1
|
Chong ZZ, Souayah N. Targeting Gene C9orf72 Pathogenesis for Amyotrophic Lateral Sclerosis. Int J Mol Sci 2025; 26:4276. [PMID: 40362512 PMCID: PMC12072292 DOI: 10.3390/ijms26094276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/23/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal adult neurodegenerative disorder. Since no cure has been found, finding effective therapeutic targets for ALS remains a major challenge. Gene C9orf72 mutations with the formation of hexanucleotide repeat (GGGGCC) expansion (HRE) have been considered the most common genetic pathogenesis of ALS. The literature review indicates that the C9orf72 HRE causes both the gain-of-function toxicity and loss of function of C9ORF72. The formation of RNA foci and dipeptide repeats (DPRs) resulting from HRE is responsible for toxic function gain. The RNA foci can interfere with RNA processing, while DPRs directly bind to and sequester associated proteins to disrupt processes of rRNA synthesis, mRNA translation, autophagy, and nucleocytoplasmic transport. The mutations of C9orf72 and HRE result in the loss of functional C9ORF72. Under physiological conditions, C9ORF72 binds to Smith-Magenis chromosome region 8 and WD repeat-containing protein and forms a protein complex. Loss of C9ORF72 leads to autophagic impairment, increased oxidative stress, nucleocytoplasmic transport impairment, and inflammatory response. The attempted treatments for ALS have been tried by targeting C9orf72 HRE; however, the outcomes are far from satisfactory yet. More studies should be performed on pharmacological and molecular modulators against C9orf72 HRE to evaluate their efficacy by targeting HRE.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Department of Neurology, New Jersey Medical School, Rutgers University, 185 S Orange, Newark, NJ 07103, USA
| | - Nizar Souayah
- Department of Neurology, New Jersey Medical School, Rutgers University, 90 Bergen Street DOC 8100, Newark, NJ 07101, USA
| |
Collapse
|
2
|
Ramesh N, Evans A, Wojta K, Yang Z, Boks MM, Kahn RS, de Boer SCM, van der Lee SJ, Pijnenburg YAL, Reus LM, Ophoff RA. Accurate DNA Methylation Predictor for C9orf72 Repeat Expansion Alleles in the Pathogenic Range. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.643775. [PMID: 40196659 PMCID: PMC11974722 DOI: 10.1101/2025.03.20.643775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The hexanucleotide (G 4 C 2 ) repeat expansion in the promoter region of C9orf72 is the most frequent genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). In this study, we conducted a genome-wide DNA methylation (DNAm) analysis using EPIC version 2 (EPICv2) arrays on an FTD cohort comprising 27 carriers and 250 non-carriers of the pathogenic C9orf72 repeat expansion from the Amsterdam Dementia Cohort. We identified differentially methylated CpGs probes associated with the pathogenic C9orf72 expansion and used these findings to create a DNAm Least Absolute Shrinkage and Selection Operator (LASSO) predictor to identify repeat expansion carriers. Eight CpG sites at the C9orf72 locus were significantly differentially hypermethylated in repeat expansion carriers compared to non-carriers. The LASSO model predicted repeat expansion status with an average accuracy of 98.6%. The LASSO predictor was further validated in an independent cohort of 2,548 subjects with available EPICv2 data, identifying four C9orf72 repeat expansion carriers, subsequently confirmed by repeat-primed PCR. This result not only illustrates the accuracy of the DNAm predictor of C9orf72 repeat expansion carriers but also suggests that repeat expansion carriers may be more prevalent than expected. The identification of a highly accurate DNAm biomarker for a repeat expansion locus associated with neurodegenerative disorders may provide great value for studying this locus. The approach holds significant promise for investigating this and other repeat expansion loci, particularly given the growing interest in epigenetic epidemiological studies involving large cohorts with available DNAm data. Graphical abstract optional
Collapse
|
3
|
Frydas A, Cacace R, van der Zee J, Van Broeckhoven C, Wauters E. Investigation of the role of miRNA variants in neurodegenerative brain diseases. Front Genet 2025; 16:1506169. [PMID: 40078479 PMCID: PMC11897046 DOI: 10.3389/fgene.2025.1506169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction miRNAs are small noncoding elements known to regulate different molecular processes, including developmental and executive functions in the brain. Dysregulation of miRNAs could contribute to brain neurodegeneration, as suggested by miRNA profiling studies of individuals suffering from neurodegenerative brain diseases (NBDs). Here, we report rare miRNA variants in patients with Alzheimer's dementia (AD) and frontotemporal dementia (FTD). Methods We initially used whole exome sequencing data in a subset of FTD patients (n = 209) from Flanders-Belgium. We then performed targeted resequencing of variant-harboring miRNAs in an additional subset of FTD patients (n = 126) and control individuals (n = 426). Lastly, we sequenced the MIR885 locus in a Flanders-Belgian AD cohort (n = 947) and a total number of n = 755 controls. Results WES identified rare seed variants in MIR656, MIR423, MIR122 and MIR885 in FTD patients. Most of these miRNAs bind to FTD-associated genes, implicated in different biological pathways. Additionally, some miRNA variants create novel binding sites for genes associated with FTD. Sequencing of the MIR885 locus in the AD cohort initially showed a significant enrichment of MIR885 variants in AD patients compared to controls (SKAT-O, p-value = 0.026). Genetic association was not maintained when we included sex and APOE status as covariates. Using the miRVaS prediction tool, variants rs897551430 and rs993255773 appeared to evoke significant structural changes in the primary miRNA. These variants are also predicted to strongly downregulate mature miR885 levels, in line with what is reported for MIR885 in the context of AD. Discussion Functional investigation of miRNAs/variants described in this study could propose novel miRNA-mediated molecular cascades in FTD and AD pathogenicity. Furthermore, we believe that the genetic evidence presented here suggests a role for MIR885 in molecular mechanisms involved in AD and warrants genetic follow-up in larger cohorts to explore this hypothesis.
Collapse
Affiliation(s)
- Alexandros Frydas
- VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Rita Cacace
- VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Julie van der Zee
- VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Eline Wauters
- VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
4
|
de Calbiac H, Renault S, Haouy G, Jung V, Roger K, Zhou Q, Campanari ML, Chentout L, Demy DL, Marian A, Goudin N, Edbauer D, Guerrera C, Ciura S, Kabashi E. Poly-GP accumulation due to C9orf72 loss of function induces motor neuron apoptosis through autophagy and mitophagy defects. Autophagy 2024; 20:2164-2185. [PMID: 39316747 PMCID: PMC11423671 DOI: 10.1080/15548627.2024.2358736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 09/26/2024] Open
Abstract
The GGGGCC hexanucleotide repeat expansion (HRE) of the C9orf72 gene is the most frequent cause of amyotrophic lateral sclerosis (ALS), a devastative neurodegenerative disease characterized by motor neuron degeneration. C9orf72 HRE is associated with lowered levels of C9orf72 expression and its translation results in the production of dipeptide-repeats (DPRs). To recapitulate C9orf72-related ALS disease in vivo, we developed a zebrafish model where we expressed glycine-proline (GP) DPR in a c9orf72 knockdown context. We report that C9orf72 gain- and loss-of-function properties act synergistically to induce motor neuron degeneration and paralysis with poly(GP) accumulating preferentially within motor neurons along with Sqstm1/p62 aggregation indicating macroautophagy/autophagy deficits. Poly(GP) levels were shown to accumulate upon c9orf72 downregulation and were comparable to levels assessed in autopsy samples of patients carrying C9orf72 HRE. Chemical boosting of autophagy using rapamycin or apilimod, is able to rescue motor deficits. Proteomics analysis of zebrafish-purified motor neurons unravels mitochondria dysfunction confirmed through a comparative analysis of previously published C9orf72 iPSC-derived motor neurons. Consistently, 3D-reconstructions of motor neuron demonstrate that poly(GP) aggregates colocalize to mitochondria, thus inducing their elongation and swelling and the failure of their processing by mitophagy, with mitophagy activation through urolithin A preventing locomotor deficits. Finally, we report apoptotic-related increased amounts of cleaved Casp3 (caspase 3, apoptosis-related cysteine peptidase) and rescue of motor neuron degeneration by constitutive inhibition of Casp9 or treatment with decylubiquinone. Here we provide evidence of key pathogenic steps in C9ALS-FTD that can be targeted through pharmacological avenues, thus raising new therapeutic perspectives for ALS patients.
Collapse
Affiliation(s)
- Hortense de Calbiac
- Imagine Institute, INSERM UMR 1163, Team Translational Research for Neurological Diseases, Paris Descartes University, Paris, France
| | - Solène Renault
- Imagine Institute, INSERM UMR 1163, Team Translational Research for Neurological Diseases, Paris Descartes University, Paris, France
| | - Grégoire Haouy
- Imagine Institute, INSERM UMR 1163, Team Translational Research for Neurological Diseases, Paris Descartes University, Paris, France
| | - Vincent Jung
- Proteomics Platform 3P5Necker, INSERM US24/CNRS UMS, Paris Descartes University, Structure Fédérative de Recherche Necker, Paris, France
| | - Kevin Roger
- Proteomics Platform 3P5Necker, INSERM US24/CNRS UMS, Paris Descartes University, Structure Fédérative de Recherche Necker, Paris, France
| | - Qihui Zhou
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (Synergy), Munich, Germany
| | - Maria-Letizia Campanari
- Imagine Institute, INSERM UMR 1163, Team Translational Research for Neurological Diseases, Paris Descartes University, Paris, France
| | - Loïc Chentout
- Imagine Institute, INSERM UMR 1163, Team Translational Research for Neurological Diseases, Paris Descartes University, Paris, France
| | - Doris Lou Demy
- Imagine Institute, INSERM UMR 1163, Team Translational Research for Neurological Diseases, Paris Descartes University, Paris, France
| | - Anca Marian
- Imagine Institute, INSERM UMR 1163, Team Translational Research for Neurological Diseases, Paris Descartes University, Paris, France
| | - Nicolas Goudin
- Imaging Core Facility, INSERM US24/CNRS UMS3633, Paris, France
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (Synergy), Munich, Germany
- Ludwig-Maximilians-Universität (LMU) Munich, Graduate School of Systemic Neurosciences (GSN), Munich, Germany
| | - Chiara Guerrera
- Proteomics Platform 3P5Necker, INSERM US24/CNRS UMS, Paris Descartes University, Structure Fédérative de Recherche Necker, Paris, France
| | - Sorana Ciura
- Imagine Institute, INSERM UMR 1163, Team Translational Research for Neurological Diseases, Paris Descartes University, Paris, France
| | - Edor Kabashi
- Imagine Institute, INSERM UMR 1163, Team Translational Research for Neurological Diseases, Paris Descartes University, Paris, France
| |
Collapse
|
5
|
Spencer BE, Xie SX, Elman L, Quinn CC, Amado D, Baer M, Lee EB, Van Deerlin VM, Dratch L, Massimo L, Irwin DJ, McMillan CT. C9orf72 repeat expansions modify risk for secondary motor and cognitive-behavioral symptoms in behavioral-variant frontotemporal degeneration and amyotrophic lateral sclerosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.30.24306638. [PMID: 38746326 PMCID: PMC11092697 DOI: 10.1101/2024.04.30.24306638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
In behavioral-variant frontotemporal degeneration (bvFTD) and amyotrophic lateral sclerosis (ALS), secondary motor or cognitive-behavioral symptoms, respectively, are associated with shorter survival. However, factors influencing secondary symptom development remain largely unexplored. We performed a retrospective evaluation of the entire disease course of individuals with ALS (n=172) and bvFTD (n=69). Only individuals who had neuropathological confirmation of TDP-43 proteinopathy at autopsy or a C9orf72 hexanucleotide repeat expansion were included for analysis. We examined the odds and hazard of secondary symptom development and assessed whether each was modified by the presence of a C9orf72 expansion or initial clinical syndrome. Binary logistic regression and Cox proportional hazard analyses revealed increased odds (OR=4.25 [95% CI 1.97-9.14], p<0.001) and an increased hazard (HR= 4.77 [95% CI 2.33-9.79], p<0.001) for developing secondary symptoms in those with a C9orf72 expansion compared to those without. Initial clinical syndrome (bvFTD or ALS), age at symptom onset, and sex were not associated with development of secondary symptoms. These data highlight the need for clinician vigilance to detect the onset of secondary motor and cognitive-behavioral symptoms in patients carrying a C9orf72 expansion, regardless of initial clinical syndrome. C9orf72 clinical care can be enhanced through coordination between cognitive and neuromuscular clinics.
Collapse
|
6
|
Wenzhi Y, Xiangyi L, Dongsheng F. The prion-like effect and prion-like protein targeting strategy in amyotrophic lateral sclerosis. Heliyon 2024; 10:e34963. [PMID: 39170125 PMCID: PMC11336370 DOI: 10.1016/j.heliyon.2024.e34963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/09/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024] Open
Abstract
Pathological proteins in amyotrophic lateral sclerosis (ALS), such as superoxide dismutase 1, TAR DNA-binding protein 43, and fused in sarcoma, exhibit a prion-like pattern. All these proteins have a low-complexity domain and seeding activity in cells. In this review, we summarize the studies on the prion-like effect of these proteins and list six prion-like protein targeting strategies that we believe have potential for ALS therapy, including antisense oligonucleotides, antibody-based technology, peptide, protein chaperone, autophagy enhancement, and heteromultivalent compounds. Considering the pathological complexity and heterogeneity of ALS, we believe that the final solution to ALS therapy is most likely to be an individualized cocktail therapy, including clearance of toxicity, blockage of pathological progress, and protection of neurons.
Collapse
Affiliation(s)
- Yang Wenzhi
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Liu Xiangyi
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Fan Dongsheng
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| |
Collapse
|
7
|
Wang H, Zeng R. Aberrant protein aggregation in amyotrophic lateral sclerosis. J Neurol 2024; 271:4826-4851. [PMID: 38869826 DOI: 10.1007/s00415-024-12485-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease. As its pathological mechanisms are not well understood, there are no efficient therapeutics for it at present. While it is highly heterogenous both etiologically and clinically, it has a common salient hallmark, i.e., aberrant protein aggregation (APA). The upstream pathogenesis and the downstream effects of APA in ALS are sophisticated and the investigation of this pathology would be of consequence for understanding ALS. In this paper, the pathomechanism of APA in ALS and the candidate treatment strategies for it are discussed.
Collapse
Affiliation(s)
- Huaixiu Wang
- Department Neurology, Shanxi Provincial Peoples Hospital: Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China.
