1
|
Lan YZ, Wu Z, Chen WJ, Fang ZX, Yu XN, Wu HT, Liu J. Small nucleolar RNA and its potential role in the oncogenesis and development of colorectal cancer. World J Gastroenterol 2024; 30:115-127. [PMID: 38312115 PMCID: PMC10835520 DOI: 10.3748/wjg.v30.i2.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Small nucleolar RNAs (snoRNAs) represent a class of non-coding RNAs that play pivotal roles in post-transcriptional RNA processing and modification, thereby contributing significantly to the maintenance of cellular functions related to protein synthesis. SnoRNAs have been discovered to possess the ability to influence cell fate and alter disease progression, holding immense potential in controlling human diseases. It is suggested that the dysregulation of snoRNAs in cancer exhibits differential expression across various cancer types, stages, metastasis, treatment response and/or prognosis in patients. On the other hand, colorectal cancer (CRC), a prevalent malignancy of the digestive system, is characterized by high incidence and mortality rates, ranking as the third most common cancer type. Recent research indicates that snoRNA dysregulation is associated with CRC, as snoRNA expression significantly differs between normal and cancerous conditions. Consequently, assessing snoRNA expression level and function holds promise for the prognosis and diagnosis of CRC. Nevertheless, current comprehension of the potential roles of snoRNAs in CRC remains limited. This review offers a comprehensive survey of the aberrant regulation of snoRNAs in CRC, providing valuable insights into the discovery of novel biomarkers, therapeutic targets, and potential tools for the diagnosis and treatment of CRC and furnishing critical cues for advancing research into CRC and the judicious selection of therapeutic targets.
Collapse
Affiliation(s)
- Yang-Zheng Lan
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Zheng Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Wen-Jia Chen
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Ze-Xuan Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Xin-Ning Yu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Hua-Tao Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jing Liu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
2
|
Xie W, Hao J, Zhang K, Fang X, Liu X. Adenovirus armed with VGLL4 selectively kills hepatocellular carcinoma with G2/M phase arrest and apoptosis promotion. Biochem Biophys Res Commun 2018; 503:2758-2763. [PMID: 30119884 DOI: 10.1016/j.bbrc.2018.08.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/04/2018] [Indexed: 01/08/2023]
Abstract
The Vestigial-Like Family Member 4 (VGLL4) functions as a native inhibitor of cell proliferation and tumor growth through multiple signaling pathways. We first discovered that VGLL4 causes G2/M phase arrest in hepatocellular carcinoma (HCC) cells. Then, we designed a novel survivin-regulated oncolytic adenovirus Ad-sp-VGLL4 carrying the VGLL4 gene. Ad-sp-VGLL4 exerted high HCC-targeting-selectivity but is less harmful to normal cells. This adenovirus construction enhanced antitumor activity due to G2/M phase arrest and enhanced apoptosis. It's also indicated that Ad-sp-VGLL4 could suppress the growth of transplanted tumor of HCC in vivo experiment. Taken together, our results suggest that Ad-sp-VGLL4 possesses strong antitumor capacity and has great potential use for HCC therapy.
Collapse
Affiliation(s)
- Wenjie Xie
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China.
| | - Jiali Hao
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China.
| | - Kangjian Zhang
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, PR China; Shanghai YuanSong Biological Technology Co., Ltd, No. 1588, Shanghai and Hangzhou Highway, Fengxian District, Shanghai, 201401, PR China.
| | - Xianlong Fang
- Shanghai YuanSong Biological Technology Co., Ltd, No. 1588, Shanghai and Hangzhou Highway, Fengxian District, Shanghai, 201401, PR China.
| | - Xinyuan Liu
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, PR China; Shanghai YuanSong Biological Technology Co., Ltd, No. 1588, Shanghai and Hangzhou Highway, Fengxian District, Shanghai, 201401, PR China.
