1
|
Galvan M, Fujitani M, Heaselgrave SR, Thomas S, Chen B, Lee JJ, Wyler SC, Elmquist JK, Fujikawa T. Development and characterization of an Sf-1-Flp mouse model. JCI Insight 2025; 10:e190105. [PMID: 40036073 PMCID: PMC12016925 DOI: 10.1172/jci.insight.190105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
The use of genetically engineered tools, including combinations of Cre-LoxP and Flp-FRT systems, enables the interrogation of complex biology. Steroidogenic factor-1 (SF-1) is expressed in the ventromedial hypothalamic nucleus (VMH). Development of genetic tools, such as mice expressing Flp recombinase (Flp) in SF-1 neurons (Sf-1-Flp), will be useful for future studies that unravel the complex physiology regulated by the VMH. Here, we developed and characterized Sf-1-Flp mice and demonstrated their utility. The Flp sequence was inserted into the Sf-1 locus with P2A. This insertion did not affect Sf-1 mRNA expression levels and Sf-1-Flp mice do not have any visible phenotypes. They are fertile and metabolically comparable to wild-type littermate mice. Optogenetic stimulation using adeno-associated virus (AAV) carrying Flp-dependent channelrhodopsin-2 (ChR2) increased blood glucose and skeletal muscle PGC-1α in Sf-1-Flp mice. This was similar to SF-1 neuronal activation using Sf-1-BAC-Cre and AAV carrying Cre-dependent ChR2. Finally, we generated Sf-1-Flp mice that lack β2-adrenergic receptors (Adrb2) only in skeletal muscle with a combination of Cre/LoxP technology (Sf-1-Flp:SKMΔAdrb2). Optogenetic stimulation of SF-1 neurons failed to increase skeletal muscle PGC-1α in Sf-1-Flp:SKMΔAdrb2 mice, suggesting that Adrb2 in skeletal muscle is required for augmented skeletal muscle PGC-1α by SF-1 neuronal activation. Our data demonstrate that Sf-1-Flp mice are useful for interrogating complex physiology.
Collapse
Affiliation(s)
- Marco Galvan
- Center for Hypothalamic Research, Department of Internal Medicine
| | - Mina Fujitani
- Center for Hypothalamic Research, Department of Internal Medicine
| | | | - Shreya Thomas
- Center for Hypothalamic Research, Department of Internal Medicine
| | - Bandy Chen
- Center for Hypothalamic Research, Department of Internal Medicine
| | - Jenny J. Lee
- Center for Hypothalamic Research, Department of Internal Medicine
| | - Steven C. Wyler
- Center for Hypothalamic Research, Department of Internal Medicine
| | - Joel K. Elmquist
- Center for Hypothalamic Research, Department of Internal Medicine
- Department of Neuroscience
- Department of Pharmacology, and
- Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Teppei Fujikawa
- Center for Hypothalamic Research, Department of Internal Medicine
- Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, Texas, USA
- Institute of Human Life and Ecology, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
2
|
Kamaguchi R, Amemori S, Amemori KI, Osakada F. Bridge protein-mediated viral targeting of cells expressing endogenous μ-opioid G protein-coupled receptors in the mouse and monkey brain. Neurosci Res 2025; 213:35-50. [PMID: 39954866 DOI: 10.1016/j.neures.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/17/2025]
Abstract
Targeting specific cell types is essential for understanding their functional roles in the brain. Although genetic approaches enable cell-type-specific targeting in animals, their application to higher mammalian species, such as nonhuman primates, remains challenging. Here, we developed a nontransgenic method using bridge proteins to direct viral vectors to cells endogenously expressing μ-opioid receptors (MORs), a G protein-coupled receptor. The bridge protein comprises the avian viral receptor TVB, the MOR ligand β-endorphin (βed), and an interdomain linker. EnvB-enveloped viruses bind to the TVB component, followed by the interaction of βed with MORs, triggering viral infection in MOR-expressing cells. We optimized the secretion signals, domain arrangements, and interdomain linkers of the bridge proteins to maximize viral targeting efficiency and specificity. Alternative configurations incorporating different ligands and viral receptors also induced viral infection in MOR-expressing cells. The optimized βed-f2-TVB bridge protein with EnvB-pseudotyped lentiviruses induced infection in MOR-expressing cells in the striatum of mice and monkeys. An intersectional approach combining βed-f2-TVB with a neuron-specific promoter refined cell-type specificity. This study establishes the foundation for the rational bridge protein design and the feasibility of targeting G protein-coupled receptors beyond tyrosine kinase receptors, thereby expanding targetable cell types in the brain and throughout the body.
Collapse
Affiliation(s)
- Riki Kamaguchi
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Satoko Amemori
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan; Japan Society for the Promotion of Science (JSPS), Tokyo, Japan
| | - Ken-Ichi Amemori
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Fumitaka Osakada
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan; Laboratory of Neural Information Processing, Institute for Advanced Research, Nagoya University, Nagoya, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan; Research Institute for Quantum and Chemical Innovation, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan; PRESTO/CREST, Japan Science and Technology Agency (JST), Saitama, Japan.
| |
Collapse
|
3
|
Li SY, DeMayo FJ. Revolutionizing Implantation Studies: Uterine-Specific Models and Advanced Technologies. Biomolecules 2025; 15:450. [PMID: 40149986 PMCID: PMC11940528 DOI: 10.3390/biom15030450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
Implantation is a complex and tightly regulated process essential for the establishment of pregnancy. It involves dynamic interactions between a receptive uterus and a competent embryo, orchestrated by ovarian hormones such as estrogen and progesterone. These hormones regulate proliferation, differentiation, and gene expression within the three primary uterine tissue types: myometrium, stroma, and epithelium. Advances in genetic manipulation, particularly the Cre/loxP system, have enabled the in vivo investigation of the role of genes in a uterine compartmental and cell type-specific manner, providing valuable insights into uterine biology during pregnancy and disease. The development of endometrial organoids has further revolutionized implantation research. They mimic the native endometrial structure and function, offering a powerful platform for studying hormonal responses, implantation, and maternal-fetal interactions. Combined with omics technologies, these models have uncovered the molecular mechanisms and signaling pathways that regulate implantation. This review provides a comprehensive overview of uterine-specific genetic tools, endometrial organoids, and omics. We explore how these advancements enhance our understanding of implantation biology, uterine receptivity, and decidualization in reproductive research.
Collapse
Affiliation(s)
| | - Francesco John DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC 27709, USA;
| |
Collapse
|
4
|
Galvan M, Fujitani M, Heaselgrave SR, Thomas S, Chen B, Lee JJ, Wyler SC, Elmquist JK, Fujikawa T. Development and Characterization of a Sf-1-Flp Mouse Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.21.639566. [PMID: 40060388 PMCID: PMC11888304 DOI: 10.1101/2025.02.21.639566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The use of genetically engineered tools, including combinations of Cre-LoxP and Flp-FRT systems, enable the interrogation of complex biology. Steroidogenic factor-1 (SF-1) is expressed in the ventromedial hypothalamic nucleus (VMH). Development of genetic tools, such as mice expressing Flp recombinase (Flp) in SF-1 neurons (Sf-1-Flp), will be useful for future studies that unravel the complex physiology regulated by the VMH. Here, we developed and characterized Sf-1-Flp mice and demonstrated its utility. Flp sequence was inserted into Sf-1 locus with P2A. This insertion did not affect Sf-1 mRNA expression levels and Sf-1-Flp mice do not have any visible phenotypes. They are fertile and metabolically comparable to wild-type littermate mice. Optogenetic stimulation using adeno-associated virus (AAV)-bearing Flp-dependent channelrhodopsin-2 (ChR2) increased blood glucose and skeletal muscle PGC-1α in Sf-1-Flp mice. This was similar to SF-1 neuronal activation using Sf-1-BAC-Cre and AAV-bearing Cre-dependent ChR2. Finally, we generated Sf-1-Flp mice that lack β2-adrenergic receptors (Adrβ2) only in skeletal muscle with a combination of Cre/LoxP technology (Sf-1-Flp::SKMΔAdrβ2). Optogenetic stimulation of SF-1 neurons failed to increase skeletal muscle PGC-1α in Sf-1-Flp::SKMΔAdrβ2 mice, suggesting that Adrβ2 in skeletal muscle is required for augmented skeletal muscle PGC-1α by SF-1 neuronal activation. Our data demonstrate that Sf-1-Flp mice are useful for interrogating complex physiology.
Collapse
Affiliation(s)
- Marco Galvan
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Mina Fujitani
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Samuel R. Heaselgrave
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Shreya Thomas
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Bandy Chen
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jenny J. Lee
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Steven C. Wyler
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Joel K. Elmquist
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, USA
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA
- Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Teppei Fujikawa
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
- Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, Texas, USA
- Institute of Human Life and Ecology, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
5
|
Muta Y, Nakanishi Y. Mouse colorectal cancer organoids: Lessons from syngeneic and orthotopic transplantation systems. Eur J Cell Biol 2025; 104:151478. [PMID: 39919450 DOI: 10.1016/j.ejcb.2025.151478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/01/2025] [Accepted: 02/04/2025] [Indexed: 02/09/2025] Open
Abstract
Colorectal cancer (CRC) organoids provide more accurate and tissue-relevant models compared to conventional two-dimensional cultured cell cultures. Mouse CRC organoids, in particular, offer unique advantages over their human counterparts, as they can be transplanted into immunocompetent mice. These syngeneic transplantation models create a robust system for studying cancer biology in the immunocompetent tumor microenvironment (TME). This article discusses the development and applications of these organoid systems, emphasizing their capacity to faithfully recapitulate in vivo tumor progression, metastasis, and the immune landscape.