- Beijing Ai-Si-Kang Medical Technology Co. Ltd., No. 18 11th St Economical & Technological Development Zone, Beijing, 100176, China.
| | - Rong Zeng
- Department Neurology, Shanxi Provincial Peoples Hospital: Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China
| |
Collapse
|
8
|
Wu Y, Zheng W, Xu G, Zhu L, Li Z, Chen J, Wang L, Chen S. C9orf72 controls hepatic lipid metabolism by regulating SREBP1 transport. Cell Death Differ 2024; 31:1070-1084. [PMID: 38816580 PMCID: PMC11303392 DOI: 10.1038/s41418-024-01312-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024] Open
Abstract
Sterol regulatory element binding transcription factors (SREBPs) play a crucial role in lipid homeostasis. They are processed and transported to the nucleus via COPII, where they induce the expression of lipogenic genes. COPII maintains the homeostasis of organelles and plays an essential role in the protein secretion pathways in eukaryotes. The formation of COPII begins at endoplasmic reticulum exit sites (ERES), and is regulated by SEC16A, which provides a platform for the assembly of COPII. However, there have been few studies on the changes in SEC16A protein levels. The repetitive expansion of the hexanucleotide sequence GGGGCC within the chromosome 9 open reading frame 72 (C9orf72) gene is a prevalent factor in the development of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here, we found that the absence of C9orf72 leads to a decrease in SEC16A protein levels, resulting in reduced localization of the guanine nucleotide exchange factor SEC12 at the ERES. Consequently, the small GTP binding protein SAR1 is unable to bind the endoplasmic reticulum normally, impairing the assembly of COPII. Ultimately, the disruption of SREBPs transport decreases de novo lipogenesis. These results suggest that C9orf72 acts as a novel role in regulating lipid homeostasis and may serve as a potential therapeutic target for obesity.
Collapse
Affiliation(s)
- Yachen Wu
- Brain Center, Department of Neurosurgery, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Department of Infectious Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, 518038, Guangdong, China
| | - Wenzhong Zheng
- Brain Center, Department of Neurosurgery, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Guofeng Xu
- Brain Center, Department of Neurosurgery, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lijun Zhu
- Brain Center, Department of Neurosurgery, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zhiqiang Li
- Brain Center, Department of Neurosurgery, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jincao Chen
- Brain Center, Department of Neurosurgery, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lianrong Wang
- Brain Center, Department of Neurosurgery, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
- Department of Infectious Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, 518038, Guangdong, China.
| | - Shi Chen
- Brain Center, Department of Neurosurgery, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen University Medical School, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
| |
Collapse
|
9
|
Lin CY, Wu HE, Weng EFJ, Wu HC, Su TP, Wang SM. Fluvoxamine Exerts Sigma-1R to Rescue Autophagy via Pom121-Mediated Nucleocytoplasmic Transport of TFEB. Mol Neurobiol 2024; 61:5282-5294. [PMID: 38180612 PMCID: PMC11249700 DOI: 10.1007/s12035-023-03885-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
Expansion of the GGGGCC-RNA repeat is a known cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), which currently have no cure. Recent studies have indicated the activation of Sigma-1 receptor plays an important role in providing neuroprotection, especially in ALS and Alzheimer's disease. Nevertheless, the mechanisms underlying Sigma-1R activation and its effect on (G4C2)n-RNA-induced cell death remain unclear. In this study, we demonstrated that fluvoxamine is a Sigma-1R agonist that can increase chaperone activity and stabilize the protein expression of Pom121 in (G4C2)31-RNA-expressing NSC34 cells, leading to increased colocalization at the nuclear envelope. Interestingly, fluvoxamine treatment increased Pom121 protein expression without affecting transcription. In C9orf72-ALS, the nuclear translocation of TFEB autophagy factor decreased owing to nucleocytoplasmic transport defects. Our results showed that pretreatment of NSC34 cells with fluvoxamine promoted the shuttling of TFEB into the nucleus and elevated the expression of LC3-II compared to the overexpression of (G4C2)31-RNA alone. Additionally, even when used alone, fluvoxamine increases Pom121 expression and TFEB translocation. To summarize, fluvoxamine may act as a promising repurposed medicine for patients with C9orf72-ALS, as it stabilizes the nucleoporin Pom121 and promotes the translocation of TFEB in (G4C2)31-RNA-expressing NSC34 cells.
Collapse
Affiliation(s)
- Chun-Yu Lin
- School of Medicine, China Medical University, Taichung, Taiwan
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan
| | - Hsiang-En Wu
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, Suite 3512, 333 Cassell Drive, Baltimore, MD, 21224, USA
| | - Eddie Feng-Ju Weng
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404333, Taiwan
| | - Hsuan-Cheng Wu
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404333, Taiwan
| | - Tsung-Ping Su
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, Suite 3512, 333 Cassell Drive, Baltimore, MD, 21224, USA
| | - Shao-Ming Wang
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404333, Taiwan.
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
10
|
R K Roy A, Noohi F, Morris NA, Ljubenkov P, Heuer H, Fong J, Hall M, Lario Lago A, Rankin KP, Miller BL, Boxer AL, Rosen HJ, Seeley WW, Perry DC, Yokoyama JS, Lee SE, Sturm VE. Basal parasympathetic deficits in C9orf72 hexanucleotide repeat expansion carriers relate to smaller frontoinsula and thalamus volume and lower empathy. Neuroimage Clin 2024; 43:103649. [PMID: 39098187 PMCID: PMC11342757 DOI: 10.1016/j.nicl.2024.103649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
Diminished basal parasympathetic nervous system activity is a feature of frontotemporal dementia that relates to left frontoinsula dysfunction and empathy impairment. Individuals with a pathogenic expansion of the hexanucleotide repeat in chromosome 9 open reading frame 72 (C9orf72), the most common genetic cause of frontotemporal dementia and amyotrophic lateral sclerosis, provide a unique opportunity to examine whether parasympathetic activity is disrupted in genetic forms of frontotemporal dementia and to investigate when parasympathetic deficits manifest in the pathophysiological cascade. We measured baseline respiratory sinus arrhythmia, a parasympathetic measure of heart rate variability, over two minutes in a sample of 102 participants that included 19 asymptomatic expansion carriers (C9+ asymp), 14 expansion carriers with mild cognitive impairment (C9+ MCI), 16 symptomatic expansion carriers with frontotemporal dementia (C9+ FTD), and 53 expansion-negative healthy controls (C9- HC) who also underwent structural magnetic resonance imaging. In follow-up analyses, we compared baseline respiratory sinus arrhythmia in the C9+ FTD group with an independent age-, sex-, and clinical severity-matched group of 26 people with sporadic behavioral variant frontotemporal dementia. The Frontotemporal Lobar Degeneration-modified Clinical Dementia Rating-Sum of Boxes score was used to quantify behavioral symptom severity, and informant ratings on the Interpersonal Reactivity Index provided measures of participants' current emotional (empathic concern) and cognitive (perspective-taking) empathy. Results indicated that the C9+ FTD group had lower baseline respiratory sinus arrhythmia than the C9+ MCI, C9+ asymp, and C9- HC groups, a deficit that was comparable to that of sporadic behavioral variant frontotemporal dementia. Linear regression analyses indicated that lower baseline respiratory sinus arrhythmia was associated with worse behavioral symptom severity and lower empathic concern and perspective-taking across the C9orf72 expansion carrier clinical spectrum. Whole-brain voxel-based morphometry analyses in participants with C9orf72 pathogenic expansions found that lower baseline respiratory sinus arrhythmia correlated with smaller gray matter volume in the left frontoinsula and bilateral thalamus, key structures that support parasympathetic function, and in the bilateral parietal lobes, occipital lobes, and cerebellum, regions that are also vulnerable in individuals with C9orf72 expansions. This study provides novel evidence that basal parasympathetic functioning is diminished in FTD due to C9orf72 expansions and suggests that baseline respiratory sinus arrhythmia may be a potential non-invasive biomarker that is sensitive to behavioral symptoms in the early stages of disease.
Collapse
Affiliation(s)
- Ashlin R K Roy
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Fate Noohi
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Nathaniel A Morris
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Peter Ljubenkov
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Hilary Heuer
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Jamie Fong
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Matthew Hall
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | | | - Katherine P Rankin
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Bruce L Miller
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Adam L Boxer
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Howard J Rosen
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - William W Seeley
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - David C Perry
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Jennifer S Yokoyama
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Suzee E Lee
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Virginia E Sturm
- Department of Neurology, University of California, San Francisco, CA 94158, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
11
|
Min JH, Sarlus H, Harris RA. Copper toxicity and deficiency: the vicious cycle at the core of protein aggregation in ALS. Front Mol Neurosci 2024; 17:1408159. [PMID: 39050823 PMCID: PMC11267976 DOI: 10.3389/fnmol.2024.1408159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
The pathophysiology of ALS involves many signs of a disruption in copper homeostasis, with both excess free levels and functional deficiency likely occurring simultaneously. This is crucial, as many important physiological functions are performed by cuproenzymes. While it is unsurprising that many ALS symptoms are related to signs of copper deficiency, resulting in vascular, antioxidant system and mitochondrial oxidative respiration deficiencies, there are also signs of copper toxicity such as ROS generation and enhanced protein aggregation. We discuss how copper also plays a key role in proteostasis and interacts either directly or indirectly with many of the key aggregate-prone proteins implicated in ALS, such as TDP-43, C9ORF72, SOD1 and FUS as well as the effect of their aggregation on copper homeostasis. We suggest that loss of cuproprotein function is at the core of ALS pathology, a condition that is driven by a combination of unbound copper and ROS that can either initiate and/or accelerate protein aggregation. This could trigger a positive feedback cycle whereby protein aggregates trigger the aggregation of other proteins in a chain reaction that eventually captures elements of the proteostatic mechanisms in place to counteract them. The end result is an abundance of aggregated non-functional cuproproteins and chaperones alongside depleted intracellular copper stores, resulting in a general lack of cuproenzyme function. We then discuss the possible aetiology of ALS and illustrate how strong risk factors including environmental toxins such as BMAA and heavy metals can functionally behave to promote protein aggregation and disturb copper metabolism that likely drives this vicious cycle in sporadic ALS. From this synthesis, we propose restoration of copper balance using copper delivery agents in combination with chaperones/chaperone mimetics, perhaps in conjunction with the neuroprotective amino acid serine, as a promising strategy in the treatment of this incurable disease.
Collapse
Affiliation(s)
- Jin-Hong Min
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital at Solna, Stockholm, Sweden
| | | | | |
Collapse
|
12
|
Stefanova E, Marjanović A, Dobričić V, Mandić-Stojmenović G, Stojković T, Branković M, Šarčević M, Novaković I, Kostić VS. Frequency of C9orf72, GRN, and MAPT pathogenic variants in patients recruited at the Belgrade Memory Center. Neurogenetics 2024; 25:193-200. [PMID: 38847891 DOI: 10.1007/s10048-024-00766-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/02/2024] [Indexed: 07/16/2024]
Abstract
Most of the heritability in frontotemporal dementia (FTD) is accounted for by autosomal dominant hexanucleotide expansion in the chromosome 9 open reading frame 72 (C9orf72), pathogenic/likely pathogenic variants in progranulin (GRN), and microtubule-associated protein tau (MAPT) genes. Until now, there has been no systematic analysis of these genes in the Serbian population. Herein, we assessed the frequency of the C9orf72 expansion, pathogenic/likely pathogenic variants in GRN and MAPT in a well-characterized group of 472 subjects (FTD, Alzheimer's disease - AD, mild cognitive impairment - MCI, and unspecified dementia - UnD), recruited in the Memory Center, Neurology Clinic, University Clinical Center of Serbia. The C9orf72 repeat expansion was detected in 6.98% of FTD cases (13.46% familial; 2.6% sporadic). In the UnD subgroup, C9orf72 repeat expansions were detected in 4.08% (8% familial) individuals. Pathogenic variants in the GRN were found in 2.85% of familial FTD cases. Interestingly, no MAPT pathogenic/likely pathogenic variants were detected, suggesting possible geographical specificity. Our findings highlight the importance of wider implementation of genetic testing in neurological and psychiatric practice managing patients with cognitive-behavioral and motor symptoms.
Collapse
Affiliation(s)
- Elka Stefanova
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, Belgrade, 11000, Serbia.
- Neurology Clinic, University Clinical Center of Serbia (UCCS), Dr Subotića 6, Belgrade, 11000, Serbia.
| | - Ana Marjanović
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, Belgrade, 11000, Serbia
| | - Valerija Dobričić
- Neurology Clinic, University Clinical Center of Serbia (UCCS), Dr Subotića 6, Belgrade, 11000, Serbia
- University of Lübeck-Lübeck Interdisciplinary Platform for Genome Analytics, 11000, Lübeck, Germany
| | - Gorana Mandić-Stojmenović
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, Belgrade, 11000, Serbia
- Neurology Clinic, University Clinical Center of Serbia (UCCS), Dr Subotića 6, Belgrade, 11000, Serbia
| | - Tanja Stojković
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, Belgrade, 11000, Serbia
- Neurology Clinic, University Clinical Center of Serbia (UCCS), Dr Subotića 6, Belgrade, 11000, Serbia
| | - Marija Branković
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, Belgrade, 11000, Serbia
| | - Maksim Šarčević
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, Belgrade, 11000, Serbia
| | - Ivana Novaković
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, Belgrade, 11000, Serbia
- Neurology Clinic, University Clinical Center of Serbia (UCCS), Dr Subotića 6, Belgrade, 11000, Serbia
| | - Vladimir S Kostić
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, Belgrade, 11000, Serbia
- Neurology Clinic, University Clinical Center of Serbia (UCCS), Dr Subotića 6, Belgrade, 11000, Serbia
| |
Collapse
|
13
|
Mielke JK, Klingeborn M, Schultz EP, Markham EL, Reese ED, Alam P, Mackenzie IR, Ly CV, Caughey B, Cashman NR, Leavens MJ. Seeding activity of human superoxide dismutase 1 aggregates in familial and sporadic amyotrophic lateral sclerosis postmortem neural tissues by real-time quaking-induced conversion. Acta Neuropathol 2024; 147:100. [PMID: 38884646 PMCID: PMC11182821 DOI: 10.1007/s00401-024-02752-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disease with average lifespan of 2-5 years after diagnosis. The identification of novel prognostic and pharmacodynamic biomarkers are needed to facilitate therapeutic development. Metalloprotein human superoxide dismutase 1 (SOD1) is known to accumulate and form aggregates in patient neural tissue with familial ALS linked to mutations in their SOD1 gene. Aggregates of SOD1 have also been detected in other forms of ALS, including the sporadic form and the most common familial form linked to abnormal hexanucleotide repeat expansions in the Chromosome 9 open reading frame 72 (C9ORF72) gene. Here, we report the development of a real-time quaking-induced conversion (RT-QuIC) seed amplification assay using a recombinant human SOD1 substrate to measure SOD1 seeding activity in postmortem spinal cord and motor cortex tissue from persons with different ALS etiologies. Our SOD1 RT-QuIC assay detected SOD1 seeds in motor cortex and spinal cord dilutions down to 10-5. Importantly, we detected SOD1 seeding activity in specimens from both sporadic and familial ALS cases, with the latter having mutations in either their SOD1 or C9ORF72 genes. Analyses of RT-QuIC parameters indicated similar lag phases in spinal cords of sporadic and familial ALS patients, but higher ThT fluorescence maxima by SOD1 familial ALS specimens and sporadic ALS thoracic cord specimens. For a subset of sporadic ALS patients, motor cortex and spinal cords were examined, with seeding activity in both anatomical regions. Our results suggest SOD1 seeds are in ALS patient neural tissues not linked to SOD1 mutation, suggesting that SOD1 seeding activity may be a promising biomarker, particularly in sporadic ALS cases for whom genetic testing is uninformative.