| |
Collapse
|
3
|
Yuan S, Fang X, Xu Y, Ni A, Liu XY, Chu L. An oncolytic adenovirus that expresses the HAb18 and interleukin 24 genes exhibits enhanced antitumor activity in hepatocellular carcinoma cells. Oncotarget 2018; 7:60491-60502. [PMID: 27528029 PMCID: PMC5312398 DOI: 10.18632/oncotarget.11134] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/26/2016] [Indexed: 11/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is characterized by alterations in multiple genes. High expression of CD147 on the surface of HCC cells promotes proliferation. The monoclonal antibody HAb18 recognizes CD147. We constructed an oncolytic adenoviral vector to express HAb18 (ZD55-HAb18) in HCC cells. Interleukin 24 (IL24) was co-expressed through the use of an F2A linker. ZD55-HAb18-IL24 decreased HCC cell viability to a greater degree than either ZD55-HAb18 or ZD55-IL24 alone. ZD55-HAb18-IL24 also induced apoptosis and autophagy in PLC/PRF/5 HCC cells. Intratumoral injection of ZD55-HAb18-IL24 repressed tumor growth in a PLC/PRF/5 xenograft model. Our results suggest that antibody-antitumor gene conjugation elicited a stronger antitumor effect than the antibody alone, and that this strategy could broaden the applications of antibody-based therapies in HCC.
Collapse
Affiliation(s)
- Sujing Yuan
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Xianlong Fang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Yanni Xu
- College of Life Sciences, Northwest Agriculture and Forestry University, Yangling 712100, P. R. China
| | - Aimin Ni
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Xin-Yuan Liu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Liang Chu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou 221002, P. R. China
| |
Collapse
|
4
|
Yuan S, Wu Y, Wang Y, Chen J, Chu L. An Oncolytic Adenovirus Expressing SNORD44 and GAS5 Exhibits Antitumor Effect in Colorectal Cancer Cells. Hum Gene Ther 2017; 28:690-700. [PMID: 28530127 DOI: 10.1089/hum.2017.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
SNORD44 is a C/D box small nucleolar RNA, and exhibits low expression in breast cancer and head and neck squamous cell carcinoma tissues. Its host gene is growth arrest specific transcript 5 (GAS5), which is a long noncoding RNA. GAS5 is downregulated in colorectal cancer (CRC), and overexpression of GAS5 suppresses cell proliferation. However, the function of SNORD44 in CRC remains largely unknown, and the application of SNORD44 combined with GAS5 in CRC treatment has not been reported. In this study, the expression levels of SNORD44 and GAS5 were measured in CRC tissues by quantitative RT-PCR. The correlation between SNORD44 and GAS5 was evaluated by Pearson correlation analysis. An oncolytic adenovirus expressing SNORD44 and GAS5 (SPDD-UG) was constructed. The biological effects of SPDD-UG were investigated in CRC cell line SW620 and LS174T in vitro and in xenografts. The synergistic effect of rapamycin and SPDD-UG was explored in SW620 and LS174T cells and tumors. We demonstrated that SNORD44 expression level was markedly decreased in CRC tissues and positively correlated with GAS5 expression. SPDD-UG significantly inhibited SW620 and LS174T cell growth and induced cell apoptosis. Intratumoral injection of SPDD-UG significantly suppressed xenografts growth in nude mice. Moreover, the mechanistic target of rapamycin (mTOR) inhibitor, rapamycin, enhanced the antitumor effect through antagonizing the PI3K/Akt pathway activated by SPDD-UG. These results suggest that overexpression of SNORD44 and GAS5 by oncolytic adenovirus provides a promising method for CRC therapy.
