1
|
Mohindra P, Zhong JX, Fang Q, Cuylear DL, Huynh C, Qiu H, Gao D, Kharbikar BN, Huang X, Springer ML, Lee RJ, Desai TA. Local decorin delivery via hyaluronic acid microrods improves cardiac performance, ventricular remodeling after myocardial infarction. NPJ Regen Med 2023; 8:60. [PMID: 37872196 PMCID: PMC10593781 DOI: 10.1038/s41536-023-00336-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023] Open
Abstract
Heart failure (HF) remains a global public health burden and often results following myocardial infarction (MI). Following injury, cardiac fibrosis forms in the myocardium which greatly hinders cellular function, survival, and recruitment, thus severely limits tissue regeneration. Here, we leverage biophysical microstructural cues made of hyaluronic acid (HA) loaded with the anti-fibrotic proteoglycan decorin to more robustly attenuate cardiac fibrosis after acute myocardial injury. Microrods showed decorin incorporation throughout the entirety of the hydrogel structures and exhibited first-order release kinetics in vitro. Intramyocardial injections of saline (n = 5), microrods (n = 7), decorin microrods (n = 10), and free decorin (n = 4) were performed in male rat models of ischemia-reperfusion MI to evaluate therapeutic effects on cardiac remodeling and function. Echocardiographic analysis demonstrated that rats treated with decorin microrods (5.21% ± 4.29%) exhibited significantly increased change in ejection fraction (EF) at 8 weeks post-MI compared to rats treated with saline (-4.18% ± 2.78%, p < 0.001) and free decorin (-3.42% ± 1.86%, p < 0.01). Trends in reduced end diastolic volume were also identified in decorin microrod-treated groups compared to those treated with saline, microrods, and free decorin, indicating favorable ventricular remodeling. Quantitative analysis of histology and immunofluorescence staining showed that treatment with decorin microrods reduced cardiac fibrosis (p < 0.05) and cardiomyocyte hypertrophy (p < 0.05) at 8 weeks post-MI compared to saline control. Together, this work aims to contribute important knowledge to guide rationally designed biomaterial development that may be used to successfully treat cardiovascular diseases.
Collapse
Affiliation(s)
- Priya Mohindra
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Justin X Zhong
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Qizhi Fang
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| | - Darnell L Cuylear
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Graduate Program in Graduate Program in Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| | - Cindy Huynh
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Division of Vascular and Endovascular Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Huiliang Qiu
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| | - Dongwei Gao
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| | - Bhushan N Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Xiao Huang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Matthew L Springer
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| | - Randall J Lee
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, USA
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Tejal A Desai
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA.
- School of Engineering, Brown University, Providence, RI, USA.
| |
Collapse
|
2
|
Desai T, Mohindra P, Zhong J, Fang Q, Huynh C, Cuylear D, Qiu H, Gao D, Kharbikar B, Huang X, Springer M, Lee R. Local delivery of decorin via hyaluronic acid microrods improves cardiac performance and ventricular remodeling after myocardial infarction. RESEARCH SQUARE 2023:rs.3.rs-2501087. [PMID: 36798333 PMCID: PMC9934754 DOI: 10.21203/rs.3.rs-2501087/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Heart failure (HF) is a global public health burden and associated with significant morbidity and mortality. HF can result as a complication following myocardial infarction (MI), with cardiac fibrosis forming in the myocardium as a response to injury. The dense, avascular scar tissue that develops in the myocardium after injury following MI creates an inhospitable microenvironment that hinders cellular function, survival, and recruitment, thus severely limiting tissue regeneration. We have previously demonstrated the ability of hyaluronic acid (HA) polymer microrods to modulate fibroblast phenotype using discrete biophysical cues and to improve cardiac outcomes after implantation in rodent models of ischemia-reperfusion MI injury. Here, we developed a dual-pronged biochemical and biophysical therapeutic strategy leveraging bioactive microrods to more robustly attenuate cardiac fibrosis after acute myocardial injury. Incorporation of the anti-fibrotic proteoglycan decorin within microrods led to sustained release of decorin over one month in vitro and after implantation, resulted in marked improvement in cardiac function and ventricular remodeling, along with decreased fibrosis and cardiomyocyte hypertrophy. Together, this body of work aims to contribute important knowledge to help develop rationally designed engineered biomaterials that may be used to successfully treat cardiovascular diseases.
Collapse
Affiliation(s)
- Tejal Desai
- University of California, San Francisco & Brown University
| | - Priya Mohindra
- University of California, Berkeley & University of California, San Francisco
| | - Justin Zhong
- University of California, Berkeley & University of California, San Francisco
| | | | - Cindy Huynh
- Brigham and Women's Hospital, Harvard Medical School
| | | | | | | | | | | | | | | |
Collapse
|
3
|
D'Amico R, Malucelli C, Uccelli A, Grosso A, Di Maggio N, Briquez PS, Hubbell JA, Wolff T, Gürke L, Mujagic E, Gianni-Barrera R, Banfi A. Therapeutic arteriogenesis by factor-decorated fibrin matrices promotes wound healing in diabetic mice. J Tissue Eng 2022; 13:20417314221119615. [PMID: 36093431 PMCID: PMC9452813 DOI: 10.1177/20417314221119615] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic wounds in type-2 diabetic patients present areas of severe local skin ischemia despite mostly normal blood flow in deeper large arteries. Therefore, restoration of blood perfusion requires the opening of arterial connections from the deep vessels to the superficial skin layer, that is, arteriogenesis. Arteriogenesis is regulated differently from microvascular angiogenesis and is optimally stimulated by high doses of Vascular Endothelial Growth Factor-A (VEGF) together with Platelet-Derived Growth Factor-BB (PDGF-BB). Here we found that fibrin hydrogels decorated with engineered versions of VEGF and PDGF-BB proteins, to ensure protection from degradation and controlled delivery, efficiently accelerated wound closure in diabetic and obese db/db mice, promoting robust microvascular growth and a marked increase in feeding arterioles. Notably, targeting the arteriogenic factors to the intact arterio-venous networks in the dermis around the wound was more effective than the routine treatment of the inflamed wound bed. This approach is readily translatable to a clinical setting.
Collapse
Affiliation(s)
- Rosalinda D'Amico
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland.,Vascular Surgery, Department of Surgery, Basel University Hospital and University of Basel, Basel, Switzerland
| | - Camilla Malucelli
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
| | - Andrea Uccelli
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
| | - Andrea Grosso
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
| | - Nunzia Di Maggio
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
| | - Priscilla S Briquez
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Thomas Wolff
- Vascular Surgery, Department of Surgery, Basel University Hospital and University of Basel, Basel, Switzerland
| | - Lorenz Gürke
- Vascular Surgery, Department of Surgery, Basel University Hospital and University of Basel, Basel, Switzerland
| | - Edin Mujagic
- Vascular Surgery, Department of Surgery, Basel University Hospital and University of Basel, Basel, Switzerland
| | - Roberto Gianni-Barrera
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
| | - Andrea Banfi
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland.,Vascular Surgery, Department of Surgery, Basel University Hospital and University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Certelli A, Valente P, Uccelli A, Grosso A, Di Maggio N, D'Amico R, Briquez PS, Hubbell JA, Wolff T, Gürke L, Mujagic E, Gianni-Barrera R, Banfi A. Robust Angiogenesis and Arteriogenesis in the Skin of Diabetic Mice by Transient Delivery of Engineered VEGF and PDGF-BB Proteins in Fibrin Hydrogels. Front Bioeng Biotechnol 2021; 9:688467. [PMID: 34277588 PMCID: PMC8281302 DOI: 10.3389/fbioe.2021.688467] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022] Open
Abstract
Non-healing ulcers are a serious complication of diabetes mellitus and a major unmet medical need. A major cause for the lack of healing is the impairment of spontaneous vascularization in the skin, despite mostly normal blood flow in deeper large vessels. Therefore, pro-angiogenic treatments are needed to increase therapeutic perfusion by recruiting new arterial connections (therapeutic arteriogenesis). Vascular endothelial growth factor (VEGF) is the master regulator of angiogenesis in physiology and disease, but exploitation of its therapeutic potential requires careful control of its dose distribution in tissue. Co-delivery of platelet derived growth factor-BB (PDGF-BB) has been shown to expand the therapeutic window of VEGF and also improve associated arteriogenesis. We used a highly controlled protein delivery system, based on a clinically applicable fibrin-based platform, to investigate the angiogenic and arteriogenic potential of engineered versions (TG-) of VEGF and PDGF-BB proteins in the skin of diabetic and obese db/db mice. Intradermal delivery of therapeutically relevant doses of TG-VEGF and TG-PDGF-BB induced robust growth of new microvascular networks with similar efficacy as in normal littermate control mice. Further, TG-PDGF-BB prevented the formation of aberrant vascular enlargements by high TG-VEGF levels. As fibrin was degraded after the first week, the induced angiogenesis mostly regressed by 4 weeks, but it promoted effective arteriogenesis in the dermal layer. Therefore, controlled co-delivery of TG-VEGF and TG-PDGF-BB recombinant proteins is effective to induce angiogenesis and arteriogenesis in diabetic mouse skin and should be further investigated to promote diabetic wound healing.
Collapse
Affiliation(s)
- Alessandro Certelli
- Cell and Gene Therapy, Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Paolo Valente
- Cell and Gene Therapy, Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland.,Vascular Surgery, Department of Surgery, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Andrea Uccelli
- Cell and Gene Therapy, Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Andrea Grosso
- Cell and Gene Therapy, Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Nunzia Di Maggio
- Cell and Gene Therapy, Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Rosalinda D'Amico
- Cell and Gene Therapy, Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland.,Vascular Surgery, Department of Surgery, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Priscilla S Briquez
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Thomas Wolff
- Vascular Surgery, Department of Surgery, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Lorenz Gürke
- Vascular Surgery, Department of Surgery, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Edin Mujagic
- Vascular Surgery, Department of Surgery, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Roberto Gianni-Barrera
- Cell and Gene Therapy, Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Andrea Banfi
- Cell and Gene Therapy, Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland.,Vascular Surgery, Department of Surgery, University Hospital of Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
5
|
Largo RD, Burger MG, Harschnitz O, Waschkies CF, Grosso A, Scotti C, Kaempfen A, Gueven S, Jundt G, Scherberich A, Schaefer DJ, Banfi A, Di Maggio N. VEGF Over-Expression by Engineered BMSC Accelerates Functional Perfusion, Improving Tissue Density and In-Growth in Clinical-Size Osteogenic Grafts. Front Bioeng Biotechnol 2020; 8:755. [PMID: 32714920 PMCID: PMC7351518 DOI: 10.3389/fbioe.2020.00755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 06/12/2020] [Indexed: 11/14/2022] Open
Abstract
The first choice for reconstruction of clinical-size bone defects consists of autologous bone flaps, which often lack the required mechanical strength and cause significant donor-site morbidity. We have previously developed biological substitutes in a rabbit model by combining bone tissue engineering and flap pre-fabrication. However, spontaneous vascularization was insufficient to ensure progenitor survival in the core of the constructs. Here, we hypothesized that increased angiogenic stimulation within constructs by exogenous VEGF can significantly accelerate early vascularization and tissue in-growth. Bone marrow stromal cells from NZW rabbits (rBMSC) were transduced with a retroviral vector to express rabbit VEGF linked to a truncated version of rabbit CD4 as a cell-surface marker. Autologous cells were seeded in clinical-size 5.5 cm3 HA scaffolds wrapped in a panniculus carnosus flap to provide an ample vascular supply, and implanted ectopically. Constructs seeded with VEGF-expressing rBMSC showed significantly increased progenitor survivival, depth of tissue ingrowth and amount of mineralized tissue. Contrast-enhanced MRI after 1 week in vivo showed significantly improved tissue perfusion in the inner layer of the grafts compared to controls. Interestingly, grafts containing VEGF-expressing rBMSC displayed a hierarchically organized functional vascular tree, composed of dense capillary networks in the inner layers connected to large-caliber feeding vessels entering the constructs at the periphery. These data constitute proof of principle that providing sustained VEGF signaling, independently of cells experiencing hypoxia, is effective to drive rapid vascularization and increase early perfusion in clinical-size osteogenic grafts, leading to improved tissue formation deeper in the constructs.