Collapse
Affiliation(s)
- Justin K Mielke
- Department of Biomedical Sciences, McLaughlin Research Institute, 1520 23rd St. South, Great Falls, MT, 59405, USA
| | - Mikael Klingeborn
- Department of Biomedical Sciences, McLaughlin Research Institute, 1520 23rd St. South, Great Falls, MT, 59405, USA
| | - Eric P Schultz
- Center for Biomolecular Structure and Dynamics, University of Montana, 32 Campus Drive ISB #106, Missoula, MT, USA
| | - Erin L Markham
- Department of Biomedical Sciences, McLaughlin Research Institute, 1520 23rd St. South, Great Falls, MT, 59405, USA
| | - Emily D Reese
- Department of Biomedical Sciences, McLaughlin Research Institute, 1520 23rd St. South, Great Falls, MT, 59405, USA
| | - Parvez Alam
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S. 4th St., Hamilton, MT, 59840, USA
| | - Ian R Mackenzie
- Departments of Pathology and Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
| | - Cindy V Ly
- Department of Neurology, Washington University, 660 S. Euclid Ave, Saint Louis, MO, 63110, USA
| | - Byron Caughey
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S. 4th St., Hamilton, MT, 59840, USA
| | - Neil R Cashman
- Departments of Pathology and Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
| | - Moses J Leavens
- Department of Biomedical Sciences, McLaughlin Research Institute, 1520 23rd St. South, Great Falls, MT, 59405, USA.
| |
Collapse
|
14
|
Xu S, Ma Q, Shen J, Li N, Sun S, Wang N, Chen Y, Dong C, Tam KY, Prehn JH, Wang H, Ying Z. ALS-linked C9orf72 dipeptide repeats inhibit starvation-induced autophagy through modulating BCL2-BECN1 interaction. Acta Pharm Sin B 2024; 14:2026-2038. [PMID: 38799643 PMCID: PMC11119520 DOI: 10.1016/j.apsb.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 05/29/2024] Open
Abstract
Growing evidences indicate that dysfunction of autophagy contributes to the disease pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two neurodegenerative disorders. The GGGGCC·GGCCCC repeat RNA expansion in chromosome 9 open reading frame 72 (C9orf72) is the most genetic cause of both ALS and FTD. According to the previous studies, GGGGCC·GGCCCC repeat undergoes the unconventional repeat-associated non-ATG translation, which produces dipeptide repeat (DPR) proteins. Although there is a growing understanding that C9orf72 DPRs have a strong ability to harm neurons and induce C9orf72-linked ALS/FTD, whether these DPRs can affect autophagy remains unclear. In the present study, we find that poly-GR and poly-PR, two arginine-containing DPRs which display the most cytotoxic properties according to the previous studies, strongly inhibit starvation-induced autophagy. Moreover, our data indicate that arginine-rich DPRs enhance the interaction between BCL2 and BECN1/Beclin 1 by inhibiting BCL2 phosphorylation, therefore they can impair autophagic clearance of neurodegenerative disease-associated protein aggregates under starvation condition in cells. Importantly, our study not only highlights the role of C9orf72 DPR in autophagy dysfunction, but also provides novel insight that pharmacological intervention of autophagy using SW063058, a small molecule compound that can disrupt the interaction between BECN1 and BCL2, may reduce C9orf72 DPR-induced neurotoxicity.
Collapse
Affiliation(s)
- Shiqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Qilian Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
- Dept. of Physiology & Medical Physics and FUTURE-NEURO Research Centre, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Junwen Shen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Ningning Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Shan Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
- Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Nana Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yang Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Chunsheng Dong
- Insititutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Kin Yip Tam
- Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Jochen H.M. Prehn
- Dept. of Physiology & Medical Physics and FUTURE-NEURO Research Centre, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Hongfeng Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Zheng Ying
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China
| |
Collapse
|
15
|
Kampmann M. Molecular and cellular mechanisms of selective vulnerability in neurodegenerative diseases. Nat Rev Neurosci 2024; 25:351-371. [PMID: 38575768 DOI: 10.1038/s41583-024-00806-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 04/06/2024]
Abstract
The selective vulnerability of specific neuronal subtypes is a hallmark of neurodegenerative diseases. In this Review, I summarize our current understanding of the brain regions and cell types that are selectively vulnerable in different neurodegenerative diseases and describe the proposed underlying cell-autonomous and non-cell-autonomous mechanisms. I highlight how recent methodological innovations - including single-cell transcriptomics, CRISPR-based screens and human cell-based models of disease - are enabling new breakthroughs in our understanding of selective vulnerability. An understanding of the molecular mechanisms that determine selective vulnerability and resilience would shed light on the key processes that drive neurodegeneration and point to potential therapeutic strategies to protect vulnerable cell populations.
Collapse
Affiliation(s)
- Martin Kampmann
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
16
|
Sellier C, Corcia P, Vourc'h P, Dupuis L. C9ORF72 hexanucleotide repeat expansion: From ALS and FTD to a broader pathogenic role? Rev Neurol (Paris) 2024; 180:417-428. [PMID: 38609750 DOI: 10.1016/j.neurol.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024]
Abstract
The major gene underlying monogenic forms of amyotrophic lateral sclerosis (ALS) and fronto-temporal dementia (FTD) is C9ORF72. The causative mutation in C9ORF72 is an abnormal hexanucleotide (G4C2) repeat expansion (HRE) located in the first intron of the gene. The aim of this review is to propose a comprehensive update on recent developments on clinical, biological and therapeutics aspects related to C9ORF72 in order to highlight the current understanding of genotype-phenotype correlations, and also on biological machinery leading to neuronal death. We will particularly focus on the broad phenotypic presentation of C9ORF72-related diseases, that goes well beyond the classical phenotypes observed in ALS and FTD patients. Last, we will comment the possible therapeutical hopes for patients carrying a C9ORF72 HRE.
Collapse
Affiliation(s)
- C Sellier
- Centre de recherches en biomédecine de Strasbourg, UMR-S1329, Inserm, université de Strasbourg, Strasbourg, France
| | - P Corcia
- UMR 1253 iBrain, Inserm, université de Tours, Tours, France; Centre constitutif de coordination SLA, CHU de Bretonneau, 2, boulevard Tonnelle, 37044 Tours cedex 1, France
| | - P Vourc'h
- UMR 1253 iBrain, Inserm, université de Tours, Tours, France; Service de biochimie et biologie moléculaire, CHU de Tours, Tours, France
| | - L Dupuis
- Centre de recherches en biomédecine de Strasbourg, UMR-S1329, Inserm, université de Strasbourg, Strasbourg, France.
| |
Collapse
|
17
|
Zhao T, Duan S, Li J, Zheng H, Liu C, Zhang H, Luo H, Xu Y. Mapping of repeat-associated non-AUG (RAN) translation knowledge: A bibliometric analysis. Heliyon 2024; 10:e29141. [PMID: 38628764 PMCID: PMC11019168 DOI: 10.1016/j.heliyon.2024.e29141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/08/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024] Open
Abstract
Over 50 genetic human disorders are attributed to the irregular expansion of microsatellites. These expanded microsatellite sequences can experience bidirectional transcription, leading to new reading frames. Beyond the standard AUG initiation or adjacent start codons, they are translated into proteins characterized by disease-causing amino acid repeats through repeat-associated non-AUG translation. Despite its significance, there's a discernible gap in comprehensive and objective articles on RAN translation. This study endeavors to evaluate and delineate the contemporary landscape and progress of RAN translation research via a bibliometric analysis. We sourced literature on RAN translation from the Web of Science Core Collection. Utilizing two bibliometric analysis tools, CiteSpace and VOSviewer, we gauged individual impacts and interactions by examining annual publications, journals, co-cited journals, countries/regions, institutions, authors, and co-cited authors. Following this, we assessed the co-occurrence and bursts of keywords and co-cited references to pinpoint research hotspots and trending in RAN translation. Between 2011 and 2022, 1317 authors across 359 institutions from 34 countries/regions contributed to 250 publications on RAN translation, spread across 118 academic journals. This article presents a systematic, objective, and comprehensive analysis of the current literature on RAN translation. Our findings emphasize that mechanisms related to C9orf72 ALS/FTD are pivotal topics in the realm of RAN translation, with cellular stress and the utilization of small molecule marking the trending research areas.
Collapse
Affiliation(s)
- Taiqi Zhao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Suying Duan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiaqi Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Honglin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Chenyang Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Hang Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
18
|
Gotoh S, Mori K, Fujino Y, Kawabe Y, Yamashita T, Omi T, Nagata K, Tagami S, Nagai Y, Ikeda M. eIF5 stimulates the CUG initiation of RAN translation of poly-GA dipeptide repeat protein (DPR) in C9orf72 FTLD/ALS. J Biol Chem 2024; 300:105703. [PMID: 38301895 PMCID: PMC10904283 DOI: 10.1016/j.jbc.2024.105703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024] Open
Abstract
Tandem GGGGCC repeat expansion in C9orf72 is a genetic cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Transcribed repeats are translated into dipeptide repeat proteins via repeat-associated non-AUG (RAN) translation. However, the regulatory mechanism of RAN translation remains unclear. Here, we reveal a GTPase-activating protein, eukaryotic initiation factor 5 (eIF5), which allosterically facilitates the conversion of eIF2-bound GTP into GDP upon start codon recognition, as a novel modifier of C9orf72 RAN translation. Compared to global translation, eIF5, but not its inactive mutants, preferentially stimulates poly-GA RAN translation. RAN translation is increased during integrated stress response, but the stimulatory effect of eIF5 on poly-GA RAN translation was additive to the increase of RAN translation during integrated stress response, with no further increase in phosphorylated eIF2α. Moreover, an alteration of the CUG near cognate codon to CCG or AUG in the poly-GA reading frame abolished the stimulatory effects, indicating that eIF5 primarily acts through the CUG-dependent initiation. Lastly, in a Drosophila model of C9orf72 FTLD/ALS that expresses GGGGCC repeats in the eye, knockdown of endogenous eIF5 by two independent RNAi strains significantly reduced poly-GA expressions, confirming in vivo effect of eIF5 on poly-GA RAN translation. Together, eIF5 stimulates the CUG initiation of poly-GA RAN translation in cellular and Drosophila disease models of C9orf72 FTLD/ALS.
Collapse
Affiliation(s)
- Shiho Gotoh
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kohji Mori
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Yuzo Fujino
- Department of Neurology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan; Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuya Kawabe
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomoko Yamashita
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tsubasa Omi
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kenichi Nagata
- Department of Precision Medicine for Dementia, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shinji Tagami
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshitaka Nagai
- Department of Neurology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Manabu Ikeda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
19
|
Feng Y, Xu Z, Jin H, Chen Y, Fu C, Zhang Y, Yin Y, Wang H, Cheng W. Metformin ameliorates mitochondrial damage induced by C9orf72 poly(GR) via upregulating AKT phosphorylation. J Cell Biochem 2024; 125:e30526. [PMID: 38229533 DOI: 10.1002/jcb.30526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/25/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are devastating neurodegenerative diseases with no effective cure. GGGGCC repeat expansion in C9orf72 is the most common genetic cause of both ALS and FTD. A key pathological feature of C9orf72 related ALS/FTD is the presence of abnormal dipeptide repeat proteins translated from GGGGCC repeat expansion, including poly Glycine-Arginine (GR). In this study, we observed that (GR)50 conferred significant mitochondria damage and cytotoxicity. Metformin, the most widely used clinical drug, successfully relieved (GR)50 induced mitochondrial damage and inhibited (GR)50 related cytotoxicity. Further research revealed metformin effectively restored mitochondrial function by upregulating AKT phosphorylation in (GR)50 expressed cells. Taken together, our results indicated restoring mitochondrial function with metformin may be a rational therapeutic strategy to reduce poly(GR) toxicity in C9orf72 ALS/FTD patients.
Collapse
Affiliation(s)
- Yiyuan Feng
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Radiology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Zhongyun Xu
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Radiology, Shanghai East Hospital Affiliated to Tongji University, Shanghai, China
| | - Hongfu Jin
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenglai Fu
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zhang
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yafu Yin
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Cheng
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Chong ZZ, Menkes DL, Souayah N. Pathogenesis underlying hexanucleotide repeat expansions in C9orf72 gene in amyotrophic lateral sclerosis. Rev Neurosci 2024; 35:85-97. [PMID: 37525497 DOI: 10.1515/revneuro-2023-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/07/2023] [Indexed: 08/02/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disorder. Mutations in C9orf72 and the resulting hexanucleotide repeat (GGGGCC) expansion (HRE) has been identified as a major cause of familial ALS, accounting for about 40 % of familial and 6 % of sporadic cases of ALS in Western patients. The pathological outcomes of HRE expansion in ALS have been recognized as the results of two mechanisms that include both the toxic gain-of-function and loss-of-function of C9ORF72. The gain of toxicity results from RNA and dipeptide repeats (DPRs). The HRE can be bidirectionally transcribed into RNA foci, which can bind to and disrupt RNA splicing, transport, and translation. The DPRs that include poly-glycine-alanine, poly-glycine-proline, poly-glycine- arginine, poly-proline-alanine, and poly-proline-arginine can induce toxicity by direct binding and sequestrating other proteins to interfere rRNA synthesis, ribosome biogenesis, translation, and nucleocytoplasmic transport. The C9ORF72 functions through binding to its partners-Smith-Magenis chromosome regions 8 (SMCR8) and WD repeat-containing protein (WDR41). Loss of C9ORF72 function results in impairment of autophagy, deregulation of autoimmunity, increased stress, and disruption of nucleocytoplasmic transport. Further insight into the mechanism in C9ORF72 HRE pathogenesis will facilitate identifying novel and effective therapeutic targets for ALS.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Department of Neurology, Rutgers University, New Jersey Medical School, 185 S. Orange Ave, Newark, NJ 07103, USA
| | - Daniel L Menkes
- Department of Neurology, Oakland University William Beaumont School of Medicine, 3555 West 13 Mile Road, Suite N120, Royal Oak, MI 48073, USA
| | - Nizar Souayah
- Department of Neurology, Rutgers University, New Jersey Medical School, 90 Bergen Street DOC 8100, Newark, NJ 07101, USA
| |
Collapse
|
21
|
Jensen BK. Astrocyte-Neuron Interactions Contributing to Amyotrophic Lateral Sclerosis Progression. ADVANCES IN NEUROBIOLOGY 2024; 39:285-318. [PMID: 39190080 DOI: 10.1007/978-3-031-64839-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex disease impacting motor neurons of the brain, brainstem, and spinal cord. Disease etiology is quite heterogeneous with over 40 genes causing the disease and a vast ~90% of patients having no prior family history. Astrocytes are major contributors to ALS, particularly through involvement in accelerating disease progression. Through study of genetic forms of disease including SOD1, TDP43, FUS, C9orf72, VCP, TBK1, and more recently patient-derived cells from sporadic individuals, many biological mechanisms have been identified to cause intrinsic or glial-mediated neurotoxicity to motor neurons. Overall, many of the normally supportive and beneficial roles that astrocytes contribute to neuronal health and survival instead switch to become deleterious and neurotoxic. While the exact pathways may differ based on disease-origin, altered astrocyte-neuron communication is a common feature of ALS. Within this chapter, distinct genetic forms are examined in detail, along with what is known from sporadic patient-derived cells. Overall, this chapter highlights the interplay between astrocytes and neurons in this complex disease and describes the key features underlying: astrocyte-mediated motor neuron toxicity, excitotoxicity, oxidative/nitrosative stress, protein dyshomeostasis, metabolic imbalance, inflammation, trophic factor withdrawal, blood-brain/blood-spinal cord barrier involvement, disease spreading, and the extracellular matrix/cell adhesion/TGF-β signaling pathways.
