1
|
Lee JE, Cho S, So MH, Lee HY. DNA methylation-based semen age prediction using the markers identified in Koreans and Europeans. Forensic Sci Int Genet 2025; 77:103243. [PMID: 40023960 DOI: 10.1016/j.fsigen.2025.103243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
In the forensic field, sexual assaults have consistently been the important issue, with semen frequently serving as the primary evidence. When the suspect is unidentified, estimating the perpetrator's age using investigating semen can provide important information. The VISAGE consortium conducted research on the semen age prediction focused on European semen samples, but the age prediction model has remained undisclosed. Additionally, several studies have reported methylation differences across populations, indicating that the European semen age prediction model might not be broadly applicable to other groups. A study did explore semen age prediction in Koreans using Illumina's Infinium Methylation450K BeadChip array, however recent developments in technology could enhance this approach. To address this, we conducted a study on Korean males aged 18-70 years. We initially analyzed 49 samples utilizing Illumina's Infinium MethylationEPIC BeadChip array to identify age-related CpG sites. From this analysis, we identified 9 age-related CpG markers, excluding one due to difficulties in locus-specific analysis. As a result, we used 11 markers including 8 newly identified CpGs from the EPIC array and 3 CpG markers from previous research utilizing the SNaPshot assay. Furthermore, we incorporated 13 CpG markers from the European study to analyze a total of 159 semen samples using the Illumina Nextera MPS system. This approach enabled us to test age-related markers identified in Europeans within the Korean population and to construct a more accurate age prediction model using markers from both Korean and European sources.
Collapse
Affiliation(s)
- Ji Eun Lee
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Sohee Cho
- Institute of Forensic and Anthropological Science, Seoul National University College of Medicine, Seoul, South Korea
| | - Moon Hyun So
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Hwan Young Lee
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, South Korea; Institute of Forensic and Anthropological Science, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
2
|
Gaetano C, Atlante S, Gottardi Zamperla M, Barbi V, Gentilini D, Illi B, Malavolta M, Martelli F, Farsetti A. The COVID-19 legacy: consequences for the human DNA methylome and therapeutic perspectives. GeroScience 2025; 47:483-501. [PMID: 39497009 PMCID: PMC11872859 DOI: 10.1007/s11357-024-01406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/18/2024] [Indexed: 11/06/2024] Open
Abstract
The COVID-19 pandemic has left a lasting legacy on human health, extending beyond the acute phase of infection. This article explores the evidence suggesting that SARS-CoV-2 infection can induce persistent epigenetic modifications, particularly in DNA methylation patterns, with potential long-term consequences for individuals' health and aging trajectories. The review discusses the potential of DNA methylation-based biomarkers, such as epigenetic clocks, to identify individuals at risk for accelerated aging and tailor personalized interventions. Integrating epigenetic clock analysis into clinical management could mark a new era of personalized treatment for COVID-19, possibly helping clinicians to understand patient susceptibility to severe outcomes and establish preventive strategies. Several valuable reviews address the role of epigenetics in infectious diseases, including the Sars-CoV-2 infection. However, this article provides an original overview of the current understanding of the epigenetic dimensions of COVID-19, offering insights into the long-term health implications of the pandemic. While acknowledging the limitations of current data, we emphasize the need for future research to unravel the precise mechanisms underlying COVID-19-induced epigenetic changes and to explore potential approaches to target these modifications.
Collapse
Affiliation(s)
- Carlo Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy.
| | - Sandra Atlante
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
- Institute for Systems Analysis and Computer Science, National Research Council (CNR)-IASI, 00185, Rome, Italy
| | | | - Veronica Barbi
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - Davide Gentilini
- Department of Brain and Behavioral Sciences, University of Pavia, 27100, Pavia, Italy
- Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, 20095, Cusano Milanino, Italy
| | - Barbara Illi
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Sapienza University of Rome, 00185, Rome, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121, Ancona, Italy
| | - Fabio Martelli
- Laboratory of Molecular Cardiology, IRCCS Policlinico San Donato, 20097, Milan, Italy
| | - Antonella Farsetti
- Institute for Systems Analysis and Computer Science, National Research Council (CNR)-IASI, 00185, Rome, Italy.
| |
Collapse
|
3
|
Thi YVN, Vu TD, Huong NTL, Chu DT. Epigenetic contribution to the relationship between obesity and cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:195-213. [PMID: 39179347 DOI: 10.1016/bs.ircmb.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Obesity and cancer are two major health issues all around the world due to their elevated prevalence. Several experimental and epidemiological studies have demonstrated the relationship between obesity and cancer, in which obesity is considered a risk factor for cancer development. The ultimate goal of knowing the epigenetic contribution to the relationship between obesity and cancer is to find the method of intervention or treatment of obesity and cancer. Therefore, providing the most general perspective on epigenetic contribution to the relationship between obesity and cancer is necessary. Obesity is closely related to some common cancers that are currently encountered, including breast, esophagus, liver, kidney, uterus, colorectal, pancreatic, and gallbladder. Obesity has a significant impact that increases the risk of cancer deaths and thereby indirectly affects the choice of treatment. It is estimated that about 4-8% of cancer cases are caused by obesity. In particular, the basic mechanism to understand the relationship between cancer is very complicated and has not been fully understood. This work is aimed at summarizing the current knowledge of the role of epigenetic regulation in the relationship between obesity, and potential applications.
Collapse
Affiliation(s)
- Yen-Vy Nguyen Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Thuy-Duong Vu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | | | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|
4
|
Wang P, Meng Z, Deng K, Gao Z, Cai J. Vpr driving DNA methylation variation of CD4 + T cells in HIV-1 infection. Virol J 2024; 21:97. [PMID: 38671522 PMCID: PMC11046818 DOI: 10.1186/s12985-024-02363-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Despite the existence of available therapeutic interventions for HIV-1, this virus remains a significant global threat, leading to substantial morbidity and mortality. Within HIV-1-infected cells, the accessory viral protein r (Vpr) exerts control over diverse biological processes, including cell cycle progression, DNA repair, and apoptosis. The regulation of gene expression through DNA methylation plays a crucial role in physiological processes, exerting its influence without altering the underlying DNA sequence. However, a thorough examination of the impact of Vpr on DNA methylation in human CD4 + T cells has not been conducted. METHODS In this study, we employed base-resolution whole-genome bisulfite sequencing (WGBS), real-time quantitative RCR and western blot to explore the effect of Vpr on DNA methylation of host cells under HIV-1 infection. RESULTS We observed that HIV-1 infection leads to elevated levels of global DNA methylation in primary CD4 + T cells. Specifically, Vpr induces significant modifications in DNA methylation patterns, particularly affecting regions within promoters and gene bodies. These alterations notably influence genes related to immune-related pathways and olfactory receptor activity. Moreover, Vpr demonstrates a distinct ability to diminish the levels of methylation in histone genes. CONCLUSIONS These findings emphasize the significant involvement of Vpr in regulating transcription through the modulation of DNA methylation patterns. Together, the results of this investigation will considerably enhance our understanding of the influence of HIV-1 Vpr on the DNA methylation of host cells, offer potential avenues for the development of more effective treatments.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhuoyue Meng
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Kai Deng
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhiliang Gao
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Jinfeng Cai
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
5
|
Wang Y, Riaz F, Wang W, Pu J, Liang Y, Wu Z, Pan S, Song J, Yang L, Zhang Y, Wu H, Han F, Tang J, Wang X. Functional significance of DNA methylation: epigenetic insights into Sjögren's syndrome. Front Immunol 2024; 15:1289492. [PMID: 38510251 PMCID: PMC10950951 DOI: 10.3389/fimmu.2024.1289492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024] Open
Abstract
Sjögren's syndrome (SjS) is a systemic, highly diverse, and chronic autoimmune disease with a significant global prevalence. It is a complex condition that requires careful management and monitoring. Recent research indicates that epigenetic mechanisms contribute to the pathophysiology of SjS by modulating gene expression and genome stability. DNA methylation, a form of epigenetic modification, is the fundamental mechanism that modifies the expression of various genes by modifying the transcriptional availability of regulatory regions within the genome. In general, adding a methyl group to DNA is linked with the inhibition of genes because it changes the chromatin structure. DNA methylation changes the fate of multiple immune cells, such as it leads to the transition of naïve lymphocytes to effector lymphocytes. A lack of central epigenetic enzymes frequently results in abnormal immune activation. Alterations in epigenetic modifications within immune cells or salivary gland epithelial cells are frequently detected during the pathogenesis of SjS, representing a robust association with autoimmune responses. The analysis of genome methylation is a beneficial tool for establishing connections between epigenetic changes within different cell types and their association with SjS. In various studies related to SjS, most differentially methylated regions are in the human leukocyte antigen (HLA) locus. Notably, the demethylation of various sites in the genome is often observed in SjS patients. The most strongly linked differentially methylated regions in SjS patients are found within genes regulated by type I interferon. This demethylation process is partly related to B-cell infiltration and disease progression. In addition, DNA demethylation of the runt-related transcription factor (RUNX1) gene, lymphotoxin-α (LTA), and myxovirus resistance protein A (MxA) is associated with SjS. It may assist the early diagnosis of SjS by serving as a potential biomarker. Therefore, this review offers a detailed insight into the function of DNA methylation in SjS and helps researchers to identify potential biomarkers in diagnosis, prognosis, and therapeutic targets.
Collapse
Affiliation(s)
- Yanqing Wang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Farooq Riaz
- Center for Cancer Immunology, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Wei Wang
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jincheng Pu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanyuan Liang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhenzhen Wu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shengnan Pan
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiamin Song
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lufei Yang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Youwei Zhang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huihong Wu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fang Han
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jianping Tang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xuan Wang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
6
|
Deng Y, Xu W, Ni M, Sun X, Wang X, Zhang T, Pan F. DNA methylation and expression of LGR6 gene in ankylosing spondylitis: A case-control study. Hum Immunol 2023; 84:110719. [PMID: 37802707 DOI: 10.1016/j.humimm.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/13/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023]
Abstract
OBJECTIVE The objectives of the present research were to ascertain the relationship of Leucine-Rich Repeat-Containing G-Protein Coupled Receptors 6 (LGR6) methylation and transcript levels with ankylosing spondylitis (AS). METHODS Targeted bisulfite sequencing was applied to analyze LGR6 DNA methylation in 81 AS cases and 81 controls. Besides, the LGR6 transcription level of peripheral blood mononuclear cells (PBMCs) from 70 AS cases and 64 controls was measured utilizing quantitative real-time transcription-polymerase chain reaction (qRT-PCR). RESULTS The study detected the methylation levels of 43 sites in two CpG (cytosine-guanine dinucleotide) islands of LGR6 and found that LGR6 were significantly hypomethylated in AS patients (LGR6_1: P = 0.002; LGR6_2: P < 0.001). LGR6 transcript level was obviously reduced in AS (P = 0.001) and was positively related to DNA methylation level (CpG-1: P = 0.010; CpG-2: P = 0.007). Besides, the Receiver operating characteristic curve (ROC) exhibited good diagnostic performance of LGR6 methylation level (AUC = 0.676, 95% CI = 0.594-0.758, P < 0.001). Further subgroup analysis revealed that gender may affect the LGR6_1 methylation pattern. CONCLUSION The present study revealed that LGR6 DNA methylation dysregulation may be involved in the pathogenesis of AS from an epigenetic perspective for the first time, with the aim of providing new directions for biomarker identification and treatment development for AS patients.