Collapse
Affiliation(s)
- Yu Muta
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
6
|
Thomas HF, Feng S, Haslhofer F, Huber M, García Gallardo M, Loubiere V, Vanina D, Pitasi M, Stark A, Buecker C. Enhancer cooperativity can compensate for loss of activity over large genomic distances. Mol Cell 2025; 85:362-375.e9. [PMID: 39626663 DOI: 10.1016/j.molcel.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 10/01/2024] [Accepted: 11/07/2024] [Indexed: 01/19/2025]
Abstract
Enhancers are short DNA sequences that activate their target promoter from a distance; however, increasing the genomic distance between the enhancer and the promoter decreases expression levels. Many genes are controlled by combinations of multiple enhancers, yet the interaction and cooperation of individual enhancer elements are not well understood. Here, we developed a synthetic platform in mouse embryonic stem cells that allows building complex regulatory landscapes from the bottom up. We tested the system by integrating individual enhancers at different distances and confirmed that the strength of an enhancer contributes to how strongly it is affected by increased genomic distance. Furthermore, synergy between two enhancer elements depends on the distance at which the two elements are integrated: introducing a weak enhancer between a strong enhancer and the promoter strongly increases reporter gene expression, allowing enhancers to activate from increased genomic distances.
Collapse
Affiliation(s)
- Henry F Thomas
- Max Perutz Laboratories, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology, and Genetics, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, 1030 Vienna, Austria.
| | - Songjie Feng
- Max Perutz Laboratories, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology, and Genetics, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, 1030 Vienna, Austria
| | - Felix Haslhofer
- Max Perutz Laboratories, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology, and Genetics, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | - Marie Huber
- Max Perutz Laboratories, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology, and Genetics, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | - María García Gallardo
- Max Perutz Laboratories, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology, and Genetics, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, 1030 Vienna, Austria
| | - Vincent Loubiere
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Daria Vanina
- Max Perutz Laboratories, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology, and Genetics, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | - Mattia Pitasi
- Max Perutz Laboratories, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology, and Genetics, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, 1030 Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria; Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| | - Christa Buecker
- Max Perutz Laboratories, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology, and Genetics, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria.
| |
Collapse
|
7
|
Ballasy N, Apantaku I, Dean W, Hemberger M. Off to a good start: The importance of the placental exchange surface - Lessons from the mouse. Dev Biol 2025; 517:248-264. [PMID: 39491740 DOI: 10.1016/j.ydbio.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/04/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
The role of the chorio-allantoic placenta as the critical nutrient- and oxygen-supplying organ to nourish the demands of the fetus has been well recognized. This function relies on the successful establishment of the placental feto-maternal exchange unit, or interhaemal barrier, across which all nutrients as well as waste products must pass to cross from the maternal to the fetal blood circulation, or vice versa, respectively. As a consequence, defects in the establishment of this elaborate interface lead to fetal growth retardation or even embryonic lethality, depending on the severity of the defect. Beyond this essential role, however, it has also emerged that the functionality of the feto-maternal interface dictates the proper development of specific embryonic organs, with tightest links observed to the formation of the heart. In this article, we build on the foundational strength of the mouse as experimental model in which the placental causality of embryonic defects can be genetically proven. We discuss in detail the formation of the interhaemal barrier that makes up the labyrinth layer of the murine placenta, including insights into drivers of its formation and the interdependence of the cell types that make up this essential interface, from in vivo and in vitro data using mouse trophoblast stem cells. We highlight mouse genetic tools that enable the elucidation of cause-effect relationships between defects driven by either the trophoblast cells of the placenta or by embryonic cell types. We specifically emphasize gene knockouts for which a placental causality of embryonic heart defects has been demonstrated. This in-depth perspective provides much-needed insights while highlighting remaining gaps in knowledge that are essential for gaining a better understanding of the multi-facetted roles of the placenta in setting us up for a healthy start in life well beyond nutritional support alone.
Collapse
Affiliation(s)
- Noura Ballasy
- Dept. of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Ifeoluwa Apantaku
- Dept. of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Wendy Dean
- Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada; Dept. of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Myriam Hemberger
- Dept. of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
8
|
Yin Z, Kang J, Xu H, Huo S, Xu H. Recent progress of principal techniques used in the study of Müller glia reprogramming in mice. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:30. [PMID: 39663301 PMCID: PMC11635068 DOI: 10.1186/s13619-024-00211-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
In zebrafish, Müller glia (MG) cells retain the ability to proliferate and de-differentiate into retinal progenitor-like cells, subsequently differentiating into retinal neurons that can replace those damaged or lost due to retinal injury. In contrast, the reprogramming potential of MG in mammals has been lost, with these cells typically responding to retinal damage through gliosis. Considerable efforts have been dedicated to achieving the reprogramming of MG cells in mammals. Notably, significant advancements have been achieved in reprogramming MG cells in mice employing various methodologies. At the same time, some inevitable challenges have hindered identifying accurate MG cell reprogramming rather than the illusion, let alone improving the reprogramming efficiency and maturity of daughter cells. Recently, several strategies, including lineage tracking, multi-omics techniques, and functional analysis, have been developed to investigate the MG reprogramming process in mice. This review summarizes both the advantages and limitations of these novel strategies for analyzing MG reprogramming in mice, offering insights into enhancing the reliability and efficiency of MG reprogramming.
Collapse
Affiliation(s)
- Zhiyuan Yin
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China
| | - Jiahui Kang
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China
| | - Haoan Xu
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Shujia Huo
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China.
| | - Haiwei Xu
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China.
| |
Collapse
|
9
|
Xu M, Fang M, Chen Q, Xiao W, Xu Z, Cai B, Zhao Z, Wang T, Zhu Z, Chen Y, Zhu Y, Dai M, Jiang T, Li X, Chun S, Zhou R, Li Y, Gou Y, He J, Luo L, You L, Jiang X. GMMID: genetically modified mice information database. Database (Oxford) 2024; 2024:baae078. [PMID: 39163546 PMCID: PMC11334936 DOI: 10.1093/database/baae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/19/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024]
Abstract
Genetically engineered mouse models (GEMMs) are vital for elucidating gene function and disease mechanisms. An overwhelming number of GEMM lines have been generated, but endeavors to collect and organize the information of these GEMMs are seriously lagging behind. Only a few databases are developed for the information of current GEMMs, and these databases lack biological descriptions of allele compositions, which poses a challenge for nonexperts in mouse genetics to interpret the genetic information of these mice. Moreover, these databases usually do not provide information on human diseases related to the GEMM, which hinders the dissemination of the insights the GEMM provides as a human disease model. To address these issues, we developed an algorithm to annotate all the allele compositions that have been reported with Python programming and have developed the genetically modified mice information database (GMMID; http://www.gmmid.cn), a user-friendly database that integrates information on GEMMs and related diseases from various databases, including National Center for Biotechnology Information, Mouse Genome Informatics, Online Mendelian Inheritance in Man, International Mouse Phenotyping Consortium, and Jax lab. GMMID provides comprehensive genetic information on >70 055 alleles, 65 520 allele compositions, and ∼4000 diseases, along with biologically meaningful descriptions of alleles and allele combinations. Furthermore, it provides spatiotemporal visualization of anatomical tissues mentioned in these descriptions, shown alongside the allele compositions. Compared to existing mouse databases, GMMID considers the needs of researchers across different disciplines and presents obscure genetic information in an intuitive and easy-to-understand format. It facilitates users in obtaining complete genetic information more efficiently, making it an essential resource for cross-disciplinary researchers. Database URL: http://www.gmmid.cn.
Collapse
Affiliation(s)
- Menglin Xu
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
| | - Minghui Fang
- School of Intelligent Systems Engineering, Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
- Guangdong Key Laboratory of Intelligent Transportation Systems (ITS), Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
| | - Qiyang Chen
- School of Intelligent Systems Engineering, Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
- Guangdong Key Laboratory of Intelligent Transportation Systems (ITS), Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
| | - Wenjun Xiao
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
| | - Zhixuan Xu
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
| | - Bao Cai
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
| | - Zhenyang Zhao
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
| | - Tao Wang
- Guangdong GemPharmatech Co,Ltd, No 6, Qianjin West Rd. Shishan Town Nanhai District, Foshan, Guangdong 528225, China
| | - Zhu Zhu
- Guangdong GemPharmatech Co,Ltd, No 6, Qianjin West Rd. Shishan Town Nanhai District, Foshan, Guangdong 528225, China
| | - Yingshan Chen
- Guangdong GemPharmatech Co,Ltd, No 6, Qianjin West Rd. Shishan Town Nanhai District, Foshan, Guangdong 528225, China
| | - Yue Zhu
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
| | - Mingzhou Dai
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
| | - Tiancheng Jiang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
| | - Xinyi Li
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
| | - Siuwing Chun
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
| | - Runhua Zhou
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
| | - Yafei Li
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
| | - Yueyue Gou
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
| | - Jingjing He
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
| | - Lin Luo
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
| | - Linlin You
- School of Intelligent Systems Engineering, Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
- Guangdong Key Laboratory of Intelligent Transportation Systems (ITS), Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
| | - Xuan Jiang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
| |
Collapse
|
10
|
Machold R, Rudy B. Genetic approaches to elucidating cortical and hippocampal GABAergic interneuron diversity. Front Cell Neurosci 2024; 18:1414955. [PMID: 39113758 PMCID: PMC11303334 DOI: 10.3389/fncel.2024.1414955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
GABAergic interneurons (INs) in the mammalian forebrain represent a diverse population of cells that provide specialized forms of local inhibition to regulate neural circuit activity. Over the last few decades, the development of a palette of genetic tools along with the generation of single-cell transcriptomic data has begun to reveal the molecular basis of IN diversity, thereby providing deep insights into how different IN subtypes function in the forebrain. In this review, we outline the emerging picture of cortical and hippocampal IN speciation as defined by transcriptomics and developmental origin and summarize the genetic strategies that have been utilized to target specific IN subtypes, along with the technical considerations inherent to each approach. Collectively, these methods have greatly facilitated our understanding of how IN subtypes regulate forebrain circuitry via cell type and compartment-specific inhibition and thus have illuminated a path toward potential therapeutic interventions for a variety of neurocognitive disorders.