Collapse
Affiliation(s)
- Rene' D Largo
- Cell and Gene Therapy, Department of Biomedicine, >Basel University Hospital and University of Basel, Basel, Switzerland.,Plastic and Reconstructive Surgery, Department of Surgery, Basel University Hospital and University of Basel, Basel, Switzerland
| | - Maximilian G Burger
- Cell and Gene Therapy, Department of Biomedicine, >Basel University Hospital and University of Basel, Basel, Switzerland.,Plastic and Reconstructive Surgery, Department of Surgery, Basel University Hospital and University of Basel, Basel, Switzerland
| | - Oliver Harschnitz
- Cell and Gene Therapy, Department of Biomedicine, >Basel University Hospital and University of Basel, Basel, Switzerland.,Plastic and Reconstructive Surgery, Department of Surgery, Basel University Hospital and University of Basel, Basel, Switzerland
| | - Conny F Waschkies
- Institute for Biomedical Engineering, ETH and University of Zurich, Zurich, Switzerland.,Department of Surgical Research, University Hospital Zurich, Zurich, Switzerland
| | - Andrea Grosso
- Cell and Gene Therapy, Department of Biomedicine, >Basel University Hospital and University of Basel, Basel, Switzerland.,Plastic and Reconstructive Surgery, Department of Surgery, Basel University Hospital and University of Basel, Basel, Switzerland
| | - Celeste Scotti
- Tissue Engineering, Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Alexandre Kaempfen
- Plastic and Reconstructive Surgery, Department of Surgery, Basel University Hospital and University of Basel, Basel, Switzerland
| | - Sinan Gueven
- Tissue Engineering, Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Gernot Jundt
- Institute of Pathology, University Hospital of Basel, Basel, Switzerland
| | - Arnaud Scherberich
- Tissue Engineering, Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Dirk J Schaefer
- Plastic and Reconstructive Surgery, Department of Surgery, Basel University Hospital and University of Basel, Basel, Switzerland
| | - Andrea Banfi
- Cell and Gene Therapy, Department of Biomedicine, >Basel University Hospital and University of Basel, Basel, Switzerland.,Plastic and Reconstructive Surgery, Department of Surgery, Basel University Hospital and University of Basel, Basel, Switzerland
| | - Nunzia Di Maggio
- Cell and Gene Therapy, Department of Biomedicine, >Basel University Hospital and University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
Marushima A, Nieminen M, Kremenetskaia I, Gianni-Barrera R, Woitzik J, von Degenfeld G, Banfi A, Vajkoczy P, Hecht N. Balanced single-vector co-delivery of VEGF/PDGF-BB improves functional collateralization in chronic cerebral ischemia. J Cereb Blood Flow Metab 2020; 40:404-419. [PMID: 30621518 PMCID: PMC7370608 DOI: 10.1177/0271678x18818298] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The myoblast-mediated delivery of angiogenic genes represents a cell-based approach for targeted induction of therapeutic collateralization. Here, we tested the superiority of myoblast-mediated co-delivery of vascular endothelial growth factor-A (VEGF) together with platelet-derived growth factor-BB (PDGF-BB) on transpial collateralization of an indirect encephalomyosynangiosis (EMS) in a model of chronic cerebral ischemia. Mouse myoblasts expressing a reporter gene alone (empty vector), VEGF, PDGF-BB or VEGF and PDGF-BB through a single bi-cistronic vector (VIP) were implanted into the temporalis muscle of an EMS following permanent ipsilateral internal carotid artery occlusion in adult, male C57BL/6N mice. Over 84 days, myoblast engraftment and gene product expression, hemodynamic impairment, transpial collateralization, angiogenesis, pericyte recruitment and post-ischemic neuroprotection were assessed. By day 42, animals that received PDGF-BB in combination with VEGF (VIP) showed superior hemodynamic recovery, EMS collateralization and ischemic protection with improved pericyte recruitment around the parenchymal vessels and EMS collaterals. Also, supplementation of PDGF-BB resulted in a striking astrocytic activation with intrinsic VEGF mobilization in the cortex below the EMS. Our findings suggest that EMS surgery together with myoblast-mediated co-delivery of VEGF/PDGF-BB may have the potential to serve as a novel treatment strategy for augmentation of collateral flow in the chronically hypoperfused brain.
Collapse
Affiliation(s)
- Aiki Marushima
- Department of Neurosurgery and Center for Stroke research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Melina Nieminen
- Department of Neurosurgery and Center for Stroke research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Irina Kremenetskaia
- Department of Neurosurgery and Center for Stroke research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Roberto Gianni-Barrera
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Johannes Woitzik
- Department of Neurosurgery and Center for Stroke research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Andrea Banfi
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Peter Vajkoczy
- Department of Neurosurgery and Center for Stroke research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nils Hecht
- Department of Neurosurgery and Center for Stroke research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
7
|
Glycosaminoglycan-based hydrogels with programmable host reactions. Biomaterials 2020; 228:119557. [DOI: 10.1016/j.biomaterials.2019.119557] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/06/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022]
|
8
|
Verma M, Shimizu-Motohashi Y, Asakura Y, Ennen JP, Bosco J, Zhou Z, Fong GH, Josiah S, Keefe D, Asakura A. Inhibition of FLT1 ameliorates muscular dystrophy phenotype by increased vasculature in a mouse model of Duchenne muscular dystrophy. PLoS Genet 2019; 15:e1008468. [PMID: 31877123 PMCID: PMC6932757 DOI: 10.1371/journal.pgen.1008468] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive genetic disease in which the dystrophin coding for a membrane stabilizing protein is mutated. Recently, the vasculature has also shown to be perturbed in DMD and DMD model mdx mice. Recent DMD transcriptomics revealed the defects were correlated to a vascular endothelial growth factor (VEGF) signaling pathway. To reveal the relationship between DMD and VEGF signaling, mdx mice were crossed with constitutive (CAGCreERTM:Flt1LoxP/LoxP) and endothelial cell-specific conditional gene knockout mice (Cdh5CreERT2:Flt1LoxP/LoxP) for Flt1 (VEGFR1) which is a decoy receptor for VEGF. Here, we showed that while constitutive deletion of Flt1 is detrimental to the skeletal muscle function, endothelial cell-specific Flt1 deletion resulted in increased vascular density, increased satellite cell number and improvement in the DMD-associated phenotype in the mdx mice. These decreases in pathology, including improved muscle histology and function, were recapitulated in mdx mice given anti-FLT1 peptides or monoclonal antibodies, which blocked VEGF-FLT1 binding. The histological and functional improvement of dystrophic muscle by FLT1 blockade provides a novel pharmacological strategy for the potential treatment of DMD. Duchenne muscular dystrophy (DMD) is a devastating muscle disease affecting one in 5,000 newborn males, in which the gene encoding the dystrophin protein is mutated. It is a progressive muscle degenerative disease with death by either respiratory insufficiency or cardiac failure in their 20s. Recently, the vasculature has also shown to be perturbed in DMD and DMD model mdx mice with the defects correlated to a vascular endothelial growth factor (VEGF) signaling pathway. To reveal the relationship between DMD and VEGF signaling, mdx mice were crossed with mice carrying mutated a decoy receptor gene (Flt1) for VEGF. Here, we showed that Flt1 deletion resulted in increased vascular density and improvement in the DMD-associated skeletal muscle phenotype in the mdx mice. These decreases in pathology, including improved muscle histology and function, were recapitulated in mdx mice given anti-FLT1 peptides or monoclonal antibodies, which blocked VEGF-FLT1 binding. The histological and functional improvement of dystrophic muscle by FLT1 blockade provides a novel pharmacological strategy for the potential treatment of DMD.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/pharmacology
- Disease Models, Animal
- Endothelial Cells/metabolism
- Gene Knockout Techniques
- Male
- Mice
- Mice, Inbred mdx
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiopathology
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/physiopathology
- Organ Specificity
- Peptides/administration & dosage
- Peptides/pharmacology
- Signal Transduction/drug effects
- Vascular Endothelial Growth Factor A/metabolism
- Vascular Endothelial Growth Factor Receptor-1/antagonists & inhibitors
- Vascular Endothelial Growth Factor Receptor-1/genetics
Collapse
Affiliation(s)
- Mayank Verma
- Medical Scientist Training Program, University of Minnesota Medical School, Minneapolis, MN, United States of America
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, United States of America
- Paul & Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, MN, United States of America
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Yuko Shimizu-Motohashi
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, United States of America
- Paul & Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, MN, United States of America
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Yoko Asakura
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, United States of America
- Paul & Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, MN, United States of America
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - James P. Ennen
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, United States of America
- Paul & Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, MN, United States of America
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Jennifer Bosco
- Shire Human Genetic Therapies, Inc., a member of the Takeda group of companies, Lexington, MA, United States of America
| | - Zhiwei Zhou
- Shire Human Genetic Therapies, Inc., a member of the Takeda group of companies, Lexington, MA, United States of America
| | - Guo-Hua Fong
- Center for Vascular Biology, University of Connecticut Health Center, University of Connecticut School of Medicine, Farmington, CT, United States of America
| | - Serene Josiah
- Shire Human Genetic Therapies, Inc., a member of the Takeda group of companies, Lexington, MA, United States of America
| | - Dennis Keefe
- Shire Human Genetic Therapies, Inc., a member of the Takeda group of companies, Lexington, MA, United States of America
| | - Atsushi Asakura
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, United States of America
- Paul & Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, MN, United States of America
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, United States of America
- * E-mail:
| |
Collapse
|
9
|
Abstract
The microcirculation maintains tissue homeostasis through local regulation of blood flow and oxygen delivery. Perturbations in microvascular function are characteristic of several diseases and may be early indicators of pathological changes in the cardiovascular system and in parenchymal tissue function. These changes are often mediated by various reactive oxygen species and linked to disruptions in pathways such as vasodilation or angiogenesis. This overview compiles recent advances relating to redox regulation of the microcirculation by adopting both cellular and functional perspectives. Findings from a variety of vascular beds and models are integrated to describe common effects of different reactive species on microvascular function. Gaps in understanding and areas for further research are outlined. © 2020 American Physiological Society. Compr Physiol 10:229-260, 2020.
Collapse
Affiliation(s)
- Andrew O Kadlec
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - David D Gutterman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Medicine-Division of Cardiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
10
|
Verma M, Asakura Y, Murakonda BSR, Pengo T, Latroche C, Chazaud B, McLoon LK, Asakura A. Muscle Satellite Cell Cross-Talk with a Vascular Niche Maintains Quiescence via VEGF and Notch Signaling. Cell Stem Cell 2018; 23:530-543.e9. [PMID: 30290177 PMCID: PMC6178221 DOI: 10.1016/j.stem.2018.09.007] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/19/2018] [Accepted: 09/07/2018] [Indexed: 12/20/2022]
Abstract
Skeletal muscle is a complex tissue containing tissue resident muscle stem cells (satellite cells) (MuSCs) important for postnatal muscle growth and regeneration. Quantitative analysis of the biological function of MuSCs and the molecular pathways responsible for a potential juxtavascular niche for MuSCs is currently lacking. We utilized fluorescent reporter mice and muscle tissue clearing to investigate the proximity of MuSCs to capillaries in 3 dimensions. We show that MuSCs express abundant VEGFA, which recruits endothelial cells (ECs) in vitro, whereas blocking VEGFA using both a vascular endothelial growth factor (VEGF) inhibitor and MuSC-specific VEGFA gene deletion reduces the proximity of MuSCs to capillaries. Importantly, this proximity to the blood vessels was associated with MuSC self-renewal in which the EC-derived Notch ligand Dll4 induces quiescence in MuSCs. We hypothesize that MuSCs recruit capillary ECs via VEGFA, and in return, ECs maintain MuSC quiescence though Dll4.
