1
|
Pal AK, Gandhivel VHS, Nambiar AB, Shivaprasad PV. Upstream regulator of genomic imprinting in rice endosperm is a small RNA-associated chromatin remodeler. Nat Commun 2024; 15:7807. [PMID: 39242590 PMCID: PMC11379814 DOI: 10.1038/s41467-024-52239-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
Genomic imprinting is observed in endosperm, a placenta-like seed tissue, where transposable elements (TEs) and repeat-derived small RNAs (sRNAs) mediate epigenetic changes in plants. In imprinting, uniparental gene expression arises due to parent-specific epigenetic marks on one allele but not on the other. The importance of sRNAs and their regulation in endosperm development or in imprinting is poorly understood in crops. Here we show that a previously uncharacterized CLASSY (CLSY)-family chromatin remodeler named OsCLSY3 is essential for rice endosperm development and imprinting, acting as an upstream player in the sRNA pathway. Comparative transcriptome and genetic analysis indicated its endosperm-preferred expression and its likely paternal imprinted nature. These important features are modulated by RNA-directed DNA methylation (RdDM) of tandemly arranged TEs in its promoter. Upon perturbation of OsCLSY3 in transgenic lines, we observe defects in endosperm development and a loss of around 70% of all sRNAs. Interestingly, well-conserved endosperm-specific sRNAs (siren) that are vital for reproductive fitness in angiosperms are also dependent on OsCLSY3. We observed that many imprinted genes and seed development-associated genes are under the control of OsCLSY3. These results support an essential role of OsCLSY3 in rice endosperm development and imprinting, and propose similar regulatory strategies involving CLSY3 homologs among other cereals.
Collapse
Affiliation(s)
- Avik Kumar Pal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Vivek Hari-Sundar Gandhivel
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Amruta B Nambiar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - P V Shivaprasad
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India.
| |
Collapse
|
2
|
Rajabhoj MP, Sankar S, Bondada R, Shanmukhan AP, Prasad K, Maruthachalam R. Gametophytic epigenetic regulators, MEDEA and DEMETER, synergistically suppress ectopic shoot formation in Arabidopsis. PLANT CELL REPORTS 2024; 43:68. [PMID: 38341844 DOI: 10.1007/s00299-024-03159-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/11/2024] [Indexed: 02/13/2024]
Abstract
KEY MESSAGE The gametophytic epigenetic regulators, MEA and DME, extend their synergistic role to the sporophytic development by regulating the meristematic activity via restricting the gene expression in the shoot apex. The gametophyte-to-sporophyte transition facilitates the alternation of generations in a plant life cycle. The epigenetic regulators DEMETER (DME) and MEDEA (MEA) synergistically control central cell proliferation and differentiation, ensuring proper gametophyte-to-sporophyte transition in Arabidopsis. Mutant alleles of DME and MEA are female gametophyte lethal, eluding the recovery of recessive homozygotes to examine their role in the sporophyte. Here, we exploited the paternal transmission of these mutant alleles coupled with CENH3-haploid inducer to generate mea-1;dme-2 sporophytes. Strikingly, the simultaneous loss of function of MEA and DME leads to the emergence of ectopic shoot meristems at the apical pole of the plant body axis. DME and MEA are expressed in the developing shoot apex and regulate the expression of various shoot-promoting factors. Chromatin immunoprecipitation (ChIP), DNA methylation, and gene expression analysis revealed several shoot regulators as potential targets of MEA and DME. RNA interference-mediated transcriptional downregulation of shoot-promoting factors STM, CUC2, and PLT5 rescued the twin-plant phenotype to WT in 9-23% of mea-1-/-;dme-2-/- plants. Our findings reveal a previously unrecognized synergistic role of MEA and DME in restricting the meristematic activity at the shoot apex during sporophytic development.
Collapse
Affiliation(s)
- Mohit P Rajabhoj
- School of Biology, IISER Thiruvananthapuram, Thiruvananthapuram, Kerala, 695551, India
| | - Sudev Sankar
- School of Biology, IISER Thiruvananthapuram, Thiruvananthapuram, Kerala, 695551, India
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Ramesh Bondada
- School of Biology, IISER Thiruvananthapuram, Thiruvananthapuram, Kerala, 695551, India
| | | | - Kalika Prasad
- Department of Biology, IISER Pune, Pune, Maharashtra, 411008, India.
| | - Ravi Maruthachalam
- School of Biology, IISER Thiruvananthapuram, Thiruvananthapuram, Kerala, 695551, India.
| |
Collapse
|
3
|
Lobanova YV, Zhenilo SV. Genomic Imprinting and Random Monoallelic Expression. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:84-96. [PMID: 38467547 DOI: 10.1134/s000629792401005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 03/13/2024]
Abstract
The review discusses the mechanisms of monoallelic expression, such as genomic imprinting, in which gene transcription depends on the parental origin of the allele, and random monoallelic transcription. Data on the regulation of gene activity in the imprinted regions are summarized with a particular focus on the areas controlling imprinting and factors influencing the variability of the imprintome. The prospects of studies of the monoallelic expression are discussed.
Collapse
Affiliation(s)
- Yaroslava V Lobanova
- Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Svetlana V Zhenilo
- Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
4
|
Lu Y, Bu Q, Chuan M, Cui X, Zhao Y, Zhou DX. Metabolic regulation of the plant epigenome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1001-1013. [PMID: 36705504 DOI: 10.1111/tpj.16122] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 05/31/2023]
Abstract
Chromatin modifications shape the epigenome and are essential for gene expression reprogramming during plant development and adaptation to the changing environment. Chromatin modification enzymes require primary metabolic intermediates such as S-adenosyl-methionine, acetyl-CoA, alpha-ketoglutarate, and NAD+ as substrates or cofactors. The availability of the metabolites depends on cellular nutrients, energy and reduction/oxidation (redox) states, and affects the activity of chromatin regulators and the epigenomic landscape. The changes in the plant epigenome and the activity of epigenetic regulators in turn control cellular metabolism through transcriptional and post-translational regulation of metabolic enzymes. The interplay between metabolism and the epigenome constitutes a basis for metabolic control of plant growth and response to environmental changes. This review summarizes recent advances regarding the metabolic control of plant chromatin regulators and epigenomes, which are involved in plant adaption to environmental stresses.
Collapse
Affiliation(s)
- Yue Lu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Qing Bu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Mingli Chuan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoyun Cui
- Institute of Plant Science Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, Orsay, 91405, France
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dao-Xiu Zhou
- Institute of Plant Science Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, Orsay, 91405, France
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
5
|
Sanchez R, Mackenzie SA. On the thermodynamics of DNA methylation process. Sci Rep 2023; 13:8914. [PMID: 37264042 PMCID: PMC10235097 DOI: 10.1038/s41598-023-35166-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/13/2023] [Indexed: 06/03/2023] Open
Abstract
DNA methylation is an epigenetic mechanism that plays important roles in various biological processes including transcriptional and post-transcriptional regulation, genomic imprinting, aging, and stress response to environmental changes and disease. Consistent with thermodynamic principles acting within living systems and the application of maximum entropy principle, we propose a theoretical framework to understand and decode the DNA methylation process. A central tenet of this argument is that the probability density function of DNA methylation information-divergence summarizes the statistical biophysics underlying spontaneous methylation background and implicitly bears on the channel capacity of molecular machines conforming to Shannon's capacity theorem. On this theoretical basis, contributions from the molecular machine (enzyme) logical operations to Gibb entropy (S) and Helmholtz free energy (F) are intrinsic. Application to the estimations of S on datasets from Arabidopsis thaliana suggests that, as a thermodynamic state variable, individual methylome entropy is completely determined by the current state of the system, which in biological terms translates to a correspondence between estimated entropy values and observable phenotypic state. In patients with different types of cancer, results suggest that a significant information loss occurs in the transition from differentiated (healthy) tissues to cancer cells. This type of analysis may have important implications for early-stage diagnostics. The analysis of entropy fluctuations on experimental datasets revealed existence of restrictions on the magnitude of genome-wide methylation changes originating by organismal response to environmental changes. Only dysfunctional stages observed in the Arabidopsis mutant met1 and in cancer cells do not conform to these rules.
Collapse
Affiliation(s)
- Robersy Sanchez
- Department of Biology, The Pennsylvania State University, 361 Frear North Bldg, University Park, PA, 16802, USA.
| | - Sally A Mackenzie
- Departments of Biology and Plant Science, The Pennsylvania State University, 362 Frear North Bldg, University Park, PA, 16802, USA.
| |
Collapse
|
6
|
Gent JI, Higgins KM, Swentowsky KW, Fu FF, Zeng Y, Kim DW, Dawe RK, Springer NM, Anderson SN. The maize gene maternal derepression of r1 encodes a DNA glycosylase that demethylates DNA and reduces siRNA expression in the endosperm. THE PLANT CELL 2022; 34:3685-3701. [PMID: 35775949 PMCID: PMC9516051 DOI: 10.1093/plcell/koac199] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 06/27/2022] [Indexed: 06/01/2023]
Abstract
Demethylation of transposons can activate the expression of nearby genes and cause imprinted gene expression in the endosperm; this demethylation is hypothesized to lead to expression of transposon small interfering RNAs (siRNAs) that reinforce silencing in the next generation through transfer either into egg or embryo. Here we describe maize (Zea mays) maternal derepression of r1 (mdr1), which encodes a DNA glycosylase with homology to Arabidopsis thaliana DEMETER and which is partially responsible for demethylation of thousands of regions in endosperm. Instead of promoting siRNA expression in endosperm, MDR1 activity inhibits it. Methylation of most repetitive DNA elements in endosperm is not significantly affected by MDR1, with an exception of Helitrons. While maternally-expressed imprinted genes preferentially overlap with MDR1 demethylated regions, the majority of genes that overlap demethylated regions are not imprinted. Double mutant megagametophytes lacking both MDR1 and its close homolog DNG102 result in early seed failure, and double mutant microgametophytes fail pre-fertilization. These data establish DNA demethylation by glycosylases as essential in maize endosperm and pollen and suggest that neither transposon repression nor genomic imprinting is its main function in endosperm.
Collapse
Affiliation(s)
| | - Kaitlin M Higgins
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Kyle W Swentowsky
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Fang-Fang Fu
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
- Co‐Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yibing Zeng
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | - Dong won Kim
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | - R Kelly Dawe
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA
| | - Sarah N Anderson
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
7
|
Jiang T, Zheng B. Epigenetic Regulation of Megaspore Mother Cell Formation. FRONTIERS IN PLANT SCIENCE 2022; 12:826871. [PMID: 35185968 PMCID: PMC8850924 DOI: 10.3389/fpls.2021.826871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/31/2021] [Indexed: 05/31/2023]
Abstract
In flowering plants, the female gametophyte (FG) initiates from the formation of the megaspore mother cell (MMC). Among a pool of the somatic cells in the ovule primordium, only one hypodermal cell undergoes a transition of cell fate to become the MMC. Subsequently, the MMC undergoes a series of meiosis and mitosis to form the mature FG harboring seven cells with eight nuclei. Although SPL/NZZ, the core transcription factor for MMC formation, was identified several decades ago, which and why only one somatic cell is chosen as the MMC have long remained mysterious. A growing body of evidence reveal that MMC formation is associated with epigenetic regulation at multiple layers, including dynamic distribution of histone variants and histone modifications, small RNAs, and DNA methylation. In this review, we summarize the progress of epigenetic regulation in the MMC formation, emphasizing the roles of chromosome condensation, histone variants, histone methylation, small RNAs, and DNA methylation.