Collapse
Affiliation(s)
- Yujie Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Wei Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Man Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xiaoya Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xinqi Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Tao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
7
|
Wang Q, Luo S, Xiong D, Xu X, Zhao X, Duan L. Quantitative investigation of the effects of DNA modifications and protein mutations on MeCP2-MBD-DNA interactions. Int J Biol Macromol 2023; 247:125690. [PMID: 37423448 DOI: 10.1016/j.ijbiomac.2023.125690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
DNA methylation as an important epigenetic marker, has gained attention for the significance of three oxidative modifications (hydroxymethyl-C (hmC), formyl-C (fC), and carboxyl-C (caC)). Mutations occurring in the methyl-CpG-binding domain (MBD) of MeCP2 result in Rett. However, uncertainties persist regarding DNA modification and MBD mutation-induced interaction changes. Here, molecular dynamics simulations were used to investigate the underlying mechanisms behind changes due to different modifications of DNA and MBD mutations. Alanine scanning combined with the interaction entropy method was employed to accurately evaluate the binding free energy. The results show that MBD has the strongest binding ability for mCDNA, followed by caC, hmC, and fCDNA, with the weakest binding ability observed for CDNA. Further analysis revealed that mC modification induces DNA bending, causing residues R91 and R162 closer to the DNA. This proximity enhances van der Waals and electrostatic interactions. Conversely, the caC/hmC and fC modifications lead to two loop regions (near K112 and K130) closer to DNA, respectively. Furthermore, DNA modifications promote the formation of stable hydrogen bond networks, however mutations in the MBD significantly reduce the binding free energy. This study provides detailed insight into the effects of DNA modifications and MBD mutations on binding ability. It emphasizes the necessity for research and development of targeted Rett compounds that induce conformational compatibility between MBD and DNA, enhancing the stability and strength of their interactions.
Collapse
Affiliation(s)
- Qihang Wang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Song Luo
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Danyang Xiong
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Xiaole Xu
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Xiaoyu Zhao
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Lili Duan
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
8
|
Dhat R, Mongad D, Raji S, Arkat S, Mahapatra NR, Singhal N, Sitasawad SL. Epigenetic modifier alpha-ketoglutarate modulates aberrant gene body methylation and hydroxymethylation marks in diabetic heart. Epigenetics Chromatin 2023; 16:12. [PMID: 37101286 PMCID: PMC10134649 DOI: 10.1186/s13072-023-00489-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/21/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a leading cause of death in diabetic patients. Hyperglycemic myocardial microenvironment significantly alters chromatin architecture and the transcriptome, resulting in aberrant activation of signaling pathways in a diabetic heart. Epigenetic marks play vital roles in transcriptional reprogramming during the development of DCM. The current study is aimed to profile genome-wide DNA (hydroxy)methylation patterns in the hearts of control and streptozotocin (STZ)-induced diabetic rats and decipher the effect of modulation of DNA methylation by alpha-ketoglutarate (AKG), a TET enzyme cofactor, on the progression of DCM. METHODS Diabetes was induced in male adult Wistar rats with an intraperitoneal injection of STZ. Diabetic and vehicle control animals were randomly divided into groups with/without AKG treatment. Cardiac function was monitored by performing cardiac catheterization. Global methylation (5mC) and hydroxymethylation (5hmC) patterns were mapped in the Left ventricular tissue of control and diabetic rats with the help of an enrichment-based (h)MEDIP-sequencing technique by using antibodies specific for 5mC and 5hmC. Sequencing data were validated by performing (h)MEDIP-qPCR analysis at the gene-specific level, and gene expression was analyzed by qPCR. The mRNA and protein expression of enzymes involved in the DNA methylation and demethylation cycle were analyzed by qPCR and western blotting. Global 5mC and 5hmC levels were also assessed in high glucose-treated DNMT3B knockdown H9c2 cells. RESULTS We found the increased expression of DNMT3B, MBD2, and MeCP2 with a concomitant accumulation of 5mC and 5hmC, specifically in gene body regions of diabetic rat hearts compared to the control. Calcium signaling was the most significantly affected pathway by cytosine modifications in the diabetic heart. Additionally, hypermethylated gene body regions were associated with Rap1, apelin, and phosphatidyl inositol signaling, while metabolic pathways were most affected by hyperhydroxymethylation. AKG supplementation in diabetic rats reversed aberrant methylation patterns and restored cardiac function. Hyperglycemia also increased 5mC and 5hmC levels in H9c2 cells, which was normalized by DNMT3B knockdown or AKG supplementation. CONCLUSION This study demonstrates that reverting hyperglycemic damage to cardiac tissue might be possible by erasing adverse epigenetic signatures by supplementing epigenetic modulators such as AKG along with an existing antidiabetic treatment regimen.
Collapse
Affiliation(s)
- Rohini Dhat
- National Centre for Cell Science, NCCS Complex, S. P. Pune University, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Dattatray Mongad
- NCMR-National Centre for Cell Science (NCCS), Pune, Maharashtra, 411007, India
| | - Sivarupa Raji
- National Centre for Cell Science, NCCS Complex, S. P. Pune University, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Silpa Arkat
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Nishant Singhal
- National Centre for Cell Science, NCCS Complex, S. P. Pune University, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Sandhya L Sitasawad
- National Centre for Cell Science, NCCS Complex, S. P. Pune University, Ganeshkhind, Pune, Maharashtra, 411007, India.
| |
Collapse
|
9
|
Sapozhnikov DM, Szyf M. Increasing Specificity of Targeted DNA Methylation Editing by Non-Enzymatic CRISPR/dCas9-Based Steric Hindrance. Biomedicines 2023; 11:biomedicines11051238. [PMID: 37238909 DOI: 10.3390/biomedicines11051238] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
As advances in genome engineering inch the technology towards wider clinical use-slowed by technical and ethical hurdles-a newer offshoot, termed "epigenome engineering", offers the ability to correct disease-causing changes in the DNA without changing its sequence and, thus, without some of the unfavorable correlates of doing so. In this review, we note some of the shortcomings of epigenetic editing technology-specifically the risks involved in the introduction of epigenetic enzymes-and highlight an alternative epigenetic editing strategy using physical occlusion to modify epigenetic marks at target sites without a requirement for any epigenetic enzyme. This may prove to be a safer alternative for more specific epigenetic editing.
Collapse
Affiliation(s)
- Daniel M Sapozhnikov
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
10
|
Recent advance in nucleic acid amplification-integrated methods for DNA methyltransferase assay. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
11
|
Shi Y, Wu J, Wu W, Luo N, Huang H, Chen Y, Sun J, Yu Q, Ao H, Xu Q, Wu X, Xia Q, Ju H. AuNPs@MoSe 2 heterostructure as a highly efficient coreaction accelerator of electrocheluminescence for amplified immunosensing of DNA methylation. Biosens Bioelectron 2023; 222:114976. [PMID: 36516632 DOI: 10.1016/j.bios.2022.114976] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022]
Abstract
Electrocheluminescence analysis amplified by coreaction accelerators has experienced breakthrough in ultrasensitive detection of biomarkers. Herein, a highly efficient coreaction accelerator, two-dimensional layered MoSe2 nanosheets loaded with gold nanoparticles (AuNPs@MoSe2 heterostructure), is proposed to enhance the ECL efficiency of Ru(bpy)32+/tripropylamine (TPrA) system. The presence of AuNPs avoids the aggregation of MoSe2 nanosheets, and improves the electrical conductivity of modified surface. The AuNPs@MoSe2 modified electrode also provides a large area for loading of abundant capture probe. MoSe2 as an electroactive substrate can remarkably accelerate the generation of TPrA•+ radicals to react with electrooxidized Ru(bpy)32+, which achieves about 3.4-fold stronger ECL intensity. Thus, an enhanced ECL immunoassay method can be achieved after Ru(bpy)32+-doped silica nanoparticle labeled antibody (Ab2-Ru@SiO2) is captured to the modified electrode via immunological recognition. Using methylated DNA as a target, the immunosensor was prepared by binding capture DNA on AuNPs@MoSe2 modified electrode to successively capture the target, anti-5-methylcytosine antibody (anti-5mC) and Ab2-Ru@SiO2. The proposed strategy could detect 0.26 fM 5 mC (3σ) with a detectable concentration range of 1.0 fM - 10 nM at methylated DNA. This immunosensor showed excellent selectivity, good stability and reproducibility, and acceptable recovery, indicating the broad prospects of the novel coreaction accelerator in clinical diagnosis.
Collapse
Affiliation(s)
- Yao Shi
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and the Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Jie Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wenxin Wu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and the Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Nini Luo
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and the Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Hao Huang
- Research & Development Center, Canon Medical Systems (China) Co., LTD, Beijing, 100015, China
| | - Yuhui Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jun Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qian Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hang Ao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qiqi Xu
- Research & Development Center, Canon Medical Systems (China) Co., LTD, Beijing, 100015, China
| | - Xiaotian Wu
- Research & Development Center, Canon Medical Systems (China) Co., LTD, Beijing, 100015, China
| | - Qianfeng Xia
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and the Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, 571199, China.
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
12
|
Klughammer J, Romanovskaia D, Nemc A, Posautz A, Seid CA, Schuster LC, Keinath MC, Lugo Ramos JS, Kosack L, Evankow A, Printz D, Kirchberger S, Ergüner B, Datlinger P, Fortelny N, Schmidl C, Farlik M, Skjærven K, Bergthaler A, Liedvogel M, Thaller D, Burger PA, Hermann M, Distel M, Distel DL, Kübber-Heiss A, Bock C. Comparative analysis of genome-scale, base-resolution DNA methylation profiles across 580 animal species. Nat Commun 2023; 14:232. [PMID: 36646694 PMCID: PMC9842680 DOI: 10.1038/s41467-022-34828-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 11/08/2022] [Indexed: 01/18/2023] Open
Abstract
Methylation of cytosines is a prototypic epigenetic modification of the DNA. It has been implicated in various regulatory mechanisms across the animal kingdom and particularly in vertebrates. We mapped DNA methylation in 580 animal species (535 vertebrates, 45 invertebrates), resulting in 2443 genome-scale DNA methylation profiles of multiple organs. Bioinformatic analysis of this large dataset quantified the association of DNA methylation with the underlying genomic DNA sequence throughout vertebrate evolution. We observed a broadly conserved link with two major transitions-once in the first vertebrates and again with the emergence of reptiles. Cross-species comparisons focusing on individual organs supported a deeply conserved association of DNA methylation with tissue type, and cross-mapping analysis of DNA methylation at gene promoters revealed evolutionary changes for orthologous genes. In summary, this study establishes a large resource of vertebrate and invertebrate DNA methylomes, it showcases the power of reference-free epigenome analysis in species for which no reference genomes are available, and it contributes an epigenetic perspective to the study of vertebrate evolution.