Collapse
Affiliation(s)
- Mayank Verma
- Medical Scientist Training Program, University of Minnesota Medical School, Minneapolis, MN, USA; Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, USA; Paul & Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, MN, USA; Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA.
| | - Yoko Asakura
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, USA; Paul & Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, MN, USA; Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Bhavani Sai Rohit Murakonda
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, USA; Paul & Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, MN, USA; Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Thomas Pengo
- University of Minnesota Informatics Institute, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Claire Latroche
- San Raffaele Telethon Institute for Gene Therapy, Milan, Italy
| | | | - Linda K McLoon
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, USA; Paul & Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, MN, USA; Department of Ophthalmology and Visual Neurosciences, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Atsushi Asakura
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, USA; Paul & Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, MN, USA; Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
11
|
Zhang ZD, Xu YQ, Chen F, Luo JF, Liu CD. Sustained delivery of vascular endothelial growth factor using a dextran/poly(lactic-co-glycolic acid)-combined microsphere system for therapeutic neovascularization. Heart Vessels 2018; 34:167-176. [PMID: 30043157 DOI: 10.1007/s00380-018-1230-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/20/2018] [Indexed: 01/15/2023]
Abstract
We hypothesize that the controlled delivery of vascular endothelial growth factor (VEGF) using a novel protein sustained-release system based on the combination of protein-loaded dextran microparticles and PLGA microspheres could be useful to achieve mature vessel formation in a rat hind-limb ischemic model. VEGF-loaded dextran microparticles were fabricated and then encapsulated into poly(lactic-co-glycolic acid) (PLGA) microspheres to prepare VEGF-dextran-PLGA microspheres. The release behavior and bioactivity in promoting endothelial cell proliferation of VEGF from PLGA microspheres were monitored in vitro. VEGF-dextran-PLGA microsphere-loaded fibrin gel was injected into an ischemic rat model, and neovascularization at the ischemic site was evaluated. The release of VEGF from PLGA microspheres was in a sustained manner for more than 1 month in vitro with low level of initial burst release. The released VEGF enhanced the proliferation of endothelial cells in vitro, and significantly promoted the capillaries and smooth muscle α-actin positive vessels formation in vivo. The retained bioactivity of VEGF released from VEGF-dextran-PLGA microspheres potentiated the angiogenic efficacy of VEGF. This sustained-release system may be a promising vehicle for delivery of multiple angiogenic factors for therapeutic neovascularization.
Collapse
Affiliation(s)
- Zhen Dong Zhang
- Department of Pathology, The First Affiliated Hospital, Nanchang University, 330006, Nanchang, People's Republic of China
| | - Ying Qi Xu
- Department of Vascular Surgery, The Second Affiliated Hospital, Nanchang University, 330006, Nanchang, People's Republic of China
| | - Feng Chen
- Department of Vascular Surgery, The Second Affiliated Hospital, Nanchang University, 330006, Nanchang, People's Republic of China.
| | - Jun Fu Luo
- Department of Vascular Surgery, The Second Affiliated Hospital, Nanchang University, 330006, Nanchang, People's Republic of China
| | - Chong Dong Liu
- Medical College, Nanchang University, 330006, Nanchang, People's Republic of China
| |
Collapse
|
12
|
Kim J, Mirando AC, Popel AS, Green JJ. Gene delivery nanoparticles to modulate angiogenesis. Adv Drug Deliv Rev 2017; 119:20-43. [PMID: 27913120 PMCID: PMC5449271 DOI: 10.1016/j.addr.2016.11.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/01/2016] [Accepted: 11/24/2016] [Indexed: 01/19/2023]
Abstract
Angiogenesis is naturally balanced by many pro- and anti-angiogenic factors while an imbalance of these factors leads to aberrant angiogenesis, which is closely associated with many diseases. Gene therapy has become a promising strategy for the treatment of such a disordered state through the introduction of exogenous nucleic acids that express or silence the target agents, thereby engineering neovascularization in both directions. Numerous non-viral gene delivery nanoparticles have been investigated towards this goal, but their clinical translation has been hampered by issues associated with safety, delivery efficiency, and therapeutic effect. This review summarizes key factors targeted for therapeutic angiogenesis and anti-angiogenesis gene therapy, non-viral nanoparticle-mediated approaches to gene delivery, and recent gene therapy applications in pre-clinical and clinical trials for ischemia, tissue regeneration, cancer, and wet age-related macular degeneration. Enhanced nanoparticle design strategies are also proposed to further improve the efficacy of gene delivery nanoparticles to modulate angiogenesis.
Collapse
Affiliation(s)
- Jayoung Kim
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Adam C Mirando
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jordan J Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Departments of Ophthalmology, Neurosurgery, and Materials Science & Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
13
|
Correlative Imaging of the Murine Hind Limb Vasculature and Muscle Tissue by MicroCT and Light Microscopy. Sci Rep 2017; 7:41842. [PMID: 28169309 PMCID: PMC5294414 DOI: 10.1038/srep41842] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/22/2016] [Indexed: 12/20/2022] Open
Abstract
A detailed vascular visualization and adequate quantification is essential for the proper assessment of novel angiomodulating strategies. Here, we introduce an ex vivo micro-computed tomography (microCT)-based imaging approach for the 3D visualization of the entire vasculature down to the capillary level and rapid estimation of the vascular volume and vessel size distribution. After perfusion with μAngiofil®, a novel polymerizing contrast agent, low- and high-resolution scans (voxel side length: 2.58–0.66 μm) of the entire vasculature were acquired. Based on the microCT data, sites of interest were defined and samples further processed for correlative morphology. The solidified, autofluorescent μAngiofil® remained in the vasculature and allowed co-registering of the histological sections with the corresponding microCT-stack. The perfusion efficiency of μAngiofil® was validated based on lectin-stained histological sections: 98 ± 0.5% of the blood vessels were μAngiofil®-positive, whereas 93 ± 2.6% were lectin-positive. By applying this approach we analyzed the angiogenesis induced by the cell-based delivery of a controlled VEGF dose. Vascular density increased by 426% mainly through the augmentation of medium-sized vessels (20–40 μm). The introduced correlative and quantitative imaging approach is highly reproducible and allows a detailed 3D characterization of the vasculature and muscle tissue. Combined with histology, a broad range of complementary structural information can be obtained.
Collapse
|
14
|
Long-term safety and stability of angiogenesis induced by balanced single-vector co-expression of PDGF-BB and VEGF164 in skeletal muscle. Sci Rep 2016; 6:21546. [PMID: 26882992 PMCID: PMC4756385 DOI: 10.1038/srep21546] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/26/2016] [Indexed: 11/19/2022] Open
Abstract
Therapeutic angiogenesis by growth factor delivery is an attractive treatment strategy for ischemic diseases, yet clinical efficacy has been elusive. The angiogenic master regulator VEGF-A can induce aberrant angiogenesis if expressed above a threshold level. Since VEGF remains localized in the matrix around expressing cells, homogeneous dose distribution in target tissues is required, which is challenging. We found that co-expression of the pericyte-recruiting factor PDGF-BB at a fixed ratio with VEGF from a single bicistronic vector ensured normal angiogenesis despite heterogeneous high VEGF levels. Taking advantage of a highly controlled gene delivery platform, based on monoclonal populations of transduced myoblasts, in which every cell stably produces the same amount of each factor, here we rigorously investigated a) the dose-dependent effects, and b) the long-term safety and stability of VEGF and PDGF-BB co-expression in skeletal muscle. PDGF-BB co-expression did not affect the normal angiogenesis by low and medium VEGF doses, but specifically prevented vascular tumors by high VEGF, yielding instead normal and mature capillary networks, accompanied by robust arteriole formation. Induced angiogenesis persisted unchanged up to 4 months, while no tumors appeared. Therefore, PDGF-BB co-expression is an attractive strategy to improve safety and efficacy of therapeutic angiogenesis by VEGF gene delivery.
Collapse
|
15
|
Parris GE. A Hypothesis Concerning the Biphasic Dose-response of Tumors to Angiostatin and Endostatin. Dose Response 2015; 13:10.2203_dose-response.14-020.Parris. [PMID: 26675544 PMCID: PMC4674172 DOI: 10.2203/dose-response.14-020.parris] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This manuscript proposes a hypothesis to explain the U-shaped dose-response observed for angiostatin and other high-molecular-weight drugs in various anti-cancer bio-assays. The dose-response curves for angiostatin and endostatin (measured as suppression of tumor growth) go through an optimum (i.e., minimum tumor growth) and then becomes less effective at higher doses. The literature suggests that at lower doses the primary action of these high-molecular-weight drugs is to counteract the angiogenic effects of vascular endothelial growth factor (VEGF). To do this, the drugs must pass out of the blood vessel and enter the extra-cellular matrix (ECM) where VEGF induces the growth and fusion of tip cells. Ironically, VEGF actually facilitates access of the drugs to the ECM by making the vascular endothelium leaky. At higher doses, the high-molecular-weight drugs seem to reverse VEGF-induced permeability of the endothelium. Thus, at high dose rates, it is hypothesized that the drugs are not able to enter the ECM and block the angiogenic effects of VEGF there. As a result, high doses of the drugs do not suppress vascularization of the tumor or tumor growth. Moreover, if the permeability of the vessels is suppressed, the VEGF released by the stroma is concentrated in the ECM where it amplifies the angiogenic activity around the tumor.
Collapse
Affiliation(s)
- George E Parris
- Montgomery College, Department of Chemistry, Rockville, MD, USA
| |
Collapse
|
16
|
Negating Tissue Contracture Improves Volume Maintenance and Longevity of In Vivo Engineered Tissues. Plast Reconstr Surg 2015; 136:453e-460e. [PMID: 26397264 DOI: 10.1097/prs.0000000000001623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Engineering large, complex tissues in vivo requires robust vascularization to optimize survival, growth, and function. Previously, the authors used a "chamber" model that promotes intense angiogenesis in vivo as a platform for functional three-dimensional muscle and renal engineering. A silicone membrane used to define the structure and to contain the constructs is successful in the short term. However, over time, generated tissues contract and decrease in size in a manner similar to capsular contracture seen around many commonly used surgical implants. The authors hypothesized that modification of the chamber structure or internal surface would promote tissue adherence and maintain construct volume. METHODS Three chamber configurations were tested against volume maintenance. Previously studied, smooth silicone surfaces were compared to chambers modified for improved tissue adherence, with multiple transmembrane perforations or lined with a commercially available textured surface. Tissues were allowed to mature long term in a rat model, before analysis. RESULTS On explantation, average tissue masses were 49, 102, and 122 mg; average volumes were 74, 158 and 176 μl; and average cross-sectional areas were 1.6, 6.7, and 8.7 mm for the smooth, perforated, and textured groups, respectively. Both perforated and textured designs demonstrated significantly greater measures than the smooth-surfaced constructs in all respects. CONCLUSIONS By modifying the design of chambers supporting vascularized, three-dimensional, in vivo tissue engineering constructs, generated tissue mass, volume, and area can be maintained over a long time course. Successful progress in the scale-up of construct size should follow, leading to improved potential for development of increasingly complex engineered tissues.
Collapse
|
17
|
Sicari BM, Londono R, Badylak SF. Strategies for skeletal muscle tissue engineering: seed vs. soil. J Mater Chem B 2015; 3:7881-7895. [PMID: 32262901 DOI: 10.1039/c5tb01714a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The most commonly used tissue engineering approach includes the ex vivo combination of site-appropriate cell(s) and scaffold material(s) to create three-dimensional constructs for tissue replacement or reconstruction. These three-dimensional combinations are typically subjected to a period of culture and conditioning (i.e., self-assembly and maturation) to promote the development of ex vivo constructs which closely mimic native target tissue. This cell-based approach is challenged by the host response to the engineered tissue construct following surgical implantation. As an alternative to the cell-based approach, acellular biologic scaffolds attract endogenous cells and remodel into partially functional mimics of native tissue upon implantation. The present review examines cell-types (i.e., seed), scaffold materials (i.e., soil), and challenges associated with functional tissue engineering. Skeletal muscle is used as the target tissue prototype but the discussed principles will largely apply to most body systems.
Collapse
Affiliation(s)
- Brian M Sicari
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Suite 300, 450 Technology Drive, Pittsburgh, PA 15218, USA.
| | | | | |
Collapse
|
18
|
Andrejecsk JW, Chang WG, Pober JS, Saltzman WM. Controlled protein delivery in the generation of microvascular networks. Drug Deliv Transl Res 2015; 5:75-88. [PMID: 25767747 PMCID: PMC4354697 DOI: 10.1007/s13346-012-0122-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Rapid induction and stabilization of new microvascular networks is essential for the proper functioning of engineered tissues. Many efforts to achieve this goal have used proangiogenic proteins-such as vascular endothelial growth factors-to induce the formation of new microvessels. These proteins have demonstrated promise in improving vascularization, but it is also clear that the spatial and temporal presentation of these signals is important for achieving proper vascular function. Delivery systems that present proteins in a localized and sustained manner, can promote the formation and stabilization of microvascular networks by precisely presenting proangiogenic proteins at desired locations, and for specified durations. Further, these systems allow for some control over the sequence of release of multiple proteins, and it has become clear that such coordination is critical for the development of fully functional and mature vascular structures. This review focuses on the actions of proangiogenic proteins and the innovations in controlled release technologies that precisely deliver these to stimulate microvascular network formation and stabilization.