Collapse
|
8
|
Rodrigues JA, Hsieh PH, Ruan D, Nishimura T, Sharma MK, Sharma R, Ye X, Nguyen ND, Nijjar S, Ronald PC, Fischer RL, Zilberman D. Divergence among rice cultivars reveals roles for transposition and epimutation in ongoing evolution of genomic imprinting. Proc Natl Acad Sci U S A 2021; 118:e2104445118. [PMID: 34272287 PMCID: PMC8307775 DOI: 10.1073/pnas.2104445118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Parent-of-origin-dependent gene expression in mammals and flowering plants results from differing chromatin imprints (genomic imprinting) between maternally and paternally inherited alleles. Imprinted gene expression in the endosperm of seeds is associated with localized hypomethylation of maternally but not paternally inherited DNA, with certain small RNAs also displaying parent-of-origin-specific expression. To understand the evolution of imprinting mechanisms in Oryza sativa (rice), we analyzed imprinting divergence among four cultivars that span both japonica and indica subspecies: Nipponbare, Kitaake, 93-11, and IR64. Most imprinted genes are imprinted across cultivars and enriched for functions in chromatin and transcriptional regulation, development, and signaling. However, 4 to 11% of imprinted genes display divergent imprinting. Analyses of DNA methylation and small RNAs revealed that endosperm-specific 24-nt small RNA-producing loci show weak RNA-directed DNA methylation, frequently overlap genes, and are imprinted four times more often than genes. However, imprinting divergence most often correlated with local DNA methylation epimutations (9 of 17 assessable loci), which were largely stable within subspecies. Small insertion/deletion events and transposable element insertions accompanied 4 of the 9 locally epimutated loci and associated with imprinting divergence at another 4 of the remaining 8 loci. Correlating epigenetic and genetic variation occurred at key regulatory regions-the promoter and transcription start site of maternally biased genes, and the promoter and gene body of paternally biased genes. Our results reinforce models for the role of maternal-specific DNA hypomethylation in imprinting of both maternally and paternally biased genes, and highlight the role of transposition and epimutation in rice imprinting evolution.
Collapse
Affiliation(s)
- Jessica A Rodrigues
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Ping-Hung Hsieh
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Deling Ruan
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - Toshiro Nishimura
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Manoj K Sharma
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - Rita Sharma
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - XinYi Ye
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Nicholas D Nguyen
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Sukhranjan Nijjar
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Pamela C Ronald
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
| | - Robert L Fischer
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720;
| | - Daniel Zilberman
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720;
- Department of Cell and Developmental Biology, The John Innes Centre, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
9
|
The DME demethylase regulates sporophyte gene expression, cell proliferation, differentiation, and meristem resurrection. Proc Natl Acad Sci U S A 2021; 118:2026806118. [PMID: 34266952 PMCID: PMC8307533 DOI: 10.1073/pnas.2026806118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The angiosperm life cycle has alternating diploid (sporophyte) and haploid (gametophyte) generations. The sporophyte generation begins with fertilization of haploid gametes and the gametophyte generation begins after meiosis. In Arabidopsis, the DEMETER (DME) DNA demethylase is essential for reproduction and is expressed in the central cell and vegetative cell of the female and male gametophyte, respectively. Little is known about DME function in the sporophyte. We show that DME activity is required for sporophyte development—seed germination, root hair growth, and cellular proliferation and differentiation during development—and we identify sporophytic genes whose proper expression requires DME activity. Together, our study provides important clues about the genetic circuits regulated by the DME DNA demethylase that control Arabidopsis sporophyte development. The flowering plant life cycle consists of alternating haploid (gametophyte) and diploid (sporophyte) generations, where the sporophytic generation begins with fertilization of haploid gametes. In Arabidopsis, genome-wide DNA demethylation is required for normal development, catalyzed by the DEMETER (DME) DNA demethylase in the gamete companion cells of male and female gametophytes. In the sporophyte, postembryonic growth and development are largely dependent on the activity of numerous stem cell niches, or meristems. Analyzing Arabidopsis plants homozygous for a loss-of-function dme-2 allele, we show that DME influences many aspects of sporophytic growth and development. dme-2 mutants exhibited delayed seed germination, variable root hair growth, aberrant cellular proliferation and differentiation followed by enhanced de novo shoot formation, dysregulation of root quiescence and stomatal precursor cells, and inflorescence meristem (IM) resurrection. We also show that sporophytic DME activity exerts a profound effect on the transcriptome of developing Arabidopsis plants, including discrete groups of regulatory genes that are misregulated in dme-2 mutant tissues, allowing us to potentially link phenotypes to changes in specific gene expression pathways. These results show that DME plays a key role in sporophytic development and suggest that DME-mediated active DNA demethylation may be involved in the maintenance of stem cell activities during the sporophytic life cycle in Arabidopsis.
Collapse
|
10
|
Markulin L, Škiljaica A, Tokić M, Jagić M, Vuk T, Bauer N, Leljak Levanić D. Taking the Wheel - de novo DNA Methylation as a Driving Force of Plant Embryonic Development. FRONTIERS IN PLANT SCIENCE 2021; 12:764999. [PMID: 34777448 PMCID: PMC8585777 DOI: 10.3389/fpls.2021.764999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/13/2021] [Indexed: 05/16/2023]
Abstract
During plant embryogenesis, regardless of whether it begins with a fertilized egg cell (zygotic embryogenesis) or an induced somatic cell (somatic embryogenesis), significant epigenetic reprogramming occurs with the purpose of parental or vegetative transcript silencing and establishment of a next-generation epigenetic patterning. To ensure genome stability of a developing embryo, large-scale transposon silencing occurs by an RNA-directed DNA methylation (RdDM) pathway, which introduces methylation patterns de novo and as such potentially serves as a global mechanism of transcription control during developmental transitions. RdDM is controlled by a two-armed mechanism based around the activity of two RNA polymerases. While PolIV produces siRNAs accompanied by protein complexes comprising the methylation machinery, PolV produces lncRNA which guides the methylation machinery toward specific genomic locations. Recently, RdDM has been proposed as a dominant methylation mechanism during gamete formation and early embryo development in Arabidopsis thaliana, overshadowing all other methylation mechanisms. Here, we bring an overview of current knowledge about different roles of DNA methylation with emphasis on RdDM during plant zygotic and somatic embryogenesis. Based on published chromatin immunoprecipitation data on PolV binding sites within the A. thaliana genome, we uncover groups of auxin metabolism, reproductive development and embryogenesis-related genes, and discuss possible roles of RdDM at the onset of early embryonic development via targeted methylation at sites involved in different embryogenesis-related developmental mechanisms.
Collapse
|
11
|
To TK, Nishizawa Y, Inagaki S, Tarutani Y, Tominaga S, Toyoda A, Fujiyama A, Berger F, Kakutani T. RNA interference-independent reprogramming of DNA methylation in Arabidopsis. NATURE PLANTS 2020; 6:1455-1467. [PMID: 33257860 DOI: 10.1038/s41477-020-00810-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/16/2020] [Indexed: 06/12/2023]
Abstract
DNA methylation is important for silencing transposable elements (TEs) in diverse eukaryotes, including plants. In plant genomes, TEs are silenced by methylation of histone H3 lysine 9 (H3K9) and cytosines in both CG and non-CG contexts. The role of RNA interference (RNAi) in establishing TE-specific silent marks has been extensively studied, but the importance of RNAi-independent pathways remains largely unexplored. Here, we directly investigated transgenerational de novo DNA methylation of TEs after the loss of silent marks. Our analyses uncovered potent and precise RNAi-independent pathways for recovering non-CG methylation and H3K9 methylation in most TE genes (that is, coding regions within TEs). Characterization of a subset of TE genes without the recovery revealed the effects of H3K9 demethylation, replacement of histone H2A variants and their interaction with CG methylation, together with feedback from transcription. These chromatin components are conserved among eukaryotes and may contribute to chromatin reprogramming in a conserved manner.
Collapse
Affiliation(s)
- Taiko Kim To
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan.
| | - Yuichiro Nishizawa
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | - Soichi Inagaki
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
- Department of Integrated Genetics, National Institute of Genetics (NIG), Mishima, Shizuoka, Japan
- PREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Yoshiaki Tarutani
- Department of Integrated Genetics, National Institute of Genetics (NIG), Mishima, Shizuoka, Japan
| | - Sayaka Tominaga
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | - Atsushi Toyoda
- Center for Genetic Resource Information, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Asao Fujiyama
- Center for Genetic Resource Information, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna, Austria
| | - Tetsuji Kakutani
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan.
- Department of Integrated Genetics, National Institute of Genetics (NIG), Mishima, Shizuoka, Japan.
| |
Collapse
|
12
|
Song Q, Ando A, Jiang N, Ikeda Y, Chen ZJ. Single-cell RNA-seq analysis reveals ploidy-dependent and cell-specific transcriptome changes in Arabidopsis female gametophytes. Genome Biol 2020; 21:178. [PMID: 32698836 PMCID: PMC7375004 DOI: 10.1186/s13059-020-02094-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/06/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Polyploidy provides new genetic material that facilitates evolutionary novelty, species adaptation, and crop domestication. Polyploidy often leads to an increase in cell or organism size, which may affect transcript abundance or transcriptome size, but the relationship between polyploidy and transcriptome changes remains poorly understood. Plant cells often undergo endoreduplication, confounding the polyploid effect. RESULTS To mitigate these effects, we select female gametic cells that are developmentally stable and void of endoreduplication. Using single-cell RNA sequencing (scRNA-seq) in Arabidopsis thaliana tetraploid lines and isogenic diploids, we show that transcriptome abundance doubles in the egg cell and increases approximately 1.6-fold in the central cell, consistent with cell size changes. In the central cell of tetraploid plants, DEMETER (DME) is upregulated, which can activate PRC2 family members FIS2 and MEA, and may suppress the expression of other genes. Upregulation of cell size regulators in tetraploids, including TOR and OSR2, may increase the size of reproductive cells. In diploids, the order of transcriptome abundance is central cell, synergid cell, and egg cell, consistent with their cell size variation. Remarkably, we uncover new sets of female gametophytic cell-specific transcripts with predicted biological roles; the most abundant transcripts encode families of cysteine-rich peptides, implying roles in cell-cell recognition during double fertilization. CONCLUSIONS Transcriptome in single cells doubles in tetraploid plants compared to diploid, while the degree of change and relationship to the cell size depends on cell types. These scRNA-seq resources are free of cross-contamination and are uniquely valuable for advancing plant hybridization, reproductive biology, and polyploid genomics.