Collapse
Affiliation(s)
- Johanna Klughammer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria. .,Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Daria Romanovskaia
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Amelie Nemc
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Annika Posautz
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Charlotte A Seid
- Ocean Genome Legacy Center, Northeastern University Marine Science Center, Nahant, USA
| | - Linda C Schuster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Juan Sebastian Lugo Ramos
- Max Planck Research Group Behavioral Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Lindsay Kosack
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ann Evankow
- Ocean Genome Legacy Center, Northeastern University Marine Science Center, Nahant, USA
| | - Dieter Printz
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Stefanie Kirchberger
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Bekir Ergüner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Paul Datlinger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Nikolaus Fortelny
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christian Schmidl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Medical University of Vienna, Center for Pathophysiology Infectiology and Immunology, Institute of Hygiene and Applied Immunology, Vienna, Austria
| | - Miriam Liedvogel
- Max Planck Research Group Behavioral Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Institute of Avian Research, An der Vogelwarte, Wilhelmshaven, Germany
| | - Denise Thaller
- Department for Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Pamela A Burger
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Marcela Hermann
- Medical University of Vienna, Department of Medical Biochemistry, Vienna, Austria
| | - Martin Distel
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Daniel L Distel
- Ocean Genome Legacy Center, Northeastern University Marine Science Center, Nahant, USA
| | - Anna Kübber-Heiss
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria. .,Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, Vienna, Austria.
| |
Collapse
|
13
|
Abbasian MH, Ardekani AM, Sobhani N, Roudi R. The Role of Genomics and Proteomics in Lung Cancer Early Detection and Treatment. Cancers (Basel) 2022; 14:5144. [PMID: 36291929 PMCID: PMC9600051 DOI: 10.3390/cancers14205144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 08/17/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide, with non-small-cell lung cancer (NSCLC) being the primary type. Unfortunately, it is often diagnosed at advanced stages, when therapy leaves patients with a dismal prognosis. Despite the advances in genomics and proteomics in the past decade, leading to progress in developing tools for early diagnosis, targeted therapies have shown promising results; however, the 5-year survival of NSCLC patients is only about 15%. Low-dose computed tomography or chest X-ray are the main types of screening tools. Lung cancer patients without specific, actionable mutations are currently treated with conventional therapies, such as platinum-based chemotherapy; however, resistances and relapses often occur in these patients. More noninvasive, inexpensive, and safer diagnostic methods based on novel biomarkers for NSCLC are of paramount importance. In the current review, we summarize genomic and proteomic biomarkers utilized for the early detection and treatment of NSCLC. We further discuss future opportunities to improve biomarkers for early detection and the effective treatment of NSCLC.
Collapse
Affiliation(s)
- Mohammad Hadi Abbasian
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 1497716316, Iran
| | - Ali M. Ardekani
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 1497716316, Iran
| | - Navid Sobhani
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Raheleh Roudi
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Li Q, Liang Z, Wang X, Zhou F, Ma X, Wei W, Tian D, Yu H. The emerging role of epigenetics and gut microbiota in Vogt-Koyanagi-Harada syndrome. Gene 2022; 818:146222. [PMID: 35092860 DOI: 10.1016/j.gene.2022.146222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/09/2021] [Accepted: 01/13/2022] [Indexed: 12/01/2022]
Abstract
Vogt-Koyanagi-Harada (VKH) syndrome is an autoimmune disorder characterized often by acute diffuse uveitis, also known as idiopathic uveoencephalitis. The associated complications can potentially affect multiple systems throughout the body, including eyes, ears, skin and nervous system. Although the pathogenesis of VKH syndrome remains unclear, it has been established that the various genetic factors, epigenetic factors and the imbalance in immune regulation can significantly contribute to the development of this disease. In addition, the experimental autoimmune uveitis (EAU) has been commonly used to further explore the pathogenesis of the disease. Herein, in this review article, we discuss about the major research advances made in understanding of the different epigenetic factors and gut microbes involved in the pathogenesis of VKH syndrome as well as EAU. The information discussed can help to better understand the pathogenesis of VKH syndrome, and thereby might provide a basis for finding novel molecular targets and innovative treatment strategies in the future.
Collapse
Affiliation(s)
- Qinxingzi Li
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Guizhou 563000, China
| | - Zhongzhi Liang
- Affiliated Hospital of Zunyi Medical University, Guizhou 563000, China
| | - Xin Wang
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Guizhou 563000, China
| | - Fangyu Zhou
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Guizhou 563000, China
| | - Xiaomin Ma
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Guizhou 563000, China
| | - Wenwen Wei
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Guizhou 563000, China
| | - Dan Tian
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Guizhou 563000, China
| | - Hongsong Yu
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Guizhou 563000, China.
| |
Collapse
|
15
|
Karaglani M, Panagopoulou M, Baltsavia I, Apalaki P, Theodosiou T, Iliopoulos I, Tsamardinos I, Chatzaki E. Tissue-Specific Methylation Biosignatures for Monitoring Diseases: An In Silico Approach. Int J Mol Sci 2022; 23:2959. [PMID: 35328380 PMCID: PMC8952417 DOI: 10.3390/ijms23062959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023] Open
Abstract
Tissue-specific gene methylation events are key to the pathogenesis of several diseases and can be utilized for diagnosis and monitoring. Here, we established an in silico pipeline to analyze high-throughput methylome datasets to identify specific methylation fingerprints in three pathological entities of major burden, i.e., breast cancer (BrCa), osteoarthritis (OA) and diabetes mellitus (DM). Differential methylation analysis was conducted to compare tissues/cells related to the pathology and different types of healthy tissues, revealing Differentially Methylated Genes (DMGs). Highly performing and low feature number biosignatures were built with automated machine learning, including: (1) a five-gene biosignature discriminating BrCa tissue from healthy tissues (AUC 0.987 and precision 0.987), (2) three equivalent OA cartilage-specific biosignatures containing four genes each (AUC 0.978 and precision 0.986) and (3) a four-gene pancreatic β-cell-specific biosignature (AUC 0.984 and precision 0.995). Next, the BrCa biosignature was validated using an independent ccfDNA dataset showing an AUC and precision of 1.000, verifying the biosignature's applicability in liquid biopsy. Functional and protein interaction prediction analysis revealed that most DMGs identified are involved in pathways known to be related to the studied diseases or pointed to new ones. Overall, our data-driven approach contributes to the maximum exploitation of high-throughput methylome readings, helping to establish specific disease profiles to be applied in clinical practice and to understand human pathology.
Collapse
Affiliation(s)
- Makrina Karaglani
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.K.); (M.P.); (P.A.); (T.T.)
| | - Maria Panagopoulou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.K.); (M.P.); (P.A.); (T.T.)
| | - Ismini Baltsavia
- Department of Basic Sciences, School of Medicine, University of Crete, GR-71003 Heraklion, Greece; (I.B.); (I.I.)
| | - Paraskevi Apalaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.K.); (M.P.); (P.A.); (T.T.)
| | - Theodosis Theodosiou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.K.); (M.P.); (P.A.); (T.T.)
| | - Ioannis Iliopoulos
- Department of Basic Sciences, School of Medicine, University of Crete, GR-71003 Heraklion, Greece; (I.B.); (I.I.)
| | - Ioannis Tsamardinos
- JADBio Gnosis DA S.A., Science and Technology Park of Crete, GR-70013 Heraklion, Greece;
- Department of Computer Science, University of Crete, GR-70013 Heraklion, Greece
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology—Hellas, GR-70013 Heraklion, Greece
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.K.); (M.P.); (P.A.); (T.T.)
- Institute of Agri-Food and Life Sciences, Hellenic Mediterranean University Research Centre, GR-71410 Heraklion, Greece
| |
Collapse
|
16
|
Abdelhamid L, Luo XM. Diet and Hygiene in Modulating Autoimmunity During the Pandemic Era. Front Immunol 2022; 12:749774. [PMID: 35069526 PMCID: PMC8766844 DOI: 10.3389/fimmu.2021.749774] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
The immune system is an efficiently toned machinery that discriminates between friends and foes for achieving both host defense and homeostasis. Deviation of immune recognition from foreign to self and/or long-lasting inflammatory responses results in the breakdown of tolerance. Meanwhile, educating the immune system and developing immunological memory are crucial for mounting defensive immune responses while protecting against autoimmunity. Still to elucidate is how diverse environmental factors could shape autoimmunity. The emergence of a world pandemic such as SARS-CoV-2 (COVID-19) not only threatens the more vulnerable individuals including those with autoimmune conditions but also promotes an unprecedented shift in people's dietary approaches while urging for extraordinary hygiene measures that likely contribute to the development or exacerbation of autoimmunity. Thus, there is an urgent need to understand how environmental factors modulate systemic autoimmunity to better mitigate the incidence and or severity of COVID-19 among the more vulnerable populations. Here, we discuss the effects of diet (macronutrients and micronutrients) and hygiene (the use of disinfectants) on autoimmunity with a focus on systemic lupus erythematosus.
Collapse
Affiliation(s)
- Leila Abdelhamid
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Department of Microbiology, College of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
17
|
Haupt S, Niedrist T, Sourij H, Schwarzinger S, Moser O. The Impact of Exercise on Telomere Length, DNA Methylation and Metabolic Footprints. Cells 2022; 11:153. [PMID: 35011715 PMCID: PMC8750279 DOI: 10.3390/cells11010153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/05/2023] Open
Abstract
Aging as a major risk factor influences the probability of developing cancer, cardiovascular disease and diabetes, amongst others. The underlying mechanisms of disease are still not fully understood, but research suggests that delaying the aging process could ameliorate these pathologies. A key biological process in aging is cellular senescence which is associated with several stressors such as telomere shortening or enhanced DNA methylation. Telomere length as well as DNA methylation levels can be used as biological age predictors which are able to detect excessive acceleration or deceleration of aging. Analytical methods examining aging are often not suitable, expensive, time-consuming or require a high level of technical expertise. Therefore, research focusses on combining analytical methods which have the potential to simultaneously analyse epigenetic, genomic as well as metabolic changes.
Collapse
Affiliation(s)
- Sandra Haupt
- Division of Exercise Physiology and Metabolism, Department of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany;
| | - Tobias Niedrist
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8010 Graz, Austria;
| | - Harald Sourij
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria;
| | - Stephan Schwarzinger
- NBNC—North Bavarian NMR-Centre, University of Bayreuth, 95440 Bayreuth, Germany;
| | - Othmar Moser
- Division of Exercise Physiology and Metabolism, Department of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany;
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria;
| |
Collapse
|
18
|
Arumugam T, Ramphal U, Adimulam T, Chinniah R, Ramsuran V. Deciphering DNA Methylation in HIV Infection. Front Immunol 2021; 12:795121. [PMID: 34925380 PMCID: PMC8674454 DOI: 10.3389/fimmu.2021.795121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
With approximately 38 million people living with HIV/AIDS globally, and a further 1.5 million new global infections per year, it is imperative that we advance our understanding of all factors contributing to HIV infection. While most studies have focused on the influence of host genetic factors on HIV pathogenesis, epigenetic factors are gaining attention. Epigenetics involves alterations in gene expression without altering the DNA sequence. DNA methylation is a critical epigenetic mechanism that influences both viral and host factors. This review has five focal points, which examines (i) fluctuations in the expression of methylation modifying factors upon HIV infection (ii) the effect of DNA methylation on HIV viral genes and (iii) host genome (iv) inferences from other infectious and non-communicable diseases, we provide a list of HIV-associated host genes that are regulated by methylation in other disease models (v) the potential of DNA methylation as an epi-therapeutic strategy and biomarker. DNA methylation has also been shown to serve as a robust therapeutic strategy and precision medicine biomarker against diseases such as cancer and autoimmune conditions. Despite new drugs being discovered for HIV, drug resistance is a problem in high disease burden settings such as Sub-Saharan Africa. Furthermore, genetic therapies that are under investigation are irreversible and may have off target effects. Alternative therapies that are nongenetic are essential. In this review, we discuss the potential role of DNA methylation as a novel therapeutic intervention against HIV.
