyJuntendo University School of MedicineTokyoJapan
| | - Maria Elisa Pimentel Piemonte
- Physical Therapy, Speech Therapy, and Occupational TherapyDepartment, Medical School, University of São PauloSão PauloBrazil
| | - Kishore Raj Kumar
- Molecular Medicine Laboratory and Department of Neurology, Concord Repatriation General Hospital, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
- Kinghorn Centre for Clinical GenomicsGarvan Institute of Medical ResearchDarlinghurstNew South WalesAustralia
| | | | - Baorong Zhang
- Department of NeurologyThe Second Affiliated HospitalHangzhouChina
| | - Eng‐King Tan
- Department of NeurologyNational Neuroscience InstituteSingaporeSingapore
| | | |
Collapse
|
44
|
King C, Parker TM, Roussos-Ross K, Ramirez-Zamora A, Smulian JC, Okun MS, Wong JK. Safety of deep brain stimulation in pregnancy: A comprehensive review. Front Hum Neurosci 2022; 16:997552. [PMID: 36248692 PMCID: PMC9557283 DOI: 10.3389/fnhum.2022.997552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Deep brain stimulation (DBS) is increasingly used to treat the symptoms of various neurologic and psychiatric conditions. People can undergo the procedure during reproductive years but the safety of DBS in pregnancy remains relatively unknown given the paucity of published cases. We thus conducted a review of the literature to determine the state of current knowledge about DBS in pregnancy and to determine how eligibility criteria are approached in clinical trials with respect to pregnancy and the potential for pregnancy. Methods A literature review was conducted in EMBASE to identify articles involving DBS and pregnancy. Two reviewers independently analyzed the articles to confirm inclusion. Data extracted for analysis included conditions treated, complications at all stages of pregnancy, neonatal/pediatric outcomes, and DBS target. A second search was then conducted using www.clinicaltrials.gov. The same two reviewers then assessed whether each trial excluded pregnant individuals, lactating individuals, or persons of childbearing age planning to conceive. Also assessed was whether contraception had to be deemed adequate prior to enrollment. Results The literature search returned 681 articles. Following independent analysis and agreement of two reviewers, 8 pregnancy related DBS articles were included for analysis. These articles described 27 subjects, 29 pregnancies (2 with subsequent pregnancies), and 31 infants (2 twin pregnancies). There was 1 preterm birth at 35 weeks, and 3 patients who experienced discomfort from the DBS battery (i.e., impulse generator) placement site. All 27 patients had a DBS device implanted before they became pregnant, which remained in use throughout their pregnancy. There was exclusion of pregnant individuals from 68% of 135 interventional trials involving DBS. Approximately 44% of these trials excluded persons of childbearing age not on "adequate contraception" or wishing to conceive in the coming years. Finally, 22% excluded breastfeeding persons. Conclusion The data from 29 pregnancies receiving DBS treatment during pregnancy was not associated with unexpected pregnancy or post-partum complication patterns. Many clinical trials have excluded pregnant individuals. Documentation of outcomes in larger numbers of pregnancies will help clarify the safety profile and will help guide study designs that will safely include pregnant patients.