Collapse
Affiliation(s)
- Sujing Yuan
- 1 Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Yu Wu
- 1 Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Yigang Wang
- 2 Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University , Hangzhou, China
| | - Jianhua Chen
- 3 State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Liang Chu
- 1 Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| |
Collapse
|
5
|
Li Y, Zhang H, Zhu X, Feng D, Zhang D, Zhuo B, Zheng J. Oncolytic adenovirus-mediated short hairpin RNA targeting MYCN gene induces apoptosis by upregulating RKIP in neuroblastoma. Tumour Biol 2015; 36:6037-43. [PMID: 25736927 DOI: 10.1007/s13277-015-3280-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 02/18/2015] [Indexed: 10/23/2022] Open
Abstract
The amplification of MYCN is a typical characteristic of aggressive neuroblastomas, whereas acquired mutations of p53 lead to refractory and relapsed cases. We had previously examined the applicability of the replication-competent oncolytic adenovirus, ZD55-shMYCN, to deliver a short hairpin RNA targeting MYCN gene for p53-null and MYCN-amplified neuroblastoma cell line LA1-55N. Our data have shown that ZD55-shMYCN has an additive tumor growth inhibitory response through shRNA-mediated MYCN knockdown and ZD55-mediated cancer cell lysis. In this regard, ZD55-shMYCN can downregulate MYCN and perform anticancer effects, thereby acquiring significance in the administration of MYCN-amplified and p53-null neuroblastomas. Hence, we further investigated the anticancer properties of ZD55-shMYCN in neuroblastomas. Our data showed that ZD55-shMYCN induced G2/M arrest via decreasing the levels of cyclin D1 and cyclin B1 irrespective of p53 status. ZD55-shMYCN effectively induced apoptosis in neuroblastomas through activation of caspase-3 and enhancing PARP cleavage. Furthermore, ZD55-shMYCN could downregulate phosphoinositide 3-kinase and pAkt and upregulate RKIP levels. Similarly, pro-apoptosis was revealed by the histopathologic examination of paraffin-embedded section of resected tumors of mice xenograft. In vitro and in vivo studies, we elucidate the apoptosis properties and mechanisms of action of ZD55-shMYCN, which provide a promising approach for further clinical development.
Collapse
Affiliation(s)
- Yuan Li
- Department of Pediatric Surgery, Xuzhou Children's Hospital, 18 Suti North Road, Xuzhou, 221006, Jiangsu, China,
| | | | | | | | | | | | | |
Collapse
|
6
|
Davydova J, Yamamoto M. Oncolytic adenoviruses: design, generation, and experimental procedures. ACTA ACUST UNITED AC 2014; Chapter 12:Unit 12.14. [PMID: 23853080 DOI: 10.1002/0471142905.hg1214s78] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Oncolytic adenoviruses are designed to take advantage of the virus' native ability to replicate in cancer cells to induce oncolysis. Subsequently, the released viral progeny spread and kill the neighboring cancer cells. These characteristics, together with the ability of adenovirus to infect a broad spectrum of cells, its well understood replication machinery, and relative ease of manufacture have led to the intensive use of adenovirus as an anticancer agent. This unit describes cloning strategies, procedures to turn the intended design into virus, and quality analyses of resultant adenoviral vectors. Most of these procedures were optimized especially for oncolytic adenoviral vectors.
Collapse
Affiliation(s)
- Julia Davydova
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | | |
Collapse
|
7
|
Gomes EM, Rodrigues MS, Phadke AP, Butcher LD, Starling C, Chen S, Chang D, Hernandez-Alcoceba R, Newman JT, Stone MJ, Tong AW. Antitumor activity of an oncolytic adenoviral-CD40 ligand (CD154) transgene construct in human breast cancer cells. Clin Cancer Res 2009; 15:1317-25. [PMID: 19228733 DOI: 10.1158/1078-0432.ccr-08-1360] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE CD40 ligand (CD40L, CD154) plays a central role in immunoregulation and also directly modulates epithelial cell growth and differentiation. We previously showed that the CD40 receptor is commonly expressed in primary breast cancer tissues. In this proof-of-principle study, we examined the breast cancer growth-regulatory activities of an oncolytic adenoviral construct carrying the CD40L transgene (AdEHCD40L). EXPERIMENTAL DESIGN In vitro and in vivo evaluations were carried out on AdEHCD40L to validate selective viral replication and CD40L transgene activity in hypoxia inducing factor-1alpha and estrogen receptor-expressing human breast cancer cells. RESULTS AdEHCD40L inhibited the in vitro growth of CD40+ human breast cancer lines (T-47D, MDA-MB-231, and BT-20) by up to 80% at a low multiplicity of infection of 1. Incorporation of the CD40L transgene reduced the effective dose needed to achieve 50% growth inhibition (ED50) by approximately 10-fold. In contrast, viral and transgene expression of AdEHCD40L, as well its cytotoxicity, was markedly attenuated in nonmalignant cells. Intratumoral injections with AdEHCD40L reduced preexisting MDA-MB-231 xenograft growth in severe combined immunodeficient mice by >99% and was significantly more effective (P<0.003) than parental virus AdEH (69%) or the recombinant CD40L protein (49%). This enhanced antitumor activity correlated with cell cycle blockade and increased apoptosis in AdEHCD40L-infected tumor cells. CONCLUSIONS These novel findings, together with the previously known immune-activating features of CD40L, support the potential applicability of AdEHCD40L for experimental treatment of human breast cancer.