Collapse
Affiliation(s)
| | - William G Chang
- Department of Medicine and Section of Nephrology, Yale University School of Medicine, New Haven, CT 06520
| | - Jordan S Pober
- Departments of Immunobiology, Pathology, and Dermatology, Yale University School of Medicine, New Haven, CT 06520
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511
| |
Collapse
|
19
|
Hecht N, Marushima A, Nieminen M, Kremenetskaia I, von Degenfeld G, Woitzik J, Vajkoczy P. Myoblast-mediated gene therapy improves functional collateralization in chronic cerebral hypoperfusion. Stroke 2014; 46:203-11. [PMID: 25388423 DOI: 10.1161/strokeaha.114.006712] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Direct extracranial-intracranial bypass surgery for treatment of cerebral hemodynamic compromise remains hindered by complications but alternative simple and safe indirect revascularization procedures, such as an encephalomyosynangiosis (EMS), lack hemodynamic efficiency. Here, the myoblast-mediated transfer of angiogenic genes presents an approach for induction of therapeutic collateralization. In this study, we tested the effect of myoblast-mediated delivery of vascular endothelial growth factor-A (VEGF) to the muscle/brain interface of an EMS in a model of chronic cerebral hypoperfusion. METHODS Permanent unilateral internal carotid artery-occlusion was performed in adult C57/BL6 mice with or without (no EMS) surgical grafting of an EMS followed by implantation of monoclonal mouse myoblasts expressing either VEGF164 or an empty vector (EV). Cerebral hemodynamic impairment, transpial collateralization, angiogenesis, mural cell investment, microvascular permeability, and cortical infarction after ipsilateral stroke were assessed by real-time laser speckle blood flow imaging, 2- and 3-dimensional immunofluorescence and MRI. RESULTS VEGF-expressing myoblasts improved hemodynamic rescue by day 14 (no EMS 37±21%, EV 42±9%, VEGF 48±12%; P<0.05 for VEGF versus no EMS and versus EV), together with the EMS take rate (VEGF 60%, EV 18.2%; P<0.05) and angiogenesis of mature cortical microvessels below the EMS (P<0.05 for VEGF versus EV). Importantly, functional and morphological results were paralleled by a 25% reduction of cortical infarction after experimental stroke on the side of the EMS. CONCLUSIONS Myoblast-mediated VEGF supplementation at the target site of an EMS could help overcome the clinical dilemma of poor surgical revascularization results and provide protection from ischemic stroke.
Collapse
Affiliation(s)
- Nils Hecht
- From the Department of Neurosurgery and Center for Stroke Research Berlin (CSB), Charité-Universitätsmedizin Berlin, Germany (N.H., A.M., M.N., I.K., J.W., P.V.); and Baxter Laboratory for Stem Cell Biology, Stanford University, CA (G.v.D.)
| | - Aiki Marushima
- From the Department of Neurosurgery and Center for Stroke Research Berlin (CSB), Charité-Universitätsmedizin Berlin, Germany (N.H., A.M., M.N., I.K., J.W., P.V.); and Baxter Laboratory for Stem Cell Biology, Stanford University, CA (G.v.D.)
| | - Melina Nieminen
- From the Department of Neurosurgery and Center for Stroke Research Berlin (CSB), Charité-Universitätsmedizin Berlin, Germany (N.H., A.M., M.N., I.K., J.W., P.V.); and Baxter Laboratory for Stem Cell Biology, Stanford University, CA (G.v.D.)
| | - Irina Kremenetskaia
- From the Department of Neurosurgery and Center for Stroke Research Berlin (CSB), Charité-Universitätsmedizin Berlin, Germany (N.H., A.M., M.N., I.K., J.W., P.V.); and Baxter Laboratory for Stem Cell Biology, Stanford University, CA (G.v.D.)
| | - Georges von Degenfeld
- From the Department of Neurosurgery and Center for Stroke Research Berlin (CSB), Charité-Universitätsmedizin Berlin, Germany (N.H., A.M., M.N., I.K., J.W., P.V.); and Baxter Laboratory for Stem Cell Biology, Stanford University, CA (G.v.D.)
| | - Johannes Woitzik
- From the Department of Neurosurgery and Center for Stroke Research Berlin (CSB), Charité-Universitätsmedizin Berlin, Germany (N.H., A.M., M.N., I.K., J.W., P.V.); and Baxter Laboratory for Stem Cell Biology, Stanford University, CA (G.v.D.)
| | - Peter Vajkoczy
- From the Department of Neurosurgery and Center for Stroke Research Berlin (CSB), Charité-Universitätsmedizin Berlin, Germany (N.H., A.M., M.N., I.K., J.W., P.V.); and Baxter Laboratory for Stem Cell Biology, Stanford University, CA (G.v.D.).
| |
Collapse
|
20
|
Long-lasting fibrin matrices ensure stable and functional angiogenesis by highly tunable, sustained delivery of recombinant VEGF164. Proc Natl Acad Sci U S A 2014; 111:6952-7. [PMID: 24778233 DOI: 10.1073/pnas.1404605111] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Clinical trials of therapeutic angiogenesis by vascular endothelial growth factor (VEGF) gene delivery failed to show efficacy. Major challenges include the need to precisely control in vivo distribution of growth factor dose and duration of expression. Recombinant VEGF protein delivery could overcome these issues, but rapid in vivo clearance prevents the stabilization of induced angiogenesis. Here, we developed an optimized fibrin platform for controlled delivery of recombinant VEGF, to robustly induce normal, stable, and functional angiogenesis. Murine VEGF164 was fused to a sequence derived from α2-plasmin inhibitor (α2-PI1-8) that is a substrate for the coagulation factor fXIIIa, to allow its covalent cross-linking into fibrin hydrogels and release only by enzymatic cleavage. An α2-PI1-8-fused variant of the fibrinolysis inhibitor aprotinin was used to control the hydrogel degradation rate, which determines both the duration and effective dose of factor release. An optimized aprotinin-α2-PI1-8 concentration ensured ideal degradation over 4 wk. Under these conditions, fibrin-α2-PI1-8-VEGF164 allowed exquisitely dose-dependent angiogenesis: concentrations ≥25 μg/mL caused widespread aberrant vascular structures, but a 500-fold concentration range (0.01-5.0 μg/mL) induced exclusively normal, mature, nonleaky, and perfused capillaries, which were stable after 3 mo. Optimized delivery of fibrin-α2-PI1-8-VEGF164 was therapeutically effective both in ischemic hind limb and wound-healing models, significantly improving angiogenesis, tissue perfusion, and healing rate. In conclusion, this optimized platform ensured (i) controlled and highly tunable delivery of VEGF protein in ischemic tissue and (ii) stable and functional angiogenesis without introducing genetic material and with a limited and controllable duration of treatment. These findings suggest a strategy to improve safety and efficacy of therapeutic angiogenesis.
Collapse
|
21
|
Veeranki S, Givvimani S, Pushpakumar S, Tyagi SC. Hyperhomocysteinemia attenuates angiogenesis through reduction of HIF-1α and PGC-1α levels in muscle fibers during hindlimb ischemia. Am J Physiol Heart Circ Physiol 2014; 306:H1116-27. [PMID: 24585779 DOI: 10.1152/ajpheart.00003.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hyperhomocysteinemia (HHcy) is associated with elderly frailty, skeletal muscle injury and malfunction, reduced vascular integrity and function, and mortality. Although HHcy has been implicated in the impairment of angiogenesis after hindlimb ischemia in murine models, the underlying mechanisms are still unclear. We hypothesized that HHcy compromises skeletal muscle perfusion, collateral formation, and arteriogenesis by diminishing postischemic vasculogenic responses in muscle fibers. To test this hypothesis, we created femoral artery ligation in wild-type and heterozygous cystathionine β-synthase (CBS(+/-)) mice (a model for HHcy) and assessed tissue perfusion, collateral vessel formation, and skeletal muscle function using laser-Doppler perfusion imaging, barium angiography, and fatigue tests. In addition, we assessed postischemic levels of VEGF and levels of its muscle-specific regulators: hypoxia-inducible factor (HIF)-1α and peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α. The observations indicated dysregulation of VEGF, HIF-1α, and PGC-1α levels in ischemic skeletal muscles of CBS(+/-) mice. Concomitant with the reduced ischemic angiogenic responses, we also observed diminished leptin expression and attenuated Akt signaling in ischemic muscle fibers of CBS(+/-) mice. Moreover, there was enhanced atrogene, ubiquitin ligases that conjugate proteins for degradation during muscle atrophy, transcription, and reduced muscle function after ischemia in CBS(+/-) mice. These results suggest that HHcy adversely affects muscle-specific ischemic responses and contributes to muscle frailty.
Collapse
Affiliation(s)
- Sudhakar Veeranki
- Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky
| | | | | | | |
Collapse
|
22
|
Sicari BM, Dearth CL, Badylak SF. Tissue Engineering and Regenerative Medicine Approaches to Enhance the Functional Response to Skeletal Muscle Injury. Anat Rec (Hoboken) 2013; 297:51-64. [DOI: 10.1002/ar.22794] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Brian M. Sicari
- McGowan Institute for Regenerative Medicine; Pittsburgh Pennsylvania
- Cellular and Molecular Pathology Graduate Program; University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
| | - Christopher L. Dearth
- McGowan Institute for Regenerative Medicine; Pittsburgh Pennsylvania
- Department of Surgery; University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine; Pittsburgh Pennsylvania
- Department of Surgery; University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
| |
Collapse
|
23
|
Mujagic E, Gianni-Barrera R, Trani M, Patel A, Gürke L, Heberer M, Wolff T, Banfi A. Induction of aberrant vascular growth, but not of normal angiogenesis, by cell-based expression of different doses of human and mouse VEGF is species-dependent. Hum Gene Ther Methods 2013; 24:28-37. [PMID: 23360398 DOI: 10.1089/hgtb.2012.197] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Therapeutic angiogenesis by vascular endothelial growth factor (VEGF) gene delivery is an attractive approach to treat ischemia. VEGF remains localized around each producing cell in vivo, and overexpression of mouse VEGF(164) (mVEGF(164)) induces normal or aberrant angiogenesis, depending strictly on its dose in the microenvironment in vivo. However, the dose-dependent effects of the clinically relevant factor, human VEGF(165) (hVEGF(165)), are unknown. Here we exploited a highly controlled gene delivery platform, based on clonal populations of transduced myoblasts overexpressing specific VEGF levels, to rigorously compare the in vivo dose-dependent effects of hVEGF(165) and mVEGF(164) in skeletal muscle of severe combined immune deficient (SCID) mice. While low levels of both factors efficiently induced similar amounts of normal angiogenesis, only high levels of mVEGF(164) caused widespread angioma-like structures, whereas equivalent or even higher levels of hVEGF(165) induced exclusively normal and mature capillaries. Expression levels were confirmed both in vitro and in vivo by enzyme-linked immunosorbent assay (ELISA) and quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). However, in vitro experiments showed that hVEGF(165) was significantly more effective in activating VEGF receptor signaling in human endothelial cells than mVEGF(164), while the opposite was true in murine endothelial cells. In conclusion, we found that, even though hVEGF is similarly efficient to the syngenic mVEGF in inducing angiogenesis at lower doses in a widely adopted and convenient mouse preclinical model, species-dependent differences in the relative activation of the respective receptors may specifically mask the toxic effects of high doses of the human factor.
Collapse
Affiliation(s)
- Edin Mujagic
- Cell and Gene Therapy, Department of Biomedicine and Department of Surgery, Basel University Hospital and Basel University, Basel CH-4031, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Fang Q, Mok PY, Thomas AE, Haddad DJ, Saini SA, Clifford BT, Kapasi NK, Danforth OM, Usui M, Ye W, Luu E, Sharma R, Bartel MJ, Pathmanabhan JA, Ang AAS, Sievers RE, Lee RJ, Springer ML. Pleiotrophin gene therapy for peripheral ischemia: evaluation of full-length and truncated gene variants. PLoS One 2013; 8:e61413. [PMID: 23630585 PMCID: PMC3632611 DOI: 10.1371/journal.pone.0061413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/10/2013] [Indexed: 11/19/2022] Open
Abstract
Pleiotrophin (PTN) is a growth factor with both pro-angiogenic and limited pro-tumorigenic activity. We evaluated the potential for PTN to be used for safe angiogenic gene therapy using the full length gene and a truncated gene variant lacking the domain implicated in tumorigenesis. Mouse myoblasts were transduced to express full length or truncated PTN (PTN or T-PTN), along with a LacZ reporter gene, and injected into mouse limb muscle and myocardium. In cultured myoblasts, PTN was expressed and secreted via the Golgi apparatus, but T-PTN was not properly secreted. Nonetheless, no evidence of uncontrolled growth was observed in cells expressing either form of PTN. PTN gene delivery to myocardium, and non-ischemic skeletal muscle, did not result in a detectable change in vascularity or function. In ischemic hindlimb at 14 days post-implantation, intramuscular injection with PTN-expressing myoblasts led to a significant increase in skin perfusion and muscle arteriole density. We conclude that (1) delivery of the full length PTN gene to muscle can be accomplished without tumorigenesis, (2) the truncated PTN gene may be difficult to use in a gene therapy context due to inefficient secretion, (3) PTN gene delivery leads to functional benefit in the mouse acute ischemic hindlimb model.