Collapse
Affiliation(s)
- Caroline King
- Department of Obstetrics & Gynecology, University of Florida College of Medicine, Gainesville, FL, United States
| | - T. Maxwell Parker
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL, United States
| | - Kay Roussos-Ross
- Department of Obstetrics & Gynecology, University of Florida College of Medicine, Gainesville, FL, United States
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, Gainesville, FL, United States
| | - Adolfo Ramirez-Zamora
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL, United States
| | - John C. Smulian
- Department of Obstetrics & Gynecology, University of Florida College of Medicine, Gainesville, FL, United States
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, Gainesville, FL, United States
| | - Michael S. Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL, United States
| | - Joshua K. Wong
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
45
|
Chen F, Chen S, Si A, Luo Y, Hu W, Zhang Y, Ma J. The long-term trend of Parkinson’s disease incidence and mortality in China and a Bayesian projection from 2020 to 2030. Front Aging Neurosci 2022; 14:973310. [PMID: 36185486 PMCID: PMC9520003 DOI: 10.3389/fnagi.2022.973310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Parkinson’s disease is a disabling degenerative disease of the central nervous system that occurs mainly in elderly people. The changes in the incidence and mortality of Parkinson’s disease at the national level in China over the past three decades have not been fully explored.Methods: Research data were obtained from the Global Burden of Disease 2019 study. The trends of crude and age-standardized incidence and mortality rates by gender of Parkinson’s disease in China were analyzed with the age-period-cohort model and the Joinpoint regression analysis. The effects of age, time period, and birth cohort on the incidence and mortality of Parkinson’s disease were estimated. The gender- and age-specific incidence and mortality rates of Parkinson’s disease from 2020 to 2030 were projected using the Bayesian age-period-cohort model with integrated nested Laplace approximations.Results: From 1990 to 2019, the annual percentage change of the age-standardized incidence rate was 0.8% (95% CI: 0.7%–0.8%) for males and 0.2% (95% CI, 0.2–0.2%) for females. And the age-standardized mortality rate for males was 2.9% (95% CI: 2.6%–3.2%) and 1.8% (95% CI: 1.5%–2.1%) for females. The results of the age-period-cohort analysis suggested that the risk and burden of Parkinson’s disease continued to increase for the last several decades. Projection analysis suggested that the overall Parkinson’s disease incidence will continue to increase for the next decades. It was projected that China would have 4.787 million Parkinson’s patients by the year 2030, however, the mortality of Parkinson’s disease for both genders in China may keep decreasing.Conclusion: Though the mortality risk may decrease, Parkinson’s disease continues to become more common for both genders in China, especially in the senior-aged population. The burden associated with Parkinson’s disease would continue to grow. Urgent interventions should be implemented to reduce the burden of Parkinson’s disease in China.
Collapse
Affiliation(s)
- Fangyao Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Radiology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shiyu Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Aima Si
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yaqi Luo
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Weiwei Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yuxiang Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Jiaojiao Ma
- Department of Neurology, Xi’an Gaoxin Hospital, Xi’an, China
- *Correspondence: Jiaojiao Ma
| |
Collapse
|
46
|
Xie H, Zhang Q, Jiang Y, Bai Y, Zhang J. Parkinson’s disease with mild cognitive impairment may has a lower risk of cognitive decline after subthalamic nucleus deep brain stimulation: A retrospective cohort study. Front Hum Neurosci 2022; 16:943472. [PMID: 36147298 PMCID: PMC9486063 DOI: 10.3389/fnhum.2022.943472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/10/2022] [Indexed: 11/22/2022] Open
Abstract
Background The cognitive outcomes induced by subthalamic nucleus deep brain stimulation (STN-DBS) remain unclear, especially in PD patients with mild cognitive impairment (MCI). This study explored the cognitive effects of STN-DBS in PD patients with MCI. Methods This was a retrospective cohort study that included 126 PD patients who underwent STN-DBS; all patients completed cognitive and motor assessments before and at least 6 months after surgery. Cognitive changes were mainly evaluated by the Montreal cognitive assessment (MoCA) scale and the seven specific MoCA domains, including visuospatial/executive function, naming, attention, language, abstract, delayed recall, and orientation. Motor improvement was evaluated by the UPDRS-III. Cognitive changes and motor improvements were compared between PD-MCI and normal cognitive (NC) patients. Logistic regression analyses were performed to explore predictors of post-operative cognitive change. Results At the time of surgery, 61.90% of the included PD patients had MCI. Compared with the PD-MCI group, the PD-NC group had a significantly higher proportion of cases with post-operative cognitive decline during follow-up of up to 36 months (mean 17.34 ± 10.61 months), mainly including in global cognitive function, visuospatial/executive function and attention. Covariate-adjusted binary logistic regression analyses showed that pre-operative global cognitive status was an independent variable for post-operative cognitive decline. We also found that pre-operative cognitive specific function could predict its own decline after STN-DBS, except for the naming and orientation domains. Conclusion PD-MCI patients are at a lower risk of cognitive decline after STN-DBS compared with PD-NC patients.