Collapse
Affiliation(s)
- Erica M Gomes
- Cancer Immunology Research Laboratory and Department of Pathology, Baylor Sammons Cancer Center, Dallas, TX 75246, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zamir G, Zeira E, Gelman AE, Shaked A, Olthoff KM, Eid A, Galun E. Replication-deficient adenovirus induces host topoisomerase I activity: implications for adenovirus-mediated gene expression. Mol Ther 2007; 15:772-81. [PMID: 17299399 DOI: 10.1038/sj.mt.6300110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Replication-deficient adenoviruses are useful vectors for the transfer of therapeutic transgenes to malignant and non-malignant tissues. Yet their clinical application is limited by the potential toxicity of viral infection and the transient nature of transgene expression. Although transgene expression from adenovirus vectors is initially higher than expression of transgenes transduced by other viral or non-viral vectors, it is often insufficient to generate a significant therapeutic effect. We addressed this issue by searching for DNA-targeted viral-induced host responses potentially restricting transgene expression. Nuclear protein extracts from livers of rats systemically infected with replication-deficient adenovirus exhibited enhanced topoisomerase I activity compared with extracts from uninfected animals. Consequently, the inhibition of topoisomerase I by the anti-cancer drug topotecan greatly enhanced transgene expression in adenovirus-infected hepatic cells, colon cancer and prostate cancer cell cultures, mouse liver, human ex vivo tumor specimens, and mouse tumor in vivo. The enhancement could not be ascribed to non-specific genotoxic stress, cell death, or cell-cycle perturbation. These findings are significant for gene therapy as they reveal novel aspects of the host anti-adenovirus response and set the stage for the development of a rational molecular-pharmacological approach to increase the effectiveness, and safety, of adenovirus-mediated cancer therapeutics.
Collapse
Affiliation(s)
- Gideon Zamir
- Department of Surgery, Hadassah University Medical Center, Jerusalem, Israel.
| | | | | | | | | | | | | |
Collapse
|
9
|
Zhang YA, Nemunaitis J, Samuel SK, Chen P, Shen Y, Tong AW. Antitumor Activity of an Oncolytic Adenovirus-Delivered Oncogene Small Interfering RNA. Cancer Res 2006; 66:9736-43. [PMID: 17018633 DOI: 10.1158/0008-5472.can-06-1617] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite successes in animal models, cancer gene therapy with small interfering RNAs (siRNA) is hindered by the lack of an optimal delivery platform. We examined the applicability of the replication-competent, oncolytic adenovirus, ONYX-411, to deliver a mutant K-ras siRNA transgene to human cancer cells. Proof-of-principle studies showed an additive tumor growth-inhibitory response through siRNA-mediated K-ras knockdown and ONYX-411-mediated cancer cell lysis. A novel construct, termed Internavec (for interfering RNA vector), was generated by cloning a K-ras(v12)-specific siRNA(ras-4) hairpin construct under the control of the human H1 promoter into the deleted E3b region of ONYX-411. Internavec acquired an increase in potency of approximately 10-fold in human cancer cells expressing the relevant K-ras(v12) mutation (H79, H441, and SW480), as defined by a reduction in the effective dose needed to achieve 50% growth inhibition (ED(50)). Internavec remained attenuated in nonmalignant epithelial cells. Daily intratumoral injections of Internavec (five daily injections of 1 x 10(8) plaque-forming units) significantly reduced the growth of s.c. H79 pancreatic cancer xenografts in nu/nu mice by 85.5%, including complete growth suppression in three of five mice. Parental ONYX-411 or ONYX-411-siRNA(GFP) was markedly less effective (47.8% growth reduction, P = 0.03; and 44.1% growth reduction, P = 0.03, respectively). siRNA(ras) transgene activity contributed to cell cycle blockage, increased apoptosis, and marked down-regulation of Ras signaling-related gene expression (AKT2, GSK3 beta, E2F2, and MAP4K5). These findings indicate that Internavec can generate a two-pronged attack on tumor cells through oncogene knockdown and viral oncolysis, resulting in a significantly enhanced antitumor outcome.