Collapse
Affiliation(s)
- Brigid K Jensen
- Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Wang Y, Liu L, Chen H, Yang Y, Mu C, Ren H, Liu Y, Yu L, Fang Q, Wang G, Hao Z. Disrupted phase behavior of FUS underlies poly-PR-induced DNA damage in amyotrophic lateral sclerosis. Hum Mol Genet 2023; 33:64-77. [PMID: 37756636 DOI: 10.1093/hmg/ddad163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
GGGGCC (G4C2) hexanucleotide repeat expansion (HRE) in the first intron of the chromosome 9 open reading frame 72 (C9ORF72) gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Among the five dipeptide repeat proteins translated from G4C2 HRE, arginine-rich poly-PR (proline:arginine) is extremely toxic. However, the molecular mechanism responsible for poly-PR-induced cell toxicity remains incompletely understood. Here, we found that poly-PR overexpression triggers severe DNA damage in cultured cells, primary cortical neurons, and the motor cortex of a poly-PR transgenic mouse model. Interestingly, we identified a linkage between poly-PR and RNA-binding protein fused in sarcoma (FUS), another ALS-related gene product associated with DNA repair. Poly-PR interacts with FUS both in vitro and in vivo, phase separates with FUS in a poly-PR concentration-dependent manner, and impairs the fluidity of FUS droplets in vitro and in cells. Moreover, poly-PR impedes the recruitment of FUS and its downstream protein XRCC1 to DNA damage foci after microirradiation. Importantly, overexpression of FUS significantly decreased the level of DNA damage and dramatically reduced poly-PR-induced cell death. Our data suggest the severe DNA damage caused by poly-PR and highlight the interconnection between poly-PR and FUS, enlightening the potential therapeutic role of FUS in alleviating poly-PR-induced cell toxicity.
Collapse
Affiliation(s)
- Yixin Wang
- Department of Pharmacology, Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Liu Liu
- Department of Pharmacy, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, Hunan 410005, China
| | - Hui Chen
- Department of Pharmacology, Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yinxue Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chenchen Mu
- Department of Pharmacology, Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Haigang Ren
- Department of Pharmacology, Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yanli Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Liqiang Yu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, China
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, China
| | - Guanghui Wang
- Department of Pharmacology, Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
- MOE Key Laboratory, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zongbing Hao
- Department of Pharmacology, Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
23
|
Sattler R, Traynor BJ, Robertson J, Van Den Bosch L, Barmada SJ, Svendsen CN, Disney MD, Gendron TF, Wong PC, Turner MR, Boxer A, Babu S, Benatar M, Kurnellas M, Rohrer JD, Donnelly CJ, Bustos LM, Van Keuren-Jensen K, Dacks PA, Sabbagh MN. Roadmap for C9ORF72 in Frontotemporal Dementia and Amyotrophic Lateral Sclerosis: Report on the C9ORF72 FTD/ALS Summit. Neurol Ther 2023; 12:1821-1843. [PMID: 37847372 PMCID: PMC10630271 DOI: 10.1007/s40120-023-00548-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/14/2023] [Indexed: 10/18/2023] Open
Abstract
A summit held March 2023 in Scottsdale, Arizona (USA) focused on the intronic hexanucleotide expansion in the C9ORF72 gene and its relevance in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS; C9ORF72-FTD/ALS). The goal of this summit was to connect basic scientists, clinical researchers, drug developers, and individuals affected by C9ORF72-FTD/ALS to evaluate how collaborative efforts across the FTD-ALS disease spectrum might break down existing disease silos. Presentations and discussions covered recent discoveries in C9ORF72-FTD/ALS disease mechanisms, availability of disease biomarkers and recent advances in therapeutic development, and clinical trial design for prevention and treatment for individuals affected by C9ORF72-FTD/ALS and asymptomatic pathological expansion carriers. The C9ORF72-associated hexanucleotide repeat expansion is an important locus for both ALS and FTD. C9ORF72-FTD/ALS may be characterized by loss of function of the C9ORF72 protein and toxic gain of functions caused by both dipeptide repeat (DPR) proteins and hexanucleotide repeat RNA. C9ORF72-FTD/ALS therapeutic strategies discussed at the summit included the use of antisense oligonucleotides, adeno-associated virus (AAV)-mediated gene silencing and gene delivery, and engineered small molecules targeting RNA structures associated with the C9ORF72 expansion. Neurofilament light chain, DPR proteins, and transactive response (TAR) DNA-binding protein 43 (TDP-43)-associated molecular changes were presented as biomarker candidates. Similarly, brain imaging modalities (i.e., magnetic resonance imaging [MRI] and positron emission tomography [PET]) measuring structural, functional, and metabolic changes were discussed as important tools to monitor individuals affected with C9ORF72-FTD/ALS, at both pre-symptomatic and symptomatic disease stages. Finally, summit attendees evaluated current clinical trial designs available for FTD or ALS patients and concluded that therapeutics relevant to FTD/ALS patients, such as those specifically targeting C9ORF72, may need to be tested with composite endpoints covering clinical symptoms of both FTD and ALS. The latter will require novel clinical trial designs to be inclusive of all patient subgroups spanning the FTD/ALS spectrum.
Collapse
Affiliation(s)
- Rita Sattler
- Barrow Neurological Institute, 2910 N Third Ave, Phoenix, AZ, 85013, USA.
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Ludo Van Den Bosch
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology and KU Leuven, Leuven, Belgium
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), University of Leuven, Leuven, Belgium
| | - Sami J Barmada
- Department of Neurology, Neuroscience Program, University of Michigan, Ann Arbor, MI, USA
| | - Clive N Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Matthew D Disney
- Department of Chemistry, The Herbert Wertheim UF-Scripps Institute for Biomedical Research and Innovation, The Scripps Research Institute, Jupiter, FL, USA
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Philip C Wong
- Departments of Pathology and Neuroscience, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Adam Boxer
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of San Francisco, San Francisco, CA, USA
| | - Suma Babu
- Sean M. Healey and AMG Center for ALS and the Neurological Clinical Research Institute, Massachusetts General Hospital-Harvard Medical School, Boston, MA, USA
| | - Michael Benatar
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33129, USA
| | | | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Christopher J Donnelly
- LiveLikeLou Center for ALS Research, Brain Institute, University of Pittsburgh, Pittsburgh, USA
- Department of Neurobiology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lynette M Bustos
- Barrow Neurological Institute, 2910 N Third Ave, Phoenix, AZ, 85013, USA
| | | | - Penny A Dacks
- The Association for Frontotemporal Degeneration and FTD Disorders Registry, King of Prussia, PA, USA
| | - Marwan N Sabbagh
- Barrow Neurological Institute, 2910 N Third Ave, Phoenix, AZ, 85013, USA.
| |
Collapse
|
24
|
White LM, Boardman J, Lilleker J, Chaouch A, Kargwell H, Ealing J, Hamdalla H. Phenotypical differences of C9ORF72 gene-positive and negative amyotrophic lateral sclerosis: a comparative case series. J Med Genet 2023; 60:1016-1020. [PMID: 37173134 DOI: 10.1136/jmg-2022-109016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Hexanucleotide repeat expansions of C9ORF72 account for a significant proportion of autosomal dominant neurodegenerative diseases in the amyotrophic lateral sclerosis (ALS)-frontotemporal dementia spectrum. In the absence of a family history, clinical identification of such patients remains difficult. We aimed to identify differences in demographics and clinical presentation between patients with C9ORF72 gene-positive ALS (C9pALS) versus C9ORF72 gene-negative ALS (C9nALS), to aid identification of these patients in the clinic and examine differences in outcomes including survival. METHODS We retrospectively reviewed the clinical presentations of 32 patients with C9pALS and compared their characteristics with a cohort of 46 patients with C9nALS from the same tertiary neurosciences centre. RESULTS Patients with C9pALS more commonly presented with mixed upper and lower motor signs (C9pALS 87.5%, C9nALS 65.2%; p=0.0352), but less frequently presented with purely upper motor neuron signs (C9pALS 3.1%, C9nALS 21.7%; p=0.0226). The C9pALS cohort had a higher frequency of cognitive impairment (C9pALS 31.3%, C9nALS 10.9%; p=0.0394) and bulbar disease (C9pALS 56.3%, C9nALS 28.3%; p=0.0186). There were no differences between cohorts in age at diagnosis, gender, limb weakness, respiratory symptoms, presentation with predominantly lower motor neuron signs or overall survival. DISCUSSION Analysis of this ALS clinic cohort at a UK tertiary neurosciences centre adds to the small but growing understanding of the unique clinical features of patients with C9pALS. In the age of precision medicine with expanding opportunities to manage genetic diseases with disease-modifying therapies, clinical identification of such patients is increasingly important as focused therapeutic strategies become available.
Collapse
Affiliation(s)
- Laura Michelle White
- Manchester Centre for Clinical Neurosciences, Salford Royal Hospital, Salford, UK
| | | | - James Lilleker
- Manchester Centre for Clinical Neurosciences, Salford Royal Hospital, Salford, UK
- Centre for Musculoskeletal Research, The University of Manchester School of Biological Sciences, Manchester, UK
| | - Amina Chaouch
- Manchester Centre for Clinical Neurosciences, Salford Royal Hospital, Salford, UK
| | - Haga Kargwell
- Manchester Centre for Clinical Neurosciences, Salford Royal Hospital, Salford, UK
| | - John Ealing
- Manchester Centre for Clinical Neurosciences, Salford Royal Hospital, Salford, UK
| | - Hisham Hamdalla
- Manchester Centre for Clinical Neurosciences, Salford Royal Hospital, Salford, UK
| |
Collapse
|
25
|
Li J, Jaiswal MK, Chien JF, Kozlenkov A, Jung J, Zhou P, Gardashli M, Pregent LJ, Engelberg-Cook E, Dickson DW, Belzil VV, Mukamel EA, Dracheva S. Divergent single cell transcriptome and epigenome alterations in ALS and FTD patients with C9orf72 mutation. Nat Commun 2023; 14:5714. [PMID: 37714849 PMCID: PMC10504300 DOI: 10.1038/s41467-023-41033-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 08/21/2023] [Indexed: 09/17/2023] Open
Abstract
A repeat expansion in the C9orf72 (C9) gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we investigate single nucleus transcriptomics (snRNA-seq) and epigenomics (snATAC-seq) in postmortem motor and frontal cortices from C9-ALS, C9-FTD, and control donors. C9-ALS donors present pervasive alterations of gene expression with concordant changes in chromatin accessibility and histone modifications. The greatest alterations occur in upper and deep layer excitatory neurons, as well as in astrocytes. In neurons, the changes imply an increase in proteostasis, metabolism, and protein expression pathways, alongside a decrease in neuronal function. In astrocytes, the alterations suggest activation and structural remodeling. Conversely, C9-FTD donors have fewer high-quality neuronal nuclei in the frontal cortex and numerous gene expression changes in glial cells. These findings highlight a context-dependent molecular disruption in C9-ALS and C9-FTD, indicating unique effects across cell types, brain regions, and diseases.
Collapse
Affiliation(s)
- Junhao Li
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, 92037, US
| | - Manoj K Jaiswal
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, US
| | - Jo-Fan Chien
- Department of Physics, University of California San Diego, La Jolla, CA, 92037, US
| | - Alexey Kozlenkov
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, US
| | - Jinyoung Jung
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, US
| | - Ping Zhou
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, US
| | | | - Luc J Pregent
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, US
| | | | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, US
| | | | - Eran A Mukamel
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, 92037, US.
| | - Stella Dracheva
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, US.
- Research & Development and VISN2 MIREC, James J, Peters VA Medical Center, Bronx, NY, 10468, US.
| |
Collapse
|
26
|
Samra K, MacDougall AM, Bouzigues A, Bocchetta M, Cash DM, Greaves CV, Convery RS, van Swieten JC, Jiskoot L, Seelaar H, Moreno F, Sanchez-Valle R, Laforce R, Graff C, Masellis M, Tartaglia MC, Rowe JB, Borroni B, Finger E, Synofzik M, Galimberti D, Vandenberghe R, de Mendonça A, Butler CR, Gerhard A, Ducharme S, Le Ber I, Tiraboschi P, Santana I, Pasquier F, Levin J, Otto M, Sorbi S, Rohrer JD, Russell LL. Prodromal language impairment in genetic frontotemporal dementia within the GENFI cohort. J Neurol Sci 2023; 451:120711. [PMID: 37348248 DOI: 10.1016/j.jns.2023.120711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/24/2023]
Abstract
OBJECTIVE To identify whether language impairment exists presymptomatically in genetic frontotemporal dementia (FTD), and if so, the key differences between the main genetic mutation groups. METHODS 682 participants from the international multicentre Genetic FTD Initiative (GENFI) study were recruited: 290 asymptomatic and 82 prodromal mutation carriers (with C9orf72, GRN, and MAPT mutations) as well as 310 mutation-negative controls. Language was assessed using items from the Progressive Aphasia Severity Scale, as well as the Boston Naming Test (BNT), modified Camel and Cactus Test (mCCT) and a category fluency task. Participants also underwent a 3 T volumetric T1-weighted MRI from which regional brain volumes within the language network were derived and compared between the groups. RESULTS 3% of asymptomatic (4% C9orf72, 4% GRN, 2% MAPT) and 48% of prodromal (46% C9orf72, 42% GRN, 64% MAPT) mutation carriers had impairment in at least one language symptom compared with 13% of controls. In prodromal mutation carriers significantly impaired word retrieval was seen in all three genetic groups whilst significantly impaired grammar/syntax and decreased fluency was seen only in C9orf72 and GRN mutation carriers, and impaired articulation only in the C9orf72 group. Prodromal MAPT mutation carriers had significant impairment on the category fluency task and the BNT whilst prodromal C9orf72 mutation carriers were impaired on the category fluency task only. Atrophy in the dominant perisylvian language regions differed between groups, with earlier, more widespread volume loss in C9orf72, and later focal atrophy in the temporal lobe in MAPT mutation carriers. CONCLUSIONS Language deficits exist in the prodromal but not asymptomatic stages of genetic FTD across all three genetic groups. Improved understanding of the language phenotype prior to phenoconversion to fully symptomatic FTD will help develop outcome measures for future presymptomatic trials.