Collapse
Affiliation(s)
- Thilona Arumugam
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Upasana Ramphal
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Theolan Adimulam
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Romona Chinniah
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
19
|
McGuire MH, Dasari SK, Yao H, Wen Y, Mangala LS, Bayraktar E, Ma W, Ivan C, Shoshan E, Wu SY, Jonasch E, Bar-Eli M, Wang J, Baggerly KA, Sood AK. Gene Body Methylation of the Lymphocyte-Specific Gene CARD11 Results in Its Overexpression and Regulates Cancer mTOR Signaling. Mol Cancer Res 2021; 19:1917-1928. [PMID: 34348992 PMCID: PMC8568653 DOI: 10.1158/1541-7786.mcr-20-0753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 06/16/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022]
Abstract
Investigations into the function of nonpromoter DNA methylation have yielded new insights into epigenetic regulation of gene expression. Previous studies have highlighted the importance of distinguishing between DNA methylation in discrete functional regions; however, integrated nonpromoter DNA methylation and gene expression analyses across a wide number of tumor types and corresponding normal tissues have not been performed. Through integrated analysis of gene expression and DNA methylation profiles, we examined 32 tumor types and identified 57 tumor suppressors and oncogenes out of 260 genes exhibiting a correlation of > 0.5 between gene body methylation and gene expression in at least one tumor type. The lymphocyte-specific gene CARD11 exhibits robust association between gene body methylation and expression across 19 of 32 tumor types examined. It is significantly overexpressed in kidney renal cell carcinoma (KIRC) and lung adenocarcinoma (LUAD) tumor tissues in comparison with respective control samples; and is significantly associated with lower overall survival in KIRC. Contrary to its canonical function in lymphocyte NFκB activation, CARD11 activates the mTOR pathway in KIRC and LUAD, resulting in suppressed autophagy. Furthermore, demethylation of a CpG island within the gene body of CARD11 decreases gene expression. Collectively, our study highlights how DNA methylation outside the promoter region can impact tumor progression. IMPLICATIONS: Our study describes a novel regulatory role of gene body DNA methylation-dependent CARD11 expression on mTOR signaling and its impact on tumor progression.
Collapse
Affiliation(s)
- Michael H McGuire
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Santosh K Dasari
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hui Yao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yunfei Wen
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lingegowda S Mangala
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Emine Bayraktar
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wencai Ma
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Einav Shoshan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sherry Y Wu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eric Jonasch
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Menashe Bar-Eli
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Keith A Baggerly
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
20
|
Sapozhnikov DM, Szyf M. Unraveling the functional role of DNA demethylation at specific promoters by targeted steric blockage of DNA methyltransferase with CRISPR/dCas9. Nat Commun 2021; 12:5711. [PMID: 34588447 PMCID: PMC8481236 DOI: 10.1038/s41467-021-25991-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/07/2021] [Indexed: 01/10/2023] Open
Abstract
Despite four decades of research to support the association between DNA methylation and gene expression, the causality of this relationship remains unresolved. Here, we reaffirm that experimental confounds preclude resolution of this question with existing strategies, including recently developed CRISPR/dCas9 and TET-based epigenetic editors. Instead, we demonstrate a highly effective method using only nuclease-dead Cas9 and guide RNA to physically block DNA methylation at specific targets in the absence of a confounding flexibly-tethered enzyme, thereby enabling the examination of the role of DNA demethylation per se in living cells, with no evidence of off-target activity. Using this method, we probe a small number of inducible promoters and find the effect of DNA demethylation to be small, while demethylation of CpG-rich FMR1 produces larger changes in gene expression. This method could be used to reveal the extent and nature of the contribution of DNA methylation to gene regulation.
Collapse
Affiliation(s)
- Daniel M Sapozhnikov
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
21
|
Ahn J, Heo S, Lee J, Bang D. Introduction to Single-Cell DNA Methylation Profiling Methods. Biomolecules 2021; 11:1013. [PMID: 34356635 PMCID: PMC8301785 DOI: 10.3390/biom11071013] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
DNA methylation is an epigenetic mechanism that is related to mammalian cellular differentiation, gene expression regulation, and disease. In several studies, DNA methylation has been identified as an effective marker to identify differences between cells. In this review, we introduce single-cell DNA-methylation profiling methods, including experimental strategies and approaches to computational data analysis. Furthermore, the blind spots of the basic analysis and recent alternatives are briefly described. In addition, we introduce well-known applications and discuss future development.
Collapse
Affiliation(s)
- Jongseong Ahn
- Department of Chemistry, Yonsei University, Seoul 03722, Korea; (J.A.); (S.H.)
| | - Sunghoon Heo
- Department of Chemistry, Yonsei University, Seoul 03722, Korea; (J.A.); (S.H.)
| | - Jihyun Lee
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul 02447, Korea
- Department of Biomedical Science and Technology, Kyung Hee University, Seoul 02447, Korea
| | - Duhee Bang
- Department of Chemistry, Yonsei University, Seoul 03722, Korea; (J.A.); (S.H.)
| |
Collapse
|
22
|
Dai R, Wang Z, Ahmed SA. Epigenetic Contribution and Genomic Imprinting Dlk1-Dio3 miRNAs in Systemic Lupus Erythematosus. Genes (Basel) 2021; 12:680. [PMID: 34062726 PMCID: PMC8147206 DOI: 10.3390/genes12050680] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease that afflicts multiple organs, especially kidneys and joints. In addition to genetic predisposition, it is now evident that DNA methylation and microRNAs (miRNAs), the two major epigenetic modifications, are critically involved in the pathogenesis of SLE. DNA methylation regulates promoter accessibility and gene expression at the transcriptional level by adding a methyl group to 5' cytosine within a CpG dinucleotide. Extensive evidence now supports the importance of DNA hypomethylation in SLE etiology. miRNAs are small, non-protein coding RNAs that play a critical role in the regulation of genome expression. Various studies have identified the signature lupus-related miRNAs and their functional contribution to lupus incidence and progression. In this review, the mutual interaction between DNA methylation and miRNAs regulation in SLE is discussed. Some lupus-associated miRNAs regulate DNA methylation status by targeting the DNA methylation enzymes or methylation pathway-related proteins. On the other hand, DNA hyper- and hypo-methylation are linked with dysregulated miRNAs expression in lupus. Further, we specifically discuss the genetic imprinting Dlk1-Dio3 miRNAs that are subjected to DNA methylation regulation and are dysregulated in several autoimmune diseases, including SLE.
Collapse
Affiliation(s)
- Rujuan Dai
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA 24061, USA;
| | | | - S. Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA 24061, USA;
| |
Collapse
|
23
|
Florke Gee RR, Chen H, Lee AK, Daly CA, Wilander BA, Fon Tacer K, Potts PR. Emerging roles of the MAGE protein family in stress response pathways. J Biol Chem 2020; 295:16121-16155. [PMID: 32921631 PMCID: PMC7681028 DOI: 10.1074/jbc.rev120.008029] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/08/2020] [Indexed: 12/21/2022] Open
Abstract
The melanoma antigen (MAGE) proteins all contain a MAGE homology domain. MAGE genes are conserved in all eukaryotes and have expanded from a single gene in lower eukaryotes to ∼40 genes in humans and mice. Whereas some MAGEs are ubiquitously expressed in tissues, others are expressed in only germ cells with aberrant reactivation in multiple cancers. Much of the initial research on MAGEs focused on exploiting their antigenicity and restricted expression pattern to target them with cancer immunotherapy. Beyond their potential clinical application and role in tumorigenesis, recent studies have shown that MAGE proteins regulate diverse cellular and developmental pathways, implicating them in many diseases besides cancer, including lung, renal, and neurodevelopmental disorders. At the molecular level, many MAGEs bind to E3 RING ubiquitin ligases and, thus, regulate their substrate specificity, ligase activity, and subcellular localization. On a broader scale, the MAGE genes likely expanded in eutherian mammals to protect the germline from environmental stress and aid in stress adaptation, and this stress tolerance may explain why many cancers aberrantly express MAGEs Here, we present an updated, comprehensive review on the MAGE family that highlights general characteristics, emphasizes recent comparative studies in mice, and describes the diverse functions exerted by individual MAGEs.
Collapse
Affiliation(s)
- Rebecca R Florke Gee
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Helen Chen
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Anna K Lee
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Christina A Daly
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Benjamin A Wilander
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Klementina Fon Tacer
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; School of Veterinary Medicine, Texas Tech University, Amarillo, Texas, USA.
| | - Patrick Ryan Potts
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
24
|
Kojima N, Suda T, Fujii S, Hirano K, Namihira M, Kurita R. Quantitative analysis of global 5-methyl- and 5-hydroxymethylcytosine in TET1 expressed HEK293T cells. Biosens Bioelectron 2020; 167:112472. [PMID: 32763827 DOI: 10.1016/j.bios.2020.112472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 11/17/2022]
Abstract
DNA methylation at the 5-position of cytosine bases (5-methylcytosine, 5mC) in genomic DNA is representative epigenetic modification and is involved in many cellular processes, including gene expression and embryonic development. The hydroxylation of 5mC provide 5-hydroxymethylcytosine (5hmC), the so-called sixth base rediscovered recently in mammalian cells, is also considered to act as an epigenetic regulator. We report herein the immunochemical assessment of 5hmC achieved by an enzyme-linked immunosorbent assay (ELISA) using our linker technology. The keys to this assay are 1) the immobilization of genomic DNA with the bifunctional linker molecule, and 2) quantitative analysis by using guaranteed standard samples containing defined amounts of 5hmC. We succeeded in the sensitive and quantitative detection of 5hmC as well as 5mC in HEK293T cells transfected with TET1, and also monitored the effect of ascorbate on the TET1 catalyzed conversion of 5mC to 5hmC. Our linker technology enables the rapid and stable immobilization of genomic samples and thus contributes to the realization of a reproducible 5hmC evaluation method.
Collapse
Affiliation(s)
- Naoshi Kojima
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan; DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB) and DBT-AIST International Center for Translational & Environmental Research (DAICENTER), AIST, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Tomomi Suda
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Shinichiro Fujii
- National Metrology Institute of Japan (NMIJ), AIST, 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8563, Japan
| | - Kazumi Hirano
- Biomedical Research Institute, AIST, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Masakazu Namihira
- Biomedical Research Institute, AIST, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Ryoji Kurita
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan; DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB) and DBT-AIST International Center for Translational & Environmental Research (DAICENTER), AIST, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan; Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|
25
|
Huang SK. A Fresh Take on the "TCA" Cycle: TETs, Citrate, and Asthma. Am J Respir Cell Mol Biol 2020; 63:1-3. [PMID: 32223718 PMCID: PMC7328252 DOI: 10.1165/rcmb.2020-0101ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Steven K Huang
- Division of Pulmonary and Critical Care MedicineUniversity of MichiganAnn Arbor, Michigan
| |
Collapse
|
26
|
Sahin M, Sahin E. Prostaglandin E2 Reverses the Effects of DNA Methyltransferase Inhibitor and TGFB1 on the Conversion of Naive T Cells to iTregs. Transfus Med Hemother 2020; 47:244-253. [PMID: 32595429 DOI: 10.1159/000502582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022] Open
Abstract
Naturally occurring regulatory T cells (nTregs) are produced under thymic (tTregs) or peripherally induced (pTregs) conditions in vivo. On the other hand, Tregs generated from naive T cells in vitro under some circumstances, such as treatment with transforming growth factor-β (TGFB), are called induced Tregs (iTregs). Tregs are especially characterized by FOXP3 expression, which is mainly controlled by DNA methylation. nTregs play important roles in the suppression of immune response and self-tolerance. The prostaglandin E2 (PGE2) pathway was reported to contribute to regulatory functions of tumor-infiltrating nTregs. In this study, we examined whether PGE2 contributes to the formation of iTregs treated with TGFB1 and 5-aza-2'-deoxycytidine (5-aza-dC), which is a DNA methyltransferase inhibitor. We found that the protein and gene expression levels of FOXP3 and IL-10 were increased in 5-aza-dC and TGFB1-treated T cells in vitro. However, the addition of PGE2 to these cells reversed these increments significantly. In CFSE-based cell suppression assays, we demonstrated that PGE2 decreased the suppressive functions of 5-aza-dC and TGFB1-treated T cells.