Collapse
Affiliation(s)
- Hutao Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Quan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yin Jiang
- Beijing Key Laboratory of Neurostimulation, Beijing, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- *Correspondence: Yin Jiang,
| | - Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Yutong Bai,
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Jianguo Zhang,
| |
Collapse
|
47
|
Acıkara OB, Karatoprak GŞ, Yücel Ç, Akkol EK, Sobarzo-Sánchez E, Khayatkashani M, Kamal MA, Kashani HRK. A Critical Analysis of Quercetin as the Attractive Target for the Treatment of Parkinson's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:795-817. [PMID: 34872486 DOI: 10.2174/1871527320666211206122407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/01/2021] [Accepted: 09/28/2021] [Indexed: 02/08/2023]
Abstract
Parkinson's Disease (PD) is a multifaceted disorder with various factors suggested to play a synergistic pathophysiological role, such as oxidative stress, autophagy, pro-inflammatory events, and neurotransmitter abnormalities. While it is crucial to discover new treatments in addition to preventing PD, recent studies have focused on determining whether nutraceuticals will exert neuroprotective actions and pharmacological functions in PD. Quercetin, a flavonol-type flavonoid, is found in many fruits and vegetables and is recognised as a complementary therapy for PD. The neuroprotective effect of quercetin is directly associated with its antioxidant activity, in addition to stimulating cellular defence against oxidative stress. Other related mechanisms are activating Sirtuins (SIRT1) and inducing autophagy, in addition to induction of Nrf2-ARE and Paraoxonase 2 (PON2). Quercetin, whose neuroprotective activity has been demonstrated in many studies, unfortunately, has a disadvantage because of its poor water solubility, chemical instability, and low oral bioavailability. It has been reported that the disadvantages of quercetin have been eliminated with nanocarriers loaded with quercetin. The role of nanotechnology and nanodelivery systems in reducing oxidative stress during PD provides an indisputable advantage. Accordingly, the present review aims to shed light on quercetin's beneficial effects and underlying mechanisms in neuroprotection. In addition, the contribution of nanodelivery systems to the neuroprotective effect of quercetin is also discussed.
Collapse
Affiliation(s)
- Ozlem Bahadır Acıkara
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, Tandoğan, 06100 Ankara, Turkey
| | - Gökçe Şeker Karatoprak
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, 38039, Kayseri, Turkey
| | - Çiğdem Yücel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, 38039, Kayseri, Turkey
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler 06330, Ankara, Turkey
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, 8330507, Santiago, Chile.,Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | | | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh.,Enzymoics, Novel Global Community Educational Foundation, Sydney, Australia
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Abstract
OBJECTIVE Psychiatric disorders are very common in patients affected by Parkinson's disease (PD). However, comorbidity with Bipolar Spectrum disorders is understudied. The aim of this study is to explore the clinical correlates of PD associated with Bipolar Spectrum disorders. METHODS One hundred PD patients were screened for psychiatric comorbidities, cognitive profile, motor, and non-motor symptoms. The sample was divided into three groups: PD-patients with Bipolar Spectrum disorders (bipolar disorder type I, type II, and spontaneous or induced hypomania; N = 32), PD-patients with others psychiatric comorbidities (N = 39), PD-patients without psychiatric comorbidities (N = 29). Clinical features were compared among the groups using analysis of variance and chi-square test. A logistic regression was performed to evaluate the association between Bipolar Spectrum disorders and early onset of PD (≤50 years) controlling for lifetime antipsychotic use. RESULTS In comparison with PD patients with and without other psychiatric comorbidity, subjects affected by Bipolar Spectrum disorders were younger, showed more frequently an early onset PD, reported more involuntary movements and a higher rate of impulse control disorders and compulsive behaviors. No differences were observed in indexes of exposure to dopamine agonist treatments. The early onset of PD was predicted by Bipolar Spectrum comorbidity, independently from lifetime antipsychotic use. CONCLUSION Bipolar Spectrum disorders are common in early onset PD. The presence of bipolar comorbidity could identify a particular subtype of PD, showing higher rates of neurological and psychiatric complications and deserving further investigation.