Collapse
Affiliation(s)
- Qingxin Song
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX, 78712, USA
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Atsumi Ando
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX, 78712, USA
| | - Ning Jiang
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station C0800, Austin, TX, 78712, USA
| | - Yoko Ikeda
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046, Japan
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX, 78712, USA.
| |
Collapse
|
13
|
Kordyum EL, Mosyakin SL. Endosperm of Angiosperms and Genomic Imprinting. Life (Basel) 2020; 10:E104. [PMID: 32635326 PMCID: PMC7400472 DOI: 10.3390/life10070104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022] Open
Abstract
Modern ideas about the role of epigenetic systems in the regulation of gene expression allow us to understand the mechanisms of vital activities in plants, such as genomic imprinting. It is important that genomic imprinting is known first and foremost for the endosperm, which not only provides an embryo with necessary nutrients, but also plays a special biological role in the formation of seeds and fruits. Available data on genomic imprinting in the endosperm have been obtained only for the triploid endosperm in model plants, which develops after double fertilization in a Polygonum-type embryo sac, the most common type among angiosperms. Here we provide a brief overview of a wide diversity of embryo sacs and endosperm types and ploidy levels, as well as their distribution in the angiosperm families, positioned according to the Angiosperm Phylogeny Group IV (APG IV) phylogenetic classification. Addition of the new, non-model taxa to study gene imprinting in seed development will extend our knowledge about the epigenetic mechanisms underlying angiosperm fertility.
Collapse
Affiliation(s)
- Elizabeth L. Kordyum
- Institute of Botany, National Academy of Sciences of Ukraine, 01004 Kyiv, Ukraine; or
| | | |
Collapse
|
14
|
Genome-Wide Identification of Epigenetic Regulators in Quercus suber L. Int J Mol Sci 2020; 21:ijms21113783. [PMID: 32471127 PMCID: PMC7313042 DOI: 10.3390/ijms21113783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
Modifications of DNA and histones, including methylation and acetylation, are critical for the epigenetic regulation of gene expression during plant development, particularly during environmental adaptation processes. However, information on the enzymes catalyzing all these modifications in trees, such as Quercus suber L., is still not available. In this study, eight DNA methyltransferases (DNA Mtases) and three DNA demethylases (DDMEs) were identified in Q. suber. Histone modifiers involved in methylation (35), demethylation (26), acetylation (8), and deacetylation (22) were also identified in Q. suber. In silico analysis showed that some Q. suber DNA Mtases, DDMEs and histone modifiers have the typical domains found in the plant model Arabidopsis, which might suggest a conserved functional role. Additional phylogenetic analyses of the DNA and histone modifier proteins were performed using several plant species homologs, enabling the classification of the Q. suber proteins. A link between the expression levels of each gene in different Q. suber tissues (buds, flowers, acorns, embryos, cork, and roots) with the functions already known for their closest homologs in other species was also established. Therefore, the data generated here will be important for future studies exploring the role of epigenetic regulators in this economically important species.
Collapse
|
15
|
DNA Methylation and Histone H1 Jointly Repress Transposable Elements and Aberrant Intragenic Transcripts. Mol Cell 2020; 77:310-323.e7. [DOI: 10.1016/j.molcel.2019.10.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 08/26/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022]
|
16
|
Han Q, Bartels A, Cheng X, Meyer A, An YQC, Hsieh TF, Xiao W. Epigenetics Regulates Reproductive Development in Plants. PLANTS 2019; 8:plants8120564. [PMID: 31810261 PMCID: PMC6963493 DOI: 10.3390/plants8120564] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/23/2019] [Accepted: 11/27/2019] [Indexed: 12/20/2022]
Abstract
Seed, resulting from reproductive development, is the main nutrient source for human beings, and reproduction has been intensively studied through genetic, molecular, and epigenetic approaches. However, how different epigenetic pathways crosstalk and integrate to regulate seed development remains unknown. Here, we review the recent progress of epigenetic changes that affect chromatin structure, such as DNA methylation, polycomb group proteins, histone modifications, and small RNA pathways in regulating plant reproduction. In gametogenesis of flowering plants, epigenetics is dynamic between the companion cell and gametes. Cytosine DNA methylation occurs in CG, CHG, CHH contexts (H = A, C, or T) of genes and transposable elements, and undergoes dynamic changes during reproduction. Cytosine methylation in the CHH context increases significantly during embryogenesis, reaches the highest levels in mature embryos, and decreases as the seed germinates. Polycomb group proteins are important transcriptional regulators during seed development. Histone modifications and small RNA pathways add another layer of complexity in regulating seed development. In summary, multiple epigenetic pathways are pivotal in regulating seed development. It remains to be elucidated how these epigenetic pathways interplay to affect dynamic chromatin structure and control reproduction.
Collapse
Affiliation(s)
- Qiang Han
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA (A.B.); (X.C.)
| | - Arthur Bartels
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA (A.B.); (X.C.)
| | - Xi Cheng
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA (A.B.); (X.C.)
| | - Angela Meyer
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA (A.B.); (X.C.)
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Yong-Qiang Charles An
- US Department of Agriculture, Agricultural Research Service, Midwest Area, Plant Genetics Research Unit, Donald Danforth Plant Science Center, MO 63132, USA;
| | - Tzung-Fu Hsieh
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA;
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Wenyan Xiao
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA (A.B.); (X.C.)
- Correspondence: ; Tel.: +1-314-977-2547
| |
Collapse
|
17
|
Guo X, Xie Q, Li B, Su H. Molecular characterization and transcription analysis of DNA methyltransferase genes in tomato (Solanum lycopersicum). Genet Mol Biol 2019; 43:e20180295. [PMID: 31429858 PMCID: PMC7197986 DOI: 10.1590/1678-4685-gmb-2018-0295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/08/2019] [Indexed: 11/22/2022] Open
Abstract
DNA methylation plays an important role in plant growth and development, gene expression regulation, and maintenance of genome stability. However, only little information regarding stress-related DNA methyltransferases (MTases) genes is available in tomato. Here, we report the analysis of nine tomato MTases, which were categorized into four known subfamilies. Structural analysis suggested their DNA methylase domains are highly conserved, whereas the N-terminals are divergent. Tissue-specific analysis of these MTase genes revealed that SlCMT2, SlCMT3, and SlDRM5 were expressed higher in young leaves, while SlMET1, SlCMT4, SlDRM7, and SlDRM8 were highly expressed in immature green fruit, and their expression declined continuously with further fruit development. In contrast, SlMETL was highly expressed in ripening fruit and displayed an up-regulated tendency during fruit development. In addition, the expression of SlMET1 in the ripening of mutant rin and Nr tomatoes is significantly higher compared to wild-type tomato, suggesting that SlMET1 was negatively regulated by the ethylene signal and ripening regulator MADS-RIN. Furthermore, expression analysis under abiotic stresses revealed that these MTase genes were stress-responsive and may function diversely in different stress conditions. Overall, our results provide valuable information for exploring the regulation of tomato fruit ripening and response to abiotic stress through DNA methylation.
Collapse
Affiliation(s)
- Xuhu Guo
- Shanxi Datong University, School of Life Sciences, Datong, China.,Shanxi Datong University, Applied Biotechnology Institute, Datong, China
| | - Qian Xie
- Shanxi Datong University, School of Life Sciences, Datong, China.,Shanxi Datong University, Applied Biotechnology Institute, Datong, China
| | - Baoyuan Li
- Shanxi Datong University, School of Life Sciences, Datong, China.,Shanxi Datong University, Applied Biotechnology Institute, Datong, China
| | - Huanzhen Su
- Shanxi Datong University, School of Life Sciences, Datong, China
| |
Collapse
|
18
|
Baroux C, Grossniklaus U. Seeds-An evolutionary innovation underlying reproductive success in flowering plants. Curr Top Dev Biol 2018; 131:605-642. [PMID: 30612632 DOI: 10.1016/bs.ctdb.2018.11.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
"Seeds nourish, seeds unite, seeds endure, seeds defend, seeds travel," explains the science writer Thor Hanson in his book The Triumph of Seeds (2015). The seed is an ultimate product of land plant evolution. The nursing and protective organization of the seed enable a unique parental care of the progeny that has fueled seed plant radiation. Seeds promote dispersal and optimize offspring production and thus reproductive fitness through biological adaptations that integrate environmental and developmental cues. The composite structure of seeds, uniting tissues that originate from three distinct organisms, enables the partitioning of tasks during development, maturation, and storage, while a sophisticated interplay between the compartments allows the fine-tuning of embryonic growth, as well as seed maturation, dormancy, and germination. In this review, we will highlight peculiarities in the development and evolution of the different seed compartments and focus on the molecular mechanisms underlying the interactions between them.
Collapse
Affiliation(s)
- Célia Baroux
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland.
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Dynamic DNA Methylation in Plant Growth and Development. Int J Mol Sci 2018; 19:ijms19072144. [PMID: 30041459 PMCID: PMC6073778 DOI: 10.3390/ijms19072144] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/12/2018] [Accepted: 07/20/2018] [Indexed: 12/14/2022] Open
Abstract
DNA methylation is an epigenetic modification required for transposable element (TE) silencing, genome stability, and genomic imprinting. Although DNA methylation has been intensively studied, the dynamic nature of methylation among different species has just begun to be understood. Here we summarize the recent progress in research on the wide variation of DNA methylation in different plants, organs, tissues, and cells; dynamic changes of methylation are also reported during plant growth and development as well as changes in response to environmental stresses. Overall DNA methylation is quite diverse among species, and it occurs in CG, CHG, and CHH (H = A, C, or T) contexts of genes and TEs in angiosperms. Moderately expressed genes are most likely methylated in gene bodies. Methylation levels decrease significantly just upstream of the transcription start site and around transcription termination sites; its levels in the promoter are inversely correlated with the expression of some genes in plants. Methylation can be altered by different environmental stimuli such as pathogens and abiotic stresses. It is likely that methylation existed in the common eukaryotic ancestor before fungi, plants and animals diverged during evolution. In summary, DNA methylation patterns in angiosperms are complex, dynamic, and an integral part of genome diversity after millions of years of evolution.