Collapse
Affiliation(s)
- Robert Machold
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Bernardo Rudy
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
11
|
Yadav R, Mahajan S, Singh H, Mehra NK, Madan J, Doijad N, Singh PK, Guru SK. Emerging In Vitro and In Vivo Models: Hope for the Better Understanding of Cancer Progression and Treatment. Adv Biol (Weinh) 2024; 8:e2300487. [PMID: 38581078 DOI: 10.1002/adbi.202300487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Various cancer models have been developed to aid the understanding of the underlying mechanisms of tumor development and evaluate the effectiveness of various anticancer drugs in preclinical studies. These models accurately reproduce the critical stages of tumor initiation and development to mimic the tumor microenvironment better. Using these models for target validation, tumor response evaluation, resistance modeling, and toxicity comprehension can significantly enhance the drug development process. Herein, various in vivo or animal models are presented, typically consisting of several mice and in vitro models ranging in complexity from transwell models to spheroids and CRISPR-Cas9 technologies. While in vitro models have been used for decades and dominate the early stages of drug development, they are still limited primary to simplistic tests based on testing on a single cell type cultivated in Petri dishes. Recent advancements in developing new cancer therapies necessitate the generation of complicated animal models that accurately mimic the tumor's complexity and microenvironment. Mice make effective tumor models as they are affordable, have a short reproductive cycle, exhibit rapid tumor growth, and are simple to manipulate genetically. Human cancer mouse models are crucial to understanding the neoplastic process and basic and clinical research improvements. The following review summarizes different in vitro and in vivo metastasis models, their advantages and disadvantages, and their ability to serve as a model for cancer research.
Collapse
Affiliation(s)
- Rachana Yadav
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Hoshiyar Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Neelesh Kumar Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Nandkumar Doijad
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| |
Collapse
|
12
|
Nunes Santos L, Sousa Costa ÂM, Nikolov M, Carvalho JE, Coelho Sampaio A, Stockdale FE, Wang GF, Andrade Castillo H, Bortoletto Grizante M, Dudczig S, Vasconcelos M, Rosenthal N, Jusuf PR, Nim HT, de Oliveira P, Guimarães de Freitas Matos T, Nikovits W, Tambones IL, Figueira ACM, Schubert M, Ramialison M, Xavier-Neto J. Unraveling the evolutionary origin of the complex Nuclear Receptor Element (cNRE), a cis-regulatory module required for preferential expression in the atrial chamber. Commun Biol 2024; 7:371. [PMID: 38575811 PMCID: PMC10995137 DOI: 10.1038/s42003-024-05972-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024] Open
Abstract
Cardiac function requires appropriate proteins in each chamber. Atria requires slow myosin to act as reservoirs, while ventricles demand fast myosin for swift pumping. Myosins are thus under chamber-biased cis-regulation, with myosin gene expression imbalances leading to congenital heart dysfunction. To identify regulatory inputs leading to cardiac chamber-biased expression, we computationally and molecularly dissected the quail Slow Myosin Heavy Chain III (SMyHC III) promoter that drives preferential expression to the atria. We show that SMyHC III gene states are orchestrated by a complex Nuclear Receptor Element (cNRE) of 32 base pairs. Using transgenesis in zebrafish and mice, we demonstrate that preferential atrial expression is achieved by a combinatorial regulatory input composed of atrial activation motifs and ventricular repression motifs. Using comparative genomics, we show that the cNRE might have emerged from an endogenous viral element through infection of an ancestral host germline, revealing an evolutionary pathway to cardiac chamber-specific expression.
Collapse
Affiliation(s)
- Luana Nunes Santos
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center of Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
- Australian Regenerative Medicine Institute, Monash University, VIC Australia - Systems Biology Institute, Melbourne, Australia
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Ângela Maria Sousa Costa
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center of Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Martin Nikolov
- Australian Regenerative Medicine Institute, Monash University, VIC Australia - Systems Biology Institute, Melbourne, Australia
| | - João E Carvalho
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche, Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - Allysson Coelho Sampaio
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
- Faculdade Santa Marcelina - São Paulo, São Paulo, SP, Brazil
| | | | - Gang Feng Wang
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Hozana Andrade Castillo
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center of Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
- Australian Regenerative Medicine Institute, Monash University, VIC Australia - Systems Biology Institute, Melbourne, Australia
| | - Mariana Bortoletto Grizante
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center of Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Stefanie Dudczig
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Michelle Vasconcelos
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Nadia Rosenthal
- The Jackson Laboratory, Bar Harbor, Maine, USA
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Hieu T Nim
- Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Paulo de Oliveira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center of Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | | | | | - Izabella Luisa Tambones
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center of Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Ana Carolina Migliorini Figueira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center of Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche, Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - Mirana Ramialison
- Australian Regenerative Medicine Institute, Monash University, VIC Australia - Systems Biology Institute, Melbourne, Australia.
- Murdoch Children's Research Institute, Parkville, VIC, Australia.
| | - José Xavier-Neto
- Department of Morphology, Federal University of Ceará (UFC), Ceará, CE, Brazil.
- Health Scientist-in-Chief of Ceará State, Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico, Ceará, CE, Brazil.
| |
Collapse
|
13
|
Zheng Y, Li Y, Zhou K, Li T, VanDusen NJ, Hua Y. Precise genome-editing in human diseases: mechanisms, strategies and applications. Signal Transduct Target Ther 2024; 9:47. [PMID: 38409199 PMCID: PMC10897424 DOI: 10.1038/s41392-024-01750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
Precise genome-editing platforms are versatile tools for generating specific, site-directed DNA insertions, deletions, and substitutions. The continuous enhancement of these tools has led to a revolution in the life sciences, which promises to deliver novel therapies for genetic disease. Precise genome-editing can be traced back to the 1950s with the discovery of DNA's double-helix and, after 70 years of development, has evolved from crude in vitro applications to a wide range of sophisticated capabilities, including in vivo applications. Nonetheless, precise genome-editing faces constraints such as modest efficiency, delivery challenges, and off-target effects. In this review, we explore precise genome-editing, with a focus on introduction of the landmark events in its history, various platforms, delivery systems, and applications. First, we discuss the landmark events in the history of precise genome-editing. Second, we describe the current state of precise genome-editing strategies and explain how these techniques offer unprecedented precision and versatility for modifying the human genome. Third, we introduce the current delivery systems used to deploy precise genome-editing components through DNA, RNA, and RNPs. Finally, we summarize the current applications of precise genome-editing in labeling endogenous genes, screening genetic variants, molecular recording, generating disease models, and gene therapy, including ex vivo therapy and in vivo therapy, and discuss potential future advances.
Collapse
Affiliation(s)
- Yanjiang Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Tiange Li
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Nathan J VanDusen
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
14
|
Zhou ZC, Gordon-Fennell A, Piantadosi SC, Ji N, Smith SL, Bruchas MR, Stuber GD. Deep-brain optical recording of neural dynamics during behavior. Neuron 2023; 111:3716-3738. [PMID: 37804833 PMCID: PMC10843303 DOI: 10.1016/j.neuron.2023.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/24/2023] [Accepted: 09/06/2023] [Indexed: 10/09/2023]
Abstract
In vivo fluorescence recording techniques have produced landmark discoveries in neuroscience, providing insight into how single cell and circuit-level computations mediate sensory processing and generate complex behaviors. While much attention has been given to recording from cortical brain regions, deep-brain fluorescence recording is more complex because it requires additional measures to gain optical access to harder to reach brain nuclei. Here we discuss detailed considerations and tradeoffs regarding deep-brain fluorescence recording techniques and provide a comprehensive guide for all major steps involved, from project planning to data analysis. The goal is to impart guidance for new and experienced investigators seeking to use in vivo deep fluorescence optical recordings in awake, behaving rodent models.
Collapse
Affiliation(s)
- Zhe Charles Zhou
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Adam Gordon-Fennell
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Sean C Piantadosi
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Na Ji
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Spencer LaVere Smith
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Michael R Bruchas
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| | - Garret D Stuber
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
15
|
Cheong SS, Luis TC, Stewart M, Hillier R, Hind M, Dean CH. A method for TAT-Cre recombinase-mediated floxed allele modification in ex vivo tissue slices. Dis Model Mech 2023; 16:dmm050267. [PMID: 37828896 PMCID: PMC10629676 DOI: 10.1242/dmm.050267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023] Open
Abstract
Precision-cut lung slices (PCLS) are used for a variety of applications. However, methods to manipulate genes in PCLS are currently limited. We developed a new method, TAT-Cre recombinase-mediated floxed allele modification in tissue slices (TReATS), to induce highly effective and temporally controlled gene deletion or activation in ex vivo PCLS. Treatment of PCLS from Rosa26-flox-stop-flox-EYFP mice with cell-permeant TAT-Cre recombinase induced ubiquitous EYFP protein expression, indicating successful Cre-mediated excision of the upstream loxP-flanked stop sequence. Quantitative real-time PCR confirmed induction of EYFP. We successfully replicated the TReATS method in PCLS from Vangl2flox/flox mice, leading to the deletion of loxP-flanked exon 4 of the Vangl2 gene. Cre-treated Vangl2flox/flox PCLS exhibited cytoskeletal abnormalities, a known phenotype caused by VANGL2 dysfunction. We report a new method that bypasses conventional Cre-Lox breeding, allowing rapid and highly effective gene manipulation in ex vivo tissue models.