Collapse
Affiliation(s)
- Mehmet Sahin
- Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Emel Sahin
- Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
27
|
Tanaka S, Ise W, Inoue T, Ito A, Ono C, Shima Y, Sakakibara S, Nakayama M, Fujii K, Miura I, Sharif J, Koseki H, Koni PA, Raman I, Li QZ, Kubo M, Fujiki K, Nakato R, Shirahige K, Araki H, Miura F, Ito T, Kawakami E, Baba Y, Kurosaki T. Tet2 and Tet3 in B cells are required to repress CD86 and prevent autoimmunity. Nat Immunol 2020; 21:950-961. [PMID: 32572241 DOI: 10.1038/s41590-020-0700-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 05/04/2020] [Indexed: 12/15/2022]
Abstract
A contribution of epigenetic modifications to B cell tolerance has been proposed but not directly tested. Here we report that deficiency of ten-eleven translocation (Tet) DNA demethylase family members Tet2 and Tet3 in B cells led to hyperactivation of B and T cells, autoantibody production and lupus-like disease in mice. Mechanistically, in the absence of Tet2 and Tet3, downregulation of CD86, which normally occurs following chronic exposure of self-reactive B cells to self-antigen, did not take place. The importance of dysregulated CD86 expression in Tet2- and Tet3-deficient B cells was further demonstrated by the restriction, albeit not complete, on aberrant T and B cell activation following anti-CD86 blockade. Tet2- and Tet3-deficient B cells had decreased accumulation of histone deacetylase 1 (HDAC1) and HDAC2 at the Cd86 locus. Thus, our findings suggest that Tet2- and Tet3-mediated chromatin modification participates in repression of CD86 on chronically stimulated self-reactive B cells, which contributes, at least in part, to preventing autoimmunity.
Collapse
Affiliation(s)
- Shinya Tanaka
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan.,Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Noda, Japan
| | - Wataru Ise
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Ayako Ito
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Chisato Ono
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshihito Shima
- Laboratory of Thermo-Therapeutics for Vascular Dysfunction, Osaka University, Suita, Japan
| | - Shuhei Sakakibara
- Laboratory of Immune Regulation, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Manabu Nakayama
- Laboratory of Medical Omics Research, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Kentaro Fujii
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Ikuo Miura
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Jafar Sharif
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Haruhiko Koseki
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Advanced Research Departments, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | - Indu Raman
- Microarray Core Facility, Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Quan-Zhen Li
- Microarray Core Facility, Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Masato Kubo
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Noda, Japan.,Laboratory for Cytokine Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Katsunori Fujiki
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Ryuichiro Nakato
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Katsuhiko Shirahige
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Hiromitsu Araki
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiryo Kawakami
- Medical Sciences Innovation Hub Program, RIKEN, Yokohama, Japan.,Department of Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshihiro Baba
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan. .,Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan. .,Laboratory of Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| |
Collapse
|
28
|
Liu SY, Shan NN. DNA methylation plays an important role in immune thrombocytopenia. Int Immunopharmacol 2020; 83:106390. [DOI: 10.1016/j.intimp.2020.106390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 01/16/2023]
|
29
|
Song W, Tang D, Chen D, Zheng F, Huang S, Xu Y, Yu H, He J, Hong X, Yin L, Liu D, Dai W, Dai Y. Advances in applying of multi-omics approaches in the research of systemic lupus erythematosus. Int Rev Immunol 2020; 39:163-173. [PMID: 32138562 DOI: 10.1080/08830185.2020.1736058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Wencong Song
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Donge Tang
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Deheng Chen
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Fengping Zheng
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Shaoying Huang
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Yong Xu
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Haiyan Yu
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Jingquan He
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Xiaoping Hong
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Lianghong Yin
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dongzhou Liu
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Weier Dai
- College of Natural Science, University of Texas at Austin, Austin, TX, USA
| | - Yong Dai
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
30
|
Defects of CTLA-4 Are Associated with Regulatory T Cells in Myasthenia Gravis Implicated by Intravenous Immunoglobulin Therapy. Mediators Inflamm 2020; 2020:3645157. [PMID: 32148437 PMCID: PMC7042523 DOI: 10.1155/2020/3645157] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/24/2020] [Indexed: 12/12/2022] Open
Abstract
Myasthenia gravis (MG) is a CD4+ T cell-dependent autoimmune disease resulting from aberrant immune response mediated by circulating autoantibodies at the neuromuscular junction. Intravenous immunoglobulin (IVIg) is an expensive and commonly used immunotherapeutic approach to treat patients with MG. The mechanisms of actions involved in IVIg treatment, however, remain to be investigated. In an effort to examine the roles of various subsets of CD4+ T cells in the periphery blood of MG and uncover the mechanisms that contribute to the therapeutical effects of IVIg, we first demonstrated that a subset of CD4+ T cells, CTLA-4-expressing regulatory T (Treg) cells, were underrepresented and functionally defective in MG patients. The dynamic profiling during the IVIg therapy course further revealed an inverse relationship between the frequency of CTLA-4+ Treg and the quantitative MG (QMG) score that represents disease severity. Our mechanistic studies indicated that IVIg expands CTLA-4-Treg cells via modulating antigen-presenting dendritic cells (DCs). To determine the molecular defects of CTLA-4 in abnormities of Treg in MG patients, we demonstrated hypermethylation at -658 and -793 CpGs of CTLA-4 promoter in MG Tregs. Interestingly, IVIg therapy significantly reduced the methylation level at these two sites in MG patients. Overall, our study may suggest a role of CTLA-4 in functionally defected Treg cells in MG and its actions involved in IVIg therapy.
Collapse
|
31
|
Ma F, Zhang Q, Zhang CY. Nanomaterial-based biosensors for DNA methyltransferase assay. J Mater Chem B 2020; 8:3488-3501. [DOI: 10.1039/c9tb02458a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We review the recent advances in the development of nanomaterial-based biosensors for DNA methyltransferase assay.
Collapse
Affiliation(s)
- Fei Ma
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Qian Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Chun-yang Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
32
|
Csaba G. Aromatic hydrocarbon receptors in the immune system: Review and hypotheses. Acta Microbiol Immunol Hung 2019; 66:273-287. [PMID: 30803253 DOI: 10.1556/030.66.2019.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ah-receptors (AhRs) recognize and bind foreign environmental molecules as well as some target hormones of other nuclear receptors. As ligands activate transcription factors, they transmit the information on the presence of these molecules by binding to the DNA, which in turn activate xenobiotic metabolism genes. Cross talk with other nuclear receptors or some non-nuclear receptors also activates or inhibits endocrine processes. Immune cells have AhRs by which they are activated for physiological (immunity) or non-physiological (allergy and autoimmunity) processes. They can be imprinted by hormonal or pseudo-hormonal (environmental) factors, which could provoke pathological alterations for life (by faulty perinatal hormonal imprinting). The variety and amount of human-made new environmental molecules (endocrine disruptors) are enormously growing, so the importance of AhR functions is also expanding.
Collapse
Affiliation(s)
- György Csaba
- 1 Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
33
|
Therapeutic targets for endothelial dysfunction in vascular diseases. Arch Pharm Res 2019; 42:848-861. [PMID: 31420777 DOI: 10.1007/s12272-019-01180-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/10/2019] [Indexed: 12/12/2022]
Abstract
Vascular endothelial cells are located on the surface of the blood vessels. It has been recognized as an important barrier to the regulation of vascular homeostasis by regulating the blood flow of micro- or macrovascular vessels. Indeed, endothelial dysfunction is an initial stage of vascular diseases and is an important prognostic indicator of cardiovascular and metabolic diseases such as atherosclerosis, hypertension, heart failure, or diabetes. Therefore, in order to develop therapeutic targets for vascular diseases, it is important to understand the key factors involved in maintaining endothelial function and the signaling pathways affecting endothelial dysfunction. The purpose of this review is to describe the function and underlying signaling pathway of oxidative stress, inflammatory factors, shear stress, and epigenetic factors in endothelial dysfunction, and introduce recent therapeutic targets for the treatment of cardiovascular diseases.
Collapse
|
34
|
Xiao FH, Wang HT, Kong QP. Dynamic DNA Methylation During Aging: A "Prophet" of Age-Related Outcomes. Front Genet 2019; 10:107. [PMID: 30833961 PMCID: PMC6387955 DOI: 10.3389/fgene.2019.00107] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 01/30/2019] [Indexed: 12/21/2022] Open
Abstract
The biological markers of aging used to predict physical health status in older people are of great interest. Telomere shortening, which occurs during the process of cell replication, was initially considered a promising biomarker for the prediction of age and age-related outcomes (e.g., diseases, longevity). However, the high instability in detection and low correlation with age-related outcomes limit the extension of telomere length to the field of prediction. Currently, a growing number of studies have shown that dynamic DNA methylation throughout human lifetime exhibits strong correlation with age and age-related outcomes. Indeed, many researchers have built age prediction models with high accuracy based on age-dependent methylation changes in certain CpG loci. For now, DNA methylation based on epigenetic clocks, namely epigenetic or DNA methylation age, serves as a new standard to track chronological age and predict biological age. Measures of age acceleration (Δage, DNA methylation age – chronological age) have been developed to assess the health status of a person. In addition, there is evidence that an accelerated epigenetic age exists in patients with certain age-related diseases (e.g., Alzheimer’s disease, cardiovascular disease). In this review, we provide an overview of the dynamic signatures of DNA methylation during aging and emphasize its practical utility in the prediction of various age-related outcomes.
Collapse
Affiliation(s)
- Fu-Hui Xiao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.,Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming, China.,Kunming Key Laboratory of Healthy Aging Study, Kunming, China.,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China
| | - Hao-Tian Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.,Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming, China.,Kunming Key Laboratory of Healthy Aging Study, Kunming, China.,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.,Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming, China.,Kunming Key Laboratory of Healthy Aging Study, Kunming, China.,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China
| |
Collapse
|
35
|
|
36
|
Eaddy Norton A, Broyles AD. Drug allergy in children and adults: Is it the double X chromosome? Ann Allergy Asthma Immunol 2018; 122:148-155. [PMID: 30465863 DOI: 10.1016/j.anai.2018.11.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/11/2018] [Accepted: 11/12/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE This article reviews the latest science and epidemiologic studies related to drug allergy in children and adults to explore possible mechanisms related to female propensity for drug allergy. DATA SOURCES PubMed literature review, focusing primarily on the last 5 years. STUDY SELECTIONS Articles reviewing the science behind female predisposition to atopic and asthmatic conditions and epidemiologic studies reviewing drug allergy and drug-induced anaphylaxis. RESULTS Despite adult female predilection for atopic conditions, few laboratory studies explore sex-specific mechanisms in atopic/allergic diseases, and most are focused on autoimmunity and asthma. Drug allergy is more frequently reported in adult females compared with adult males. Adult females are also more likely to have drug-induced anaphylaxis (DIA), although no clear sex predominance has been reported in fatal or severe DIA. Studies in children suggest the reverse picture, with prepubertal males more likely to have drug allergy and DIA than prepubertal girls. CONCLUSION Possible explanations for female predisposition for drug allergy are multifactorial and include disproportionate utilization of health care with more exposure to antibiotics or medications, genetic factors related to the X chromosome, epigenetic changes, and discrepant hormonal interactions with immune cells.