Collapse
|
20
|
Liu H, Zhang H, Dong YX, Hao YJ, Zhang XS. DNA METHYLTRANSFERASE1-mediated shoot regeneration is regulated by cytokinin-induced cell cycle in Arabidopsis. THE NEW PHYTOLOGIST 2018; 217:219-232. [PMID: 28960381 DOI: 10.1111/nph.14814] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/19/2017] [Indexed: 05/22/2023]
Abstract
DNA methylation plays a critical role in diverse biological processes of plants. Arabidopsis DNA METHYLTRANSFERASE1 (MET1) represses shoot regeneration by inhibiting WUSCHEL (WUS) expression, which is essential for shoot initiation. However, the upstream signals regulating MET1 expression during this process are unclear. We analyzed the signals regulating MET1 expression using a number of established strategies, such as genetic analysis, confocal microscopy, quantitative real-time PCR and chromatin immunoprecipitation. MET1 expression patterns underwent dynamic changes with the initiation of WUS during shoot regeneration. The cell cycle regulator E2FA was characterized as an upstream factor directly promoting MET1 expression. Moreover, cytokinin promoted MET1 expression partially by enhancing CYCD3 expression. Our findings reveal that MET1-mediated shoot regeneration is regulated by the cytokinin-induced cell cycle, and provide new insights into the regulation of DNA methylation in shoot regeneration.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Hui Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Yu Xiu Dong
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Yu Jin Hao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| |
Collapse
|
21
|
Li Y, Kumar S, Qian W. Active DNA demethylation: mechanism and role in plant development. PLANT CELL REPORTS 2018; 37:77-85. [PMID: 29026973 PMCID: PMC5758694 DOI: 10.1007/s00299-017-2215-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/05/2017] [Indexed: 05/18/2023]
Abstract
Active DNA demethylation (enzymatic removal of methylated cytosine) regulates many plant developmental processes. In Arabidopsis, active DNA demethylation entails the base excision repair pathway initiated by the Repressor of silencing 1/Demeter family of bifunctional DNA glycosylases. In this review, we first present an introduction to the recent advances in our understanding about the mechanisms of active DNA demethylation. We then focus on the role of active DNA demethylation in diverse developmental processes in various plant species, including the regulation of seed development, pollen tube formation, stomatal development, fruit ripening, and nodule development. Finally, we discuss future directions of research in the area of active DNA demethylation.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
22
|
An YQC, Goettel W, Han Q, Bartels A, Liu Z, Xiao W. Dynamic Changes of Genome-Wide DNA Methylation during Soybean Seed Development. Sci Rep 2017; 7:12263. [PMID: 28947812 PMCID: PMC5613027 DOI: 10.1038/s41598-017-12510-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/08/2017] [Indexed: 02/06/2023] Open
Abstract
Seed development is programmed by expression of many genes in plants. Seed maturation is an important developmental process to soybean seed quality and yield. DNA methylation is a major epigenetic modification regulating gene expression. However, little is known about the dynamic nature of DNA methylation and its effects on gene expression during plant development. Through whole-genome bisulfite sequencing, we showed that DNA methylation went through dynamic changes during seed maturation. An average of 66% CG, 45% CHG and 9% CHH contexts was methylated in cotyledons. CHH methylation levels in cotyledons changed greatly from 6% at the early stage to 11% at the late stage. Transcribed genes were approximately two-fold more likely to be differentially methylated than non-transcribed genes. We identified 40, 66 and 2136 genes containing differentially methylated regions (DMRs) with negative correlation between their expression and methylation in the CG, CHG and CHH contexts, respectively. The majority of the DMR genes in the CHH context were transcriptionally down-regulated as seeds mature: 99% of them during early maturation were down-regulated, and preferentially associated with DNA replication and cell division. The results provide novel insights into the dynamic nature of DNA methylation and its relationship with gene regulation in seed development.
Collapse
Affiliation(s)
- Yong-Qiang Charles An
- US Department of Agriculture, Agricultural Research Service, Midwest Area, Plant Genetics Research Unit, Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA.
| | - Wolfgang Goettel
- US Department of Agriculture, Agricultural Research Service, Midwest Area, Plant Genetics Research Unit, Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Qiang Han
- Department of Biology, Saint Louis University, St. Louis, MO, 63103, USA
| | - Arthur Bartels
- Department of Biology, Saint Louis University, St. Louis, MO, 63103, USA
| | - Zongrang Liu
- US Department of Agriculture, Agricultural Research Service, Appalachian Fruit Research Station, Kearneysville, WV, 25430, USA
| | - Wenyan Xiao
- Department of Biology, Saint Louis University, St. Louis, MO, 63103, USA.
| |
Collapse
|
23
|
Taşkin KM, Özbilen A, Sezer F, Hürkan K, Güneş Ş. Structure and expression of dna methyltransferase genes from apomictic and sexual Boechera species. Comput Biol Chem 2017; 67:15-21. [PMID: 28038368 DOI: 10.1016/j.compbiolchem.2016.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/30/2016] [Accepted: 12/09/2016] [Indexed: 10/20/2022]
Abstract
In this study, we determined the structure of DNA methyltransferase (DNMT) genes in apomict and sexual Boechera species and investigated the expression levels during seed development. Protein and DNA sequences of diploid sexual Boechera stricta DNMT genes obtained from Phytozome 10.3 were used to identify the homologues in apomicts, Boechera holboellii and Boechera divaricarpa. Geneious R8 software was used to map the short-paired reads library of B. holboellii whole genome or B. divaricarpa transcriptome reads to the reference gene sequences. We determined three DNMT genes; for Boechera spp. METHYLTRANSFERASE1 (MET1), CHROMOMETHYLASE 3 (CMT3) and DOMAINS REARRANGED METHYLTRANSFERASE 1/2 (DRM2). We examined the structure of these genes with bioinformatic tools and compared with other DNMT genes in plants. We also examined the levels of expression in silique tissues after fertilization by semi-quantitative PCR. The structure of DNMT proteins in apomict and sexual Boechera species share common features. However, the expression levels of DNMT genes were different in apomict and sexual Boechera species. We found that DRM2 was upregulated in apomictic Boechera species after fertilization. Phylogenetic trees showed that three genes are conserved among green algae, monocotyledons and dicotyledons. Our results indicated a deregulation of DNA methylation machinery during seed development in apomicts.
Collapse
Affiliation(s)
- Kemal Melik Taşkin
- Çanakkale Onsekiz Mart University, Faculty of Arts and Sciences, Department of Biology, 17100 Çanakkale, Turkey.
| | - Aslıhan Özbilen
- Çanakkale Onsekiz Mart University, Faculty of Arts and Sciences, Department of Biology, 17100 Çanakkale, Turkey
| | - Fatih Sezer
- Çanakkale Onsekiz Mart University, Faculty of Arts and Sciences, Department of Biology, 17100 Çanakkale, Turkey
| | - Kaan Hürkan
- Çanakkale Onsekiz Mart University, Faculty of Arts and Sciences, Department of Biology, 17100 Çanakkale, Turkey
| | - Şebnem Güneş
- Çanakkale Onsekiz Mart University, Faculty of Arts and Sciences, Department of Biology, 17100 Çanakkale, Turkey
| |
Collapse
|
24
|
Control of DEMETER DNA demethylase gene transcription in male and female gamete companion cells in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2017; 114:2078-2083. [PMID: 28130550 DOI: 10.1073/pnas.1620592114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The DEMETER (DME) DNA glycosylase initiates active DNA demethylation via the base-excision repair pathway and is vital for reproduction in Arabidopsis thaliana DME-mediated DNA demethylation is preferentially targeted to small, AT-rich, and nucleosome-depleted euchromatic transposable elements, influencing expression of adjacent genes and leading to imprinting in the endosperm. In the female gametophyte, DME expression and subsequent genome-wide DNA demethylation are confined to the companion cell of the egg, the central cell. Here, we show that, in the male gametophyte, DME expression is limited to the companion cell of sperm, the vegetative cell, and to a narrow window of time: immediately after separation of the companion cell lineage from the germline. We define transcriptional regulatory elements of DME using reporter genes, showing that a small region, which surprisingly lies within the DME gene, controls its expression in male and female companion cells. DME expression from this minimal promoter is sufficient to rescue seed abortion and the aberrant DNA methylome associated with the null dme-2 mutation. Within this minimal promoter, we found short, conserved enhancer sequences necessary for the transcriptional activities of DME and combined predicted binding motifs with published transcription factor binding coordinates to produce a list of candidate upstream pathway members in the genetic circuitry controlling DNA demethylation in gamete companion cells. These data show how DNA demethylation is regulated to facilitate endosperm gene imprinting and potential transgenerational epigenetic regulation, without subjecting the germline to potentially deleterious transposable element demethylation.
Collapse
|
25
|
Satyaki PRV, Gehring M. DNA methylation and imprinting in plants: machinery and mechanisms. Crit Rev Biochem Mol Biol 2017; 52:163-175. [PMID: 28118754 DOI: 10.1080/10409238.2017.1279119] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Imprinting is an epigenetic phenomenon in which genes are expressed selectively from either the maternal or paternal alleles. In plants, imprinted gene expression is found in a tissue called the endosperm. Imprinting is often set by a unique epigenomic configuration in which the maternal chromosomes are less DNA methylated than their paternal counterparts. In this review, we synthesize studies that paint a detailed molecular portrait of the distinctive endosperm methylome. We will also discuss the molecular machinery that shapes and modifies this methylome, and the role of DNA methylation in imprinting.
Collapse
Affiliation(s)
- P R V Satyaki
- a Whitehead Institute for Biomedical Research , Cambridge , MA , USA
| | - Mary Gehring
- a Whitehead Institute for Biomedical Research , Cambridge , MA , USA.,b Department of Biology , Massachusetts Institute of Technology , Cambridge , MA , USA
| |
Collapse
|
26
|
Abstract
Genomic imprinting, an inherently epigenetic phenomenon defined by parent of origin-dependent gene expression, is observed in mammals and flowering plants. Genome-scale surveys of imprinted expression and the underlying differential epigenetic marks have led to the discovery of hundreds of imprinted plant genes and confirmed DNA and histone methylation as key regulators of plant imprinting. However, the biological roles of the vast majority of imprinted plant genes are unknown, and the evolutionary forces shaping plant imprinting remain rather opaque. Here, we review the mechanisms of plant genomic imprinting and discuss theories of imprinting evolution and biological significance in light of recent findings.
Collapse
Affiliation(s)
- Jessica A Rodrigues
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Daniel Zilberman
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
27
|
Song Y, Ci D, Tian M, Zhang D. Stable methylation of a non-coding RNA gene regulates gene expression in response to abiotic stress in Populus simonii. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1477-92. [PMID: 26712827 DOI: 10.1093/jxb/erv543] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
DNA methylation plays important roles in responses to environmental stimuli. However, in perennial plants, the roles of DNA methylation in stress-specific adaptions to different abiotic stresses remain unclear. Here, we present a systematic, comparative analysis of the methylome and gene expression in poplar under cold, osmotic, heat, and salt stress conditions from 3h to 24h. Comparison of the stress responses revealed different patterns of cytosine methylation in response to the four abiotic stresses. We isolated and sequenced 1376 stress-specific differentially methylated regions (SDMRs); annotation revealed that these SDMRs represent 1123 genes encoding proteins, 16 miRNA genes, and 17 long non-coding RNA (lncRNA) genes. The SDMR162 region, consisting of Psi-MIR396e and PsiLNCRNA00268512, is regulated by epigenetic pathways and we speculate that PsiLNCRNA00268512 regulates miR396e levels by acting as a target mimic. The ratios of methylated cytosine declined to ~35.1% after 1 month of recovery from abiotic stress and to ~15.3% after 6 months. Among methylated miRNA genes, only expression of the methylation-regulated gene MIRNA6445a showed long-term stability. Our data provide a strong basis for future work and improve our understanding of the effect of epigenetic regulation of non-coding RNA expression, which will enable in-depth functional analysis.