Collapse
Affiliation(s)
- Kiran Samra
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Amy M MacDougall
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Arabella Bouzigues
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - David M Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Caroline V Greaves
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Rhian S Convery
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | | | - Lize Jiskoot
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Harro Seelaar
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia Universitary Hospital, San Sebastian, Spain; Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa, Spain
| | - Raquel Sanchez-Valle
- Alzheimer's disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Faculté de Médecine, Université Laval, QC, Canada
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, Solna, Sweden; Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, UK
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany; Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Daniela Galimberti
- Fondazione Ca' Granda, IRCCS Ospedale Policlinico, Milan, Italy; University of Milan, Centro Dino Ferrari, Milan, Italy
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium; Neurology Service, University Hospitals Leuven, Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Alexandre de Mendonça
- Laboratory of Neurosciences, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Chris R Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK; Department of Brain Sciences, Imperial College London, UK
| | - Alex Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK; Departments of Geriatric Medicine and Nuclear Medicine, University of Duisburg-Essen, Germany
| | - Simon Ducharme
- Department of Psychiatry, McGill University Health Centre, McGill University, Montreal, Québec, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Centre de Référence des Démences rares ou Précoces, IM2A, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Reference Network for Rare Neurological Diseases (ERN-RND)
| | | | - Isabel Santana
- University Hospital of Coimbra (HUC), Neurology Service, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Florence Pasquier
- Univ Lille, France; Inserm 1172, Lille, France; CHU, CNR-MAJ, Labex Distalz, LiCEND Lille, France
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians Universität München, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Germany
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Lucy L Russell
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
27
|
Liu X, Zhao X, He J, Wang S, Shen X, Liu Q, Wang S. Advances in the Structure of GGGGCC Repeat RNA Sequence and Its Interaction with Small Molecules and Protein Partners. Molecules 2023; 28:5801. [PMID: 37570771 PMCID: PMC10420822 DOI: 10.3390/molecules28155801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
The aberrant expansion of GGGGCC hexanucleotide repeats within the first intron of the C9orf72 gene represent the predominant genetic etiology underlying amyotrophic lateral sclerosis (ALS) and frontal temporal dementia (FTD). The transcribed r(GGGGCC)n RNA repeats form RNA foci, which recruit RNA binding proteins and impede their normal cellular functions, ultimately resulting in fatal neurodegenerative disorders. Furthermore, the non-canonical translation of the r(GGGGCC)n sequence can generate dipeptide repeats, which have been postulated as pathological causes. Comprehensive structural analyses of r(GGGGCC)n have unveiled its polymorphic nature, exhibiting the propensity to adopt dimeric, hairpin, or G-quadruplex conformations, all of which possess the capacity to interact with RNA binding proteins. Small molecules capable of binding to r(GGGGCC)n have been discovered and proposed as potential lead compounds for the treatment of ALS and FTD. Some of these molecules function in preventing RNA-protein interactions or impeding the phase transition of r(GGGGCC)n. In this review, we present a comprehensive summary of the recent advancements in the structural characterization of r(GGGGCC)n, its propensity to form RNA foci, and its interactions with small molecules and proteins. Specifically, we emphasize the structural diversity of r(GGGGCC)n and its influence on partner binding. Given the crucial role of r(GGGGCC)n in the pathogenesis of ALS and FTD, the primary objective of this review is to facilitate the development of therapeutic interventions targeting r(GGGGCC)n RNA.
Collapse
Affiliation(s)
- Xiaole Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (X.L.); (X.Z.); (J.H.); (S.W.); (X.S.); (Q.L.)
| | - Xinyue Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (X.L.); (X.Z.); (J.H.); (S.W.); (X.S.); (Q.L.)
| | - Jinhan He
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (X.L.); (X.Z.); (J.H.); (S.W.); (X.S.); (Q.L.)
| | - Sishi Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (X.L.); (X.Z.); (J.H.); (S.W.); (X.S.); (Q.L.)
| | - Xinfei Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (X.L.); (X.Z.); (J.H.); (S.W.); (X.S.); (Q.L.)
| | - Qingfeng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (X.L.); (X.Z.); (J.H.); (S.W.); (X.S.); (Q.L.)
| | - Shenlin Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (X.L.); (X.Z.); (J.H.); (S.W.); (X.S.); (Q.L.)
- Beijing NMR Center, Peking University, Beijing 100087, China
| |
Collapse
|
28
|
Calafatti M, Cocozza G, Limatola C, Garofalo S. Microglial crosstalk with astrocytes and immune cells in amyotrophic lateral sclerosis. Front Immunol 2023; 14:1223096. [PMID: 37564648 PMCID: PMC10410456 DOI: 10.3389/fimmu.2023.1223096] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/03/2023] [Indexed: 08/12/2023] Open
Abstract
In recent years, biomedical research efforts aimed to unravel the mechanisms involved in motor neuron death that occurs in amyotrophic lateral sclerosis (ALS). While the main causes of disease progression were first sought in the motor neurons, more recent studies highlight the gliocentric theory demonstrating the pivotal role of microglia and astrocyte, but also of infiltrating immune cells, in the pathological processes that take place in the central nervous system microenvironment. From this point of view, microglia-astrocytes-lymphocytes crosstalk is fundamental to shape the microenvironment toward a pro-inflammatory one, enhancing neuronal damage. In this review, we dissect the current state-of-the-art knowledge of the microglial dialogue with other cell populations as one of the principal hallmarks of ALS progression. Particularly, we deeply investigate the microglia crosstalk with astrocytes and immune cells reporting in vitro and in vivo studies related to ALS mouse models and human patients. At last, we highlight the current experimental therapeutic approaches that aim to modulate microglial phenotype to revert the microenvironment, thus counteracting ALS progression.
Collapse
Affiliation(s)
- Matteo Calafatti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Germana Cocozza
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Cristina Limatola
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, Sapienza University, Laboratory Affiliated to Istituto Pasteur, Rome, Italy
| | - Stefano Garofalo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
29
|
Fujino Y, Ueyama M, Ishiguro T, Ozawa D, Ito H, Sugiki T, Murata A, Ishiguro A, Gendron T, Mori K, Tokuda E, Taminato T, Konno T, Koyama A, Kawabe Y, Takeuchi T, Furukawa Y, Fujiwara T, Ikeda M, Mizuno T, Mochizuki H, Mizusawa H, Wada K, Ishikawa K, Onodera O, Nakatani K, Petrucelli L, Taguchi H, Nagai Y. FUS regulates RAN translation through modulating the G-quadruplex structure of GGGGCC repeat RNA in C9orf72-linked ALS/FTD. eLife 2023; 12:RP84338. [PMID: 37461319 PMCID: PMC10393046 DOI: 10.7554/elife.84338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Abnormal expansions of GGGGCC repeat sequence in the noncoding region of the C9orf72 gene is the most common cause of familial amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD). The expanded repeat sequence is translated into dipeptide repeat proteins (DPRs) by noncanonical repeat-associated non-AUG (RAN) translation. Since DPRs play central roles in the pathogenesis of C9-ALS/FTD, we here investigate the regulatory mechanisms of RAN translation, focusing on the effects of RNA-binding proteins (RBPs) targeting GGGGCC repeat RNAs. Using C9-ALS/FTD model flies, we demonstrated that the ALS/FTD-linked RBP FUS suppresses RAN translation and neurodegeneration in an RNA-binding activity-dependent manner. Moreover, we found that FUS directly binds to and modulates the G-quadruplex structure of GGGGCC repeat RNA as an RNA chaperone, resulting in the suppression of RAN translation in vitro. These results reveal a previously unrecognized regulatory mechanism of RAN translation by G-quadruplex-targeting RBPs, providing therapeutic insights for C9-ALS/FTD and other repeat expansion diseases.
Collapse
Grants
- Scientific Research on Innovative Areas (Brain Protein Aging and Dementia Control) 17H05699 Ministry of Education, Culture, Sports, Science and Technology
- Scientific Research on Innovative Areas (Brain Protein Aging and Dementia Control) 17H05705 Ministry of Education, Culture, Sports, Science and Technology
- Transformative Research Areas (A) (Multifaceted Proteins) 20H05927 Ministry of Education, Culture, Sports, Science and Technology
- Strategic Research Program for Brain Sciences 11013026 Ministry of Education, Culture, Sports, Science and Technology
- Scientific Research (B) 21H02840 Japan Society for the Promotion of Science
- Scientific Research (B) 20H03602 Japan Society for the Promotion of Science
- Scientific Research (C) 15K09331 Japan Society for the Promotion of Science
- Scientific Research (C) 19K07823 Japan Society for the Promotion of Science
- Scientific Research (C) 17K07291 Japan Society for the Promotion of Science
- Young Scientists (A) 17H05091 Japan Society for the Promotion of Science
- Young Scientists (B) 25860733 Japan Society for the Promotion of Science
- Challenging Exploratory Research 24659438 Japan Society for the Promotion of Science
- Challenging Exploratory Research 18K19515 Japan Society for the Promotion of Science
- Health Labor Sciences Research Grant for Research on Development of New Drugs H24-Soyaku-Sogo-002 Ministry of Health, Labor and Welfare, Japan
- Strategic Research Program for Brain Sciences JP15dm0107026 Japan Agency for Medical Research and Development
- Strategic Research Program for Brain Sciences JP20dm0107061 Japan Agency for Medical Research and Development
- Practical Research Projects for Rare/Intractable Diseases JP16ek0109018 Japan Agency for Medical Research and Development
- Practical Research Projects for Rare/Intractable Diseases JP19ek0109222 Japan Agency for Medical Research and Development
- Practical Research Projects for Rare/Intractable Diseases JP20ek0109316 Japan Agency for Medical Research and Development
- Platform Project for Supporting Drug Discovery and Life Science Research JP19am0101072 Japan Agency for Medical Research and Development
- Intramural Research Grants for Neurological and Psychiatric Disorders 27-7 National Center of Neurology and Psychiatry
- Intramural Research Grants for Neurological and Psychiatric Disorders 27-9 National Center of Neurology and Psychiatry
- Intramural Research Grants for Neurological and Psychiatric Disorders 30-3 National Center of Neurology and Psychiatry
- Intramural Research Grants for Neurological and Psychiatric Disorders 30-9 National Center of Neurology and Psychiatry
- Intramural Research Grants for Neurological and Psychiatric Disorders 3-9 National Center of Neurology and Psychiatry
- IBC Grant H28 Japan Amyotrophic Lateral Sclerosis Association
- 2017 Takeda Science Foundation
- 2016 Takeda Science Foundation
- 2018 SENSHIN Medical Research Foundation
Collapse
Affiliation(s)
- Yuzo Fujino
- Department of Neurology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Morio Ueyama
- Department of Neurology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Taro Ishiguro
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daisaku Ozawa
- Department of Neurology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hayato Ito
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Toshihiko Sugiki
- Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Asako Murata
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and28 Industrial Research, Osaka University, Osaka, Japan
| | - Akira Ishiguro
- Research Center for Micro-nano Technology, Hosei University, Tokyo, Japan
| | - Tania Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, United States
| | - Kohji Mori
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eiichi Tokuda
- Department of Chemistry, Keio University, Kanagawa, Japan
| | - Tomoya Taminato
- Department of Neurology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takuya Konno
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akihide Koyama
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yuya Kawabe
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toshihide Takeuchi
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Japan
- Life Science Research Institute, Kindai University, Osaka, Japan
| | | | - Toshimichi Fujiwara
- Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Manabu Ikeda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toshiki Mizuno
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hidehiro Mizusawa
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keiji Wada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kinya Ishikawa
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Osamu Onodera
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and28 Industrial Research, Osaka University, Osaka, Japan
| | | | - Hideki Taguchi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan
| | - Yoshitaka Nagai
- Department of Neurology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
30
|
Shi Y, Zhao Y, Lu L, Gao Q, Yu D, Sun M. CRISPR/Cas9: implication for modeling and therapy of amyotrophic lateral sclerosis. Front Neurosci 2023; 17:1223777. [PMID: 37483353 PMCID: PMC10359984 DOI: 10.3389/fnins.2023.1223777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a deadly neurological disease with a complicated and variable pathophysiology yet to be fully understood. There is currently no effective treatment available to either slow or terminate it. However, recent advances in ALS genomics have linked genes to phenotypes, encouraging the creation of novel therapeutic approaches and giving researchers more tools to create efficient animal models. Genetically engineered rodent models replicating ALS disease pathology have a high predictive value for translational research. This review addresses the history of the evolution of gene editing tools, the most recent ALS disease models, and the application of CRISPR/Cas9 against ALS disease.
Collapse
Affiliation(s)
- Yajun Shi
- Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Center for Medical Genetics and Prenatal Diagnosis, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yan Zhao
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Likui Lu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qinqin Gao
- Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Center for Medical Genetics and Prenatal Diagnosis, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Dongyi Yu
- Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Center for Medical Genetics and Prenatal Diagnosis, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| | - Miao Sun
- Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Center for Medical Genetics and Prenatal Diagnosis, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
31
|
Arnold FJ, Nguyen AD, Bedlack RS, Bennett CL, La Spada AR. Intercellular transmission of pathogenic proteins in ALS: Exploring the pathogenic wave. Neurobiol Dis 2023:106218. [PMID: 37394036 DOI: 10.1016/j.nbd.2023.106218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023] Open
Abstract
In patients with amyotrophic lateral sclerosis (ALS), disease symptoms and pathology typically spread in a predictable spatiotemporal pattern beginning at a focal site of onset and progressing along defined neuroanatomical tracts. Like other neurodegenerative diseases, ALS is characterized by the presence of protein aggregates in postmortem patient tissue. Cytoplasmic, ubiquitin-positive aggregates of TDP-43 are observed in approximately 97% of sporadic and familial ALS patients, while SOD1 inclusions are likely specific to cases of SOD1-ALS. Additionally, the most common subtype of familial ALS, caused by a hexanucleotide repeat expansion in the first intron of the C9orf72 gene (C9-ALS), is further characterized by the presence of aggregated dipeptide repeat proteins (DPRs). As we will describe, cell-to-cell propagation of these pathological proteins tightly correlates with the contiguous spread of disease. While TDP-43 and SOD1 are capable of seeding protein misfolding and aggregation in a prion-like manner, C9orf72 DPRs appear to induce (and transmit) a 'disease state' more generally. Multiple mechanisms of intercellular transport have been described for all of these proteins, including anterograde and retrograde axonal transport, extracellular vesicle secretion, and macropinocytosis. In addition to neuron-to-neuron transmission, transmission of pathological proteins occurs between neurons and glia. Given that the spread of ALS disease pathology corresponds with the spread of symptoms in patients, the various mechanisms by which ALS-associated protein aggregates propagate through the central nervous system should be closely examined.