Collapse
Affiliation(s)
- Sek-Shir Cheong
- National Heart and Lung Institute (NHLI), Imperial College London, London SW7 2AZ, UK
| | - Tiago C. Luis
- Centre for Inflammatory Diseases, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Michelle Stewart
- The Mary Lyon Centre at MRC Harwell, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Rosie Hillier
- The Mary Lyon Centre at MRC Harwell, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Matthew Hind
- National Heart and Lung Institute (NHLI), Imperial College London, London SW7 2AZ, UK
- National Institute for Health Research (NIHR) Respiratory Biomedical Research Unit at the Royal Brompton and Harefield NHS Foundation Trust, London SW3 6NP, UK
| | - Charlotte H. Dean
- National Heart and Lung Institute (NHLI), Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
16
|
Zhang Y, Zeng J, Xu B. Phenotypic analysis with trans-recombination-based genetic mosaic models. J Biol Chem 2023; 299:105265. [PMID: 37734556 PMCID: PMC10587715 DOI: 10.1016/j.jbc.2023.105265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/01/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
Mosaicism refers to the presence of genetically distinct cell populations in an individual derived from a single zygote, which occurs during the process of development, aging, and genetic diseases. To date, a variety of genetically engineered mosaic analysis models have been established and widely used in studying gene function at exceptional cellular and spatiotemporal resolution, leading to many ground-breaking discoveries. Mosaic analysis with a repressible cellular marker and mosaic analysis with double markers are genetic mosaic analysis models based on trans-recombination. These models can generate sibling cells of distinct genotypes in the same animal and simultaneously label them with different colors. As a result, they offer a powerful approach for lineage tracing and studying the behavior of individual mutant cells in a wildtype environment, which is particularly useful for determining whether gene function is cell autonomous or nonautonomous. Here, we present a comprehensive review on the establishment and applications of mosaic analysis with a repressible cellular marker and mosaic analysis with double marker systems. Leveraging the capabilities of these mosaic models for phenotypic analysis will facilitate new discoveries on the cellular and molecular mechanisms of development and disease.
Collapse
Affiliation(s)
- Yu Zhang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Jianhao Zeng
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Bing Xu
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
17
|
Mahmoudian RA, Farshchian M, Golyan FF, Mahmoudian P, Alasti A, Moghimi V, Maftooh M, Khazaei M, Hassanian SM, Ferns GA, Mahaki H, Shahidsales S, Avan A. Preclinical tumor mouse models for studying esophageal cancer. Crit Rev Oncol Hematol 2023; 189:104068. [PMID: 37468084 DOI: 10.1016/j.critrevonc.2023.104068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023] Open
Abstract
Preclinical models are extensively employed in cancer research because they can be manipulated in terms of their environment, genome, molecular biology, organ systems, and physical activity to mimic human behavior and conditions. The progress made in in vivo cancer research has resulted in significant advancements, enabling the creation of spontaneous, metastatic, and humanized mouse models. Most recently, the remarkable and extensive developments in genetic engineering, particularly the utilization of CRISPR/Cas9, transposable elements, epigenome modifications, and liquid biopsies, have further facilitated the design and development of numerous mouse models for studying cancer. In this review, we have elucidated the production and usage of current mouse models, such as xenografts, chemical-induced models, and genetically engineered mouse models (GEMMs), for studying esophageal cancer. Additionally, we have briefly discussed various gene-editing tools that could potentially be employed in the future to create mouse models specifically for esophageal cancer research.
Collapse
Affiliation(s)
- Reihaneh Alsadat Mahmoudian
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Moein Farshchian
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Fatemeh Fardi Golyan
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvaneh Mahmoudian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Alasti
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Moghimi
- Department of Biology, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Department of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Hanie Mahaki
- Vascular & Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq; Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
18
|
Chen MY, Zhao FL, Chu WL, Bai MR, Zhang DM. A review of tamoxifen administration regimen optimization for Cre/loxp system in mouse bone study. Biomed Pharmacother 2023; 165:115045. [PMID: 37379643 DOI: 10.1016/j.biopha.2023.115045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023] Open
Abstract
Gene knockout is a technique routinely used in basic experimental research, particularly in mouse skeletal and developmental studies. Tamoxifen-induced Cre/loxp system is known for its temporal and spatial precision and commonly utilized by researchers. However, tamoxifen has been shown its side effects on affecting the phenotype of mouse bone directly. This review aimed to optimize tamoxifen administration regimens including its dosage and duration, to identify an optimal induction strategy that minimizes potential side effects while maintaining recombination efficacy. This study will help researchers in designing gene knockout experiments in bone when using tamoxifen.
Collapse
Affiliation(s)
- Ming-Yang Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fu-Lin Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wen-Lin Chu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ming-Ru Bai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - De-Mao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
19
|
Merrill JR, Inguscio A, Chung T, Demestichas B, Garcia LA, Habel J, Lewis DY, Janowitz T, Lyons SK. Sensitive, non-immunogenic in vivo imaging of cancer metastases and immunotherapy response. Cell Stress 2023; 7:59-68. [PMID: 37664695 PMCID: PMC10468692 DOI: 10.15698/cst2023.08.288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Non-invasive imaging of tumors expressing reporter transgenes is a popular preclinical method for studying tumor development and response to therapy in vivo due to its ability to distinguish signal from tumors over background noise. However, the utilized transgenes, such as firefly luciferase, are immunogenic and, therefore, impact results when expressed in immune-competent hosts. This represents an important limitation, given that cancer immunology and immunotherapy are currently among the most impactful areas of research and therapeutic development. Here we present a non-immunogenic preclinical tumor imaging approach. Based on the expression of murine sodium iodide symporter (mNIS), it facilitates sensitive, non-invasive detection of syngeneic tumor cells in immune-competent tumor models without additional immunogenicity arising from exogenous transgenic protein or selection marker expression. NIS-expressing tumor cells internalize the gamma-emitting [99mTc]pertechnetate ion and so can be detected by SPECT (single photon emission computed tomography). Using a mouse model of pancreatic ductal adenocarcinoma hepatic metastases in immune-competent C57BL/6 mice, we demonstrate that the technique enables the detection of very early metastatic lesions and longitudinal assessment of immunotherapy responses using precise and quantifiable whole-body SPECT/CT imaging.
Collapse
Affiliation(s)
- Joseph R. Merrill
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724
| | - Alessandra Inguscio
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724
| | - Taemoon Chung
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724
| | - Breanna Demestichas
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724
| | - Libia A. Garcia
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724
| | - Jill Habel
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724
| | - David Y. Lewis
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Tobias Janowitz
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724
| | - Scott K. Lyons
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724
| |
Collapse
|
20
|
Svensson J, Sjögren K, Lawenius L, Koskela A, Tuukkanen J, Nilsson KH, Movérare-Skrtic S, Ohlsson C. Bone-Derived IGF-I Regulates Radial Bone Growth in Adult Male Mice. Endocrinology 2023; 164:bqad104. [PMID: 37406213 PMCID: PMC10360385 DOI: 10.1210/endocr/bqad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Insulin-like growth factor-I (IGF-I) levels, which are reduced by age, and cortical bone dimensions are major determinants of fracture risk in elderly subjects. Inactivation of liver-derived circulating IGF-I results in reduced periosteal bone expansion in young and older mice. In mice with lifelong depletion of IGF-I in osteoblast lineage cells, the long bones display reduced cortical bone width. However, it has not previously been investigated whether inducible inactivation of IGF-I locally in bone in adult/old mice affects the bone phenotype. Adult tamoxifen-inducible inactivation of IGF-I using a CAGG-CreER mouse model (inducible IGF-IKO mice) substantially reduced IGF-I expression in bone (-55%) but not in liver. Serum IGF-I and body weight were unchanged. We used this inducible mouse model to assess the effect of local IGF-I on the skeleton in adult male mice, avoiding confounding developmental effects. After tamoxifen-induced inactivation of the IGF-I gene at 9 months of age, the skeletal phenotype was determined at 14 months of age. Computed tomography analyses of tibia revealed that the mid-diaphyseal cortical periosteal and endosteal circumferences and calculated bone strength parameters were decreased in inducible IGF-IKO mice compared with controls. Furthermore, 3-point bending showed reduced tibia cortical bone stiffness in inducible IGF-IKO mice. In contrast, the tibia and vertebral trabecular bone volume fraction was unchanged. In conclusion, inactivation of IGF-I in cortical bone with unchanged liver-derived IGF-I in older male mice resulted in reduced radial growth of cortical bone. This suggests that not only circulating IGF-I but also locally derived IGF-I regulates the cortical bone phenotype in older mice.
Collapse
Affiliation(s)
- Johan Svensson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Klara Sjögren
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Lina Lawenius
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Antti Koskela
- Department of Anatomy and Cell Biology, Institute of Cancer Research and Translational Medicine, Medical Research Center, University of Oulu, 90014 Oulu, Finland
| | - Juha Tuukkanen
- Department of Anatomy and Cell Biology, Institute of Cancer Research and Translational Medicine, Medical Research Center, University of Oulu, 90014 Oulu, Finland
| | - Karin H Nilsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Sofia Movérare-Skrtic
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| |
Collapse
|
21
|
Kalotay E, Klugmann M, Housley GD, Fröhlich D. Recessive aminoacyl-tRNA synthetase disorders: lessons learned from in vivo disease models. Front Neurosci 2023; 17:1182874. [PMID: 37274208 PMCID: PMC10234152 DOI: 10.3389/fnins.2023.1182874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/17/2023] [Indexed: 06/06/2023] Open
Abstract
Protein synthesis is a fundamental process that underpins almost every aspect of cellular functioning. Intriguingly, despite their common function, recessive mutations in aminoacyl-tRNA synthetases (ARSs), the family of enzymes that pair tRNA molecules with amino acids prior to translation on the ribosome, cause a diverse range of multi-system disorders that affect specific groups of tissues. Neurological development is impaired in most ARS-associated disorders. In addition to central nervous system defects, diseases caused by recessive mutations in cytosolic ARSs commonly affect the liver and lungs. Patients with biallelic mutations in mitochondrial ARSs often present with encephalopathies, with variable involvement of peripheral systems. Many of these disorders cause severe disability, and as understanding of their pathogenesis is currently limited, there are no effective treatments available. To address this, accurate in vivo models for most of the recessive ARS diseases are urgently needed. Here, we discuss approaches that have been taken to model recessive ARS diseases in vivo, highlighting some of the challenges that have arisen in this process, as well as key results obtained from these models. Further development and refinement of animal models is essential to facilitate a better understanding of the pathophysiology underlying recessive ARS diseases, and ultimately to enable development and testing of effective therapies.