Collapse
|
49
|
Xu J, Minobe E, Kameyama M. Ca2+ Dyshomeostasis Links Risk Factors to Neurodegeneration in Parkinson’s Disease. Front Cell Neurosci 2022; 16:867385. [PMID: 35496903 PMCID: PMC9050104 DOI: 10.3389/fncel.2022.867385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/23/2022] [Indexed: 12/06/2022] Open
Abstract
Parkinson’s disease (PD), a common neurodegenerative disease characterized by motor dysfunction, results from the death of dopaminergic neurons in the substantia nigra pars compacta (SNc). Although the precise causes of PD are still unknown, several risk factors for PD have been determined, including aging, genetic mutations, environmental factors, and gender. Currently, the molecular mechanisms underlying risk factor-related neurodegeneration in PD remain elusive. Endoplasmic reticulum stress, excessive reactive oxygen species production, and impaired autophagy have been implicated in neuronal death in the SNc in PD. Considering that these pathological processes are tightly associated with intracellular Ca2+, it is reasonable to hypothesize that dysregulation of Ca2+ handling may mediate risk factors-related PD pathogenesis. We review the recent findings on how risk factors cause Ca2+ dyshomeostasis and how aberrant Ca2+ handling triggers dopaminergic neurodegeneration in the SNc in PD, thus putting forward the possibility that manipulation of specific Ca2+ handling proteins and subcellular Ca2+ homeostasis may lead to new promising strategies for PD treatment.
Collapse
|
50
|
Wang P, Luo M, Zhou W, Jin X, Xu Z, Yan S, Li Y, Xu C, Cheng R, Huang Y, Lin X, Yao L, Nie H, Jiang Q. Global Characterization of Peripheral B Cells in Parkinson's Disease by Single-Cell RNA and BCR Sequencing. Front Immunol 2022; 13:814239. [PMID: 35250991 PMCID: PMC8888848 DOI: 10.3389/fimmu.2022.814239] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/27/2022] [Indexed: 12/21/2022] Open
Abstract
Immune system plays important roles in the pathogenesis of Parkinson’s disease (PD). However, the role of B cells in this complex disease are still not fully understood. B cells produce antibodies but can also regulate immune responses. In order to decode the relative contribution of peripheral B cell subtypes to the etiology of PD, we performed single cell RNA and BCR sequencing for 10,466 B cells from 8 PD patients and 6 age-matched healthy controls. We observed significant increased memory B cells and significant decreased naïve B cells in PD patients compared to healthy controls. Notably, we also discovered increased IgG and IgA isotypes and more frequent class switch recombination events in PD patients. Moreover, we identified preferential V and J gene segments of B cell receptors in PD patients as the evidence of convergent selection in PD. Finally, we found a marked clonal expanded memory B cell population in PD patients, up-regulating both MHC II genes (HLA-DRB5, HLA-DQA2 and HLA-DPB1) and transcription factor activator protein 1 (AP-1), suggesting that the antigen presentation capacity of B cells was enhanced and B cells were activated in PD patients. Overall, this study conducted a comprehensive analysis of peripheral B cell characteristics of PD patients, which provided novel insights into the humoral immune response in the pathogenesis of PD.
Collapse
Affiliation(s)
- Pingping Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Meng Luo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Wenyang Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiyun Jin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhaochun Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Shi Yan
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yiqun Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Chang Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Rui Cheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yan Huang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiaoyu Lin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Lifen Yao
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huan Nie
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Qinghua Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.,Key Laboratory of Biological Big Data (Harbin Institute of Technology), Ministry of Education, Harbin, China
| |
Collapse
|