Collapse
Affiliation(s)
- F J Arnold
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA; Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - A D Nguyen
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - R S Bedlack
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - C L Bennett
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA; Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - A R La Spada
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA; Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA; Departments of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA; Department of Neurology, University of California, Irvine, Irvine, CA, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA; UCI Center for Neurotherapeutics, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
32
|
Jiang X, Gatt A, Lashley T. HnRNP Pathologies in Frontotemporal Lobar Degeneration. Cells 2023; 12:1633. [PMID: 37371103 DOI: 10.3390/cells12121633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Frontotemporal dementia (FTD) is the second most common form of young-onset (<65 years) dementia. Clinically, it primarily manifests as a disorder of behavioural, executive, and/or language functions. Pathologically, frontotemporal lobar degeneration (FTLD) is the predominant cause of FTD. FTLD is a proteinopathy, and the main pathological proteins identified so far are tau, TAR DNA-binding protein 43 (TDP-43), and fused in sarcoma (FUS). As TDP-43 and FUS are members of the heterogeneous ribonucleic acid protein (hnRNP) family, many studies in recent years have expanded the research on the relationship between other hnRNPs and FTLD pathology. Indeed, these studies provide evidence for an association between hnRNP abnormalities and FTLD. In particular, several studies have shown that multiple hnRNPs may exhibit nuclear depletion and cytoplasmic mislocalisation within neurons in FTLD cases. However, due to the diversity and complex association of hnRNPs, most studies are still at the stage of histological discovery of different hnRNP abnormalities in FTLD. We herein review the latest studies relating hnRNPs to FTLD. Together, these studies outline an important role of multiple hnRNPs in the pathogenesis of FTLD and suggest that future research into FTLD should include the whole spectrum of this protein family.
Collapse
Affiliation(s)
- Xinwa Jiang
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Ariana Gatt
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
33
|
Parameswaran J, Zhang N, Braems E, Tilahun K, Pant DC, Yin K, Asress S, Heeren K, Banerjee A, Davis E, Schwartz SL, Conn GL, Bassell GJ, Van Den Bosch L, Jiang J. Antisense, but not sense, repeat expanded RNAs activate PKR/eIF2α-dependent ISR in C9ORF72 FTD/ALS. eLife 2023; 12:e85902. [PMID: 37073950 PMCID: PMC10188109 DOI: 10.7554/elife.85902] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/18/2023] [Indexed: 04/20/2023] Open
Abstract
GGGGCC (G4C2) hexanucleotide repeat expansion in the C9ORF72 gene is the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). The repeat is bidirectionally transcribed and confers gain of toxicity. However, the underlying toxic species is debated, and it is not clear whether antisense CCCCGG (C4G2) repeat expanded RNAs contribute to disease pathogenesis. Our study shows that C9ORF72 antisense C4G2 repeat expanded RNAs trigger the activation of the PKR/eIF2α-dependent integrated stress response independent of dipeptide repeat proteins that are produced through repeat-associated non-AUG-initiated translation, leading to global translation inhibition and stress granule formation. Reducing PKR levels with either siRNA or morpholinos mitigates integrated stress response and toxicity caused by the antisense C4G2 RNAs in cell lines, primary neurons, and zebrafish. Increased phosphorylation of PKR/eIF2α is also observed in the frontal cortex of C9ORF72 FTD/ALS patients. Finally, only antisense C4G2, but not sense G4C2, repeat expanded RNAs robustly activate the PKR/eIF2α pathway and induce aberrant stress granule formation. These results provide a mechanism by which antisense C4G2 repeat expanded RNAs elicit neuronal toxicity in FTD/ALS caused by C9ORF72 repeat expansions.
Collapse
Affiliation(s)
| | - Nancy Zhang
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | - Elke Braems
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute, KU LeuvenLeuvenBelgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus GasthuisbergLeuvenBelgium
| | | | - Devesh C Pant
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | - Keena Yin
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | - Seneshaw Asress
- Department of Neurology, Emory UniversityAtlantaUnited States
| | - Kara Heeren
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute, KU LeuvenLeuvenBelgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus GasthuisbergLeuvenBelgium
| | - Anwesha Banerjee
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | - Emma Davis
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | | | - Graeme L Conn
- Department of Biochemistry, Emory UniversityAtlantaUnited States
| | - Gary J Bassell
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute, KU LeuvenLeuvenBelgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus GasthuisbergLeuvenBelgium
| | - Jie Jiang
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| |
Collapse
|
34
|
Jagtap YA, Kumar P, Kinger S, Dubey AR, Choudhary A, Gutti RK, Singh S, Jha HC, Poluri KM, Mishra A. Disturb mitochondrial associated proteostasis: Neurodegeneration and imperfect ageing. Front Cell Dev Biol 2023; 11:1146564. [PMID: 36968195 PMCID: PMC10036443 DOI: 10.3389/fcell.2023.1146564] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
The disturbance in mitochondrial functions and homeostasis are the major features of neuron degenerative conditions, like Parkinson’s disease, Amyotrophic Lateral Sclerosis, and Alzheimer’s disease, along with protein misfolding. The aberrantly folded proteins are known to link with impaired mitochondrial pathways, further contributing to disease pathogenesis. Despite their central significance, the implications of mitochondrial homeostasis disruption on other organelles and cellular processes remain insufficiently explored. Here, we have reviewed the dysfunction in mitochondrial physiology, under neuron degenerating conditions. The disease misfolded proteins impact quality control mechanisms of mitochondria, such as fission, fusion, mitophagy, and proteasomal clearance, to the detriment of neuron. The adversely affected mitochondrial functional roles, like oxidative phosphorylation, calcium homeostasis, and biomolecule synthesis as well as its axes and contacts with endoplasmic reticulum and lysosomes are also discussed. Mitochondria sense and respond to multiple cytotoxic stress to make cell adapt and survive, though chronic dysfunction leads to cell death. Mitochondria and their proteins can be candidates for biomarkers and therapeutic targets. Investigation of internetworking between mitochondria and neurodegeneration proteins can enhance our holistic understanding of such conditions and help in designing more targeted therapies.
Collapse
Affiliation(s)
- Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Ankur Rakesh Dubey
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Ravi Kumar Gutti
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sarika Singh
- Division of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
- *Correspondence: Amit Mishra,
| |
Collapse
|
35
|
Role of Tau in Various Tauopathies, Treatment Approaches, and Emerging Role of Nanotechnology in Neurodegenerative Disorders. Mol Neurobiol 2023; 60:1690-1720. [PMID: 36562884 DOI: 10.1007/s12035-022-03164-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
A few protein kinases and phosphatases regulate tau protein phosphorylation and an imbalance in their enzyme activity results in tau hyper-phosphorylation. Aberrant tau phosphorylation causes tau to dissociate from the microtubules and clump together in the cytosol to form neurofibrillary tangles (NFTs), which lead to the progression of neurodegenerative disorders including Alzheimer's disease (AD) and other tauopathies. Hence, targeting hyperphosphorylated tau protein is a restorative approach for treating neurodegenerative tauopathies. The cyclin-dependent kinase (Cdk5) and the glycogen synthase kinase (GSK3β) have both been implicated in aberrant tau hyperphosphorylation. The limited transport of drugs through the blood-brain barrier (BBB) for reaching the central nervous system (CNS) thus represents a significant problem in the development of drugs. Drug delivery systems based on nanocarriers help solve this problem. In this review, we discuss the tau protein, regulation of tau phosphorylation and abnormal hyperphosphorylation, drugs in use or under clinical trials, and treatment strategies for tauopathies based on the critical role of tau hyperphosphorylation in the pathogenesis of the disease. Pathology of neurodegenerative disease due to hyperphosphorylation and various therapeutic approaches including nanotechnology for its treatment.
Collapse
|
36
|
McGoldrick P, Lau A, You Z, Durcan TM, Robertson J. Loss of C9orf72 perturbs the Ran-GTPase gradient and nucleocytoplasmic transport, generating compositionally diverse Importin β-1 granules. Cell Rep 2023; 42:112134. [PMID: 36821445 DOI: 10.1016/j.celrep.2023.112134] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/05/2022] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
A hexanucleotide (GGGGCC)n repeat expansion in C9orf72 causes amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), eliciting toxic effects through generation of RNA foci, dipeptide repeat proteins, and/or loss of C9orf72 protein. Defects in nucleocytoplasmic transport (NCT) have been implicated as a pathogenic mechanism underlying repeat expansion toxicity. Here, we show that loss of C9orf72 disrupts the Ran-GTPase gradient and NCT in vitro and in vivo. NCT disruption in vivo is enhanced by the presence of compositionally different types of cytoplasmic Importin β-1 granule that exhibit neuronal subtype-specific properties. We show that the abundance of Importin β-1 granules is increased in the context of C9orf72 deficiency, disrupting interactions with nuclear pore complex proteins. These granules appear to associate with the nuclear envelope and are co-immunoreactive for G3BP1 and K63-ubiquitin. These findings link loss of C9orf72 protein to gain-of-function mechanisms and defects in NCT.
Collapse
Affiliation(s)
- Philip McGoldrick
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada.
| | - Agnes Lau
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Zhipeng You
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Thomas M Durcan
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada; Department of Laboratory Medicine and Pathobiology, 27 King's College Circle, Toronto, ON M5S 1A1, Canada.
| |
Collapse
|
37
|
Bonham LW, Geier EG, Sirkis DW, Leong JK, Ramos EM, Wang Q, Karydas A, Lee SE, Sturm VE, Sawyer RP, Friedberg A, Ichida JK, Gitler AD, Sugrue L, Cordingley M, Bee W, Weber E, Kramer JH, Rankin KP, Rosen HJ, Boxer AL, Seeley WW, Ravits J, Miller BL, Yokoyama JS. Radiogenomics of C9orf72 Expansion Carriers Reveals Global Transposable Element Derepression and Enables Prediction of Thalamic Atrophy and Clinical Impairment. J Neurosci 2023. [PMID: 36446586 DOI: 10.1101/2022.04.29.490104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Hexanucleotide repeat expansion (HRE) within C9orf72 is the most common genetic cause of frontotemporal dementia (FTD). Thalamic atrophy occurs in both sporadic and familial FTD but is thought to distinctly affect HRE carriers. Separately, emerging evidence suggests widespread derepression of transposable elements (TEs) in the brain in several neurodegenerative diseases, including C9orf72 HRE-mediated FTD (C9-FTD). Whether TE activation can be measured in peripheral blood and how the reduction in peripheral C9orf72 expression observed in HRE carriers relates to atrophy and clinical impairment remain unknown. We used FreeSurfer software to assess the effects of C9orf72 HRE and clinical diagnosis (n = 78 individuals, male and female) on atrophy of thalamic nuclei. We also generated a novel, human, whole-blood RNA-sequencing dataset to determine the relationships among peripheral C9orf72 expression, TE activation, thalamic atrophy, and clinical severity (n = 114 individuals, male and female). We confirmed global thalamic atrophy and reduced C9orf72 expression in HRE carriers. Moreover, we identified disproportionate atrophy of the right mediodorsal lateral nucleus in HRE carriers and showed that C9orf72 expression associated with clinical severity, independent of thalamic atrophy. Strikingly, we found global peripheral activation of TEs, including the human endogenous LINE-1 element L1HS L1HS levels were associated with atrophy of multiple pulvinar nuclei, a thalamic region implicated in C9-FTD. Integration of peripheral transcriptomic and neuroimaging data from human HRE carriers revealed atrophy of specific thalamic nuclei, demonstrated that C9orf72 levels relate to clinical severity, and identified marked derepression of TEs, including L1HS, which predicted atrophy of FTD-relevant thalamic nuclei.SIGNIFICANCE STATEMENT Pathogenic repeat expansion in C9orf72 is the most frequent genetic cause of FTD and amyotrophic lateral sclerosis (ALS; C9-FTD/ALS). The clinical, neuroimaging, and pathologic features of C9-FTD/ALS are well characterized, whereas the intersections of transcriptomic dysregulation and brain structure remain largely unexplored. Herein, we used a novel radiogenomic approach to examine the relationship between peripheral blood transcriptomics and thalamic atrophy, a neuroimaging feature disproportionately impacted in C9-FTD/ALS. We confirmed reduction of C9orf72 in blood and found broad dysregulation of transposable elements-genetic elements typically repressed in the human genome-in symptomatic C9orf72 expansion carriers, which associated with atrophy of thalamic nuclei relevant to FTD. C9orf72 expression was also associated with clinical severity, suggesting that peripheral C9orf72 levels capture disease-relevant information.
Collapse
Affiliation(s)
- Luke W Bonham
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158
| | - Ethan G Geier
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
- Transposon Therapeutics, San Diego, California 92122
| | - Daniel W Sirkis
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
| | - Josiah K Leong
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
- Department of Psychological Science, University of Arkansas, Fayetteville, Arkansas 72701
| | - Eliana Marisa Ramos
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Qing Wang
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Anna Karydas
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
| | - Suzee E Lee
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
| | - Virginia E Sturm
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
- Global Brain Health Institute, University of California, San Francisco, San Francisco, California 94158, and Trinity College Dublin, Dublin, Ireland
| | - Russell P Sawyer
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Adit Friedberg
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
- Global Brain Health Institute, University of California, San Francisco, San Francisco, California 94158, and Trinity College Dublin, Dublin, Ireland
| | - Justin K Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, California 90033
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305
| | - Leo Sugrue
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158
| | | | - Walter Bee
- Transposon Therapeutics, San Diego, California 92122
| | - Eckard Weber
- Transposon Therapeutics, San Diego, California 92122
| | - Joel H Kramer
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
- Global Brain Health Institute, University of California, San Francisco, San Francisco, California 94158, and Trinity College Dublin, Dublin, Ireland
| | - Katherine P Rankin
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
| | - Howard J Rosen
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
- Global Brain Health Institute, University of California, San Francisco, San Francisco, California 94158, and Trinity College Dublin, Dublin, Ireland
| | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
- Department of Pathology, University of California, San Francisco, San Francisco, California 94158
| | - John Ravits
- Department of Neurosciences, ALS Translational Research, University of California, San Diego, La Jolla, California 92093
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
- Global Brain Health Institute, University of California, San Francisco, San Francisco, California 94158, and Trinity College Dublin, Dublin, Ireland
| | - Jennifer S Yokoyama
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158
- Global Brain Health Institute, University of California, San Francisco, San Francisco, California 94158, and Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
38
|
Bonham LW, Geier EG, Sirkis DW, Leong JK, Ramos EM, Wang Q, Karydas A, Lee SE, Sturm VE, Sawyer RP, Friedberg A, Ichida JK, Gitler AD, Sugrue L, Cordingley M, Bee W, Weber E, Kramer JH, Rankin KP, Rosen HJ, Boxer AL, Seeley WW, Ravits J, Miller BL, Yokoyama JS. Radiogenomics of C9orf72 Expansion Carriers Reveals Global Transposable Element Derepression and Enables Prediction of Thalamic Atrophy and Clinical Impairment. J Neurosci 2023; 43:333-345. [PMID: 36446586 PMCID: PMC9838702 DOI: 10.1523/jneurosci.1448-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022] Open
Abstract
Hexanucleotide repeat expansion (HRE) within C9orf72 is the most common genetic cause of frontotemporal dementia (FTD). Thalamic atrophy occurs in both sporadic and familial FTD but is thought to distinctly affect HRE carriers. Separately, emerging evidence suggests widespread derepression of transposable elements (TEs) in the brain in several neurodegenerative diseases, including C9orf72 HRE-mediated FTD (C9-FTD). Whether TE activation can be measured in peripheral blood and how the reduction in peripheral C9orf72 expression observed in HRE carriers relates to atrophy and clinical impairment remain unknown. We used FreeSurfer software to assess the effects of C9orf72 HRE and clinical diagnosis (n = 78 individuals, male and female) on atrophy of thalamic nuclei. We also generated a novel, human, whole-blood RNA-sequencing dataset to determine the relationships among peripheral C9orf72 expression, TE activation, thalamic atrophy, and clinical severity (n = 114 individuals, male and female). We confirmed global thalamic atrophy and reduced C9orf72 expression in HRE carriers. Moreover, we identified disproportionate atrophy of the right mediodorsal lateral nucleus in HRE carriers and showed that C9orf72 expression associated with clinical severity, independent of thalamic atrophy. Strikingly, we found global peripheral activation of TEs, including the human endogenous LINE-1 element L1HS L1HS levels were associated with atrophy of multiple pulvinar nuclei, a thalamic region implicated in C9-FTD. Integration of peripheral transcriptomic and neuroimaging data from human HRE carriers revealed atrophy of specific thalamic nuclei, demonstrated that C9orf72 levels relate to clinical severity, and identified marked derepression of TEs, including L1HS, which predicted atrophy of FTD-relevant thalamic nuclei.SIGNIFICANCE STATEMENT Pathogenic repeat expansion in C9orf72 is the most frequent genetic cause of FTD and amyotrophic lateral sclerosis (ALS; C9-FTD/ALS). The clinical, neuroimaging, and pathologic features of C9-FTD/ALS are well characterized, whereas the intersections of transcriptomic dysregulation and brain structure remain largely unexplored. Herein, we used a novel radiogenomic approach to examine the relationship between peripheral blood transcriptomics and thalamic atrophy, a neuroimaging feature disproportionately impacted in C9-FTD/ALS. We confirmed reduction of C9orf72 in blood and found broad dysregulation of transposable elements-genetic elements typically repressed in the human genome-in symptomatic C9orf72 expansion carriers, which associated with atrophy of thalamic nuclei relevant to FTD. C9orf72 expression was also associated with clinical severity, suggesting that peripheral C9orf72 levels capture disease-relevant information.