Collapse
Affiliation(s)
- Qizhi Fang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Pamela Y. Mok
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Anila E. Thomas
- Division of Cardiology, University of California San Francisco, San Francisco, California, United States of America
| | - Daniel J. Haddad
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Shereen A. Saini
- Division of Cardiology, University of California San Francisco, San Francisco, California, United States of America
| | - Brian T. Clifford
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Neel K. Kapasi
- Division of Cardiology, University of California San Francisco, San Francisco, California, United States of America
| | - Olivia M. Danforth
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Minako Usui
- Division of Cardiology, University of California San Francisco, San Francisco, California, United States of America
| | - Weisheng Ye
- Division of Cardiology, University of California San Francisco, San Francisco, California, United States of America
| | - Emmy Luu
- Division of Cardiology, University of California San Francisco, San Francisco, California, United States of America
| | - Rikki Sharma
- Division of Cardiology, University of California San Francisco, San Francisco, California, United States of America
| | - Maya J. Bartel
- Division of Cardiology, University of California San Francisco, San Francisco, California, United States of America
| | - Jeremy A. Pathmanabhan
- Division of Cardiology, University of California San Francisco, San Francisco, California, United States of America
| | - Andrew A. S. Ang
- Division of Cardiology, University of California San Francisco, San Francisco, California, United States of America
| | - Richard E. Sievers
- Division of Cardiology, University of California San Francisco, San Francisco, California, United States of America
| | - Randall J. Lee
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
- Division of Cardiology, University of California San Francisco, San Francisco, California, United States of America
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California, United States of America
| | - Matthew L. Springer
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
- Division of Cardiology, University of California San Francisco, San Francisco, California, United States of America
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
25
|
Hendgen-Cotta UB, Luedike P, Totzeck M, Kropp M, Schicho A, Stock P, Rammos C, Niessen M, Heiss C, Lundberg JO, Weitzberg E, Kelm M, Rassaf T. Dietary nitrate supplementation improves revascularization in chronic ischemia. Circulation 2012; 126:1983-92. [PMID: 22992322 DOI: 10.1161/circulationaha.112.112912] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Revascularization is an adaptive repair mechanism that restores blood flow to undersupplied ischemic tissue. Nitric oxide plays an important role in this process. Whether dietary nitrate, serially reduced to nitrite by commensal bacteria in the oral cavity and subsequently to nitric oxide and other nitrogen oxides, enhances ischemia-induced remodeling of the vascular network is not known. METHODS AND RESULTS Mice were treated with either nitrate (1 g/L sodium nitrate in drinking water) or sodium chloride (control) for 14 days. At day 7, unilateral hind-limb surgery with excision of the left femoral artery was conducted. Blood flow was determined by laser Doppler. Capillary density, myoblast apoptosis, mobilization of CD34(+)/Flk-1(+), migration of bone marrow-derived CD31(+)/CD45(-), plasma S-nitrosothiols, nitrite, and skeletal tissue cGMP levels were assessed. Enhanced green fluorescence protein transgenic mice were used for bone marrow transplantation. Dietary nitrate increased plasma S-nitrosothiols and nitrite, enhanced revascularization, increased mobilization of CD34(+)/Flk-1(+) and migration of bone marrow-derived CD31(+)/CD45(-) cells to the site of ischemia, and attenuated apoptosis of potentially regenerative myoblasts in chronically ischemic tissue. The regenerative effects of nitrate treatment were abolished by eradication of the nitrate-reducing bacteria in the oral cavity through the use of an antiseptic mouthwash. CONCLUSIONS Long-term dietary nitrate supplementation may represent a novel nutrition-based strategy to enhance ischemia-induced revascularization.
Collapse
Affiliation(s)
- Ulrike B Hendgen-Cotta
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gharaibeh B, Chun-Lansinger Y, Hagen T, Ingham SJM, Wright V, Fu F, Huard J. Biological approaches to improve skeletal muscle healing after injury and disease. ACTA ACUST UNITED AC 2012; 96:82-94. [PMID: 22457179 DOI: 10.1002/bdrc.21005] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Skeletal muscle injury and repair are complex processes, including well-coordinated steps of degeneration, inflammation, regeneration, and fibrosis. We have reviewed the recent literature including studies by our group that describe how to modulate the processes of skeletal muscle repair and regeneration. Antiinflammatory drugs that target cyclooxygenase-2 were found to hamper the skeletal muscle repair process. Muscle regeneration phase can be aided by growth factors, including insulin-like growth factor-1 and nerve growth factor, but these factors are typically short-lived, and thus more effective methods of delivery are needed. Skeletal muscle damage caused by traumatic injury or genetic diseases can benefit from cell therapy; however, the majority of transplanted muscle cells (myoblasts) are unable to survive the immune response and hypoxic conditions. Our group has isolated neonatal skeletal muscle derived stem cells (MDSCs) that appear to repair muscle tissue in a more effective manner than myoblasts, most likely due to their better resistance to oxidative stress. Enhancing antioxidant levels of MDSCs led to improved regenerative potential. It is becoming increasingly clear that stem cells tissue repair by direct differentiation and paracrine effects leading to neovascularization of injured site and chemoattraction of host cells. The factors invoked in paracrine action are still under investigation. Our group has found that angiotensin II receptor blocker (losartan) significantly reduces fibrotic tissue formation and improves repair of murine injured muscle. Based on these data, we have conducted a case study on two hamstring injury patients and found that losartan treatment was well tolerated and possibly improved recovery time. We believe this medication holds great promise to optimize muscle repair in humans.
Collapse
Affiliation(s)
- Burhan Gharaibeh
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Myoblast-mediated gene therapy via encephalomyosynangiosis – A novel strategy for local delivery of gene products to the brain surface. J Neurosci Methods 2011; 201:61-6. [DOI: 10.1016/j.jneumeth.2011.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Revised: 07/11/2011] [Accepted: 07/12/2011] [Indexed: 11/18/2022]
|
28
|
Verma M, Asakura Y, Hirai H, Watanabe S, Tastad C, Fong GH, Ema M, Call JA, Lowe DA, Asakura A. Flt-1 haploinsufficiency ameliorates muscular dystrophy phenotype by developmentally increased vasculature in mdx mice. Hum Mol Genet 2010; 19:4145-59. [PMID: 20705734 PMCID: PMC2951865 DOI: 10.1093/hmg/ddq334] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 08/05/2010] [Indexed: 01/28/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive genetic disease caused by mutations in the gene coding for the protein dystrophin. Recent work demonstrates that dystrophin is also found in the vasculature and its absence results in vascular deficiency and abnormal blood flow. This induces a state of ischemia further aggravating the muscular dystrophy pathogenesis. For an effective form of therapy of DMD, both the muscle and the vasculature need to be addressed. To reveal the developmental relationship between muscular dystrophy and vasculature, mdx mice, an animal model for DMD, were crossed with Flt-1 gene knockout mice to create a model with increased vasculature. Flt-1 is a decoy receptor for vascular endothelial growth factor, and therefore both homozygous (Flt-1(-/-)) and heterozygous (Flt-1(+/-)) Flt-1 gene knockout mice display increased endothelial cell proliferation and vascular density during embryogenesis. Here, we show that Flt-1(+/-) and mdx:Flt-1(+/-) adult mice also display a developmentally increased vascular density in skeletal muscle compared with the wild-type and mdx mice, respectively. The mdx:Flt-1(+/-) mice show improved muscle histology compared with the mdx mice with decreased fibrosis, calcification and membrane permeability. Functionally, the mdx:Flt-1(+/-) mice have an increase in muscle blood flow and force production, compared with the mdx mice. Consequently, the mdx:utrophin(-/-):Flt-1(+/-) mice display improved muscle histology and significantly higher survival rates compared with the mdx:utrophin(-/-) mice, which show more severe muscle phenotypes than the mdx mice. These data suggest that increasing the vasculature in DMD may ameliorate the histological and functional phenotypes associated with this disease.
Collapse
Affiliation(s)
- Mayank Verma
- Stem Cell Institute
- Paul and Sheila Wellstone Muscular Dystrophy Center
- Department of Neurology and
| | - Yoko Asakura
- Stem Cell Institute
- Paul and Sheila Wellstone Muscular Dystrophy Center
- Department of Neurology and
| | - Hiroyuki Hirai
- Stem Cell Institute
- Paul and Sheila Wellstone Muscular Dystrophy Center
- Department of Neurology and
| | - Shuichi Watanabe
- Stem Cell Institute
- Paul and Sheila Wellstone Muscular Dystrophy Center
- Department of Neurology and
| | - Christopher Tastad
- Stem Cell Institute
- Paul and Sheila Wellstone Muscular Dystrophy Center
- Department of Neurology and
| | - Guo-Hua Fong
- Center for Vascular Biology, University of Connecticut Health Center, University of Connecticut School of Medicine, Farmington, CT, USA and
| | - Masatsugu Ema
- Department of Anatomy and Embryology, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Japan
| | - Jarrod A. Call
- Paul and Sheila Wellstone Muscular Dystrophy Center
- Department of Physical Medicine and Rehabilitation, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Dawn A. Lowe
- Paul and Sheila Wellstone Muscular Dystrophy Center
- Department of Physical Medicine and Rehabilitation, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Atsushi Asakura
- Stem Cell Institute
- Paul and Sheila Wellstone Muscular Dystrophy Center
- Department of Neurology and
| |
Collapse
|
29
|
Thirabanjasak D, Tantiwongse K, Thorner PS. Angiomyeloproliferative lesions following autologous stem cell therapy. J Am Soc Nephrol 2010; 21:1218-22. [PMID: 20558536 DOI: 10.1681/asn.2009111156] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Some reports suggest that autologous hematopoietic stem cell transplantation holds potential for treatment of renal diseases such as lupus nephritis, but the safety of delivering various stem cell types (hematopoietic, mesenchymal, and endothelial precursors) is not well established. Here, we report a case of lupus nephritis treated by direct renal injection of autologous stem cells recovered from peripheral blood. The patient developed masses at the sites of injection and hematuria. We suspected transitional cell carcinoma but nephrectomy revealed that the masses were angiomyeloproliferative lesions. We believe that this previously undescribed pathologic entity is stem cell-derived or -induced. The biologic potential, including the neoplastic potential, of this lesion is unknown. This case illustrates that the development of angiomyeloproliferative lesions is a possible complication of stem cell therapy.
Collapse
Affiliation(s)
- Duangpen Thirabanjasak
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Patumwan, Bangkok, Thailand.
| | | | | |
Collapse
|
30
|
Targeted in vivo extracellular matrix formation promotes neovascularization in a rodent model of myocardial infarction. PLoS One 2010; 5:e10384. [PMID: 20442783 PMCID: PMC2860995 DOI: 10.1371/journal.pone.0010384] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 04/07/2010] [Indexed: 12/22/2022] Open
Abstract
Background The extracellular matrix plays an important role in tissue regeneration. We investigated whether extracellular matrix protein fragments could be targeted with antibodies to ischemically injured myocardium to promote angiogenesis and myocardial repair. Methodology/Principal Findings Four peptides, 2 derived from fibronectin and 2 derived from Type IV Collagen, were assessed for in vitro and in vivo tendencies for angiogenesis. Three of the four peptides—Hep I, Hep III, RGD—were identified and shown to increase endothelial cell attachment, proliferation, migration and cell activation in vitro. By chemically conjugating these peptides to an anti-myosin heavy chain antibody, the peptides could be administered intravenously and specifically targeted to the site of the myocardial infarction. When administered into Sprague-Dawley rats that underwent ischemia-reperfusion myocardial infarction, these peptides produced statistically significantly higher levels of angiogenesis and arteriogenesis 6 weeks post treatment. Conclusions/Significance We demonstrated that antibody-targeted ECM-derived peptides alone can be used to sufficiently alter the extracellular matrix microenvironment to induce a dramatic angiogenic response in the myocardial infarct area. Our results indicate a potentially new non-invasive strategy for repairing damaged tissue, as well as a novel tool for investigating in vivo cell biology.