Collapse
Affiliation(s)
- Yuepeng Song
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Dong Ci
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Min Tian
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| |
Collapse
|
28
|
Zhang M, Li N, He W, Zhang H, Yang W, Liu B. Genome-wide screen of genes imprinted in sorghum endosperm, and the roles of allelic differential cytosine methylation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:424-36. [PMID: 26718755 DOI: 10.1111/tpj.13116] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/18/2015] [Accepted: 12/24/2015] [Indexed: 05/05/2023]
Abstract
Imprinting is an epigenetic phenomenon referring to allele-biased expression of certain genes depending on their parent of origin. Accumulated evidence suggests that, while imprinting is a conserved mechanism across kingdoms, the identities of the imprinted genes are largely species-specific. Using deep RNA sequencing of endosperm 14 days after pollination in sorghum, 5683 genes (29.27% of the total 19 418 expressed genes) were found to harbor diagnostic single nucleotide polymorphisms between two parental lines. The analysis of parent-of-origin expression patterns in the endosperm of a pair of reciprocal F1 hybrids between the two sorghum lines led to identification of 101 genes with ≥ fivefold allelic expression difference in both hybrids, including 85 maternal expressed genes (MEGs) and 16 paternal expressed genes (PEGs). Thirty of these genes were previously identified as imprinted in endosperm of maize (Zea mays), rice (Oryza sativa) or Arabidopsis, while the remaining 71 genes are sorghum-specific imprinted genes relative to these three plant species. Allele-biased expression of virtually all of the 14 tested imprinted genes (nine MEGs and five PEGs) was validated by pyrosequencing using independent sources of RNA from various developmental stages and dissected parts of endosperm. Forty-six imprinted genes (30 MEGs and 16 PEGs) were assayed by quantitative RT-PCR, and the majority of them showed endosperm-specific or preferential expression relative to embryo and other tissues. DNA methylation analysis of the 5' upstream region and gene body for seven imprinted genes indicated that, while three of the four PEGs were associated with hypomethylation of maternal alleles, no MEG was associated with allele-differential methylation.
Collapse
Affiliation(s)
- Meishan Zhang
- Department of Agronomy, Jilin Agricultural University, Changchun, 130118, China
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Wenan He
- Department of Agronomy, Jilin Agricultural University, Changchun, 130118, China
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Wei Yang
- Department of Agronomy, Jilin Agricultural University, Changchun, 130118, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
29
|
García-Aguilar M, Gillmor CS. Zygotic genome activation and imprinting: parent-of-origin gene regulation in plant embryogenesis. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:29-35. [PMID: 26051360 DOI: 10.1016/j.pbi.2015.05.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 05/05/2023]
Abstract
Parent-of-origin dependent gene expression refers to differential activity of alleles inherited from the egg and sperm. In plants, zygotic genome activation (ZGA) and gene imprinting are two examples of this phenomenon, both of which occur during seed development. As its name implies, ZGA is a genome-wide process that occurs in embryos during the first few days after fertilization. Evidence exists that maternal alleles initially predominate during ZGA, although most genes also show some paternal activity. By contrast, imprinting can be defined as a bias in gene expression that lasts beyond the first few days of seed development. Hundreds of imprinted genes have been discovered in the endosperm, and a few have been described in the embryo. This review discusses recent advances in our understanding of the phenomena and mechanisms of ZGA and imprinting in seeds, with an emphasis on embryo development. Important unanswered questions and areas for future research are highlighted.
Collapse
Affiliation(s)
- Marcelina García-Aguilar
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Irapuato, Guanajuato 36821, México
| | - C Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Irapuato, Guanajuato 36821, México.
| |
Collapse
|
30
|
Williams BP, Pignatta D, Henikoff S, Gehring M. Methylation-sensitive expression of a DNA demethylase gene serves as an epigenetic rheostat. PLoS Genet 2015; 11:e1005142. [PMID: 25826366 PMCID: PMC4380477 DOI: 10.1371/journal.pgen.1005142] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/11/2015] [Indexed: 11/18/2022] Open
Abstract
Genomes must balance active suppression of transposable elements (TEs) with the need to maintain gene expression. In Arabidopsis, euchromatic TEs are targeted by RNA-directed DNA methylation (RdDM). Conversely, active DNA demethylation prevents accumulation of methylation at genes proximal to these TEs. It is unknown how a cellular balance between methylation and demethylation activities is achieved. Here we show that both RdDM and DNA demethylation are highly active at a TE proximal to the major DNA demethylase gene ROS1. Unexpectedly, and in contrast to most other genomic targets, expression of ROS1 is promoted by DNA methylation and antagonized by DNA demethylation. We demonstrate that inducing methylation in the ROS1 proximal region is sufficient to restore ROS1 expression in an RdDM mutant. Additionally, methylation-sensitive expression of ROS1 is conserved in other species, suggesting it is adaptive. We propose that the ROS1 locus functions as an epigenetic rheostat, tuning the level of demethylase activity in response to methylation alterations, thus ensuring epigenomic stability. Organisms must adapt to dynamic and variable internal and external environments. Maintaining homeostasis in core biological processes is crucial to minimizing the deleterious consequences of environmental fluctuations. Genomes are also dynamic and variable, and must be robust against stresses, including the invasion of genomic parasites, such as transposable elements (TEs). In this work we present the discovery of an epigenetic rheostat in plants that maintains homeostasis in levels of DNA methylation. DNA methylation typically silences transcription of TEs. Because there is positive feedback between existing and de novo DNA methylation, it is critical that methylation is not allowed to spread and potentially silence transcription of genes. To maintain homeostasis, methylation promotes the production of a demethylase enzyme that removes methylation from gene-proximal regions. The demethylation of genes is therefore always maintained in concert with the levels of methylation suppressing TEs. In addition, this DNA demethylating enzyme also represses its own production in a negative feedback loop. Together, these feedback mechanisms shed new light on how the conflict between gene expression and genome defense is maintained in homeostasis. The presence of this rheostat in multiple species suggests it is an evolutionary conserved adaptation.
Collapse
Affiliation(s)
- Ben P. Williams
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Daniela Pignatta
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Mary Gehring
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
31
|
Jeong CW, Park GT, Yun H, Hsieh TF, Choi YD, Choi Y, Lee JS. Control of Paternally Expressed Imprinted UPWARD CURLY LEAF1, a Gene Encoding an F-Box Protein That Regulates CURLY LEAF Polycomb Protein, in the Arabidopsis Endosperm. PLoS One 2015; 10:e0117431. [PMID: 25689861 PMCID: PMC4331533 DOI: 10.1371/journal.pone.0117431] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/22/2014] [Indexed: 12/22/2022] Open
Abstract
Genomic imprinting, an epigenetic process in mammals and flowering plants, refers to the differential expression of alleles of the same genes in a parent-of-origin-specific manner. In Arabidopsis, imprinting occurs primarily in the endosperm, which nourishes the developing embryo. Recent high-throughput sequencing analyses revealed that more than 200 loci are imprinted in Arabidopsis; however, only a few of these imprinted genes and their imprinting mechanisms have been examined in detail. Whereas most imprinted loci characterized to date are maternally expressed imprinted genes (MEGs), PHERES1 (PHE1) and ADMETOS (ADM) are paternally expressed imprinted genes (PEGs). Here, we report that UPWARD CURLY LEAF1 (UCL1), a gene encoding an E3 ligase that degrades the CURLY LEAF (CLF) polycomb protein, is a PEG. After fertilization, paternally inherited UCL1 is expressed in the endosperm, but not in the embryo. The expression pattern of a β-glucuronidase (GUS) reporter gene driven by the UCL1 promoter suggests that the imprinting control region (ICR) of UCL1 is adjacent to a transposable element in the UCL1 5′-upstream region. Polycomb Repressive Complex 2 (PRC2) silences the maternal UCL1 allele in the central cell prior to fertilization and in the endosperm after fertilization. The UCL1 imprinting pattern was not affected in paternal PRC2 mutants. We found unexpectedly that the maternal UCL1 allele is reactivated in the endosperm of Arabidopsis lines with mutations in cytosine DNA METHYLTRANSFERASE 1 (MET1) or the DNA glycosylase DEMETER (DME), which antagonistically regulate CpG methylation of DNA. By contrast, maternal UCL1 silencing was not altered in mutants with defects in non-CpG methylation. Thus, silencing of the maternal UCL1 allele is regulated by both MET1 and DME as well as by PRC2, suggesting that divergent mechanisms for the regulation of PEGs evolved in Arabidopsis.
Collapse
Affiliation(s)
- Cheol Woong Jeong
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Guen Tae Park
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Hyein Yun
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Tzung-Fu Hsieh
- Plants for Human Health Institute & Department of Plant and Microbial Biology, North Carolina State University, Kannapolis, North Carolina, United State of America
| | - Yang Do Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Yeonhee Choi
- School of Biological Sciences, Seoul National University, Seoul, Korea
- * E-mail: (YC); (JSL)
| | - Jong Seob Lee
- School of Biological Sciences, Seoul National University, Seoul, Korea
- * E-mail: (YC); (JSL)
| |
Collapse
|
32
|
Li Y, Córdoba-Cañero D, Qian W, Zhu X, Tang K, Zhang H, Ariza RR, Roldán-Arjona T, Zhu JK. An AP endonuclease functions in active DNA demethylation and gene imprinting in Arabidopsis [corrected]. PLoS Genet 2015; 11:e1004905. [PMID: 25569774 PMCID: PMC4287435 DOI: 10.1371/journal.pgen.1004905] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/18/2014] [Indexed: 11/19/2022] Open
Abstract
Active DNA demethylation in plants occurs through base excision repair, beginning with removal of methylated cytosine by the ROS1/DME subfamily of 5-methylcytosine DNA glycosylases. Active DNA demethylation in animals requires the DNA glycosylase TDG or MBD4, which functions after oxidation or deamination of 5-methylcytosine, respectively. However, little is known about the steps following DNA glycosylase action in the active DNA demethylation pathways in plants and animals. We show here that the Arabidopsis APE1L protein has apurinic/apyrimidinic endonuclease activities and functions downstream of ROS1 and DME. APE1L and ROS1 interact in vitro and co-localize in vivo. Whole genome bisulfite sequencing of ape1l mutant plants revealed widespread alterations in DNA methylation. We show that the ape1l/zdp double mutant displays embryonic lethality. Notably, the ape1l+/-zdp-/- mutant shows a maternal-effect lethality phenotype. APE1L and the DNA phosphatase ZDP are required for FWA and MEA gene imprinting in the endosperm and are important for seed development. Thus, APE1L is a new component of the active DNA demethylation pathway and, together with ZDP, regulates gene imprinting in Arabidopsis.