Collapse
Affiliation(s)
- Luke W Bonham
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158
| | - Ethan G Geier
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
- Transposon Therapeutics, San Diego, California 92122
| | - Daniel W Sirkis
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
| | - Josiah K Leong
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
- Department of Psychological Science, University of Arkansas, Fayetteville, Arkansas 72701
| | - Eliana Marisa Ramos
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Qing Wang
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Anna Karydas
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
| | - Suzee E Lee
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
| | - Virginia E Sturm
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
- Global Brain Health Institute, University of California, San Francisco, San Francisco, California 94158, and Trinity College Dublin, Dublin, Ireland
| | - Russell P Sawyer
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Adit Friedberg
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
- Global Brain Health Institute, University of California, San Francisco, San Francisco, California 94158, and Trinity College Dublin, Dublin, Ireland
| | - Justin K Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, California 90033
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305
| | - Leo Sugrue
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158
| | | | - Walter Bee
- Transposon Therapeutics, San Diego, California 92122
| | - Eckard Weber
- Transposon Therapeutics, San Diego, California 92122
| | - Joel H Kramer
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
- Global Brain Health Institute, University of California, San Francisco, San Francisco, California 94158, and Trinity College Dublin, Dublin, Ireland
| | - Katherine P Rankin
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
| | - Howard J Rosen
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
- Global Brain Health Institute, University of California, San Francisco, San Francisco, California 94158, and Trinity College Dublin, Dublin, Ireland
| | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
- Department of Pathology, University of California, San Francisco, San Francisco, California 94158
| | - John Ravits
- Department of Neurosciences, ALS Translational Research, University of California, San Diego, La Jolla, California 92093
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
- Global Brain Health Institute, University of California, San Francisco, San Francisco, California 94158, and Trinity College Dublin, Dublin, Ireland
| | - Jennifer S Yokoyama
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158
- Global Brain Health Institute, University of California, San Francisco, San Francisco, California 94158, and Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
39
|
Lopez-Herdoiza MB, Bauché S, Wilmet B, Le Duigou C, Roussel D, Frah M, Béal J, Devely G, Boluda S, Frick P, Bouteiller D, Dussaud S, Guillabert P, Dalle C, Dumont M, Camuzat A, Saracino D, Barbier M, Bruneteau G, Ravassard P, Neumann M, Nicole S, Le Ber I, Brice A, Latouche M. C9ORF72 knockdown triggers FTD-like symptoms and cell pathology in mice. Front Cell Neurosci 2023; 17:1155929. [PMID: 37138765 PMCID: PMC10149765 DOI: 10.3389/fncel.2023.1155929] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
The GGGGCC intronic repeat expansion within C9ORF72 is the most common genetic cause of ALS and FTD. This mutation results in toxic gain of function through accumulation of expanded RNA foci and aggregation of abnormally translated dipeptide repeat proteins, as well as loss of function due to impaired transcription of C9ORF72. A number of in vivo and in vitro models of gain and loss of function effects have suggested that both mechanisms synergize to cause the disease. However, the contribution of the loss of function mechanism remains poorly understood. We have generated C9ORF72 knockdown mice to mimic C9-FTD/ALS patients haploinsufficiency and investigate the role of this loss of function in the pathogenesis. We found that decreasing C9ORF72 leads to anomalies of the autophagy/lysosomal pathway, cytoplasmic accumulation of TDP-43 and decreased synaptic density in the cortex. Knockdown mice also developed FTD-like behavioral deficits and mild motor phenotypes at a later stage. These findings show that C9ORF72 partial loss of function contributes to the damaging events leading to C9-FTD/ALS.
Collapse
Affiliation(s)
| | - Stephanie Bauché
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Baptiste Wilmet
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Caroline Le Duigou
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Delphine Roussel
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Magali Frah
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Jonas Béal
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Gabin Devely
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Susana Boluda
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Petra Frick
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | | | - Sébastien Dussaud
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Pierre Guillabert
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Carine Dalle
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Magali Dumont
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Agnes Camuzat
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Dario Saracino
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Mathieu Barbier
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Gaelle Bruneteau
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | | | - Manuela Neumann
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Neuropathology, Tübingen University Hospital, Tübingen, Germany
| | - Sophie Nicole
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Isabelle Le Ber
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Alexis Brice
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Morwena Latouche
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
- EPHE, Neurogenetics Team, PSL Research University, Paris, France
- *Correspondence: Morwena Latouche,
| |
Collapse
|
40
|
Zecca C, Tortelli R, Carrera P, Dell'Abate MT, Logroscino G, Ferrari M. Genotype-phenotype correlation in the spectrum of frontotemporal dementia-parkinsonian syndromes and advanced diagnostic approaches. Crit Rev Clin Lab Sci 2022; 60:171-188. [PMID: 36510705 DOI: 10.1080/10408363.2022.2150833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The term frontotemporal dementia (FTD) refers to a group of progressive neurodegenerative disorders characterized mainly by atrophy of the frontal and anterior temporal lobes. Based on clinical presentation, three main clinical syndromes have traditionally been described: behavioral variant frontotemporal dementia (bvFTD), non-fluent/agrammatic primary progressive aphasia (nfPPA), and semantic variant PPA (svPPA). However, over the last 20 years, it has been recognized that cognitive phenotypes often overlap with motor phenotypes, either motor neuron diseases or parkinsonian signs and/or syndromes like progressive supranuclear palsy (PSP) and cortico-basal syndrome (CBS). Furthermore, FTD-related genes are characterized by genetic pleiotropy and can cause, even in the same family, pure motor phenotypes, findings that underlie the clinical continuum of the spectrum, which has pure cognitive and pure motor phenotypes as the extremes. The genotype-phenotype correlation of the spectrum, FTD-motor neuron disease, has been well defined and extensively investigated, while the continuum, FTD-parkinsonism, lacks a comprehensive review. In this narrative review, we describe the current knowledge about the genotype-phenotype correlation of the spectrum, FTD-parkinsonism, focusing on the phenotypes that are less frequent than bvFTD, namely nfPPA, svPPA, PSP, CBS, and cognitive-motor overlapping phenotypes (i.e. PPA + PSP). From a pathological point of view, they are characterized mainly by the presence of phosphorylated-tau inclusions, either 4 R or 3 R. The genetic correlate of the spectrum can be heterogeneous, although some variants seem to lead preferentially to specific clinical syndromes. Furthermore, we critically review the contribution of genome-wide association studies (GWAS) and next-generation sequencing (NGS) in disentangling the complex heritability of the FTD-parkinsonism spectrum and in defining the genotype-phenotype correlation of the entire clinical scenario, owing to the ability of these techniques to test multiple genes, and so to allow detailed investigations of the overlapping phenotypes. Finally, we conclude with the importance of a detailed genetic characterization and we offer to patients and families the chance to be included in future randomized clinical trials focused on autosomal dominant forms of FTLD.
Collapse
Affiliation(s)
- Chiara Zecca
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", Pia Fondazione Card G. Panico Hospital, Tricase, Italy
| | - Rosanna Tortelli
- Neuroscience and Rare Diseases Discovery and Translational Area, Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Paola Carrera
- Unit of Genomics for Human Disease Diagnosis and Clinical Molecular Biology Laboratory, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Teresa Dell'Abate
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", Pia Fondazione Card G. Panico Hospital, Tricase, Italy
| | - Giancarlo Logroscino
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", Pia Fondazione Card G. Panico Hospital, Tricase, Italy.,Department of Basic Medicine Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | | |
Collapse
|
41
|
Kartanou C, Kontogeorgiou Z, Rentzos M, Potagas C, Aristeidou S, Kapaki E, Paraskevas GP, Constantinides VC, Stefanis L, Papageorgiou SG, Houlden H, Panas M, Koutsis G, Karadima G. Expanding the spectrum of C9ORF72-related neurodegenerative disorders in the Greek population. J Neurol Sci 2022; 442:120450. [PMID: 36252286 DOI: 10.1016/j.jns.2022.120450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 10/31/2022]
Abstract
The C9ORF72 hexanucleotide repeat expansion is an established cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) and has also been associated with Huntington disease (HD)-like syndromes and rarely with Parkinson's disease (PD) and Alzheimer's disease (AD). In the present study we aimed to investigate the genotypic and phenotypic profile of C9ORF72-related disorders in Greece. For this reason, 957 patients (467 with ALS, 53 with HD-like syndromes, 247 with dementia, 175 with PD and 15 with hereditary spastic paraplegia, HSP) and 321 controls were tested for the C9ORF72 repeat expansion. Forty-nine patients with ALS (10.5%), 2 with HD-like syndromes (3.8%), 13 with FTD (11.5%), 1 with AD (1.6%), and 2 with PD (1.1%) were expansion-positive. The expansion was not detected in the HSP or control groups. The results of this study provide an update on the spectrum of C9ORF72-related neurodegenerative diseases, emphasizing the importance of C9ORF72 genetic testing in Greek patients with familial and sporadic ALS and/or FTD and HD-like syndromes.
Collapse
Affiliation(s)
- Chrisoula Kartanou
- Neurogenetics Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece.
| | - Zoi Kontogeorgiou
- Neurogenetics Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Michail Rentzos
- 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantin Potagas
- Neuropsychology and Speech Pathology Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavroula Aristeidou
- Neurogenetics Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisabeth Kapaki
- Unit of Neurochemistry and Biological Markers, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - George P Paraskevas
- Unit of Neurochemistry and Biological Markers, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasilios C Constantinides
- Unit of Neurochemistry and Biological Markers, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Leonidas Stefanis
- 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece; Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Sokratis G Papageorgiou
- 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Henry Houlden
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Marios Panas
- Neurogenetics Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Koutsis
- Neurogenetics Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Karadima
- Neurogenetics Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
42
|
Meijboom KE, Abdallah A, Fordham NP, Nagase H, Rodriguez T, Kraus C, Gendron TF, Krishnan G, Esanov R, Andrade NS, Rybin MJ, Ramic M, Stephens ZD, Edraki A, Blackwood MT, Kahriman A, Henninger N, Kocher JPA, Benatar M, Brodsky MH, Petrucelli L, Gao FB, Sontheimer EJ, Brown RH, Zeier Z, Mueller C. CRISPR/Cas9-mediated excision of ALS/FTD-causing hexanucleotide repeat expansion in C9ORF72 rescues major disease mechanisms in vivo and in vitro. Nat Commun 2022; 13:6286. [PMID: 36271076 PMCID: PMC9587249 DOI: 10.1038/s41467-022-33332-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 09/13/2022] [Indexed: 12/25/2022] Open
Abstract
A GGGGCC24+ hexanucleotide repeat expansion (HRE) in the C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), fatal neurodegenerative diseases with no cure or approved treatments that substantially slow disease progression or extend survival. Mechanistic underpinnings of neuronal death include C9ORF72 haploinsufficiency, sequestration of RNA-binding proteins in the nucleus, and production of dipeptide repeat proteins. Here, we used an adeno-associated viral vector system to deliver CRISPR/Cas9 gene-editing machineries to effectuate the removal of the HRE from the C9ORF72 genomic locus. We demonstrate successful excision of the HRE in primary cortical neurons and brains of three mouse models containing the expansion (500-600 repeats) as well as in patient-derived iPSC motor neurons and brain organoids (450 repeats). This resulted in a reduction of RNA foci, poly-dipeptides and haploinsufficiency, major hallmarks of C9-ALS/FTD, making this a promising therapeutic approach to these diseases.