Collapse
Affiliation(s)
- Elizabeth Kalotay
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Matthias Klugmann
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Gary D. Housley
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Dominik Fröhlich
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
22
|
Schlotawa L, Lopez A, Sanchez-Elexpuru G, Tyrkalska SD, Rubinsztein DC, Fleming A. An inducible expression system for the manipulation of autophagic flux in vivo. Autophagy 2023; 19:1582-1595. [PMID: 36310368 PMCID: PMC10240996 DOI: 10.1080/15548627.2022.2135824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 01/18/2023] Open
Abstract
Much of our understanding of the intracellular regulation of macroautophagy/autophagy comes from in vitro studies. However, there remains a paucity of knowledge about how this process is regulated within different tissues during development, aging and disease in vivo. Because upregulation of autophagy is considered a promising therapeutic strategy for the treatment of diverse disorders, it is vital that we understand how this pathway functions in different tissues and this is best done by in vivo analysis. Similarly, to understand the role of autophagy in the pathogenesis of disease, it is important to study this process in the whole animal to investigate how tissue-specific changes in flux and cell-autonomous versus non-cell-autonomous effects alter disease progression. To this end, we have developed an inducible expression system to up- or downregulate autophagy in vivo, in zebrafish. We have used a modified version of the Gal4-UAS expression system to allow inducible expression of autophagy up- or downregulating transgenes by addition of tamoxifen. Using this inducible expression system, we have tested which transgenes robustly up- or downregulate autophagy and have validated these tools using Lc3-II blots and puncta analysis and disease rescue in a zebrafish model of neurodegeneration. These tools allow the temporal control of autophagy via the administration of tamoxifen and spatial control via tissue or cell-specific ERT2-Gal4 driver lines and will enable the investigation of how cell- or tissue-specific changes in autophagic flux affect processes such as aging, inflammation and neurodegeneration in vivo.Abbreviations: ANOVA: analysis of variance; Atg: autophagy related; Bcl2l11/Bim: BCL2 like 11; d.p.f.: days post-fertilization; Cryaa: crystallin, alpha a: DMSO: dimethyl sulfoxide; Elavl3: ELAV like neuron-specific RNA binding protein 3; ER: estrogen receptor; ERT2: modified ligand-binding domain of human ESR1/estrogen receptor α; Gal4: galactose-responsive transcription factor 4; GFP: green fluorescent protein; h.p.f.: hours post-fertilization; HSP: heat-shock protein; Map1lc3/Lc3: microtubule-associated protein 1 light chain 3; RFP: red fluorescent protein; SD: standard deviation; SEM: standard error of the mean; UAS: upstream activating sequence; Ubb: ubiquitin b.
Collapse
Affiliation(s)
- Lars Schlotawa
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical, Research, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Ana Lopez
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical, Research, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Gentzane Sanchez-Elexpuru
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical, Research, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Sylwia D. Tyrkalska
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical, Research, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - David C. Rubinsztein
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical, Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, the Keith Peters Building, Cambridge, UK
| | - Angeleen Fleming
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical, Research, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, the Keith Peters Building, Cambridge, UK
| |
Collapse
|
23
|
Furuhata Y, Egi E, Murakami T, Kato Y. A Method for Electroporation of Cre Recombinase Protein into Intact Nicotiana tabacum Cells. PLANTS (BASEL, SWITZERLAND) 2023; 12:1631. [PMID: 37111855 PMCID: PMC10145609 DOI: 10.3390/plants12081631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
The Cre/lox recombination system has become a powerful technology for gene function analysis in a broad spectrum of cell types and organisms. In our previous report, Cre protein had been successfully delivered into intact Arabidopsis thaliana cells using electroporation. To expand the feasibility of the method of protein electroporation to other plant cells, here we attempt the protein electroporation into tobacco-derived BY-2 cells, one of the most frequently used plant cell lines for industrial production. In this study, we successfully deliver Cre protein into BY-2 cells with intact cell walls by electroporation with low toxicity. Targeted loxP sequences in the BY-2 genome are recombined significantly. These results provide useful information for genome engineering in diverse plant cells possessing various types of cell walls.
Collapse
|
24
|
Novak S, Kalajzic I. AcanCreER lacks specificity to chondrocytes and targets periosteal progenitors in the fractured callus. Bone 2023; 166:116599. [PMID: 36309308 PMCID: PMC9832919 DOI: 10.1016/j.bone.2022.116599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Aggrecan (Acan) is a large proteoglycan molecule constituting the extracellular matrix of cartilage, secreted by chondrocytes. To specifically target the chondrocyte lineage, researchers have widely used the AcanCreER mouse model. Evaluation of specificity and efficiency of recombination, requires Cre animals to be crossed with reporter mice. In order to accurately interpret data from Cre models, it is imperative to consider A) the amount of recombination occurring in cells/tissues that are not intended for targeting (i.e., non-specific expression), B) the efficiency of Cre recombination, which can depend on dose and duration of tamoxifen treatment, and C) the activation of CreER without tamoxifen induction, known as "Cre leakage." Using a highly sensitive reporter mouse (Ai9, tdTomato), we performed a comprehensive analysis of the AcanCreER system. Surprisingly, we observed expression in cells within the periosteum. These cells expand at a stage when chondrocytes are not yet present within the forming callus tissue (Acan/Ai9+ cells). In pulse-chase experiments, we confirmed that fibroblastic Acan/Ai9+ cells within the periosteum can directly give rise to osteoblasts. Our results show that Acan/Ai9+ is not specific for the chondrocyte lineage in the fracture callus or with the tibial holes. The expression of AcanCreER in periosteal progenitor cells complicates the interpretation of studies evaluating the transition of chondrocytes to osteoblasts (termed transdifferentiation). Awareness of these issues and the limitations of the system will lead to better data interpretation.
Collapse
Affiliation(s)
- Sanja Novak
- Department of Reconstructive Sciences, UConn Health, Farmington, CT, USA
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, UConn Health, Farmington, CT, USA.
| |
Collapse
|
25
|
Eleftheriou A, Ravotto L, Wyss MT, Warnock G, Siebert A, Zaiss M, Weber B. Simultaneous dynamic glucose-enhanced (DGE) MRI and fiber photometry measurements of glucose in the healthy mouse brain. Neuroimage 2023; 265:119762. [PMID: 36427752 DOI: 10.1016/j.neuroimage.2022.119762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/27/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Glucose is the main energy source in the brain and its regulated uptake and utilization are important biomarkers of pathological brain function. Glucose Chemical Exchange Saturation Transfer (GlucoCEST) and its time-resolved version Dynamic Glucose-Enhanced MRI (DGE) are promising approaches to monitor glucose and detect tumors, since they are radioactivity-free, do not require 13C labeling and are is easily translatable to the clinics. The main principle of DGE is clear. However, what remains to be established is to which extent the signal reflects vascular, extracellular or intracellular glucose. To elucidate the compartmental contributions to the DGE signal, we coupled it with FRET-based fiber photometry of genetically encoded sensors, a technique that combines quantitative glucose readout with cellular specificity. The glucose sensor FLIIP was used with fiber photometry to measure astrocytic and neuronal glucose changes upon injection of D-glucose, 3OMG and L-glucose, in the anaesthetized murine brain. By correlating the kinetic profiles of the techniques, we demonstrate the presence of a vascular contribution to the signal, especially at early time points after injection. Furthermore, we show that, in the case of the commonly used contrast agent 3OMG, the DGE signal actually anticorrelates with the glucose concentration in neurons and astrocytes.
Collapse
Affiliation(s)
- Afroditi Eleftheriou
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Luca Ravotto
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland
| | - Matthias T Wyss
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Geoffrey Warnock
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland
| | - Anita Siebert
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland
| | - Moritz Zaiss
- Institute of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nürnberg, Erlangen, Germany; High-field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Bruno Weber
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
26
|
Legrand JMD, Hobbs RM. Defining Gene Function in Spermatogonial Stem Cells Through Conditional Knockout Approaches. Methods Mol Biol 2023; 2656:261-307. [PMID: 37249877 DOI: 10.1007/978-1-0716-3139-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mammalian male fertility is maintained throughout life by a population of self-renewing mitotic germ cells known as spermatogonial stem cells (SSCs). Much of our current understanding regarding the molecular mechanisms underlying SSC activity is derived from studies using conditional knockout mouse models. Here, we provide a guide for the selection and use of mouse strains to develop conditional knockout models for the study of SSCs, as well as their precursors and differentiation-committed progeny. We describe Cre recombinase-expressing strains, breeding strategies to generate experimental groups, and treatment regimens for inducible knockout models and provide advice for verifying and improving conditional knockout efficiency. This resource can be beneficial to those aiming to develop conditional knockout models for the study of SSC development and postnatal function.
Collapse
Affiliation(s)
- Julien M D Legrand
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Robin M Hobbs
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
27
|
Miyata M, Yoshida J, Takagishi I, Horie K. Comparison of CRISPR-Cas9-mediated megabase-scale genome deletion methods in mouse embryonic stem cells. DNA Res 2022; 30:6854440. [PMID: 36448318 PMCID: PMC9847339 DOI: 10.1093/dnares/dsac045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/30/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
The genome contains large functional units ranging in size from hundreds of kilobases to megabases, such as gene clusters and topologically associating domains. To analyse these large functional units, the technique of deleting the entire functional unit is effective. However, deletion of such large regions is less efficient than conventional genome editing, especially in cultured cells, and a method that can ensure success is anticipated. Here, we compared methods to delete the 2.5-Mb Krüppel-associated box zinc finger protein (KRAB-ZFP) gene cluster in mouse embryonic stem cells using CRISPR-Cas9. Three methods were used: first, deletion by non-homologous end joining (NHEJ); second, homology-directed repair (HDR) using a single-stranded oligodeoxynucleotide (ssODN); and third, HDR employing targeting vectors with a selectable marker and 1-kb homology arms. NHEJ-mediated deletion was achieved in 9% of the transfected cells. Inversion was also detected at similar efficiency. The deletion frequency of NHEJ and HDR was found to be comparable when the ssODN was transfected. Deletion frequency was highest when targeting vectors were introduced, with deletions occurring in 31-63% of the drug-resistant clones. Biallelic deletion was observed when targeting vectors were used. This study will serve as a benchmark for the introduction of large deletions into the genome.