Collapse
Affiliation(s)
- Yan Li
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Science, Peking University, Beijing, China
| | - Dolores Córdoba-Cañero
- Department of Genetics, University of Córdoba/Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/Reina Sofía University Hospital, Córdoba, Spain
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Science, Peking University, Beijing, China
| | - Xiaohong Zhu
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Kai Tang
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rafael R. Ariza
- Department of Genetics, University of Córdoba/Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/Reina Sofía University Hospital, Córdoba, Spain
| | - Teresa Roldán-Arjona
- Department of Genetics, University of Córdoba/Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/Reina Sofía University Hospital, Córdoba, Spain
- * E-mail: (TRA); (JKZ)
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (TRA); (JKZ)
| |
Collapse
|
33
|
Abstract
The study of epigenetics in plants has a long and rich history, from initial descriptions of non-Mendelian gene behaviors to seminal discoveries of chromatin-modifying proteins and RNAs that mediate gene silencing in most eukaryotes, including humans. Genetic screens in the model plant Arabidopsis have been particularly rewarding, identifying more than 130 epigenetic regulators thus far. The diversity of epigenetic pathways in plants is remarkable, presumably contributing to the phenotypic plasticity of plant postembryonic development and the ability to survive and reproduce in unpredictable environments.
Collapse
Affiliation(s)
- Craig S Pikaard
- Department of Biology, Department of Molecular and Cellular Biochemistry, and Howard Hughes Medical Institute, Indiana University, Bloomington, Indiana 47405
| | - Ortrun Mittelsten Scheid
- Gregor Mendel-Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| |
Collapse
|
34
|
Yamauchi T, Johzuka-Hisatomi Y, Terada R, Nakamura I, Iida S. The MET1b gene encoding a maintenance DNA methyltransferase is indispensable for normal development in rice. PLANT MOLECULAR BIOLOGY 2014; 85:219-32. [PMID: 24535433 DOI: 10.1007/s11103-014-0178-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 01/31/2014] [Indexed: 05/05/2023]
Abstract
While Arabidopsis bears only one MET1 gene encoding the DNA methyltransferase that is mainly responsible for maintaining CG methylation after DNA replication, rice carries two MET1 genes, MET1a and MET1b, expressed in actively replicating and dividing cells, and MET1b is more abundantly expressed than is MET1a. A met1a null mutant displayed no overt phenotypes, implying that MET1b must play a major role in the maintenance DNA methylation. Here, we employed two met1b null mutants, generated by homologous recombination-mediated knock-in targeting and insertion of endogenous retrotransposon Tos17. These MET1a/MET1a met1b/met1b homozygotes exhibited abnormal seed phenotypes, which is associated with either viviparous germination or early embryonic lethality. They also displayed decreased levels of DNA methylation at repetitive CentO sequences and at the FIE1 gene locus in the embryos. In addition, independently isolated knock-in-targeted plants, in which the promoterless GUS reporter gene was fused with the endogenous MET1b promoter, showed the reproducible, dosage-dependent, and spatiotemporal expression patterns of GUS. The genotyping analysis of selfed progeny of heterozygous met1a met1b null mutants indicated that weakly active MET1a seems to serve as a genetic backup mechanism in rice met1b gametophytes, although the stochastic and uncoordinated activation of epigenetic backup mechanisms occurred less efficiently in the met1b homozygotes of rice than in the met1 homozygotes of Arabidopsis. Moreover, passive depletion of CG methylation during the postmeiotic DNA replication in the haploid nuclei of the met1a met1b gametophytes in rice results in early embryonic lethality. This situation somewhat resembles that of the met1 gametophytes in Arabidopsis.
Collapse
Affiliation(s)
- Takaki Yamauchi
- National Institute for Basic Biology, Okazaki, 444-8585, Japan,
| | | | | | | | | |
Collapse
|
35
|
Garg R, Kumari R, Tiwari S, Goyal S. Genomic survey, gene expression analysis and structural modeling suggest diverse roles of DNA methyltransferases in legumes. PLoS One 2014; 9:e88947. [PMID: 24586452 PMCID: PMC3934875 DOI: 10.1371/journal.pone.0088947] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/15/2014] [Indexed: 11/18/2022] Open
Abstract
DNA methylation plays a crucial role in development through inheritable gene silencing. Plants possess three types of DNA methyltransferases (MTases), namely Methyltransferase (MET), Chromomethylase (CMT) and Domains Rearranged Methyltransferase (DRM), which maintain methylation at CG, CHG and CHH sites. DNA MTases have not been studied in legumes so far. Here, we report the identification and analysis of putative DNA MTases in five legumes, including chickpea, soybean, pigeonpea, Medicago and Lotus. MTases in legumes could be classified in known MET, CMT, DRM and DNA nucleotide methyltransferases (DNMT2) subfamilies based on their domain organization. First three MTases represent DNA MTases, whereas DNMT2 represents a transfer RNA (tRNA) MTase. Structural comparison of all the MTases in plants with known MTases in mammalian and plant systems have been reported to assign structural features in context of biological functions of these proteins. The structure analysis clearly specified regions crucial for protein-protein interactions and regions important for nucleosome binding in various domains of CMT and MET proteins. In addition, structural model of DRM suggested that circular permutation of motifs does not have any effect on overall structure of DNA methyltransferase domain. These results provide valuable insights into role of various domains in molecular recognition and should facilitate mechanistic understanding of their function in mediating specific methylation patterns. Further, the comprehensive gene expression analyses of MTases in legumes provided evidence of their role in various developmental processes throughout the plant life cycle and response to various abiotic stresses. Overall, our study will be very helpful in establishing the specific functions of DNA MTases in legumes.
Collapse
Affiliation(s)
- Rohini Garg
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail:
| | - Romika Kumari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Sneha Tiwari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Shweta Goyal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
36
|
Venglat P, Xiang D, Wang E, Datla R. Genomics of seed development: Challenges and opportunities for genetic improvement of seed traits in crop plants. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2013.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Locascio A, Roig-Villanova I, Bernardi J, Varotto S. Current perspectives on the hormonal control of seed development in Arabidopsis and maize: a focus on auxin. FRONTIERS IN PLANT SCIENCE 2014; 5:412. [PMID: 25202316 PMCID: PMC4142864 DOI: 10.3389/fpls.2014.00412] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 08/03/2014] [Indexed: 05/18/2023]
Abstract
The seed represents the unit of reproduction of flowering plants, capable of developing into another plant, and to ensure the survival of the species under unfavorable environmental conditions. It is composed of three compartments: seed coat, endosperm and embryo. Proper seed development depends on the coordination of the processes that lead to seed compartments differentiation, development and maturation. The coordination of these processes is based on the constant transmission/perception of signals by the three compartments. Phytohormones constitute one of these signals; gradients of hormones are generated in the different seed compartments, and their ratios comprise the signals that induce/inhibit particular processes in seed development. Among the hormones, auxin seems to exert a central role, as it is the only one in maintaining high levels of accumulation from fertilization to seed maturation. The gradient of auxin generated by its PIN carriers affects several processes of seed development, including pattern formation, cell division and expansion. Despite the high degree of conservation in the regulatory mechanisms that lead to seed development within the Spermatophytes, remarkable differences exist during seed maturation between Monocots and Eudicots species. For instance, in Monocots the endosperm persists until maturation, and constitutes an important compartment for nutrients storage, while in Eudicots it is reduced to a single cell layer, as the expanding embryo gradually replaces it during the maturation. This review provides an overview of the current knowledge on hormonal control of seed development, by considering the data available in two model plants: Arabidopsis thaliana, for Eudicots and Zea mays L., for Monocots. We will emphasize the control exerted by auxin on the correct progress of seed development comparing, when possible, the two species.
Collapse
Affiliation(s)
- Antonella Locascio
- Department of Agronomy Food Natural Resources Animals Environment - University of PadovaPadova, Italy
- IBMCP-CSIC, Universidad Politécnica de ValenciaValencia, Spain
- *Correspondence: Antonella Locascio, IBMCP-CSIC, Universidad Politécnica de Valencia, Avda de los Naranjos s/n, ed.8E, 46020 Valencia, Spain e-mail:
| | | | - Jamila Bernardi
- Istituto di Agronomia Genetica e Coltivazioni Erbacee, Università Cattolica del Sacro CuorePiacenza, Italy
| | - Serena Varotto
- Department of Agronomy Food Natural Resources Animals Environment - University of PadovaPadova, Italy
| |
Collapse
|
38
|
Genomic imprinting in the Arabidopsis embryo is partly regulated by PRC2. PLoS Genet 2013; 9:e1003862. [PMID: 24339783 PMCID: PMC3854695 DOI: 10.1371/journal.pgen.1003862] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 08/22/2013] [Indexed: 12/18/2022] Open
Abstract
Genomic imprinting results in monoallelic gene expression in a parent-of-origin-dependent manner and is regulated by the differential epigenetic marking of the parental alleles. In plants, genomic imprinting has been primarily described for genes expressed in the endosperm, a tissue nourishing the developing embryo that does not contribute to the next generation. In Arabidopsis, the genes MEDEA (MEA) and PHERES1 (PHE1), which are imprinted in the endosperm, are also expressed in the embryo; whether their embryonic expression is regulated by imprinting or not, however, remains controversial. In contrast, the maternally expressed in embryo 1 (mee1) gene of maize is clearly imprinted in the embryo. We identified several imprinted candidate genes in an allele-specific transcriptome of hybrid Arabidopsis embryos and confirmed parent-of-origin-dependent, monoallelic expression for eleven maternally expressed genes (MEGs) and one paternally expressed gene (PEG) in the embryo, using allele-specific expression analyses and reporter gene assays. Genetic studies indicate that the Polycomb Repressive Complex 2 (PRC2) but not the DNA METHYLTRANSFERASE1 (MET1) is involved in regulating imprinted expression in the embryo. In the seedling, all embryonic MEGs and the PEG are expressed from both parents, suggesting that the imprint is erased during late embryogenesis or early vegetative development. Our finding that several genes are regulated by genomic imprinting in the Arabidopsis embryo clearly demonstrates that this epigenetic phenomenon is not a unique feature of the endosperm in both monocots and dicots. In most cells nuclear genes are present in two copies, with one maternal and one paternal allele. Usually, the two alleles share the same fate regarding their activity, with both copies being active or both being silent. An exception to this rule are genes that are regulated by genomic imprinting, where only one allele is expressed and the other one remains silent depending on the parent it was inherited from. The two alleles are equal in terms of their DNA sequence but carry different epigenetic marks distinguishing them. Genomic imprinting evolved independently in mammals and flowering plants. In mammals, genes regulated by genomic imprinting are expressed in a wide range of tissues including the embryo and the placenta. In plants, genomic imprinting has been primarily described for genes expressed in the endosperm, a nutritive tissue in the seed with a function similar to that of the mammalian placenta. Here, we describe that some genes are also regulated by genomic imprinting in the embryo of the model plant Arabidopsis thaliana. An epigenetic silencing complex, the Polycomb Repressive Complex 2 (PRC2), partly regulates genomic imprinting in the embryo. Interestingly, embryonic imprints seem to be erased during late embryo or early seedling development.