Collapse
Affiliation(s)
- Katharina E. Meijboom
- grid.168645.80000 0001 0742 0364Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605 USA ,grid.168645.80000 0001 0742 0364Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Abbas Abdallah
- grid.168645.80000 0001 0742 0364Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Nicholas P. Fordham
- grid.168645.80000 0001 0742 0364Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Hiroko Nagase
- grid.168645.80000 0001 0742 0364Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Tomás Rodriguez
- grid.168645.80000 0001 0742 0364RNA Therapeutics Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Carolyn Kraus
- grid.168645.80000 0001 0742 0364RNA Therapeutics Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Tania F. Gendron
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Gopinath Krishnan
- grid.168645.80000 0001 0742 0364Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Rustam Esanov
- grid.26790.3a0000 0004 1936 8606Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Nadja S. Andrade
- grid.26790.3a0000 0004 1936 8606Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Matthew J. Rybin
- grid.26790.3a0000 0004 1936 8606Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Melina Ramic
- grid.26790.3a0000 0004 1936 8606Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Zachary D. Stephens
- grid.66875.3a0000 0004 0459 167XDepartment of Quantitative Health Sciences. Mayo Clinic, Rochester, MN 55905 USA
| | - Alireza Edraki
- grid.168645.80000 0001 0742 0364RNA Therapeutics Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Meghan T. Blackwood
- grid.168645.80000 0001 0742 0364Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Aydan Kahriman
- grid.168645.80000 0001 0742 0364Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Nils Henninger
- grid.168645.80000 0001 0742 0364Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Jean-Pierre A. Kocher
- grid.66875.3a0000 0004 0459 167XDepartment of Quantitative Health Sciences. Mayo Clinic, Rochester, MN 55905 USA
| | - Michael Benatar
- grid.26790.3a0000 0004 1936 8606Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Michael H. Brodsky
- grid.168645.80000 0001 0742 0364Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Leonard Petrucelli
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Fen-Biao Gao
- grid.168645.80000 0001 0742 0364Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Erik J. Sontheimer
- grid.168645.80000 0001 0742 0364RNA Therapeutics Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Robert H. Brown
- grid.168645.80000 0001 0742 0364Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Zane Zeier
- Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Christian Mueller
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
43
|
Gelon PA, Dutchak PA, Sephton CF. Synaptic dysfunction in ALS and FTD: anatomical and molecular changes provide insights into mechanisms of disease. Front Mol Neurosci 2022; 15:1000183. [PMID: 36263379 PMCID: PMC9575515 DOI: 10.3389/fnmol.2022.1000183] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022] Open
Abstract
Synaptic loss is a pathological feature of all neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). ALS is a disease of the cortical and spinal motor neurons resulting in fatal paralysis due to denervation of muscles. FTD is a form of dementia that primarily affects brain regions controlling cognition, language and behavior. Once classified as two distinct diseases, ALS and FTD are now considered as part of a common disease spectrum based on overlapping clinical, pathological and genetic evidence. At the cellular level, aggregation of common proteins and overlapping gene susceptibilities are shared in both ALS and FTD. Despite the convergence of these two fields of research, the underlying disease mechanisms remain elusive. However, recent discovers from ALS and FTD patient studies and models of ALS/FTD strongly suggests that synaptic dysfunction is an early event in the disease process and a unifying hallmark of these diseases. This review provides a summary of the reported anatomical and cellular changes that occur in cortical and spinal motor neurons in ALS and FTD tissues and models of disease. We also highlight studies that identify changes in the proteome and transcriptome of ALS and FTD models and provide a conceptual overview of the processes that contribute to synaptic dysfunction in these diseases. Due to space limitations and the vast number of publications in the ALS and FTD fields, many articles have not been discussed in this review. As such, this review focuses on the three most common shared mutations in ALS and FTD, the hexanucleuotide repeat expansion within intron 1 of chromosome 9 open reading frame 72 (C9ORF72), transactive response DNA binding protein 43 (TARDBP or TDP-43) and fused in sarcoma (FUS), with the intention of highlighting common pathways that promote synaptic dysfunction in the ALS-FTD disease spectrum.
Collapse
|
44
|
Mori K, Ikeda M. Biological basis and psychiatric symptoms in frontotemporal dementia. Psychiatry Clin Neurosci 2022; 76:351-360. [PMID: 35557018 DOI: 10.1111/pcn.13375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/08/2022] [Accepted: 04/21/2022] [Indexed: 12/01/2022]
Abstract
Frontotemporal dementia is a neurodegenerative disease characterized by focal degeneration of the frontal and temporal lobes, clinically presenting with disinhibited behavior, personality changes, progressive non-fluent aphasia and/or impaired semantic memory. Research progress has been made in re-organizing the clinical concept of frontotemporal dementia and neuropathological classification based on multiple accumulating proteins. Alongside this progress a list of genetic mutations or variants that are causative or increase the risk of frontotemporal dementia have been identified and some of these gene products are extensively studied. However, there are still a lot of points that need to be overcome, including lack of specific diagnostic biomarker which enable antemortem diagnosis of underlying neurodegenerative process, and lack of disease modifying therapy which could prevent disease progression. Early and precise diagnosis of frontotemporal dementia is urgently required. In this context, how to define prodromal frontotemporal dementia and early differential diagnosis from primary psychiatric disorders are also important issues. In this review we will summarize and discuss current understanding of biological basis and psychiatric symptoms in frontotemporal dementia.
Collapse
Affiliation(s)
- Kohji Mori
- Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Manabu Ikeda
- Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
45
|
Regulating Phase Transition in Neurodegenerative Diseases by Nuclear Import Receptors. BIOLOGY 2022; 11:biology11071009. [PMID: 36101390 PMCID: PMC9311884 DOI: 10.3390/biology11071009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
RNA-binding proteins (RBPs) with a low-complexity prion-like domain (PLD) can undergo aberrant phase transitions and have been implicated in neurodegenerative diseases such as ALS and FTD. Several nuclear RBPs mislocalize to cytoplasmic inclusions in disease conditions. Impairment in nucleocytoplasmic transport is another major event observed in ageing and in neurodegenerative disorders. Nuclear import receptors (NIRs) regulate the nucleocytoplasmic transport of different RBPs bearing a nuclear localization signal by restoring their nuclear localization. NIRs can also specifically dissolve or prevent the aggregation and liquid–liquid phase separation of wild-type or disease-linked mutant RBPs, due to their chaperoning activity. This review focuses on the LLPS of intrinsically disordered proteins and the role of NIRs in regulating LLPS in neurodegeneration. This review also discusses the implication of NIRs as therapeutic agents in neurogenerative diseases.
Collapse
|
46
|
Liu Y, Xing H, Ernst AF, Liu C, Maugee C, Yokoi F, Lakshmana M, Li Y. Hyperactivity of Purkinje cell and motor deficits in C9orf72 knockout mice. Mol Cell Neurosci 2022; 121:103756. [PMID: 35843530 PMCID: PMC10369482 DOI: 10.1016/j.mcn.2022.103756] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022] Open
Abstract
A hexanucleotide (GGGGCC) repeat expansion in the first intron of the C9ORF72 gene is the most frequently reported genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The cerebellum has not traditionally been thought to be involved in the pathogenesis of C9ORF72-associated ALS/FTD, but recent evidence suggested a potential role. C9ORF72 is highly expressed in the cerebellum. Decreased C9ORF72 transcript and protein levels were detected in the postmortem cerebellum, suggesting a loss-of-function effect of C9ORF72 mutation. This study investigated the role of loss of C9ORF72 function using a C9orf72 knockout mouse line. C9orf72 deficiency led to motor impairment in rotarod, beam-walking, paw-print, open-field, and grip-strength tests. Purkinje cells are the sole output neurons in the cerebellum, and we next determined their involvement in the motor phenotypes. We found hyperactivity of Purkinje cells in the C9orf72 knockout mouse accompanied by a significant increase of the large-conductance calcium-activated potassium channel (BK) protein in the cerebellum. The link between BK and Purkinje cell firing was demonstrated by the acute application of the BK activator that increased the firing frequency of the Purkinje cells ex vivo. In vivo chemogenetic activation of Purkinje cells in wild-type mice led to similar motor deficits in rotarod and beam-walking tests. Our results highlight that C9ORF72 loss alters the activity of the Purkinje cell and potentially the pathogenesis of the disease. Manipulating the Purkinje cell firing or cerebellar output may contribute to C9ORF72-associated ALS/FTD treatment.
Collapse
Affiliation(s)
- Yuning Liu
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States; Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Hong Xing
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Alexis F Ernst
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Canna Liu
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Christian Maugee
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States; Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Fumiaki Yokoi
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Madepalli Lakshmana
- Department of Immunology and Nano-Medicine, The Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Yuqing Li
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
47
|
Gene Therapy in Amyotrophic Lateral Sclerosis. Cells 2022; 11:cells11132066. [PMID: 35805149 PMCID: PMC9265980 DOI: 10.3390/cells11132066] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/30/2022] Open
Abstract
Since the discovery of Cu/Zn superoxide dismutase (SOD1) gene mutation, in 1993, as the first genetic abnormality in amyotrophic lateral sclerosis (ALS), over 50 genes have been identified as either cause or modifier in ALS and ALS/frontotemporal dementia (FTD) spectrum disease. Mutations in C9orf72, SOD1, TAR DNA binding protein 43 (TARDBP), and fused in sarcoma (FUS) genes are the four most common ones. During the last three decades, tremendous effort has been made worldwide to reveal biological pathways underlying the pathogenesis of these gene mutations in ALS/FTD. Accordingly, targeting etiologic genes (i.e., gene therapies) to suppress their toxic effects have been investigated widely. It includes four major strategies: (i) removal or inhibition of abnormal transcribed RNA using microRNA or antisense oligonucleotides (ASOs), (ii) degradation of abnormal mRNA using RNA interference (RNAi), (iii) decrease or inhibition of mutant proteins (e.g., using antibodies against misfolded proteins), and (iv) DNA genome editing with methods such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (CRISPR/Cas). The promising results of these studies have led to the application of some of these strategies into ALS clinical trials, especially for C9orf72 and SOD1. In this paper, we will overview advances in gene therapy in ALS/FTD, focusing on C9orf72, SOD1, TARDBP, and FUS genes.
Collapse
|
48
|
Bioenergetic and Autophagic Characterization of Skin Fibroblasts from C9orf72 Patients. Antioxidants (Basel) 2022; 11:antiox11061129. [PMID: 35740026 PMCID: PMC9219955 DOI: 10.3390/antiox11061129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/24/2022] Open
Abstract
The objective of this study is to describe the alterations occurring during the neurodegenerative process in skin fibroblast cultures from C9orf72 patients. We characterized the oxidative stress, autophagy flux, small ubiquitin-related protein SUMO2/3 levels as well as the mitochondrial function in skin fibroblast cultures from C9orf72 patients. All metabolic and bioenergetic findings were further correlated with gene expression data obtained from RNA sequencing analysis. Fibroblasts from C9orf72 patients showed a 30% reduced expression of C9orf72, ~3-fold increased levels of oxidative stress and impaired mitochondrial function obtained by measuring the enzymatic activities of mitochondrial respiratory chain complexes, specifically of complex III activity. Furthermore, the results also reveal that C9orf72 patients showed an accumulation of p62 protein levels, suggesting the alteration of the autophagy process, and significantly higher protein levels of SUMO2/3 (p = 0.03). Our results provide new data reinforcing that C9orf72 cells suffer from elevated oxidative damage to biomolecules and organelles and from increased protein loads, leading to insufficient autophagy and an increase in SUMOylation processes.
Collapse
|
49
|
Czuppa M, Dhingra A, Zhou Q, Schludi C, König L, Scharf E, Farny D, Dalmia A, Täger J, Castillo-Lizardo M, Katona E, Mori K, Aumer T, Schelter F, Müller M, Carell T, Kalliokoski T, Messinger J, Rizzu P, Heutink P, Edbauer D. Drug screen in iPSC-Neurons identifies nucleoside analogs as inhibitors of (G 4C 2) n expression in C9orf72 ALS/FTD. Cell Rep 2022; 39:110913. [PMID: 35675776 DOI: 10.1016/j.celrep.2022.110913] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/22/2021] [Accepted: 05/12/2022] [Indexed: 11/03/2022] Open
Abstract
An intronic (G4C2)n expansion in C9orf72 causes amyotrophic lateral sclerosis and frontotemporal dementia primarily through gain-of-function mechanisms: the accumulation of sense and antisense repeat RNA foci and dipeptide repeat (DPR) proteins (poly-GA/GP/GR/PA/PR) translated from repeat RNA. To therapeutically block this pathway, we screen a library of 1,430 approved drugs and known bioactive compounds in patient-derived induced pluripotent stem cell-derived neurons (iPSC-Neurons) for inhibitors of DPR expression. The clinically used guanosine/cytidine analogs decitabine, entecavir, and nelarabine reduce poly-GA/GP expression, with decitabine being the most potent. Hit compounds nearly abolish sense and antisense RNA foci and reduce expression of the repeat-containing nascent C9orf72 RNA transcript and its mature mRNA with minimal effects on global gene expression, suggesting that they specifically act on repeat transcription. Importantly, decitabine treatment reduces (G4C2)n foci and DPRs in C9orf72 BAC transgenic mice. Our findings suggest that nucleoside analogs are a promising compound class for therapeutic development in C9orf72 repeat-expansion-associated disorders.
Collapse
Affiliation(s)
- Mareike Czuppa
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Ashutosh Dhingra
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.
| | - Qihui Zhou
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Carina Schludi
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Laura König
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Elisabeth Scharf
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Daniel Farny
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Anupriya Dalmia
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Joachim Täger
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | | | - Eszter Katona
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Kohji Mori
- Psychiatry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tina Aumer
- Ludwig-Maximilians-University Munich, Faculty of Chemistry and Pharmacy, Munich, Germany
| | - Florian Schelter
- Ludwig-Maximilians-University Munich, Faculty of Chemistry and Pharmacy, Munich, Germany
| | - Markus Müller
- Ludwig-Maximilians-University Munich, Faculty of Chemistry and Pharmacy, Munich, Germany
| | - Thomas Carell
- Ludwig-Maximilians-University Munich, Faculty of Chemistry and Pharmacy, Munich, Germany
| | | | - Josef Messinger
- Orion Corporation Orion Pharma, Medicine Design, Espoo, Finland
| | - Patrizia Rizzu
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Peter Heutink
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Ludwig-Maximilians-University Munich, Graduate School of Systemic Neurosciences (GSN), Munich, Germany.
| |
Collapse
|
50
|
Hou X, Li W, Liu P, Liu Z, Yuan Y, Ni J, Shen L, Tang B, Wang J. The Clinical and Ploynucleotide Repeat Expansion Analysis of ATXN2, NOP56, AR and C9orf72 in Patients With ALS From Mainland China. Front Neurol 2022; 13:811202. [PMID: 35599735 PMCID: PMC9120572 DOI: 10.3389/fneur.2022.811202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background Repeat expansions, including those in C9orf72 and ATXN2, have been implicated in amyotrophic lateral sclerosis (ALS). However, there have been few studies on the association of AR and NOP56 repeat expansion with ALS, especially in China. Accordingly, we aimed to evaluate the frequency of C9orf72 and ATXN2 repeat mutations and investigate whether NOP56 and AR repeat expansion are risk factors for ALS. Methods In this study, 736 ALS patients and several hundred healthy controls were recruited. Polymerase chain reaction (PCR) and repeat-primed PCR (RP-PCR) were performed to determine the repeat lengths in C9orf72, ATXN2, AR, and NOP56. Results GGGGCC repeats in C9orf72 were observed in six ALS patients (0.8%, 6/736) but not in any of the controls (0/365). The patients with pathogenic GGGGCC repeats showed shorter median survival times than those with a normal genotype (p = 0.006). Regarding ATXN2 CAG repeats, we identified that intermediate repeat lengths (29–34 copies) were associated with ALS (p = 0.033), and there was no difference in clinical characteristics between the groups with and without intermediate repeats (p > 0.05). Meanwhile, we observed that there was no association between the repeat size in AR and NOP56 and ALS (p > 0.05). Conclusions Our results demonstrated that pathogenetic repeats in C9orf72 are rare in China, while intermediate CAG repeats in ATXN2 are more frequent but have no effect on disease phenotypes; the repeat size in AR and NOP56 may not be a risk factor for ALS.
Collapse
Affiliation(s)
- Xiaorong Hou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Wanzhen Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Pan Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhen Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yanchun Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Ni
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Laboratory of Medical Genetics, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Laboratory of Medical Genetics, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Laboratory of Medical Genetics, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- *Correspondence: Junling Wang
| |
Collapse
|