Collapse
Affiliation(s)
- Allison Eaddy Norton
- Vanderbilt Children's Hospital, Division of Pediatric Pulmonary, Allergy and Immunology, School of Medicine, Nashville, Tennessee
| | - Ana Dioun Broyles
- Boston Children's Hospital, Division of Allergy and Immunology, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
37
|
Kojima N, Suda T, Kurinomaru T, Kurita R. Immobilization of DNA with nitrogen mustard-biotin conjugate for global epigenetic analysis. Anal Chim Acta 2018; 1043:107-114. [PMID: 30392657 DOI: 10.1016/j.aca.2018.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 12/01/2022]
Abstract
We report the quantitative analysis of 5-methylcytosine, a representative epigenetic modification in genomic DNA, with an enzyme-linked immunosorbent assay (ELISA). We synthesized a novel hetero-bifunctional linker molecule consisting of nitrogen mustard and biotin to capture DNA on the surface of biosensing devices. The molecule can successfully immobilize genomic DNA on a streptavidin coated 96-well microplate, which was then employed for immunochemical epigenetic assessment. We achieved the sensitive and quantitative detection of 5-mC in genomic DNA samples. The CpG methylation ratios obtained from our system for mouse brain and mouse small intestine genomes were 79% and 82%, respectively. These numbers are in good agreement with the previously reported methylation ratio of 75-85%, which was identified by whole genome bisulfite sequencing. Accordingly, the present technology using our novel bifunctional linker molecule provides a fast, easy, and inexpensive method for epigenetic assessment, without the need for any conventional bisulfite treatment, polymerase chain reaction (PCR), or sequencing.
Collapse
Affiliation(s)
- Naoshi Kojima
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) and DAILAB, DAICENTER, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Tomomi Suda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) and DAILAB, DAICENTER, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Takaaki Kurinomaru
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| | - Ryoji Kurita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) and DAILAB, DAICENTER, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| |
Collapse
|
38
|
Zuckerman R, Patel M, Costanzo EJ, Dounis H, Haj RA, Seyedali S, Asif A. Hydralazine-associated adverse events: a report of two cases of hydralazine-induced ANCA vasculitis. ACTA ACUST UNITED AC 2018; 40:193-197. [PMID: 29738027 PMCID: PMC6533989 DOI: 10.1590/2175-8239-jbn-3858] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/13/2017] [Indexed: 11/25/2022]
Abstract
Hydralazine is a direct-acting vasodilator, which has been used in treatment for
hypertension (HTN) since the 1950s. While it is well known to cause drug-induced
lupus (DIL), recent reports are indicating the emergence of the drug-induced
anti-neutrophil cytoplasmic antibody (ANCA) associated vasculitis (DIV). Herein,
we describe two patients (aged 57 and 87 years) who presented with severe acute
kidney injury (AKI), proteinuria, and hematuria. Both were receiving hydralazine
for the treatment of hypertension. ANCA serology was positive in both patients
along with anti-histone antibodies (commonly seen in drug-induced vasculitis).
Renal biopsy revealed classic crescentic (pauci-immune) glomerulonephritis in
these patients and hydralazine was discontinued. During the hospital course, the
57-year-old patient required dialysis therapy and was treated with steroids and
rituximab for the ANCA disease. Renal function improved and the patient was
discharged (off dialysis) with a serum creatinine of 3.6 mg/dL (baseline = 0.9
mg/dL). At a follow-up of 2 years, the patient remained off dialysis with
advanced chronic kidney disease (CKD) (stage IIIb). The 87-year-old patient had
severe AKI with serum creatinine at 10.41 mg/dL (baseline = 2.27 mg/dL). The
patient required hemodialysis and was treated with steroids, rituximab, and
plasmapheresis. Unfortunately, the patient developed catheter-induced bacteremia
and subsequently died of sepsis. Hydralazine can cause severe AKI resulting in
CKD or death. Given this extremely unfavorable adverse-event profile and the
widespread availability of alternative anti-hypertensive agents, the use of
hydralazine should be carefully considered.
Collapse
Affiliation(s)
| | | | | | - Harry Dounis
- Jersey Shore University Medical Center, Neptune, NJ, USA
| | - Rany Al Haj
- Jersey Shore University Medical Center, Neptune, NJ, USA
| | | | - Arif Asif
- Jersey Shore University Medical Center, Neptune, NJ, USA
| |
Collapse
|
39
|
Gilbert RM, Zhang X, Sampson RD, Ehrenstein MR, Nguyen DX, Chaudhry M, Mein C, Mahmud N, Galatowicz G, Tomkins-Netzer O, Calder VL, Lightman S. Clinical Remission of Sight-Threatening Non-Infectious Uveitis Is Characterized by an Upregulation of Peripheral T-Regulatory Cell Polarized Towards T-bet and TIGIT. Front Immunol 2018; 9:907. [PMID: 29774027 PMCID: PMC5943505 DOI: 10.3389/fimmu.2018.00907] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 04/11/2018] [Indexed: 12/14/2022] Open
Abstract
Background Non-infectious uveitis can cause chronic relapsing and remitting ocular inflammation, which may require high dose systemic immunosuppression to prevent severe sight loss. It has been classically described as an autoimmune disease, mediated by pro-inflammatory Th1 and Th17 T-cell subsets. Studies suggest that natural immunosuppressive CD4+CD25+FoxP3+ T-regulatory cells (Tregs) are involved in resolution of inflammation and may be involved in the maintenance of clinical remission. Objective To investigate whether there is a peripheral blood immunoregulatory phenotype associated with clinical remission of sight-threatening non-infectious uveitis by comparing peripheral blood levels of Treg, Th1, and Th17, and associated DNA methylation and cytokine levels in patients with active uveitic disease, control subjects and patients (with previously active disease) in clinical remission induced by immunosuppressive drugs. Methods Isolated peripheral blood mononuclear cells (PBMC) from peripheral blood samples from prospectively recruited subjects were analyzed by flow cytometry for CD3, CD4, FoxP3, TIGIT, T-bet, and related orphan receptor γt. Epigenetic DNA methylation levels of FOXP3 Treg-specific demethylated region (TSDR), FOXP3 promoter, TBX21, RORC2, and TIGIT loci were determined in cryopreserved PBMC using a next-generation sequencing approach. Related cytokines were measured in blood sera. Functional suppressive capacity of Treg was assessed using T-cell proliferation assays. Results Fifty patients with uveitis (intermediate, posterior, and panuveitis) and 10 control subjects were recruited. The frequency of CD4+CD25+FoxP3+ Treg, TIGIT+ Treg, and T-bet+ Treg and the ratio of Treg to Th1 were significantly higher in remission patients compared with patients with active uveitic disease; and TIGIT+ Tregs were a significant predictor of clinical remission. Treg from patients in clinical remission demonstrated a high level of in vitro suppressive function compared with Treg from control subjects and from patients with untreated active disease. PBMC from patients in clinical remission had significantly lower methylation levels at the FOXP3 TSDR, FOXP3 promoter, and TIGIT loci and higher levels at RORC loci than those with active disease. Clinical remission was also associated with significantly higher serum levels of transforming growth factor β and IL-10, which positively correlated with Treg levels, and lower serum levels of IFNγ, IL-17A, and IL-22 compared with patients with active disease. Conclusion Clinical remission of sight-threatening non-infectious uveitis has an immunoregulatory phenotype characterized by upregulation of peripheral Treg, polarized toward T-bet and TIGIT. These findings may assist with individualized therapy of uveitis, by informing whether drug therapy has induced phenotypically stable Treg associated with long-term clinical remission.
Collapse
Affiliation(s)
- Rose M Gilbert
- Ocular Immunology, Institute of Ophthalmology, University College London (UCL), London, United Kingdom.,Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Xiaozhe Zhang
- Ocular Immunology, Institute of Ophthalmology, University College London (UCL), London, United Kingdom.,Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Robert D Sampson
- Flow Cytometry Core Facility, Institute of Ophthalmology, University College London (UCL), London, United Kingdom
| | - Michael R Ehrenstein
- Division of Medicine, Centre for Rheumatology, University College London (UCL), London, United Kingdom
| | - Dao X Nguyen
- Division of Medicine, Centre for Rheumatology, University College London (UCL), London, United Kingdom
| | - Mahid Chaudhry
- Ocular Immunology, Institute of Ophthalmology, University College London (UCL), London, United Kingdom
| | - Charles Mein
- Genome Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Nadiya Mahmud
- Genome Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Grazyna Galatowicz
- Ocular Immunology, Institute of Ophthalmology, University College London (UCL), London, United Kingdom
| | - Oren Tomkins-Netzer
- Ocular Immunology, Institute of Ophthalmology, University College London (UCL), London, United Kingdom.,Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Virginia L Calder
- Ocular Immunology, Institute of Ophthalmology, University College London (UCL), London, United Kingdom
| | - Sue Lightman
- Ocular Immunology, Institute of Ophthalmology, University College London (UCL), London, United Kingdom.,Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
40
|
Abstract
The aim of the present review paper is to survey the literature related to DNA methylation, and its association with cancer and ageing. The review will outline the key factors, including diet, which modulate DNA methylation. Our rationale for conducting this review is that ageing and diseases, including cancer, are often accompanied by aberrant DNA methylation, a key epigenetic process, which is crucial to the regulation of gene expression. Significantly, it has been observed that with age and certain disease states, DNA methylation status can become disrupted. For instance, a broad array of cancers are associated with promoter-specific hypermethylation and concomitant gene silencing. This review highlights that hypermethylation, and gene silencing, of the EN1 gene promoter, a crucial homeobox gene, has been detected in various forms of cancer. This has led to this region being proposed as a potential biomarker for diseases such as cancer. We conclude the review by describing a recently developed novel electrochemical method that can be used to quantify the level of methylation within the EN1 promoter and emphasise the growing trend in the use of electrochemical techniques for the detection of aberrant DNA methylation.