Collapse
|
31
|
Abstract
Therapies that aim to prevent myocardial tissue from dying or to regenerate new myocardium all rely on the preservation or growth of a functional vasculature. The amount of blood that supplies the myocardium is dependent on the number and nature of the microvessels, as well as the ability of the arteries to supply blood and the veins to remove it. All of these factors can be assessed when success of an experimental therapy is being evaluated. Different kinds of information can be obtained from these different parameters, and it is important to understand what each one involves and how it can be misinterpreted. This chapter describes the various approaches to the assessment of vascularity in the heart with a focus on small animal models, dealing both with those approaches that are purely histological endpoint studies and those that are functional measurements in living animals.
Collapse
|
32
|
Deasy BM, Feduska JM, Payne TR, Li Y, Ambrosio F, Huard J. Effect of VEGF on the regenerative capacity of muscle stem cells in dystrophic skeletal muscle. Mol Ther 2009; 17:1788-98. [PMID: 19603004 DOI: 10.1038/mt.2009.136] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have isolated a population of muscle-derived stem cells (MDSCs) that, when compared with myoblasts, display an improved regeneration capacity, exhibit better cell survival, and improve myogenesis and angiogenesis. In addition, we and others have observed that the origin of the MDSCs may reside within the blood vessel walls (endothelial cells and pericytes). Here, we investigated the role of vascular endothelial growth factor (VEGF)-mediated angiogenesis in MDSC transplantation-based skeletal muscle regeneration in mdx mice (an animal model of muscular dystrophy). We studied MDSC and MDSC transduced to overexpress VEGF; no differences were observed in vitro in terms of phenotype or myogenic differentiation. However, after in vivo transplantation, we observe an increase in angiogenesis and endogenous muscle regeneration as well as a reduction in muscle fibrosis in muscles transplanted with VEGF-expressing cells when compared to control cells. In contrast, we observe a significant decrease in vascularization and an increase in fibrosis in the muscles transplanted with MDSCs expressing soluble forms-like tyrosine kinase 1 (sFlt1) (VEGF-specific antagonist) when compared to control MDSCs. Our results indicate that VEGF-expressing cells do not increase the number of dystrophin-positive fibers in the injected mdx muscle, when compared to the control MDSCs. Together the results suggest that the transplantation of VEGF-expressing MDSCs improved skeletal muscle repair through modulation of angiogenesis, regeneration and fibrosis in the injected mdx skeletal muscle.
Collapse
Affiliation(s)
- Bridget M Deasy
- Live Cell Imaging Lab, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
33
|
Inducible adeno-associated virus vectors promote functional angiogenesis in adult organisms via regulated vascular endothelial growth factor expression. Cardiovasc Res 2009; 83:663-71. [DOI: 10.1093/cvr/cvp152] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
34
|
Zacchigna S, Pattarini L, Zentilin L, Moimas S, Carrer A, Sinigaglia M, Arsic N, Tafuro S, Sinagra G, Giacca M. Bone marrow cells recruited through the neuropilin-1 receptor promote arterial formation at the sites of adult neoangiogenesis in mice. J Clin Invest 2008; 118:2062-75. [PMID: 18483621 DOI: 10.1172/jci32832] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Accepted: 04/09/2008] [Indexed: 01/13/2023] Open
Abstract
Experimental and clinical evidence indicate that bone marrow cells participate in the process of new blood vessel formation. However, the molecular mechanisms underlying their recruitment and their exact role are still elusive. Here, we show that bone marrow cells are recruited to the sites of neoangiogenesis through the neuropilin-1 (NP-1) receptor and that they are essential for the maturation of the activated endothelium and the formation of arteries in mice. By exploiting adeno-associated virus vector-mediated, long-term in vivo gene expression, we show that the 165-aa isoform of VEGF, which both activates the endothelium and recruits NP-1+ myeloid cells, is a powerful arteriogenic agent. In contrast, neither the shortest VEGF121 isoform, which does not bind NP-1 and thus does not recruit bone marrow cells, nor semaphorin 3A, which attracts cells but inhibits endothelial activation, are capable of sustaining arterial formation. Bone marrow myeloid cells are not arteriogenic per se nor are they directly incorporated in the newly formed vasculature, but they contribute to arterial formation through a paracrine effect ensuing in the activation and proliferation of tissue-resident smooth muscle cells.
Collapse
Affiliation(s)
- Serena Zacchigna
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Heiss C, Wong ML, Block VI, Lao D, Real WM, Yeghiazarians Y, Lee RJ, Springer ML. Pleiotrophin induces nitric oxide dependent migration of endothelial progenitor cells. J Cell Physiol 2008; 215:366-73. [PMID: 17960557 PMCID: PMC2697332 DOI: 10.1002/jcp.21313] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pleiotrophin (PTN) is produced under ischemic conditions and has been shown to induce angiogenesis in vivo. We studied whether or not PTN exerts chemotaxis of pro-angiogenic early endothelial progenitor cells (EPCs), a population of circulating cells that have been reported to participate in and stimulate angiogenesis. Chemotaxis of EPCs, isolated from blood of healthy humans (n = 5), was measured in transwell assays. PTN at 10-500 ng/ml elicited dose-dependent chemotaxis of both EPCs and human umbilical vein endothelial cells (HUVECs), but not of human coronary artery smooth muscle cells (CASMCs) and T98G glioblastoma cells that lack PTN receptors. The degree of chemotaxis was comparable to that induced by the angiogenic factors VEGF and SDF-1alpha. Chemotaxis to PTN was blocked by the NOS inhibitors L-NNA and L-NMMA, the NO scavenger PTIO, the phosphoinositide-3 kinase inhibitor wortmannin, and the guanylyl cyclase inhibitor ODQ, suggesting dependence of EPC chemotaxis on these pathways. PTN induced NOS-dependent production of NO to a similar degree as did VEGF, as indicated by the NO indicator DAF-2. PTN increased proliferation in EPCs and HUVECs to a similar extent as VEGF, but did not induce proliferation of CASMCs. While L-NNA abolished PTN-induced migration in EPCs and HUVECs, it did not inhibit PTN- and VEGF-enhanced proliferation and also caused proliferation by itself. These data suggest that PTN may mediate its pro-angiogenic effects by increasing the local number of not only endothelial cells but also early EPCs at angiogenic sites.
Collapse
Affiliation(s)
- Christian Heiss
- Department of Medicine, Division of Cardiology, University of California, San Francisco, San Francisco, California 94143-0124, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Dhawan V, Lytle IF, Dow DE, Huang YC, Brown DL. Neurotization improves contractile forces of tissue-engineered skeletal muscle. ACTA ACUST UNITED AC 2008; 13:2813-21. [PMID: 17822360 DOI: 10.1089/ten.2007.0003] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Engineered functional skeletal muscle would be beneficial in reconstructive surgery. Our previous work successfully generated 3-dimensional vascularized skeletal muscle in vivo. Because neural signals direct muscle maturation, we hypothesized that neurotization of these constructs would increase their contractile force. Additionally, should neuromuscular junctions (NMJs) develop, indirect stimulation (via the nerve) would be possible, allowing for directed control. Rat myoblasts were cultured, suspended in fibrin gel, and implanted within silicone chambers around the femoral vessels and transected femoral nerve of syngeneic rats for 4 weeks. Neurotized constructs generated contractile forces 5 times as high as the non-neurotized controls. Indirect stimulation via the nerve elicited contractions of neurotized constructs. Curare administration ceased contraction in these constructs, providing physiologic evidence of NMJ formation. Histology demonstrated intact muscle fibers, and immunostaining positively identified NMJs. These results indicate that neurotization of engineered skeletal muscle significantly increases force generation and causes NMJs to develop, allowing indirect muscle stimulation.
Collapse
MESH Headings
- Animals
- Bungarotoxins/metabolism
- Cell Separation
- Cells, Cultured
- Centrifugation
- Collagenases/pharmacology
- Culture Media, Serum-Free
- Curare/pharmacology
- Femoral Artery/surgery
- Femoral Nerve/surgery
- Femoral Vein/surgery
- Fibrin/chemistry
- Filtration
- Fluorescein-5-isothiocyanate/metabolism
- Fluorescent Dyes/metabolism
- Gels/chemistry
- Immunohistochemistry
- Models, Biological
- Muscle Contraction/drug effects
- Muscle, Skeletal/cytology
- Muscle, Skeletal/physiology
- Neuromuscular Junction/metabolism
- Rats
- Rats, Inbred F344
- Satellite Cells, Skeletal Muscle/cytology
- Satellite Cells, Skeletal Muscle/physiology
- Satellite Cells, Skeletal Muscle/transplantation
- Temperature
- Time Factors
- Tissue Culture Techniques
- Tissue Engineering/methods
- Transplantation, Isogeneic
Collapse
Affiliation(s)
- Vikas Dhawan
- Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
37
|
Vallbacka JJ, Sefton MV. Vascularization and Improved In Vivo Survival of VEGF-Secreting Cells Microencapsulated in HEMA-MMA. ACTA ACUST UNITED AC 2007; 13:2259-69. [PMID: 17523877 DOI: 10.1089/ten.2006.0284] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Vascularization caused by encapsulated cells engineered to secrete vascular endothelial growth factor (VEGF) improved the in vivo survival of the encapsulated cells in a syngeneic mouse Matrigel plug model. Murine fibroblast cells (L929) were engineered to secrete recombinant human vascular endothelial growth factor (rhVEGF(165)). Transfected and nontransfected L929 cells were microencapsulated in a 75:25 hydroxyethyl methacrylate-methyl methacrylate (HEMA-MMA) copolymer. Capsules containing transfected cells induced vascularization in vivo at 1 and 3 weeks postimplantation. In histological sections, a significant positive correlation was seen between the number of capsules and blood vessel density for VEGF-secreting cell capsule implants. New vessels, many positively stained for smooth muscle cells and pericytes, were seen surrounding these VEGF-secreting cell capsule explants. Few vessels were seen in nontransfected L929 capsule implants. The viability of transfected and nontransfected encapsulated cells was assessed on explantation. Although the viability of all encapsulated cells decreased at both 1 and 3 weeks, encapsulated VEGF-secreting cells retained more of the viability than did encapsulated nontransfected control cells. Genetically modified cells promoted vascularization in this context and appeared to enhance the viability of the encapsulated cells, although the extent of the functional benefit was less than expected. Additional effort is required to enhance the benefit, to quantify it, and to understand further the host response to HEMA-MMA microencapsulated cells and tissue constructs, more generally.
Collapse
Affiliation(s)
- Jennifer J Vallbacka
- Department of Chemical Engineering and Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada M5S 3G9
| | | |
Collapse
|
38
|
Zacchigna S, Tasciotti E, Kusmic C, Arsic N, Sorace O, Marini C, Marzullo P, Pardini S, Petroni D, Pattarini L, Moimas S, Giacca M, Sambuceti G. In vivo imaging shows abnormal function of vascular endothelial growth factor-induced vasculature. Hum Gene Ther 2007; 18:515-24. [PMID: 17559317 DOI: 10.1089/hum.2006.162] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although the angiogenic effect of vascular endothelial growth factor (VEGF) is widely recognized, a central question concerns whether the vessels formed on its overexpression effectively increase tissue perfusion in vivo. To explore this issue, here we exploit AAV vectors to obtain the prolonged expression of VEGF and angiopoietin-1 (Ang1) in rat skeletal muscle. Over a period of 6 months, muscle blood flow (MBF) and vascular permeability were measured by positron emission tomography and single-photon emission computed tomography, respectively. All measurements were performed under resting conditions and after electrically induced muscle exercise. Despite the potent angiogenic effect of VEGF, documented by vessel counting and intravascular volume assessment, the expression of this factor did not improve resting MBF, and it even decreased perfusion after exercise. This deleterious effect was related to the formation of leaky vascular lacunae, which accounted for the occurrence of arteriovenous shunts that excluded the downstream microcirculation. These effects were significantly counteracted by the coinjection of VEGF and Ang1, which determined a marked increase in resting MBF and, most notably, a significant improvement after exercise that persisted over time. Taken together, these results challenge the effectiveness of VEGF as a sole factor to induce angiogenesis and suggest the use of factor combinations to achieve competent vessel formation.