Collapse
Affiliation(s)
- Masayuki Miyata
- Department of Physiology II, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Junko Yoshida
- Department of Physiology II, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Itsuki Takagishi
- Department of Physiology II, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Kyoji Horie
- To whom correspondence should be addressed. Tel: +81 744 23 4696. Fax: +81 744 23 4696.
| |
Collapse
|
28
|
Zeng Y, Jin RU. Molecular pathogenesis, targeted therapies, and future perspectives for gastric cancer. Semin Cancer Biol 2022; 86:566-582. [PMID: 34933124 DOI: 10.1016/j.semcancer.2021.12.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/29/2021] [Accepted: 12/11/2021] [Indexed: 01/27/2023]
Abstract
Gastric cancer is a major source of global cancer mortality with limited treatment options and poor patient survival. As our molecular understanding of gastric cancer improves, we are now beginning to recognize that these cancers are a heterogeneous group of diseases with incredibly unique pathogeneses and active oncogenic pathways. It is this molecular diversity and oftentimes lack of common oncogenic driver mutations that bestow the poor treatment responses that oncologists often face when treating gastric cancer. In this review, we will examine the treatments for gastric cancer including up-to-date molecularly targeted therapies and immunotherapies. We will then review the molecular subtypes of gastric cancer to highlight the diversity seen in this disease. We will then shift our discussion to basic science and gastric cancer mouse models as tools to study gastric cancer molecular heterogeneity. Furthermore, we will elaborate on a molecular process termed paligenosis and the cyclical hit model as key events during gastric cancer initiation that impart nondividing mature differentiated cells the ability to re-enter the cell cycle and accumulate disparate genomic mutations during years of chronic inflammation and injury. As our basic science understanding of gastric cancer advances, so too must our translational and clinical efforts. We will end with a discussion regarding single-cell molecular analyses and cancer organoid technologies as future translational avenues to advance our understanding of gastric cancer heterogeneity and to design precision-based gastric cancer treatments. Elucidation of interpatient and intratumor heterogeneity is the only way to advance future cancer prevention, diagnoses and treatment.
Collapse
Affiliation(s)
- Yongji Zeng
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, USA
| | - Ramon U Jin
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, USA.
| |
Collapse
|
29
|
Arias A, Manubens-Gil L, Dierssen M. Fluorescent transgenic mouse models for whole-brain imaging in health and disease. Front Mol Neurosci 2022; 15:958222. [PMID: 36211979 PMCID: PMC9538927 DOI: 10.3389/fnmol.2022.958222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
A paradigm shift is occurring in neuroscience and in general in life sciences converting biomedical research from a descriptive discipline into a quantitative, predictive, actionable science. Living systems are becoming amenable to quantitative description, with profound consequences for our ability to predict biological phenomena. New experimental tools such as tissue clearing, whole-brain imaging, and genetic engineering technologies have opened the opportunity to embrace this new paradigm, allowing to extract anatomical features such as cell number, their full morphology, and even their structural connectivity. These tools will also allow the exploration of new features such as their geometrical arrangement, within and across brain regions. This would be especially important to better characterize brain function and pathological alterations in neurological, neurodevelopmental, and neurodegenerative disorders. New animal models for mapping fluorescent protein-expressing neurons and axon pathways in adult mice are key to this aim. As a result of both developments, relevant cell populations with endogenous fluorescence signals can be comprehensively and quantitatively mapped to whole-brain images acquired at submicron resolution. However, they present intrinsic limitations: weak fluorescent signals, unequal signal strength across the same cell type, lack of specificity of fluorescent labels, overlapping signals in cell types with dense labeling, or undetectable signal at distal parts of the neurons, among others. In this review, we discuss the recent advances in the development of fluorescent transgenic mouse models that overcome to some extent the technical and conceptual limitations and tradeoffs between different strategies. We also discuss the potential use of these strains for understanding disease.
Collapse
Affiliation(s)
- Adrian Arias
- Department of System Biology, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Linus Manubens-Gil
- Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Mara Dierssen
- Department of System Biology, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
30
|
Qin T, Fan J, Lu F, Zhang L, Liu C, Xiong Q, Zhao Y, Chen G, Sun C. Harnessing preclinical models for the interrogation of ovarian cancer. J Exp Clin Cancer Res 2022; 41:277. [PMID: 36114548 PMCID: PMC9479310 DOI: 10.1186/s13046-022-02486-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/05/2022] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer (OC) is a heterogeneous malignancy with various etiology, histopathology, and biological feature. Despite accumulating understanding of OC in the post-genomic era, the preclinical knowledge still undergoes limited translation from bench to beside, and the prognosis of ovarian cancer has remained dismal over the past 30 years. Henceforth, reliable preclinical model systems are warranted to bridge the gap between laboratory experiments and clinical practice. In this review, we discuss the status quo of ovarian cancer preclinical models which includes conventional cell line models, patient-derived xenografts (PDXs), patient-derived organoids (PDOs), patient-derived explants (PDEs), and genetically engineered mouse models (GEMMs). Each model has its own strengths and drawbacks. We focus on the potentials and challenges of using these valuable tools, either alone or in combination, to interrogate critical issues with OC.
Collapse
|
31
|
Synaptotagmin 2 is ectopically overexpressed in excitatory presynapses of a widely used CaMKΙΙα-Cre mouse line. iScience 2022; 25:104692. [PMID: 35856033 PMCID: PMC9287804 DOI: 10.1016/j.isci.2022.104692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 04/29/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022] Open
Abstract
The CaMKΙΙα-Cre mouse lines, possibly the most used Cre lines in neuroscience, have resulted in over 800 articles to date. Here, we demonstrate that the second most widely used CaMKΙΙα-Cre line, Tg(Camk2a-cre)2Gsc (or CamiCre), shows ectopic overexpression of synaptotagmin 2, the most efficient Ca2+ sensor for fast synchronous neurotransmitter release, in excitatory presynapses of Cre+ brains. Moreover, the upregulation of immediate-early genes and genes incorporated in bacterial artificial chromosome (BAC) transgenes, such as L-proline transporter Slc6a7, was found in Cre+ hippocampus. The copy number and integration site of the transgene are suggested to have caused the aberrant gene expression in Cre+ brains. Most importantly, CamiCre+ mice showed functional phenotypes, such as hyperactivity and enhanced associative learning, suggesting that neural activities are affected. These unexpected results suggest difficulties in interpreting results from studies using the CamiCre line and raise a warning of potential pitfalls in using Cre driver lines in general. CamiCre+ mice show the ectopic overexpression of SYT2 in excitatory presynapses CamiCre+ mice show the ectopic overexpression of SLC6A7 in hippocampal mossy fibers CamiCre+ mice show hyperactivity and enhanced associative learning Multiple copies of bacterial artificial chromosome (BAC) transgenes are integrated into the Syt2 locus
Collapse
|
32
|
Suzuki C, Yamaguchi J, Sanada T, Oliva Trejo JA, Kakuta S, Shibata M, Tanida I, Uchiyama Y. Lack of Cathepsin D in the central nervous system results in microglia and astrocyte activation and the accumulation of proteinopathy-related proteins. Sci Rep 2022; 12:11662. [PMID: 35804072 PMCID: PMC9270453 DOI: 10.1038/s41598-022-15805-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/29/2022] [Indexed: 11/09/2022] Open
Abstract
Neuronal ceroid lipofuscinosis is one of many neurodegenerative storage diseases characterized by excessive accumulation of lipofuscins. CLN10 disease, an early infantile neuronal ceroid lipofuscinosis, is associated with a gene that encodes cathepsin D (CtsD), one of the major lysosomal proteases. Whole body CtsD-knockout mice show neurodegenerative phenotypes with the accumulation of lipofuscins in the brain and also show defects in other tissues including intestinal necrosis. To clarify the precise role of CtsD in the central nervous system (CNS), we generated a CNS-specific CtsD-knockout mouse (CtsD-CKO). CtsD-CKO mice were born normally but developed seizures and their growth stunted at around postnatal day 23 ± 1. CtsD-CKO did not exhibit apparent intestinal symptoms as those observed in whole body knockout. Histologically, autofluorescent materials were detected in several areas of the CtsD-CKO mouse's brain, including: thalamus, cerebral cortex, hippocampus, and cerebellum. Expression of ubiquitin and autophagy-associated proteins was also increased, suggesting that the autophagy-lysosome system was impaired. Microglia and astrocytes were activated in the CtsD-CKO thalamus, and inducible nitric oxide synthase (iNOS), an inflammation marker, was increased in the microglia. Interestingly, deposits of proteinopathy-related proteins, phosphorylated α-synuclein, and Tau protein were also increased in the thalamus of CtsD-CKO infant mice. Considering these results, we propose thatt the CtsD-CKO mouse is a useful mouse model to investigate the contribution of cathepsin D to the early phases of neurodegenerative diseases in relation to lipofuscins, proteinopathy-related proteins and activation of microglia and astrocytes.