Collapse
|
41
|
Guo Q, Wu D, Yu H, Bao J, Peng S, Shan Z, Guan H, Teng W. Alterations of Global DNA Methylation and DNA Methyltransferase Expression in T and B Lymphocytes from Patients with Newly Diagnosed Autoimmune Thyroid Diseases After Treatment: A Follow-Up Study. Thyroid 2018; 28:377-385. [PMID: 29336230 DOI: 10.1089/thy.2017.0301] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Dysregulated DNA methylation in lymphocytes has been linked to autoimmune disorders. The aims of this study were to identify global DNA methylation patterns in patients with autoimmune thyroid diseases and to observe methylation changes after treatment for these conditions. METHODS A cross-sectional study was conducted, including the following patients: 51 with newly diagnosed Graves' disease (GD), 28 with autoimmune hypothyroidism (AIT), 29 with positive thyroid autoantibodies, and 39 matched healthy volunteers. Forty GD patients treated with radioiodine or antithyroid drugs and 28 AIT patients treated with L-thyroxine were followed for three months. Serum free triiodothyronine, free thyroxine, thyrotropin, thyroid peroxidase antibodies, thyroglobulin antibodies, and thyrotropin receptor antibodies were assayed using electrochemiluminescent immunoassays. CD3+ T and CD19+ B cells were separated by flow cytometry for total DNA and RNA extraction. Global DNA methylation levels were determined by absorptiometry using a methylation quantification kit. DNA methyltransferase (DNMT) expression levels were detected by real-time polymerase chain reaction. RESULTS Hypomethylation and down-regulated DNMT1 expression in T and B lymphocytes were observed in the newly diagnosed GD patients. Neither the AIT patients nor the positive thyroid autoantibodies patients exhibited differences in their global DNA methylation status or DNMT mRNA levels compared with healthy controls. Antithyroid drugs restored global methylation and DNMT1 expression in both T and B lymphocytes, whereas radioiodine therapy affected only T cells. L-thyroxine replacement did not alter the methylation or DNMT expression levels in lymphocytes. The global methylation levels of B cells were negatively correlated with the serum thyroid peroxidase antibodies in patients with autoimmune thyroid diseases. CONCLUSIONS Hyperthyroid patients with newly diagnosed GD had global hypomethylation and lower DNMT1 expression in T and B lymphocytes. The results provide the first demonstration that antithyroid drugs or radioiodine treatment restore global DNA methylation and DNMT1 expression with concurrent relief of hyperthyroidism.
Collapse
Affiliation(s)
- Qingling Guo
- 1 Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University , Shenyang, Liaoning, P.R. China
| | - Dan Wu
- 1 Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University , Shenyang, Liaoning, P.R. China
- 2 Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Shenyang Medical College (Shenyang 242 Hospital) , Shenyang, P.R. China
| | - Huixin Yu
- 3 Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine , Wuxi, P.R. China
| | - Jiandong Bao
- 3 Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine , Wuxi, P.R. China
| | - Shiqiao Peng
- 1 Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University , Shenyang, Liaoning, P.R. China
| | - Zhongyan Shan
- 1 Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University , Shenyang, Liaoning, P.R. China
| | - Haixia Guan
- 1 Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University , Shenyang, Liaoning, P.R. China
| | - Weiping Teng
- 1 Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University , Shenyang, Liaoning, P.R. China
| |
Collapse
|
42
|
Sun B, Cheng L, Xiong Y, Hu L, Luo Z, Zhou M, Li J, Xie H, He F, Yuan X, Chen X, Zhou HH, Liu Z, Chen X, Zhang W. PSORS1C1 Hypomethylation Is Associated with Allopurinol-Induced Severe Cutaneous Adverse Reactions during Disease Onset Period: A Multicenter Retrospective Case-Control Clinical Study in Han Chinese. Front Pharmacol 2018; 8:923. [PMID: 29387007 PMCID: PMC5776094 DOI: 10.3389/fphar.2017.00923] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 12/05/2017] [Indexed: 12/19/2022] Open
Abstract
Background: Allopurinol-induced severe cutaneous adverse reactions (SCARs), including drug rash with eosinophilia and systemic symptoms (DRESS), Stevens-Johnson syndrome (SJS) and toxic epidermal necrosis (TEN), are life-threatening autoimmune reactions. Evidence is growing that epigenetic variation, particularly DNA methylation, is associated with autoimmune diseases. However, the potential role of aberrant DNA methylation in allopurinol-SCARs is largely unknown. Objective: To address the knowledge gap between allopurinol-SCARs and DNA methylation, we studied the DNA methylation profiles in peripheral blood cells from allopurinol-SCARs and allopurinol-tolerant subjects. Methods: A genome-scale DNA methylation profiling was conducted using the Illumina Infinium HumanMethylation450 (HM450) platform on 15 patients with allopurinol-SCARs (3 TEN, 2 SJS/TEN overlap and 10 SJS) and 20 age- and gender-matched allopurinol-tolerant controls at disease onset. Pyrosequencing was used to validate the candidate CpG (cytosine-guanine dinucleotide) sites in an independent cohort of 40 allopurinol-SCARs and 48 allopurinol-tolerants. Results: After bioinformatics analysis of methylation data obtained from HM450 BeadChip, we identified 41 differentially methylated CpG loci (P < 0.05) annotated to 26 genes showing altered DNA methylation between allopurinol-SCARs and allopurinol-tolerants. Among these genes, significant hypomethylation of PSORS1C1 (cg24926791) was further validated in a larger sample cohort, showing significant difference between DRESS and controls (P = 0.00127), ST (SJS and TEN) and controls (P = 3.75 × 10−13), and SCARs and controls (P = 5.93 × 10−15). Conclusions: Our data identified differentially methylated genes between allopurinol-SCARs and allopurinol-tolerant controls and showed that PSORS1C1 hypomethylation was associated with allopurinol-SCARs (OR = 30.22, 95%CI = 4.73–192.96) during disease onset, suggesting that aberrant DNA methylation may be a mechanism of allopurinol-SCARs. Limitations: Firstly, the data come from whole blood samples known to possess epigenetic heterogeneity, i. e., blood samples comprise a heterogeneous cell population with varying proportions of distinct cell-types with different DNA methylation patterns. Consequently, the interpretation of DNA methylation results should be performed with great caution due to the heterogeneous nature of the sample. Secondly, whether the identified disease-associated changes of epigenome precede disease onset, or result from the disease progression, needs further investigation. Comparing the methylation status before patients develop allopurinol-SCARs and after may help examine methylation levels from disease onset to disease progression.
Collapse
Affiliation(s)
- Bao Sun
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Lin Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Shenzhen Eyeis Visual Science Research Institute, Shenzhen, China
| | - Yan Xiong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Lei Hu
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| | - Zhiying Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Maosong Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Fazhong He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Xiaoqing Yuan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Xiaoping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Xiang Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| |
Collapse
|
43
|
Guo Q, Wu D, Fan C, Peng S, Guan H, Shan Z, Teng W. Iodine excess did not affect the global DNA methylation status and DNA methyltransferase expression in T and B lymphocytes from NOD.H-2 h4 and Kunming mice. Int Immunopharmacol 2017; 55:151-157. [PMID: 29253821 DOI: 10.1016/j.intimp.2017.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/12/2022]
Abstract
Dysregulated DNA methylation in lymphocytes has been linked to various autoimmune disorders. Excessive iodine intake leads to lymphocyte dysfunction and contributes to autoimmune thyroiditis (AIT) flares in humans and animals. However, whether excessive iodine modifies the DNA methylation status in lymphocytes is unknown. Twenty NOD.H-2h4 mice and 20 Kunming mice were randomly divided into high iodine and control groups. We scored lymphatic infiltration in the thyroid by hematoxylin and eosin (H&E) staining and assayed serum thyroglobulin antibody (TgAb) levels by an indirect enzyme-linked immunosorbent assay. CD3+ T cells and CD19+ B cells were separated by flow cytometry. Global DNA methylation levels were examined by absorptiometry. Methylation of long interspersed nucleotide element-1 (LINE-1) repeats was detected with bisulfite sequencing PCR. Expression of DNA methyltransferase (DNMT) 1, DNMT3a and DNMT3b mRNA and protein were determined by real-time PCR and Western blot, respectively. We observed evident thyroiditis in the high‑iodine-treated NOD.H-2h4 mice, while mice in the other three groups did not develop thyroiditis. No differences were found in the global methylation levels and methylation status of LINE-1 repeats in T and B lymphocytes from high‑iodine-treated NOD.H-2h4 mice and Kunming mice compared with those from normal‑iodine-supplemented controls. We did not find obvious changes in DNMT mRNA and protein expression levels in T and B lymphocytes among the studied groups. In conclusion, we showed for the first time that excess iodine did not affect the global methylation status or DNMT expression in T and B lymphocytes in NOD.H-2h4 and Kunming mice.
Collapse
Affiliation(s)
- Qingling Guo
- Department of Endocrinology and Metabolism, The Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Dan Wu
- Department of Endocrinology and Metabolism, The Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China; Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Shenyang Medical College (Shenyang 242 Hospital), Shenyang, China
| | - Chenling Fan
- Department of Endocrinology and Metabolism, The Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Shiqiao Peng
- Department of Endocrinology and Metabolism, The Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Haixia Guan
- Department of Endocrinology and Metabolism, The Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China.
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, The Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, The Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
44
|
Rezaei R, Mahmoudi M, Gharibdoost F, Kavosi H, Dashti N, Imeni V, Jamshidi A, Aslani S, Mostafaei S, Vodjgani M. IRF7 gene expression profile and methylation of its promoter region in patients with systemic sclerosis. Int J Rheum Dis 2017; 20:1551-1561. [DOI: 10.1111/1756-185x.13175] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ramazan Rezaei
- Rheumatology Research Center; Tehran University of Medical Sciences; Tehran Iran
- Department of Immunology, School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center; Tehran University of Medical Sciences; Tehran Iran
| | - Farhad Gharibdoost
- Rheumatology Research Center; Tehran University of Medical Sciences; Tehran Iran
| | - Hoda Kavosi
- Rheumatology Research Center; Tehran University of Medical Sciences; Tehran Iran
| | - Navid Dashti
- Rheumatology Research Center; Tehran University of Medical Sciences; Tehran Iran
- Department of Immunology, School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Vahideh Imeni
- Rheumatology Research Center; Tehran University of Medical Sciences; Tehran Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center; Tehran University of Medical Sciences; Tehran Iran
| | - Saeed Aslani
- Rheumatology Research Center; Tehran University of Medical Sciences; Tehran Iran
| | - Shayan Mostafaei
- Rheumatology Research Center; Tehran University of Medical Sciences; Tehran Iran
| | - Mohammad Vodjgani
- Department of Immunology, School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
45
|
Tang Q, Chen Y, Wu W, Ding H, Xia Y, Chen D, Wang X. Idiopathic male infertility and polymorphisms in the DNA methyltransferase genes involved in epigenetic marking. Sci Rep 2017; 7:11219. [PMID: 28894282 PMCID: PMC5593912 DOI: 10.1038/s41598-017-11636-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/29/2017] [Indexed: 12/17/2022] Open
Abstract
The purpose of this study was to investigate the association between male infertility and single-nucleotide polymorphisms (SNPs) of DNA methyltransferases (DNMT) genes (DNMT3B: rs2424909, DNMT1: rs4804490, DNMT3A: rs1550117 and DNMT3L: rs7354779). Eight hundred and thirty three idiopathic infertile males and four hundred and ten fertile controls from the hospitals affiliated to Nanjing Medical University between 2010 and 2012 were recruited in the study. We demonstrated a significantly increased risk of idiopathic infertility with abnormal semen parameters in association with the heterozygous genotype of variant rs4804490. Moreover, the AA genotype of variant rs4804490 was associated with significantly decreased risk for male infertility with abnormal semen parameters. A decreased risk of idiopathic infertility with abnormal semen parameters was associated with the homozygous genotype of variant rs2424909. These results suggested that variants in different DNMT genes have different relationships with idiopathic male infertility, and Chinese men carrying these variants have an increased or decreased risk of abnormal semen parameters.
Collapse
Affiliation(s)
- Qiuqin Tang
- State Key Laboratory of Reproductive Medicine, Department of Obstetrics, Nanjing Maternity and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Yiqiu Chen
- State Key Laboratory of Reproductive Medicine, Institute of Applied Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, 211166, China
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine, Institute of Applied Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, 211166, China.