Collapse
MESH Headings
- Angiopoietin-1/analogs & derivatives
- Angiopoietin-1/genetics
- Animals
- Capillary Permeability
- Dependovirus/genetics
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Gene Expression/physiology
- Genetic Vectors
- Male
- Models, Animal
- Muscle, Skeletal/blood supply
- Neovascularization, Pathologic/diagnostic imaging
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Positron-Emission Tomography
- Radiopharmaceuticals
- Rats
- Rats, Wistar
- Technetium Tc 99m Pentetate
- Tomography, Emission-Computed, Single-Photon
- Transfection
- Vascular Endothelial Growth Factor A/genetics
Collapse
Affiliation(s)
- Serena Zacchigna
- Molecular Medicine Laboratory, International Center for Genetic Engineering and Biotechnology, 34012 Trieste, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Gene transfer for the therapeutic modulation of cardiovascular diseases is an expanding area of gene therapy. During the last decade several approaches have been designed for the treatment of hyperlipidemias, post-angioplasty restenosis, hypertension, and heart failure, and for protection of vascular by-pass grafts and promotion of therapeutic angiogenesis. Adenoviruses (Ads) and adeno-associated viruses (AAVs) are currently the most efficient vectors for delivering therapeutic genes into the cardiovascular system. Gene transfer using local gene delivery techniques have been shown to be superior to less-targeted intra-arterial or intra-venous applications. To date, no gene therapy drugs have been approved for clinical use in cardiovascular applications. In preclinical studies of therapeutic angiogenesis, various growth factors such as vascular endothelial growth factors (VEGFs) and fibroblast growth factors (FGFs), have shown positive results. Gene therapy also appears to have potential clinical applications in improving the patency of vascular grafts and in treating heart failure. Post-angioplasty restenosis, hypertension, and hyperlipidemias (excluding homozygotic familial hypercholesterolemia) can usually be managed satisfactorily by conventional approaches, and are therefore less favored areas for gene therapy. The development of technologies that can ensure long-term, targeted, and regulated gene transfer, and a careful selection of target patient populations, will be very important for the progress of cardiovascular gene therapy in clinical applications.
Collapse
Affiliation(s)
- Tuomas T Rissanen
- 1Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute, Kuopio University, Kuopio, Finland
| | | |
Collapse
|
40
|
Kholová I, Koota S, Kaskenpää N, Leppänen P, Närväinen J, Kavec M, Rissanen TT, Hazes T, Korpisalo P, Gröhn O, Ylä-Herttuala S. Adenovirus-Mediated Gene Transfer of Human Vascular Endothelial Growth Factor-D Induces Transient Angiogenic Effects in Mouse Hind Limb Muscle. Hum Gene Ther 2007; 18:232-44. [PMID: 17362136 DOI: 10.1089/hum.2006.100] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We evaluated the therapeutic potential of adenovirus (Ad)-mediated human vascular endothelial growth factor-D (hVEGF-D) gene delivery in mice. Hind limbs of hypercholesterolemic mice ( n = 120) were injected with AdhVEGF-D, AdhVEGF-A, control AdLacZ (all at 1x10(11)viral particles) or saline. Animals were killed at 4, 7, 14, 28, and 42 days. Newly formed vessels were characterized for their quantity, sprouting, angiogenic versus lymphangiogenic phenotype, and arterial versus venous phenotype by endothelial enzymes markers, pericyte coverage, and electron microscopy. Perfusion was measured by power Doppler ultrasound and edema by magnetic resonance imaging (MRI). AdhVEGF-D induced significant formation of new blood vessels, which featured lumenal enlargement, branching, and sprouting. Branching originated mainly from arterioles. The highest vessel density was present on days 4-7 and the effect lasted up to 28 days. Endothelial marker enzyme activity indicated the predominance of arterial capillaries and arterioles. Forty percent of the neovessels were positive for desmin, indicating that VEGF-D increased pericyte coverage. However, branching vessels were highly positive for smooth muscle actin pericyte marker but negative for desmin. Maximal perfusion was measured during the first week after AdhVEGF-D gene transfer. Ultrastructural analysis showed endothelial cells enriched with vesiculo-vacuolar organelles and cytoplasmic protrusions. Modest lymphangiogenic activity was also detected, which could contribute to the relatively low level of edema detected by MRI. In conclusions, AdhVEGF-D has a strong angiogenic effect and a modest lymphangiogenic effect in mouse skeletal muscle. VEGF-D also increases the presence of pericytes/smooth muscle cells in neovessels. AdhVEGF-D is a potential new agent for the induction of therapeutic vascular growth in skeletal muscle.
Collapse
Affiliation(s)
- Ivana Kholová
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, FIN-70211 Kuopio, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Springer ML, Banfi A, Ye J, von Degenfeld G, Kraft PE, Saini SA, Kapasi NK, Blau HM. Localization of vascular response to VEGF is not dependent on heparin binding. FASEB J 2007; 21:2074-85. [PMID: 17325231 DOI: 10.1096/fj.06-7700com] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The major vascular endothelial growth factor (VEGF) isoforms are splice variants from a single gene that differ in their extent of heparin affinity due to the absence of the heparin binding domain in the smallest isoform (mouse VEGF120, human VEGF121). A long-held assumption that has guided the use of VEGF isoforms clinically has been that their differences in heparin binding dictate their ability to diffuse through tissue, with VEGF121 moving most freely and that the distribution of recombinant VEGF would have therapeutically relevant consequences. To test this assumption, we delivered the genes encoding these isoforms by myoblast-mediated gene transfer, a means of delivering genes to highly localized sites within muscle. Surprisingly, all isoforms induced comparable extremely localized physiological effects. Significantly, irrespective of the isoform delivered, the vessels passing within several micrometers of muscle fibers expressing VEGF displayed sharply delineated changes in morphology. The induction of capillary wrapping around VEGF-producing fibers, and of vascular malformations in the muscle at high levels, did not differ among isoforms. These results indicate that heparin binding is not essential for the localization of VEGF in adult tissue and suggest that the preferential delivery of VEGF121 cDNA for clinical applications may not have a physiological basis.
Collapse
Affiliation(s)
- Matthew L Springer
- Division of Cardiology, Box 0124, 513 Parnassus Ave., Rm. S1136, University of California, San Francisco, San Francisco, CA 94143-0124, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Ylä-Herttuala S, Rissanen TT, Vajanto I, Hartikainen J. Vascular endothelial growth factors: biology and current status of clinical applications in cardiovascular medicine. J Am Coll Cardiol 2007; 49:1015-26. [PMID: 17349880 DOI: 10.1016/j.jacc.2006.09.053] [Citation(s) in RCA: 334] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Revised: 09/22/2006] [Accepted: 09/27/2006] [Indexed: 12/12/2022]
Abstract
Members of the vascular endothelial growth factor (VEGF) family are among the most powerful modulators of vascular biology. They regulate vasculogenesis, angiogenesis, and vascular maintenance during embryogenesis and in adults. Because of their profound effects on blood vessels, VEGFs have received much attention regarding their potential therapeutic use in cardiovascular medicine, especially for therapeutic vascular growth in myocardial and peripheral ischemia. However, completed randomized controlled VEGF trials have not provided convincing evidence of clinical efficacy. On the other hand, recent preclinical proangiogenic VEGF studies have given insight, and anti-VEGF studies have shown that the disturbance of vascular homeostasis by blocking VEGF-A may lead to endothelial dysfunction and adverse vascular effects. Excess VEGF-A may contribute to neovascularization of atherosclerotic lesions but, currently, there is no evidence that transient overexpression by gene transfer could lead to plaque destabilization. Here, we review the biology and effects of VEGFs as well as the current status of clinical applications and future perspectives of the therapeutic use of VEGFs in cardiovascular medicine.
Collapse
Affiliation(s)
- Seppo Ylä-Herttuala
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute, Kuopio University, Kuopio, Finland.
| | | | | | | |
Collapse
|
43
|
Christov C, Chrétien F, Abou-Khalil R, Bassez G, Vallet G, Authier FJ, Bassaglia Y, Shinin V, Tajbakhsh S, Chazaud B, Gherardi RK. Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol Biol Cell 2007; 18:1397-409. [PMID: 17287398 PMCID: PMC1838982 DOI: 10.1091/mbc.e06-08-0693] [Citation(s) in RCA: 484] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Genetically engineered mice (Myf5nLacZ/+, Myf5GFP-P/+) allowing direct muscle satellite cell (SC) visualization indicate that, in addition to being located beneath myofiber basal laminae, SCs are strikingly close to capillaries. After GFP(+) bone marrow transplantation, blood-borne cells occupying SC niches previously depleted by irradiation were similarly detected near vessels, thereby corroborating the anatomical stability of juxtavascular SC niches. Bromodeoxyuridine pulse-chase experiments also localize quiescent and less quiescent SCs near vessels. SCs, and to a lesser extent myonuclei, were nonrandomly associated with capillaries in humans. Significantly, they were correlated with capillarization of myofibers, regardless to their type, in normal muscle. They also varied in paradigmatic physiological and pathological situations associated with variations of capillary density, including amyopathic dermatomyositis, a unique condition in which muscle capillary loss occurs without myofiber damage, and in athletes in whom capillaries increase in number. Endothelial cell (EC) cultures specifically enhanced SC growth, through IGF-1, HGF, bFGF, PDGF-BB, and VEGF, and, accordingly, cycling SCs remained mainly juxtavascular. Conversely, differentiating myogenic cells were both proangiogenic in vitro and spatiotemporally associated with neoangiogenesis in muscular dystrophy. Thus, SCs are largely juxtavascular and reciprocally interact with ECs during differentiation to support angio-myogenesis.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Bromodeoxyuridine/metabolism
- Capillaries/cytology
- Capillaries/physiology
- Cell Differentiation
- Cell Proliferation/drug effects
- Cells, Cultured
- Dogs
- Endothelial Cells/cytology
- Endothelial Cells/physiology
- Endothelium, Vascular/cytology
- Humans
- Intercellular Signaling Peptides and Proteins/isolation & purification
- Intercellular Signaling Peptides and Proteins/pharmacology
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Middle Aged
- Muscle Fibers, Skeletal/cytology
- Muscle, Skeletal/blood supply
- Muscle, Skeletal/cytology
- Muscle, Skeletal/physiology
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/physiopathology
- Neovascularization, Physiologic
- Rats
- Satellite Cells, Skeletal Muscle/cytology
- Satellite Cells, Skeletal Muscle/drug effects
- Satellite Cells, Skeletal Muscle/physiology
Collapse
Affiliation(s)
- Christo Christov
- *INSERM, Unité 841, IMRB, Team No. 10, Créteil, F-94000, France
- Université Paris XII-Val de Marne, Créteil, F-94000, France
- Service d'Histologie, Département de Pathologie, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, F-94000 Créteil, France
- “PICTURES” Cell and Tissue Imaging Unit of Institut Mondor de Médecine Moléculaire, IFR 10, Créteil, F-94000 France; and
| | - Fabrice Chrétien
- *INSERM, Unité 841, IMRB, Team No. 10, Créteil, F-94000, France
- Université Paris XII-Val de Marne, Créteil, F-94000, France
- Service d'Histologie, Département de Pathologie, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, F-94000 Créteil, France
- “Stem Cells and Development,” Department of Developmental Biology, Pasteur Institute, Paris, F-75015 France
| | - Rana Abou-Khalil
- *INSERM, Unité 841, IMRB, Team No. 10, Créteil, F-94000, France
- Université Paris XII-Val de Marne, Créteil, F-94000, France
- Service d'Histologie, Département de Pathologie, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, F-94000 Créteil, France
| | - Guillaume Bassez
- *INSERM, Unité 841, IMRB, Team No. 10, Créteil, F-94000, France
- Université Paris XII-Val de Marne, Créteil, F-94000, France
- Service d'Histologie, Département de Pathologie, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, F-94000 Créteil, France
| | - Grégoire Vallet
- *INSERM, Unité 841, IMRB, Team No. 10, Créteil, F-94000, France
- Université Paris XII-Val de Marne, Créteil, F-94000, France
- Service d'Histologie, Département de Pathologie, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, F-94000 Créteil, France
| | - François-Jérôme Authier
- *INSERM, Unité 841, IMRB, Team No. 10, Créteil, F-94000, France
- Université Paris XII-Val de Marne, Créteil, F-94000, France
- Service d'Histologie, Département de Pathologie, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, F-94000 Créteil, France
| | - Yann Bassaglia
- *INSERM, Unité 841, IMRB, Team No. 10, Créteil, F-94000, France
- Université Paris XII-Val de Marne, Créteil, F-94000, France
- Service d'Histologie, Département de Pathologie, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, F-94000 Créteil, France
| | - Vasily Shinin
- “Stem Cells and Development,” Department of Developmental Biology, Pasteur Institute, Paris, F-75015 France
| | - Shahragim Tajbakhsh
- “Stem Cells and Development,” Department of Developmental Biology, Pasteur Institute, Paris, F-75015 France
| | - Bénédicte Chazaud
- *INSERM, Unité 841, IMRB, Team No. 10, Créteil, F-94000, France
- Université Paris XII-Val de Marne, Créteil, F-94000, France
- Service d'Histologie, Département de Pathologie, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, F-94000 Créteil, France
| | - Romain K. Gherardi
- *INSERM, Unité 841, IMRB, Team No. 10, Créteil, F-94000, France
- Université Paris XII-Val de Marne, Créteil, F-94000, France
- Service d'Histologie, Département de Pathologie, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, F-94000 Créteil, France
- “PICTURES” Cell and Tissue Imaging Unit of Institut Mondor de Médecine Moléculaire, IFR 10, Créteil, F-94000 France; and
| |
Collapse
|
44
|
Nikolaos B, Rauend R, Alfred K. Invited commentary. Ann Thorac Surg 2007; 83:646-7. [PMID: 17258001 DOI: 10.1016/j.athoracsur.2006.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 10/09/2006] [Accepted: 10/16/2006] [Indexed: 11/28/2022]
Affiliation(s)
- Bonaros Nikolaos
- Department of Cardiac Surgery, Innsbruck Medical University, Anichstrasse, Innsbruck, 35, 6020 Austria.