Collapse
Affiliation(s)
- Chigure Suzuki
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan.,Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Junji Yamaguchi
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan.,Laboratory of Morphology and Image Analysis, Biomedical Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Takahito Sanada
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Juan Alejandro Oliva Trejo
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Souichirou Kakuta
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan.,Laboratory of Morphology and Image Analysis, Biomedical Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Masahiro Shibata
- Division of Morphological Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima-shi, Kagoshima, 890-8544, Japan
| | - Isei Tanida
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
33
|
Kalvaitytė M, Balciunas D. Conditional mutagenesis strategies in zebrafish. Trends Genet 2022; 38:856-868. [PMID: 35662532 DOI: 10.1016/j.tig.2022.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
Abstract
Gene disruption or knockout is an essential tool for elucidating gene function. Conditional knockout methodology was developed to further advance these studies by enabling gene disruption at a predefined time and/or in discrete cells. While the conditional knockout method is widely used in the mouse, technical limitations have stifled direct adoption of this methodology in other animal models including the zebrafish. Recent advances in genome editing have enabled engineering of distinct classes of conditional mutants in zebrafish. To further accelerate the development and application of conditional mutants, we will review diverse methods of conditional knockout engineering and discuss the advantages of different conditional alleles.
Collapse
Affiliation(s)
| | - Darius Balciunas
- Life Sciences Center, Vilnius University, Vilnius, Lithuania; Department of Biology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
34
|
Swanson JL, Chin PS, Romero JM, Srivastava S, Ortiz-Guzman J, Hunt PJ, Arenkiel BR. Advancements in the Quest to Map, Monitor, and Manipulate Neural Circuitry. Front Neural Circuits 2022; 16:886302. [PMID: 35719420 PMCID: PMC9204427 DOI: 10.3389/fncir.2022.886302] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/27/2022] [Indexed: 01/27/2023] Open
Abstract
Neural circuits and the cells that comprise them represent the functional units of the brain. Circuits relay and process sensory information, maintain homeostasis, drive behaviors, and facilitate cognitive functions such as learning and memory. Creating a functionally-precise map of the mammalian brain requires anatomically tracing neural circuits, monitoring their activity patterns, and manipulating their activity to infer function. Advancements in cell-type-specific genetic tools allow interrogation of neural circuits with increased precision. This review provides a broad overview of recombination-based and activity-driven genetic targeting approaches, contemporary viral tracing strategies, electrophysiological recording methods, newly developed calcium, and voltage indicators, and neurotransmitter/neuropeptide biosensors currently being used to investigate circuit architecture and function. Finally, it discusses methods for acute or chronic manipulation of neural activity, including genetically-targeted cellular ablation, optogenetics, chemogenetics, and over-expression of ion channels. With this ever-evolving genetic toolbox, scientists are continuing to probe neural circuits with increasing resolution, elucidating the structure and function of the incredibly complex mammalian brain.
Collapse
Affiliation(s)
- Jessica L. Swanson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Pey-Shyuan Chin
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Juan M. Romero
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Snigdha Srivastava
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Joshua Ortiz-Guzman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Patrick J. Hunt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Benjamin R. Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
35
|
Social interactions increase activation of vasopressin-responsive neurons in the dorsal raphe. Neuroscience 2022; 495:25-46. [DOI: 10.1016/j.neuroscience.2022.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/19/2022]
|
36
|
Eun K, Hwang SU, Kim M, Yoon JD, Kim E, Choi H, Kim G, Jeon HY, Kim JK, Kim JY, Hong N, Park MG, Jang J, Jeong HJ, Kim SJ, Ko BW, Lee SC, Kim H, Hyun SH. Generation of reproductive transgenic pigs of a CRISPR-Cas9-based oncogene-inducible system by somatic cell nuclear transfer. Biotechnol J 2022; 17:e2100434. [PMID: 35233982 DOI: 10.1002/biot.202100434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/12/2022] [Accepted: 01/26/2022] [Indexed: 11/06/2022]
Abstract
Alternative cancer models that are close to humans are required to create more valuable preclinical results during oncology studies. Here, we developed a new onco-pig model via developing a CRISPR-Cas9-based Conditional Polycistronic gene expression Cassette (CRI-CPC) system to control the tumor inducing simian virus 40 large T antigen (SV40LT) and oncogenic HRASG12V. After conducting somatic cell nuclear transfer (SCNT), transgenic embryos were transplanted into surrogate mothers and five male piglets were born. Umbilical cord analysis confirmed that all piglets were transgenic. Two of them survived, and they expressed a detectable green fluorescence. We tested whether our CRI-CPC models were naturally fertile and whether the CRI-CPC system was stably transferred to the offspring. By mating with a normal female pig, four offspring piglets were successfully produced. Among them, only three male piglets were transgenic. Finally, we tested their applicability as cancer models after transduction of Cas9 into fibroblasts from each CRI-CPC pig in vitro, resulting in cell acquisition of cancerous characteristics via the induction of oncogene expression. These results showed that our new CRISPR-Cas9-based onco-pig model was successfully developed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kiyoung Eun
- Institute of Animal Molecular Biotechnology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea.,Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seon-Ung Hwang
- Laboratory of Veterinary Embryology and Biotechnology, Korea University, Seongbuk-gu.,Institute of Stem Cell & Regenerative Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea
| | - Mirae Kim
- Laboratory of Veterinary Embryology and Biotechnology, Korea University, Seongbuk-gu.,Institute of Stem Cell & Regenerative Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea
| | - Junchul David Yoon
- Laboratory of Veterinary Embryology and Biotechnology, Korea University, Seongbuk-gu.,Institute of Stem Cell & Regenerative Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea
| | - Eunhye Kim
- Laboratory of Veterinary Embryology and Biotechnology, Korea University, Seongbuk-gu.,Institute of Stem Cell & Regenerative Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea
| | - Hyerin Choi
- Laboratory of Veterinary Embryology and Biotechnology, Korea University, Seongbuk-gu.,Institute of Stem Cell & Regenerative Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea
| | - Gahye Kim
- Laboratory of Veterinary Embryology and Biotechnology, Korea University, Seongbuk-gu.,Institute of Stem Cell & Regenerative Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea
| | - Hee-Young Jeon
- Institute of Animal Molecular Biotechnology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea.,Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jun-Kyum Kim
- Institute of Animal Molecular Biotechnology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea.,Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jung Yun Kim
- Institute of Animal Molecular Biotechnology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea.,Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Nayoung Hong
- Institute of Animal Molecular Biotechnology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea.,Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Min-Gi Park
- Institute of Animal Molecular Biotechnology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea.,Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Junseok Jang
- Institute of Animal Molecular Biotechnology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea.,Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hyeon Ju Jeong
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sung Jin Kim
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Bong-Woo Ko
- Songbaek Pig Farm, Jeju, 63014, Republic of Korea
| | - Sang Chul Lee
- Cronex Corporation, Cheongju, 28174, Republic of Korea
| | - Hyunggee Kim
- Institute of Animal Molecular Biotechnology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea.,Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology, Korea University, Seongbuk-gu.,Institute of Stem Cell & Regenerative Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea
| |
Collapse
|
37
|
Karthik S, Huang D, Delgado Y, Laing JJ, Peltekian L, Iverson GN, Grady F, Miller RL, McCann CM, Fritzsch B, Iskusnykh IY, Chizhikov VV, Geerling JC. Molecular ontology of the parabrachial nucleus. J Comp Neurol 2022; 530:1658-1699. [PMID: 35134251 PMCID: PMC9119955 DOI: 10.1002/cne.25307] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 11/07/2022]
Abstract
This article has been removed because of a technical problem in the rendering of the PDF. 11 February 2022.
Collapse
Affiliation(s)
| | - Dake Huang
- Department of NeurologyUniversity of IowaIowa CityIowaUSA
| | | | | | - Lila Peltekian
- Department of NeurologyUniversity of IowaIowa CityIowaUSA
| | | | - Fillan Grady
- Department of NeurologyUniversity of IowaIowa CityIowaUSA
| | - Rebecca L. Miller
- Department of Anatomy and NeurobiologyWashington University School of MedicineSaint LouisMissouriUSA
| | - Corey M. McCann
- Department of Anatomy and NeurobiologyWashington University School of MedicineSaint LouisMissouriUSA
| | - Bernd Fritzsch
- Iowa Neuroscience InstituteIowa CityIowaUSA
- Department of BiologyUniversity of IowaIowa CityIowaUSA
| | - Igor Y. Iskusnykh
- Department of Anatomy and NeurobiologyUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Victor V. Chizhikov
- Department of Anatomy and NeurobiologyUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Joel C. Geerling
- Department of NeurologyUniversity of IowaIowa CityIowaUSA
- Iowa Neuroscience InstituteIowa CityIowaUSA
| |
Collapse
|
38
|
Lansing F, Mukhametzyanova L, Rojo-Romanos T, Iwasawa K, Kimura M, Paszkowski-Rogacz M, Karpinski J, Grass T, Sonntag J, Schneider PM, Günes C, Hoersten J, Schmitt LT, Rodriguez-Muela N, Knöfler R, Takebe T, Buchholz F. Correction of a Factor VIII genomic inversion with designer-recombinases. Nat Commun 2022; 13:422. [PMID: 35058465 PMCID: PMC8776779 DOI: 10.1038/s41467-022-28080-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/22/2021] [Indexed: 01/16/2023] Open
Abstract
Despite advances in nuclease-based genome editing technologies, correcting human disease-causing genomic inversions remains a challenge. Here, we describe the potential use of a recombinase-based system to correct the 140 kb inversion of the F8 gene frequently found in patients diagnosed with severe Hemophilia A. Employing substrate-linked directed molecular evolution, we develop a coupled heterodimeric recombinase system (RecF8) achieving 30% inversion of the target sequence in human tissue culture cells. Transient RecF8 treatment of endothelial cells, differentiated from patient-derived induced pluripotent stem cells (iPSCs) of a hemophilic donor, results in 12% correction of the inversion and restores Factor VIII mRNA expression. In this work, we present designer-recombinases as an efficient and specific means towards treatment of monogenic diseases caused by large gene inversions. Correction of disease-causing large genomic inversions remains challenging. Here, the authors developed a dual designer-recombinase system (RecF8) that efficiently corrects a 140 kb inversion frequently found in patients with severe Hemophilia A.