Collapse
|
39
|
The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 2013; 153:193-205. [PMID: 23540698 DOI: 10.1016/j.cell.2013.02.033] [Citation(s) in RCA: 771] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 12/01/2012] [Accepted: 02/11/2013] [Indexed: 11/20/2022]
Abstract
Nucleosome remodelers of the DDM1/Lsh family are required for DNA methylation of transposable elements, but the reason for this is unknown. How DDM1 interacts with other methylation pathways, such as small-RNA-directed DNA methylation (RdDM), which is thought to mediate plant asymmetric methylation through DRM enzymes, is also unclear. Here, we show that most asymmetric methylation is facilitated by DDM1 and mediated by the methyltransferase CMT2 separately from RdDM. We find that heterochromatic sequences preferentially require DDM1 for DNA methylation and that this preference depends on linker histone H1. RdDM is instead inhibited by heterochromatin and absolutely requires the nucleosome remodeler DRD1. Together, DDM1 and RdDM mediate nearly all transposon methylation and collaborate to repress transposition and regulate the methylation and expression of genes. Our results indicate that DDM1 provides DNA methyltransferases access to H1-containing heterochromatin to allow stable silencing of transposable elements in cooperation with the RdDM pathway.
Collapse
|
40
|
Budworth H, McMurray CT. Bidirectional transcription of trinucleotide repeats: roles for excision repair. DNA Repair (Amst) 2013; 12:672-84. [PMID: 23669397 DOI: 10.1016/j.dnarep.2013.04.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Genomic instability at repetitive DNA regions in cells of the nervous system leads to a number of neurodegenerative and neuromuscular diseases, including those with an expanded trinucleotide repeat (TNR) tract at or nearby an expressed gene. Expansion causes disease when a particular base sequence is repeated beyond the normal range, interfering with the expression or properties of a gene product. Disease severity and onset depend on the number of repeats. As the length of the repeat tract grows, so does the size of the successive expansions and the likelihood of another unstable event. In fragile X syndrome, for example, CGG repeat instability and pathogenesis are not typically observed below tracts of roughly 50 repeats, but occur frequently at or above 55 repeats, and are virtually certain above 100-300 repeats. Recent evidence points to bidirectional transcription as a new aspect of TNR instability and pathophysiology. Bidirectional transcription of TNR genes produces novel proteins and/or regulatory RNAs that influence both toxicity and epigenetic changes in TNR promoters. Bidirectional transcription of the TNR tract appears to influence aspects of its stability, gene processing, splicing, gene silencing, and chemical modification of DNAs. Paradoxically, however, some of the same effects are observed on both the expanded TNR gene and on its normal gene counterpart. In this review, we discuss the possible normal and abnormal effects of bidirectional transcription on trinucleotide repeat instability, the role of DNA repair in causing, preventing, or maintaining methylation, and chromatin environment of TNR genes.
Collapse
Affiliation(s)
- Helen Budworth
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | |
Collapse
|
41
|
Kang X, Li W, Zhou Y, Ni M. A WRKY transcription factor recruits the SYG1-like protein SHB1 to activate gene expression and seed cavity enlargement. PLoS Genet 2013; 9:e1003347. [PMID: 23505389 PMCID: PMC3591269 DOI: 10.1371/journal.pgen.1003347] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 01/13/2013] [Indexed: 11/23/2022] Open
Abstract
Seed development in Arabidopsis and in many dicots involves an early proliferation of the endosperm to form a large embryo sac or seed cavity close to the size of the mature seed, followed by a second phase during which the embryo grows and replaces the endosperm. SHORT HYPOCOTYL UNDER BLUE1 (SHB1) is a member of the SYG1 protein family in fungi, Caenorhabditis elegans, flies, and mammals. SHB1 gain-of-function enhances endosperm proliferation, increases seed size, and up-regulates the expression of the WRKY transcription factor gene MINISEED3 (MINI3) and the LRR receptor kinase gene HAIKU2 (IKU2). Mutations in either IKU2 or MINI3 retard endosperm proliferation and reduce seed size. However, the molecular mechanisms underlying the establishment of the seed cavity and hence the seed size remain largely unknown. Here, we show that the expression of MINI3 and IKU2 is repressed before fertilization and after 4 days after pollination (DAP), but is activated by SHB1 from 2 to 4 DAP prior to the formation of the seed cavity. SHB1 associates with their promoters but without a recognizable DNA binding motif, and this association is abolished in mini3 mutant. MINI3 binds to W-boxes in, and recruits SHB1 to, its own and IKU2 promoters. Interestingly, SHB1, but not MINI3, activates transcription of pMINI3::GUS or pIKU2::GUS. We reveal a critical developmental switch through the activation of MINI3 expression by SHB1. The recruitment of SHB1 by MINI3 to its own and IKU2 promoters represents a novel two-step amplification to counter the low expression level of IKU2, which is a trigger for endosperm proliferation and seed cavity enlargement. Seed development in many dicots is characterized by a rapid proliferation of the endosperm and growth of integument to form a large embryo sac or seed cavity. In Arabidopsis, the seed cavity is generated at the globular stage or 4 days after pollination. The subsequent growth of the embryo replaces the endosperm during the second phase. Therefore, the volume of the initial seed cavity correlates closely with the final seed size. In shb1-D, an even larger seed cavity is created at 4 DAP due to an up-regulated expression of MINI3 and IKU2 by SHB1. We report that the expression of MINI3 and IKU2 coincides with the formation of the seed cavity. SHB1 is anchored to these promoters by MINI3 to activate their expression in a W-box-dependent manner. Spatiotemporal regulation of gene expression is a crucial mechanism that controls embryo development in many organisms. This interaction of SHB1 with MINI3 should impact studies of their homologs in many other organisms, including humans. Seed development in major seed crops, such as soybean and canola, follows a very similar path to that of Arabidopsis. Our results should lead to an increase in agricultural yields and concomitant increases in the proteins and oil content per seed.
Collapse
Affiliation(s)
- Xiaojun Kang
- Department of Plant Biology, University of Minnesota at Twin Cities, Saint Paul, Minnesota, United States of America
| | - Wei Li
- Department of Plant Biology, University of Minnesota at Twin Cities, Saint Paul, Minnesota, United States of America
| | - Yun Zhou
- Department of Plant Biology, University of Minnesota at Twin Cities, Saint Paul, Minnesota, United States of America
| | - Min Ni
- Department of Plant Biology, University of Minnesota at Twin Cities, Saint Paul, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
42
|
Nallamilli BRR, Zhang J, Mujahid H, Malone BM, Bridges SM, Peng Z. Polycomb group gene OsFIE2 regulates rice (Oryza sativa) seed development and grain filling via a mechanism distinct from Arabidopsis. PLoS Genet 2013; 9:e1003322. [PMID: 23505380 PMCID: PMC3591265 DOI: 10.1371/journal.pgen.1003322] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 12/29/2012] [Indexed: 11/19/2022] Open
Abstract
Cereal endosperm represents 60% of the calories consumed by human beings worldwide. In addition, cereals also serve as the primary feedstock for livestock. However, the regulatory mechanism of cereal endosperm and seed development is largely unknown. Polycomb complex has been shown to play a key role in the regulation of endosperm development in Arabidopsis, but its role in cereal endosperm development remains obscure. Additionally, the enzyme activities of the polycomb complexes have not been demonstrated in plants. Here we purified the rice OsFIE2-polycomb complex using tandem affinity purification and demonstrated its specific H3 methyltransferase activity. We found that the OsFIE2 gene product was responsible for H3K27me3 production specifically in vivo. Genetic studies showed that a reduction of OsFIE2 expression led to smaller seeds, partially filled seeds, and partial loss of seed dormancy. Gene expression and proteomics analyses found that the starch synthesis rate limiting step enzyme and multiple storage proteins are down-regulated in OsFIE2 reduction lines. Genome wide ChIP–Seq data analysis shows that H3K27me3 is associated with many genes in the young seeds. The H3K27me3 modification and gene expression in a key helix-loop-helix transcription factor is shown to be regulated by OsFIE2. Our results suggest that OsFIE2-polycomb complex positively regulates rice endosperm development and grain filling via a mechanism highly different from that in Arabidopsis. Rice is the staple food for over half of the world's population and an important feedstock for livestock. The rice grain is mainly endosperm tissue. The regulatory mechanism of rice endosperm development is still largely unknown thus far. Understanding the underlying mechanism will lead to crop yield and quality improvement in the long term, besides gaining new knowledge. Polycomb complex is a protein complex with a potential role in endosperm development according to prior publications. In this manuscript, we purified the rice OsFIE2-polycomb protein complex and demonstrated the enzyme activity of the complex. Genetic studies showed that a reduction of polycomb group gene OsFIE2 expression led to smaller seeds, partially filled seeds, and seed germination before seed maturation. Gene expression and proteomics analyses found that the starch synthesis rate limiting step enzyme and multiple storage proteins are down-regulated while a key transcription factor is up-regulated in OsFIE2 reduction lines. In addition, we identified many loci in the rice genome whose histone proteins are modified by the polycomb complex enzyme via a method called ChIP–Seq. Our results demonstrate that OsFIE2-polycomb complex positively regulates rice grain development via a mechanism distinct from that in Arabidopsis and provide new insight into the regulation of rice grain development.
Collapse
Affiliation(s)
- Babi Ramesh Reddy Nallamilli
- Department of Biochemistry and Molecular Biology, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Jian Zhang
- Department of Biochemistry and Molecular Biology, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Hana Mujahid
- Department of Biochemistry and Molecular Biology, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Brandon M. Malone
- Department of Computer Science and Engineering, Mississippi State University, Mississippi State, Mississippi, United States of America
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Susan M. Bridges
- Department of Computer Science and Engineering, Mississippi State University, Mississippi State, Mississippi, United States of America
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Zhaohua Peng
- Department of Biochemistry and Molecular Biology, Mississippi State University, Mississippi State, Mississippi, United States of America
- * E-mail:
| |
Collapse
|
43
|
Abstract
Natural epigenetic variation provides a source for the generation of phenotypic diversity, but to understand its contribution to phenotypic diversity, its interaction with genetic variation requires further investigation. Here, we report population-wide DNA sequencing of genomes, transcriptomes, and methylomes of wild Arabidopsis thaliana accessions. Single cytosine methylation polymorphisms are unlinked to genotype. However, the rate of linkage disequilibrium decay amongst differentially methylated regions targeted by RNA-directed DNA methylation is similar to the rate for single nucleotide polymorphisms. Association analyses of these RNA-directed DNA methylation regions with genetic variants identified thousands of methylQTL, which revealed the first population estimate of genetically dependent methylation variation. Analysis of invariably methylated transposons and genes across this population indicates that loci targeted by RNA-directed DNA methylation are epigenetically activated in pollen and seeds, which facilitates proper development of these structures.