| | | | | |
Collapse
|
45
|
Mac Gabhann F, Ji JW, Popel AS. VEGF gradients, receptor activation, and sprout guidance in resting and exercising skeletal muscle. J Appl Physiol (1985) 2006; 102:722-34. [PMID: 17038488 DOI: 10.1152/japplphysiol.00800.2006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Extensive experimental studies have identified vascular endothelial growth factor (VEGF) concentrations and concentration gradients as major factors in angiogenesis; however, localized in vivo measurements of these parameters have not been possible. We developed a three-dimensional computational model of skeletal muscle fibers, blood vessels, and interstitial space. Here it is applied to rat extensor digitorum longus. VEGF isoforms are secreted by myocytes, diffuse through extracellular matrix and basement membranes, and bind endothelial cell surface receptors on blood vessels. In addition, one isoform, VEGF164, binds to proteoglycans in the interstitial space. VEGF secretion rate is determined from the predicted tissue oxygen level through its effect on the hypoxia inducible factor-1alpha transcription factor. We estimate VEGF secretion and its concentrations and gradients in resting muscle and for different levels of exercise. The effects of low levels of inspired oxygen are also studied. We predict that the high spatial heterogeneity of muscle fiber VEGF secretion in hypoxic tissue leads to significant gradients of VEGF concentration and VEGF receptor activation. VEGF concentration gradients are predicted to be significant in both resting and exercising muscle (4% and 6-8% change in VEGF over 10 microm, respectively), sufficient for chemotactic guidance of 50-microm-long sprout tip cells. VEGF gradients also result in heterogeneity in VEGF receptor activation--a possible explanation for the stochasticity of sprout location. In the absence of interstitial flow, gradients are 10-fold steeper in the transverse direction (i.e., perpendicular to the muscle fibers) than in the longitudinal direction. This may explain observed perpendicular anastomoses in skeletal muscle.
Collapse
Affiliation(s)
- Feilim Mac Gabhann
- Dept. of Biomedical Engineering, Johns Hopkins Univ. School of Medicine, 720 Rutland Ave., Baltimore, MD 2120, USA.
| | | | | |
Collapse
|
46
|
Abstract
Tissue regeneration strategies such as tissue engineering, growth factor administration, and stem cell-based therapies have undergone significant development over the past two decades. Most notably, we are much closer to realizing the engineering of whole organs and tissue with complex architecture than we were 5 years ago. A major driving force has been the demand placed by the scientific community at large and the public to go beyond simple engineering of tissues and demonstrate functionality in engineered tissues and functional recovery upon transplantation. Some recent advances include de novo engineering of bone, engineering of fully functional bladder, and vascularization of skeletal muscle constructs. Notwithstanding, several challenges lie ahead in making regenerative medicine a viable science of the future, the key being the evolution of programs and policies that promote a close relationship among government agencies, private sector, and academia, more specifically between materials scientists, biologists, and clinicians.
Collapse
Affiliation(s)
- V Prasad Shastri
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
47
|
Mac Gabhann F, Ji JW, Popel AS. Computational model of vascular endothelial growth factor spatial distribution in muscle and pro-angiogenic cell therapy. PLoS Comput Biol 2006; 2:e127. [PMID: 17002494 PMCID: PMC1570371 DOI: 10.1371/journal.pcbi.0020127] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Accepted: 08/03/2006] [Indexed: 11/18/2022] Open
Abstract
Members of the vascular endothelial growth factor (VEGF) family of proteins are critical regulators of angiogenesis. VEGF concentration gradients are important for activation and chemotactic guidance of capillary sprouting, but measurement of these gradients in vivo is not currently possible. We have constructed a biophysically and molecularly detailed computational model to study microenvironmental transport of two isoforms of VEGF in rat extensor digitorum longus skeletal muscle under in vivo conditions. Using parameters based on experimental measurements, the model includes: VEGF secretion from muscle fibers; binding to the extracellular matrix; binding to and activation of endothelial cell surface VEGF receptors; and internalization. For 2-D cross sections of tissue, we analyzed predicted VEGF distributions, gradients, and receptor binding. Significant VEGF gradients (up to 12% change in VEGF concentration over 10 mum) were predicted in resting skeletal muscle with uniform VEGF secretion, due to non-uniform capillary distribution. These relative VEGF gradients were not sensitive to extracellular matrix composition, or to the overall VEGF expression level, but were dependent on VEGF receptor density and affinity, and internalization rate parameters. VEGF upregulation in a subset of fibers increased VEGF gradients, simulating transplantation of pro-angiogenic myoblasts, a possible therapy for ischemic diseases. The number and relative position of overexpressing fibers determined the VEGF gradients and distribution of VEGF receptor activation. With total VEGF expression level in the tissue unchanged, concentrating overexpression into a small number of adjacent fibers can increase the number of capillaries activated. The VEGF concentration gradients predicted for resting muscle (average 3% VEGF/10 mum) is sufficient for cellular sensing; the tip cell of a vessel sprout is approximately 50 mum long. The VEGF gradients also result in heterogeneity in the activation of blood vessel VEGF receptors. This first model of VEGF tissue transport and heterogeneity provides a platform for the design and evaluation of therapeutic approaches.
Collapse
Affiliation(s)
- Feilim Mac Gabhann
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America.
| | | | | |
Collapse
|
48
|
Murakami T, Arai M, Sunada Y, Nakamura A. VEGF 164 gene transfer by electroporation improves diabetic sensory neuropathy in mice. J Gene Med 2006; 8:773-81. [PMID: 16518878 DOI: 10.1002/jgm.893] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diabetic neuropathy is the most common cause of peripheral neuropathy and a serious complication of diabetes. Vascular endothelial growth factor (VEGF) stimulates angiogenesis and has neurotrophic and neuroprotective activities. To examine the efficiency of VEGF 164 electro-gene therapy for neuropathy, intramuscular VEGF 164 gene transfer by electroporation was performed to treat sensory neuropathy in diabetic mice. METHODS VEGF 164 was overexpressed in the tibial anterior (TA) muscles of streptozotocin-induced diabetic mice with hypoalgesia, using a VEGF 164 plasmid injection with electroporation. From 2 weeks after electro-gene transfer, the nociceptive threshold was measured weekly using the paw-pressure test. The TA muscles, sciatic nerve, liver and spleen were histochemically examined at 4 weeks after electro-gene transfer. RESULTS Two weeks after electro-gene transfer into the bilateral TA muscles, the elevated nociceptive threshold was decreased to a normal level in all treated mice. Improvement of the hypoalgesia continued for 14 weeks. When the VEGF 164 plasmid was injected with electroporation into a unilateral TA muscle, recovery from hypoalgesia was observed in not only the ipsilateral hindpaw, but also the contralateral one, suggesting that VEGF circulates in the blood. No increase in the number of endoneurial vessels in the sciatic nerve was found in the VEGF 164 plasmid-electroporated mice. CONCLUSIONS These findings suggest that VEGF 164 electro-gene therapy completely recovered the sensory deficits, i.e. hypoalgesia, in the diabetic mice through mechanisms other than angiogenesis in the endoneurium of the peripheral nerve, and may be useful for treatment for diabetic sensory neuropathy in human subjects.
Collapse
Affiliation(s)
- Tatsufumi Murakami
- Division of Neurology, Department of Internal Medicine, Kawasaki Medical School, Kurashiki, Japan.
| | | | | | | |
Collapse
|
49
|
Zentilin L, Tafuro S, Zacchigna S, Arsic N, Pattarini L, Sinigaglia M, Giacca M. Bone marrow mononuclear cells are recruited to the sites of VEGF-induced neovascularization but are not incorporated into the newly formed vessels. Blood 2006; 107:3546-54. [PMID: 16391016 DOI: 10.1182/blood-2005-08-3215] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) is a key regulator of blood vessel formation during both vasculogenesis and angiogenesis. The prolonged expression of VEGF in the normoperfused skeletal muscles of adult rodents after gene transfer using AAV vectors induces the formation of a large set of new capillaries and small arteries. Notably, this process is accompanied by the massive infiltration by mononuclear cells. This observation raises the possibility that these cells might represent circulating progenitors that are eventually incorporated in the newly formed vessels. Here we explore this possibility by exploiting 4 different experimental models based on (a) the transplantation of male bone marrow into female recipients; (b) the transplantation of Tie2-GFP transgenic bone marrow; (c) the transplantation of bone marrow in the presence of erythropoietin (EPO), a mobilizer of endothelial progenitor cells (EPCs); and (d) the reimplantation of ex vivo-expanded EPCs. In all 4 models, VEGF acted as a powerful attractor of bone marrow-derived mononuclear cells, bearing different myeloid and endothelial markers proper of the EPCs to the sites of neovascularization. In no case, however, were the attracted cells incorporated in the newly formed vasculature. These observations indicate that new blood vessel formation induced by VEGF occurs through bona fide sprouting angiogenesis; the contribution of the infiltrating bone marrow-derived cells to this process still remains enigmatic.
Collapse
|
50
|
Rissanen TT, Korpisalo P, Markkanen JE, Liimatainen T, Ordén MR, Kholová I, de Goede A, Heikura T, Gröhn OH, Ylä-Herttuala S. Blood flow remodels growing vasculature during vascular endothelial growth factor gene therapy and determines between capillary arterialization and sprouting angiogenesis. Circulation 2005; 112:3937-46. [PMID: 16344386 DOI: 10.1161/circulationaha.105.543124] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND For clinically relevant proangiogenic therapy, it would be essential that the growth of the whole vascular tree is promoted. Vascular endothelial growth factor (VEGF) is well known to induce angiogenesis, but its capability to promote growth of larger vessels is controversial. We hypothesized that blood flow remodels vascular growth during VEGF gene therapy and may contribute to the growth of large vessels. METHODS AND RESULTS Adenoviral (Ad) VEGF or LacZ control gene transfer was performed in rabbit hindlimb semimembranous muscles with or without ligation of the profound femoral artery (PFA). Contrast-enhanced ultrasound and dynamic susceptibility contrast MRI demonstrated dramatic 23- to 27-fold increases in perfusion index and a strong decrease in peripheral resistance 6 days after AdVEGF gene transfer in normal muscles. Enlargement by 20-fold, increased pericyte coverage, and decreased alkaline phosphatase and dipeptidyl peptidase IV activities suggested the transformation of capillaries toward an arterial phenotype. Increase in muscle perfusion was attenuated, and blood vessel growth was more variable, showing more sprouting angiogenesis and formation of blood lacunae after AdVEGF gene transfer in muscles with ligated PFA than in normal muscles. Three-dimensional ultrasound reconstructions and histology showed that the whole vascular tree, including large arteries and veins, was enlarged manifold by AdVEGF. Blood flow was normalized and enlarged collaterals persisted in operated limbs 14 days after AdVEGF treatment. CONCLUSIONS This study shows that (1) blood flow modulates vessel growth during VEGF gene therapy and (2) VEGF overexpression promotes growth of arteries and veins and induces capillary arterialization leading to supraphysiological blood flow in target muscles.
Collapse
Affiliation(s)
- Tuomas T Rissanen
- Department of Biotechnology, A.I. Virtanen Institute, Kuopio University, Kuopio, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|