- Clinical Laboratory, Wuxi Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Wuxi, 214002, China.
| | - Hongjuan Ding
- State Key Laboratory of Reproductive Medicine, Department of Obstetrics, Nanjing Maternity and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Applied Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, 211166, China.
| | - Daozhen Chen
- Clinical Laboratory, Wuxi Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Wuxi, 214002, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Applied Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
46
|
Pinto-Medel MJ, Oliver-Martos B, Urbaneja-Romero P, Hurtado-Guerrero I, Ortega-Pinazo J, Serrano-Castro P, Fernández Ó, Leyva L. Global methylation correlates with clinical status in multiple sclerosis patients in the first year of IFNbeta treatment. Sci Rep 2017; 7:8727. [PMID: 28821874 PMCID: PMC5562733 DOI: 10.1038/s41598-017-09301-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/25/2017] [Indexed: 02/08/2023] Open
Abstract
The alteration of DNA methylation patterns are a key component of disease onset and/or progression. Our objective was to evaluate the differences in Long Interspersed Nuclear Element-1 (LINE-1) methylation levels, as a surrogate marker of global DNA methylation, between multiple sclerosis (MS) patients and healthy controls. In addition, we assessed the association of LINE-1 methylation with clinical disease activity in patients treated with IFNbeta (IFNβ). We found that individuals with high levels of LINE-1 methylation showed 6-fold increased risk of suffering MS. Additionally, treated MS patients who bear high LINE-1 methylation levels had an 11-fold increased risk of clinical activity. Moreover, a negative correlation between treatment duration and percentage of LINE-1 methylation, that was statistically significant exclusively in the group of patients without clinical activity, was observed. Our data suggest that in MS patients, a slight global DNA hypermethylation occurs that may be related to the pathophysiology of the disease. In addition, global DNA methylation levels could play a role as a biomarker for the differential clinical response to IFNβ.
Collapse
Affiliation(s)
- María Jesús Pinto-Medel
- UGC Neurociencias, Laboratorio de Investigación. Instituto de Investigación Biomedica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), Málaga, Spain.
| | - Begoña Oliver-Martos
- UGC Neurociencias, Laboratorio de Investigación. Instituto de Investigación Biomedica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), Málaga, Spain
| | - Patricia Urbaneja-Romero
- UGC Neurociencias, Servicio de Neurología, Fundación Pública Andaluza para la Investigación de Málaga en Biomedicina y Salud (FIMABIS), Málaga, Spain
| | - Isaac Hurtado-Guerrero
- UGC Neurociencias, Laboratorio de Investigación. Instituto de Investigación Biomedica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), Málaga, Spain
| | - Jesús Ortega-Pinazo
- UGC Neurociencias, Laboratorio de Investigación. Instituto de Investigación Biomedica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), Málaga, Spain
| | - Pedro Serrano-Castro
- UGC Neurociencias, Servicio de Neurología, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Óscar Fernández
- UGC Neurociencias, Laboratorio de Investigación. Instituto de Investigación Biomedica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), Málaga, Spain
| | - Laura Leyva
- UGC Neurociencias, Laboratorio de Investigación. Instituto de Investigación Biomedica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), Málaga, Spain
| |
Collapse
|
47
|
The destiny of the resistance/susceptibility against GCRV is controlled by epigenetic mechanisms in CIK cells. Sci Rep 2017; 7:4551. [PMID: 28674382 PMCID: PMC5495752 DOI: 10.1038/s41598-017-03990-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 05/08/2017] [Indexed: 12/23/2022] Open
Abstract
Hemorrhagic disease caused by grass carp reovirus (GCRV) has severely threatened the grass carp (Ctenopharyngodon idella) cultivation industry. It is noteworthy that the resistance against GCRV infection was reported to be inheritable, and identified at both individual and cellular levels. Therefore, this work was inspired and dedicated to unravel the molecular mechanisms of fate decision post GCRV infection in related immune cells. Foremost, the resistant and susceptible CIK (C. idella kidney) monoclonal cells were established by single cell sorting, subculturing and infection screening successively. RNA-Seq, MeDIP-Seq and small RNA-Seq were carried out with C1 (CIK cells), R2 (resistant cells) and S3 (susceptible cells) groups. It was demonstrated that genome-wide DNA methylation, mRNA and microRNA expression levels in S3 were the highest among three groups. Transcriptome analysis elucidated that pathways associated with antioxidant activity, cell proliferation regulation, apoptosis activity and energy consuming might contribute to the decision of cell fates post infection. And a series of immune-related genes were identified differentially expressed across resistant and susceptible groups, which were negatively modulated by DNA methylation or microRNAs. To conclude, this study systematically uncovered the regulatory mechanism on the resistance from epigenetic perspective and provided potential biomarkers for future studies on resistance breeding.
Collapse
|
48
|
Zhang M, Fang X, Wang GS, Ma Y, Jin L, Li XM, Li XP. Ultraviolet B decreases DNA methylation level of CD4+ T cells in patients with systemic lupus erythematosus. Inflammopharmacology 2017; 25:203-210. [PMID: 28190128 DOI: 10.1007/s10787-017-0321-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/21/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE In the present study, DNA methylation level of CD4+ T cells exposed to ultraviolet B (UVB) was investigated and its potential mechanisms were also explored. METHODS CD4+ T cells from 12 cases of healthy subjects and 33 cases of SLE patients were isolated and exposed to different dosages (0, 50, 100 mJ/cm2) of UVB. Further, SLE patients were divided into two groups: active SLE group (22 cases, SLEDAI scores >4) and inactive SLE group (11 cases, SLEDAI scores ≤4). DNA methylation was evaluated by the Methylamp™ Global DNA Methylation Quantification Ultra Kit. The mRNA and protein expression levels of DNA methyltransferases (DNMT1 and DNMT3A) were detected by real-time PCR and western blot, respectively. RESULTS The levels of DNA methylation and DNMT3A mRNA in SLE patients were significantly decreased compared with those in healthy subjects at baseline. After different dosages of ultraviolet irradiation (0, 50 and 100 mJ/cm2), DNA methylation levels of CD4+ T cells were all reduced in a dose-dependent manner in three subgroups. Additionally, 100 mJ/cm2 ultraviolet irradiation in active SLE group contributed to a significant decrease of both DNA methylation and DNMT3A mRNA levels in CD4+ T cells. UVB exposure had no significant effects on expression levels of DNMT1 mRNA and protein and DNMT3A protein. CONCLUSION UVB decreases DNA methylation level of CD4+ T cells in SLE patients probably via inhibiting DNMT3A mRNA expression level, which needs to be further explored.
Collapse
Affiliation(s)
- Min Zhang
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Anhui Medical University, No. 17 Lujiang Road, Hefei, 230001, People's Republic of China
| | - Xuan Fang
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Anhui Medical University, No. 17 Lujiang Road, Hefei, 230001, People's Republic of China
| | - Guo-Sheng Wang
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Anhui Medical University, No. 17 Lujiang Road, Hefei, 230001, People's Republic of China
| | - Yan Ma
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Anhui Medical University, No. 17 Lujiang Road, Hefei, 230001, People's Republic of China
| | - Li Jin
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Anhui Medical University, No. 17 Lujiang Road, Hefei, 230001, People's Republic of China
| | - Xiao-Mei Li
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Anhui Medical University, No. 17 Lujiang Road, Hefei, 230001, People's Republic of China
| | - Xiang-Pei Li
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Anhui Medical University, No. 17 Lujiang Road, Hefei, 230001, People's Republic of China.
| |
Collapse
|
49
|
Zhong X, Peng Y, Yao C, Qing Y, Yang Q, Guo X, Xie W, Zhao M, Cai X, Zhou JG. Association of DNA methyltransferase polymorphisms with susceptibility to primary gouty arthritis. Biomed Rep 2016; 5:467-472. [PMID: 27699015 DOI: 10.3892/br.2016.746] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/27/2016] [Indexed: 01/03/2023] Open
Abstract
Gouty arthritis is the most common type of inflammatory and immune disease, and the prevalence and incidence of gout increases annually. Genetic variations in the DNA methyltransferases (DNMTs) gene have not, to the best of our knowledge, been reported to influence gene expression and to participate in the pathogenesis of gout. The aim of the present study was to investigate whether the DNMT1, DNMT3A and DNMT3B polymorphisms contribute to gout susceptibility. These polymorphisms were screened for in 336 gout patients and 306 healthy control subjects (from a South China population) for association with gout. The distribution frequencies of DNMT1 rs2228611 AA genotype (P=0.007) and A allele (P=0.002; odds ratio=1.508, 95% confidence interval=1.158-1.964) were found to be significantly increased in the gout patients when compared with those in the healthy control subjects. The rs1550117 in DNMT3A and rs2424913 in DNMT3B exhibited no significant associations with gout susceptibility between the patients and control subjects. These results demonstrated that the DNMT1 rs2228611 polymorphism may be involved in the pathogenesis of gout, while DNMT3A rs1550117 and DNMT3B rs2424913 did not show any obvious significance in the current study; thus, may not be used as risk factors to predict the susceptibility to gout. However, further studies are required to investigate the functions and regulatory mechanism of the polymorphisms of DNMTs in gout.
Collapse
Affiliation(s)
- Xiaowu Zhong
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China; Medicine Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China; Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637007, P.R. China
| | - Yuanhong Peng
- Department of Rheumatology and Immunology of the Affiliated Hospital, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Chengjiao Yao
- Medicine Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Yufeng Qing
- Department of Rheumatology and Immunology of the Affiliated Hospital, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Qibin Yang
- Department of Rheumatology and Immunology of the Affiliated Hospital, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xiaolan Guo
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China; Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637007, P.R. China
| | - Wenguang Xie
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China; Medicine Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Mingcai Zhao
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China; Medicine Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China; Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637007, P.R. China
| | - Xiaoming Cai
- Department of Biology, North Sichuan Medical College, Nanchong, Sichuan 637007, P.R. China
| | - Jing-Guo Zhou
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637007, P.R. China; Department of Rheumatology and Immunology of the Affiliated Hospital, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
50
|
Chalan P, van den Berg A, Kroesen BJ, Brouwer L, Boots A. Rheumatoid Arthritis, Immunosenescence and the Hallmarks of Aging. Curr Aging Sci 2016. [PMID: 26212057 PMCID: PMC5388800 DOI: 10.2174/1874609808666150727110744] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Age is the most important risk factor for the development of infectious diseases, cancer and chronic inflammatory diseases including rheumatoid arthritis (RA). The very act of living causes damage to cells. A network of molecular, cellular and physiological maintenance and repair systems creates a buffering capacity against these damages. Aging leads to progressive shrinkage of the buffering capacity and increases vulnerability. In order to better understand the complex mammalian aging processes, nine hallmarks of aging and their interrelatedness were recently put forward. RA is a chronic autoimmune disease affecting the joints. Although RA may develop at a young age, the incidence of RA increases with age. It has been suggested that RA may develop as a consequence of premature aging (immunosenescence) of the immune system. Alternatively, premature aging may be the consequence of the inflammatory state in RA. In an effort to answer this chicken and egg conundrum, we here outline and discuss the nine hallmarks of aging, their contribution to the pre-aged phenotype and the effects of treatment on the reversibility of immunosenescence in RA.
Collapse
Affiliation(s)
| | | | | | | | - Annemieke Boots
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, P.O Box 30.001, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|