Collapse
|
44
|
Schmidt A, Wöhrmann HJP, Raissig MT, Arand J, Gheyselinck J, Gagliardini V, Heichinger C, Walter J, Grossniklaus U. The Polycomb group protein MEDEA and the DNA methyltransferase MET1 interact to repress autonomous endosperm development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:776-87. [PMID: 23146178 DOI: 10.1111/tpj.12070] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 11/04/2012] [Accepted: 11/07/2012] [Indexed: 05/14/2023]
Abstract
In flowering plants, double fertilization of the female gametes, the egg and the central cell, initiates seed development to give rise to a diploid embryo and the triploid endosperm. In the absence of fertilization, the FERTILIZATION-INDEPENDENT SEED Polycomb Repressive Complex 2 (FIS-PRC2) represses this developmental process by histone methylation of certain target genes. The FERTILIZATION-INDEPENDENT SEED (FIS) class genes MEDEA (MEA) and FERTILIZATION-INDEPENDENT ENDOSPERM (FIE) encode two of the core components of this complex. In addition, DNA methylation establishes and maintains the repression of gene activity, for instance via DNA METHYLTRANSFERASE1 (MET1), which maintains methylation of symmetric CpG residues. Here, we demonstrate that Arabidopsis MET1 interacts with MEA in vitro and in a yeast two-hybrid assay, similar to the previously identified interaction of the mammalian homologues DNMT1 and EZH2. MET1 and MEA share overlapping expression patterns in reproductive tissues before and after fertilization, a prerequisite for an interaction in vivo. Importantly, a much higher percentage of central cells initiate endosperm development in the absence of fertilization in mea-1/MEA; met1-3/MET1 as compared to mea-1/MEA mutant plants. In addition, DNA methylation at the PHERES1 and MEA loci, imprinted target genes of the FIS-PRC2, was affected in the mea-1 mutant compared with wild-type embryos. In conclusion, our data suggest a mechanistic link between two major epigenetic pathways involved in histone and DNA methylation in plants by physical interaction of MET1 with the FIS-PRC2 core component MEA. This concerted action is relevant for the repression of seed development in the absence of fertilization.
Collapse
Affiliation(s)
- Anja Schmidt
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, CH-8008, Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Gan ES, Huang J, Ito T. Functional Roles of Histone Modification, Chromatin Remodeling and MicroRNAs in Arabidopsis Flower Development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:115-61. [DOI: 10.1016/b978-0-12-407695-2.00003-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
46
|
Mohan KN, Chaillet JR. Cell and molecular biology of DNA methyltransferase 1. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 306:1-42. [PMID: 24016522 DOI: 10.1016/b978-0-12-407694-5.00001-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The DNA cytosine methyltransferase 1 (DNMT1) is a ubiquitous nuclear enzyme that catalyzes the well-established reaction of placing methyl groups on the unmethylated cytosines in methyl-CpG:CpG base pairs in the hemimethylated DNA formed by methylated parent and unmethylated daughter strands. This activity regenerates fully methylated methyl-CpG:methyl-CpG pairs. Despite the straightforward nature of its catalytic activity, detailed biochemical, genetic, and developmental studies revealed intricate details of the central regulatory role of DNMT1 in governing the epigenetic makeup of the nuclear genome. DNMT1 mediates demethylation and also participates in seemingly wide cellular functions unrelated to maintenance DNA methylation. This review brings together mechanistic details of maintenance methylation by DNMT1, its regulation at transcriptional and posttranscriptional levels, and the seemingly unexpected functions of DNMT1 in the context of DNA methylation which is central to epigenetic changes that occur during development and the process of cell differentiation.
Collapse
Affiliation(s)
- K Naga Mohan
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, Andhra Pradesh, India
| | | |
Collapse
|
47
|
Coleman-Derr D, Zilberman D. Deposition of histone variant H2A.Z within gene bodies regulates responsive genes. PLoS Genet 2012; 8:e1002988. [PMID: 23071449 PMCID: PMC3469445 DOI: 10.1371/journal.pgen.1002988] [Citation(s) in RCA: 272] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Accepted: 08/10/2012] [Indexed: 01/07/2023] Open
Abstract
The regulation of eukaryotic chromatin relies on interactions between many epigenetic factors, including histone modifications, DNA methylation, and the incorporation of histone variants. H2A.Z, one of the most conserved but enigmatic histone variants that is enriched at the transcriptional start sites of genes, has been implicated in a variety of chromosomal processes. Recently, we reported a genome-wide anticorrelation between H2A.Z and DNA methylation, an epigenetic hallmark of heterochromatin that has also been found in the bodies of active genes in plants and animals. Here, we investigate the basis of this anticorrelation using a novel h2a.z loss-of-function line in Arabidopsis thaliana. Through genome-wide bisulfite sequencing, we demonstrate that loss of H2A.Z in Arabidopsis has only a minor effect on the level or profile of DNA methylation in genes, and we propose that the global anticorrelation between DNA methylation and H2A.Z is primarily caused by the exclusion of H2A.Z from methylated DNA. RNA sequencing and genomic mapping of H2A.Z show that H2A.Z enrichment across gene bodies, rather than at the TSS, is correlated with lower transcription levels and higher measures of gene responsiveness. Loss of H2A.Z causes misregulation of many genes that are disproportionately associated with response to environmental and developmental stimuli. We propose that H2A.Z deposition in gene bodies promotes variability in levels and patterns of gene expression, and that a major function of genic DNA methylation is to exclude H2A.Z from constitutively expressed genes. Eukaryotes package their DNA to fit within the nucleus using well-conserved proteins, called histones, that form the building blocks of nucleosomes, the fundamental units of chromatin. Histone variants are specialized versions of these proteins that change the chromatin landscape by altering the biochemical properties and interacting partners of the nucleosome. H2A.Z, a conserved eukaryotic histone variant, is preferentially enriched at the beginnings of genes, though the significance of this enrichment remains unknown. We and others have shown that H2A.Z is conspicuously absent from methylated DNA across the genome in plants and animals. Typically considered a mark of epigenetic silencing, DNA methylation has more recently been discovered in the bodies of many genes. Here, we present evidence that the genome-wide anticorrelation between DNA methylation and H2A.Z enrichment in Arabidopsis is the result of DNA methylation acting to prevent H2A.Z incorporation. We demonstrate that the presence of H2A.Z within gene bodies is correlated with lower transcription levels and higher variability in expression patterns across tissue types and environmental conditions, and we propose that a major function of gene-body DNA methylation is to exclude H2A.Z from the bodies of highly and constitutively expressed genes.
Collapse
Affiliation(s)
| | - Daniel Zilberman
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
48
|
Braud C, Zheng W, Xiao W. LONO1 encoding a nucleoporin is required for embryogenesis and seed viability in Arabidopsis. PLANT PHYSIOLOGY 2012; 160:823-36. [PMID: 22898497 PMCID: PMC3461558 DOI: 10.1104/pp.112.202192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/15/2012] [Indexed: 05/28/2023]
Abstract
Early embryogenesis in Arabidopsis (Arabidopsis thaliana) is distinguished by a predictable pattern of cell divisions and is a good system for investigating mechanisms of developmental pattern formation. Here, we identified a gene called LONO1 (LNO1) in Arabidopsis in which mutations can abolish the first asymmetrical cell division of the zygote, alter planes and number of cell divisions in early embryogenesis, and eventually arrest embryo development. LNO1 is highly expressed in anthers of flower buds, stigma papilla of open flowers, and embryo and endosperm during early embryogenesis, which is correlated with its functions in reproductive development. The homozygous lno1-1 seed is not viable. LNO1, a homolog of the nucleoporin NUP214 in human (Homo sapiens) and Nup159 in yeast (Saccharomyces cerevisiae), encodes a nucleoporin protein containing phenylalanine-glycine repeats in Arabidopsis. We demonstrate that LNO1 can functionally complement the defect in the yeast temperature-sensitive nucleoporin mutant nup159. We show that LNO1 specifically interacts with the Arabidopsis DEAD-box helicase/ATPase LOS4 in the yeast two-hybrid assay. Furthermore, mutations in AtGLE1, an Arabidopsis homolog of the yeast Gle1 involved in the same poly(A) mRNA export pathway as Nup159, also result in seed abortion. Our results suggest that LNO1 is a component of the nuclear pore complex required for mature mRNA export from the nucleus to the cytoplasm, which makes LNO1 essential for embryogenesis and seed viability in Arabidopsis.
Collapse
Affiliation(s)
| | | | - Wenyan Xiao
- Department of Biology, Saint Louis University, St. Louis, Missouri 63103
| |
Collapse
|
49
|
Rea M, Zheng W, Chen M, Braud C, Bhangu D, Rognan TN, Xiao W. Histone H1 affects gene imprinting and DNA methylation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:776-86. [PMID: 22519754 PMCID: PMC3429642 DOI: 10.1111/j.1365-313x.2012.05028.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Imprinting, i.e. parent-of-origin expression of alleles, plays an important role in regulating development in mammals and plants. DNA methylation catalyzed by DNA methyltransferases plays a pivotal role in regulating imprinting by silencing parental alleles. DEMETER (DME), a DNA glycosylase functioning in the base-excision DNA repair pathway, can excise 5-methylcytosine from DNA and regulate genomic imprinting in Arabidopsis. DME demethylates the maternal MEDEA (MEA) promoter in endosperm, resulting in expression of the maternal MEA allele. However, it is not known whether DME interacts with other proteins in regulating gene imprinting. Here we report the identification of histone H1.2 as a DME-interacting protein in a yeast two-hybrid screen, and confirmation of their interaction by the in vitro pull-down assay. Genetic analysis of the loss-of-function histone h1 mutant showed that the maternal histone H1 allele is required for DME regulation of MEA, FWA and FIS2 imprinting in Arabidopsis endosperm but the paternal allele is dispensable. Furthermore, we show that mutations in histone H1 result in an increase of DNA methylation in the maternal MEA and FWA promoter in endosperm. Our results suggest that histone H1 is involved in DME-mediated DNA methylation and gene regulation at imprinted loci.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wenyan Xiao
- For correspondence: Fax, 314-977-3658; Tel, 314-977-2547;
| |
Collapse
|
50
|
Abstract
Plants are excellent systems for discovering and studying epigenetic phenomena, such as transposon silencing, RNAi, imprinting, and DNA methylation. Imprinting, referring to preferential expression of maternal or paternal alleles, plays an important role in reproduction development of both mammals and plants. DNA methylation is critical for determining whether the maternal or paternal alleles of an imprinted gene is expressed or silenced. In flowering plants, there is a double fertilization event in reproduction: one sperm fertilizes the egg cell to form embryo and a second sperm fuses with the central cell to give rise to endosperm. Endosperm is the tissue where imprinting occurs in plants. MEDEA (MEA), a SET domain Polycomb group gene, was the first plant gene shown to be imprinted in endosperm, and its maternal expression is controlled by DNA methylation and demethylation. Recently there has been significant progress in identifying imprinted genes as well as understanding molecular mechanisms of imprinting in plants. Up to date, approximately 350 genes were found to have differential parent-of-origin expression in plant endosperm (Arabidopsis, corn, and rice). In Arabidopsis, many imprinted genes are regulated by the DNA METHYLTRANSFERASE1 (MET1) and the DNA-demethylating glycosylase DEMETER (DME), and/or their chromatin states regulated by Polycomb group proteins (PRC2). There are also maternally expressed genes regulated by unknown mechanisms in endosperm. In this protocol, we describe in detail how to perform a genetic cross, isolate the endosperm tissue from seed, determine the imprinting status of a gene, and analyze DNA methylation of imprinted genes by bisulfite sequencing in Arabidopsis.
Collapse
|