Collapse
Affiliation(s)
- Yu-An Zhang
- The Mary Crowley Medical Research Center, Dallas, Texas
| | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Sova P, Ren XW, Ni S, Bernt KM, Mi J, Kiviat N, Lieber A. A tumor-targeted and conditionally replicating oncolytic adenovirus vector expressing TRAIL for treatment of liver metastases. Mol Ther 2004; 9:496-509. [PMID: 15093180 DOI: 10.1016/j.ymthe.2003.12.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Accepted: 12/17/2003] [Indexed: 01/09/2023] Open
Abstract
We have constructed a new capsid-modified adenovirus (Ad) vector that specifically replicates in tumor cells and expresses TNF-related apoptosis-inducing ligand (TRAIL). The Ad capsid contains short-shafted fibers derived from Ad serotype 35, which allow for efficient infection of malignant tumor cells, and largely avoids innate toxicity after intravenous application. Replication-dependent homologous recombination in Ad genomes was used to achieve tumor-specific expression of Ad E1a (to mediate viral replication) and TRAIL (to mediate apoptosis and enhance release of progeny virus from infected cells). We demonstrated that our oncolytic vector (Ad5/35.IR-E1A/TRAIL) induced apoptosis in human tumor cell lines derived from colorectal, lung, prostate, and liver cancer. Both in vitro and in vivo tumor models showed efficient intratumoral spread of this vector. In a model for metastatic colon cancer, tail vein infusion of Ad5/35.IR-E1A/TRAIL resulted in elimination of preestablished liver metastases. Intravenous injection of this vector caused a transient elevation of serum glutamic pyruvic transaminase in tumor-bearing mice, which we attributed to factors released from apoptotic tumor cells. Liver histology analyzed at day 14 after virus injection did not show signs of hepatocellular damage. This new oncolytic vector represents a potentially efficient means for gene therapy of metastatic cancer.
Collapse
Affiliation(s)
- Pavel Sova
- Department of Pathology, University of Washington, Box 357720, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Zhang ZL, Zou WG, Luo CX, Li BH, Wang JH, Sun LY, Qian QJ, Liu XY. An armed oncolytic adenovirus system, ZD55-gene, demonstrating potent antitumoral efficacy. Cell Res 2004; 13:481-9. [PMID: 14728805 DOI: 10.1038/sj.cr.7290191] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ONYX-015 is an attractive therapeutic adenovirus for cancer because it can selectively replicate in tumor cells and kill them. To date, clinical trials of this adenovirus have demonstrated marked safety but not potent enough when it was used alone. In this paper, we put forward a novel concept of Gene-ViroTherapy strategy and in this way, we constructed an armed therapeutic oncolytic adenovirus system, ZD55-gene, which is not only deleted of E1B 55-kD gene similar to ONYX-015, but also armed with foreign antitumor gene. ZD55-gene exhibited similar cytopathic effects and replication kinetics to that of ONYX-015 in vitro. Importantly, the carried gene is expressed and the expression level can increase with the replication of virus. Consequently, a significant antitumoral efficacy was observed when ZD55-CD/5-FU was used as an example in nude mice with subcutaneous human SW620 colon cancer. Our data demonstrated that ZD55-gene, which utilizing the Gene-ViroTherapy strategy, is more efficacious than each individual component in vivo.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Antineoplastic Agents/therapeutic use
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Cell Line, Tumor
- Cells, Cultured
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Colorectal Neoplasms/therapy
- Cytopathogenic Effect, Viral/drug effects
- Female
- Fluorouracil/therapeutic use
- Gene Expression Regulation, Neoplastic
- Genes, Reporter
- Genetic Therapy
- Genetic Vectors
- HeLa Cells
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Transplantation
- Oncogenes/drug effects
- Transplantation, Heterologous
- Virus Replication
Collapse
Affiliation(s)
- Zi Lai Zhang
- Laboratory of Biotechnology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
|