Collapse
|
39
|
de la Torre A, Jurca M, Hoffmann K, Schmitz L, Heimel K, Kämper J, Pérez-Martín J. Robust Cre recombinase activity in the biotrophic smut fungus Ustilago maydis enables efficient conditional null mutants in planta. Genetics 2022; 220:iyab152. [PMID: 34849846 PMCID: PMC8733456 DOI: 10.1093/genetics/iyab152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/10/2021] [Indexed: 11/12/2022] Open
Abstract
Site-specific recombinases have been used in higher eukaryotes, especially in animals, for a broad range of applications, including chromosomal translocations, large deletions, site-specific integration, and tissue-specific as well as conditional knock-outs. The application of site-specific recombination has also been demonstrated in simple eukaryotes like fungi and protozoa. However, its use in fungal research, especially in phytopathogenic fungi, has often been limited to "recycle" the marker genes used in transformation experiments. We show that Cre recombinase can be used for conditional gene deletions in the phytopathogenic fungus Ustilago maydis. Conditional gene knock-outs can be generated via the transcriptional control of the recombinase by U. maydis promoters specifically activated during the biotrophic phase of fungal growth, enabling gene deletions at defined developmental stages inside the plant tissue. Also, we show that a tamoxifen-activated Cre-recombinase allows the tight control necessary for the induced deletion of essential genes by the addition of tamoxifen. These tools will be helpful to address the function of genes under both axenic and in planta conditions for the U. maydis-maize pathosystem and should pave the way for similar approaches in other plant pathosystems.
Collapse
Affiliation(s)
| | - Matteo Jurca
- Department of Genetics, Karlsruhe Institute of Technology, Institute for Applied Biosciences, 76131 Karlsruhe, Germany
| | - Kai Hoffmann
- Department of Genetics, Karlsruhe Institute of Technology, Institute for Applied Biosciences, 76131 Karlsruhe, Germany
| | - Lara Schmitz
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen 37073, Germany
| | - Kai Heimel
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen 37073, Germany
| | - Jörg Kämper
- Department of Genetics, Karlsruhe Institute of Technology, Institute for Applied Biosciences, 76131 Karlsruhe, Germany
| | - José Pérez-Martín
- Instituto de Biología Funcional y Genómica (CSIC), Salamanca 37007, Spain
| |
Collapse
|
40
|
Zhang Z, Guo Y, Marasigan KM, Conner JA, Ozias-Akins P. Gene activation via Cre/lox-mediated excision in cowpea (Vigna unguiculata). PLANT CELL REPORTS 2022; 41:119-138. [PMID: 34591155 PMCID: PMC8803690 DOI: 10.1007/s00299-021-02789-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/15/2021] [Indexed: 05/11/2023]
Abstract
Expression of Cre recombinase by AtRps5apro or AtDD45pro enabled Cre/lox-mediated recombination at an early embryonic developmental stage upon crossing, activating transgenes in the hybrid cowpea and tobacco. Genetic engineering ideally results in precise spatiotemporal control of transgene expression. To activate transgenes exclusively in a hybrid upon fertilization, we evaluated a Cre/lox-mediated gene activation system with the Cre recombinase expressed by either AtRps5a or AtDD45 promoters that showed activity in egg cells and young embryos. In crosses between Cre recombinase lines and transgenic lines harboring a lox-excision reporter cassette with ZsGreen driven by the AtUbq3 promoter after Cre/lox-mediated recombination, we observed complete excision of the lox-flanked intervening DNA sequence between the AtUbq3pro and the ZsGreen coding sequence in F1 progeny upon genotyping but no ZsGreen expression in F1 seeds or seedlings. The incapability to observe ZsGreen fluorescence was attributed to the activity of the AtUbq3pro. Strong ZsGreen expression in F1 seeds was observed after recombination when ZsGreen was driven by the AtUbq10 promoter. Using the AtDD45pro to express Cre resulted in more variation in recombination frequencies between transgenic lines and crosses. Regardless of the promoter used to regulate Cre, mosaic F1 progeny were rare, suggesting gene activation at an early embryo-developmental stage. Observation of ZsGreen-expressing tobacco embryos at the globular stage from crosses with the AtRps5aproCre lines pollinated by the AtUbq3prolox line supported the early activation mode.
Collapse
Affiliation(s)
- Zhifen Zhang
- Department of Horticulture and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, 2356 Rainwater Rd, Tifton, GA, 31793, USA
| | - Yinping Guo
- Department of Horticulture and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, 2356 Rainwater Rd, Tifton, GA, 31793, USA
| | - Kathleen Monfero Marasigan
- Department of Horticulture and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, 2356 Rainwater Rd, Tifton, GA, 31793, USA
| | - Joann A Conner
- Department of Horticulture and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, 2356 Rainwater Rd, Tifton, GA, 31793, USA
| | - Peggy Ozias-Akins
- Department of Horticulture and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, 2356 Rainwater Rd, Tifton, GA, 31793, USA.
| |
Collapse
|
41
|
Abstract
Traumatic injury of the central nervous system (CNS) is a worldwide health problem affecting millions of people. Trauma of the CNS, that is, traumatic brain injury (TBI) and spinal cord injury (SCI), lead to massive and progressive cell loss and axonal degeneration, usually with very limited regeneration. At present, there are no treatments to protect injured CNS tissue or to replace the lost tissue. Stem cells are a cell type that by definition can self-renew and give rise to multiple cell lineages. In recent years, therapies using stem and progenitor cells have shown promising effects in experimental CNS trauma, particularly in the acute-subacute stage, but also in chronic injuries. However, the therapeutic mechanisms by which transplanted cells achieve the structural and/or functional improvements are often not clear. Stem cell therapies for CNS trauma can be categorized into 2 main concepts, transplantation of exogenous neural stem cells and neural progenitor cells and recruitment of endogenous stem and progenitor cells. In this review, focusing on the advances during the last decade, we will discuss the major cell therapies, the pros and cons of these 2 concepts for TBI and SCI, and the treatment strategies we believe will be successful.
Collapse
Affiliation(s)
- Xiaofei Li
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Erik Sundström
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Corresponding author: Erik Sundström, Department of Neurobiology, Care Sciences and Society (NVS), BioClinicum J9:20, Karolinska University Hospital, S17164 Solna, Sweden.
| |
Collapse
|
42
|
Maresca M, Liu NQ, de Wit E. Acute Protein Depletion Strategies to Functionally Dissect the 3D Genome. Methods Mol Biol 2022; 2532:311-331. [PMID: 35867256 DOI: 10.1007/978-1-0716-2497-5_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The organization of the genome inside the nucleus facilitates many nuclear processes. Because the nuclear genome is highly dynamic and often regulated by essential proteins, rapid depletion strategies are necessary to perform loss-of-function analyses. Fortunately, in recent years, various methods have been developed to manipulate the cellular levels of a protein directly and acutely. Here, we describe different methods that have been developed to rapidly deplete proteins from cells, with a focus on auxin inducible degron and dTAG methods, as these are most commonly used in 3D genome organization studies. We outline best practices for designing a knockin strategy, as well as generation and validation of knockin cell lines. Acute depletion strategies have been transformative for the study of the 3D genome and will be important tools for delineating the processes and factors that determine organization of the genome inside the nucleus.
Collapse
Affiliation(s)
- Michela Maresca
- Division Gene Regulation, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ning Qing Liu
- Division Gene Regulation, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Elzo de Wit
- Division Gene Regulation, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
43
|
Meadows JD, Breuer JA, Lavalle SN, Hirschenberger MR, Patel MM, Nguyen D, Kim A, Cassin J, Gorman MR, Welsh DK, Mellon PL, Hoffmann HM. Deletion of Six3 in post-proliferative neurons produces weakened SCN circadian output, improved metabolic function, and dwarfism in male mice. Mol Metab 2021; 57:101431. [PMID: 34974160 PMCID: PMC8810556 DOI: 10.1016/j.molmet.2021.101431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/17/2021] [Accepted: 12/29/2021] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVE The increasing prevalence of obesity makes it important to increase the understanding of the maturation and function of the neuronal integrators and regulators of metabolic function. METHODS Behavioral, molecular, and physiological analyses of transgenic mice with Sine oculis 3 (Six3) deleted in mature neurons using the Synapsincreallele. RESULTS Conditional deletion of the homeodomain transcription factor Six3 in mature neurons causes dwarfism and weakens circadian wheel-running activity rhythms but increases general activity at night, and improves metabolic function, without impacting pubertal onset or fertility in males. The reduced growth in 6-week-old Six3fl/fl:Synapsincre (Six3syn) males correlates with increased somatostatin (SS) expression in the hypothalamus and reduced growth hormone (GH) in the pituitary. In contrast, 12-week-old Six3syn males have increased GH release, despite an increased number of the inhibitory SS neurons in the periventricular nucleus. GH is important in glucose metabolism, muscle function, and bone health. Interestingly, Six3syn males have improved glucose tolerance at 7, 12, and 18 weeks of age, which, in adulthood, is associated with increased % lean mass and increased metabolic rates. Further, 12-week-old Six3syn males have reduced bone mineralization and a lower bone mineral density, indicating that reduced GH levels during early life cause a long-term reduction in bone mineralization. CONCLUSION Our study points to the novel role of Six3 in post-proliferative neurons to regulate metabolic function through SS neuron control of GH release.
Collapse
Affiliation(s)
- Jason D. Meadows
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA,Center for Circadian Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Joseph A. Breuer
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA,Center for Circadian Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Shanna N. Lavalle
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA,Center for Circadian Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Michael R. Hirschenberger
- Department of Animal Science and the Reproductive and Developmental Sciences Program, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA
| | - Meera M. Patel
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Duong Nguyen
- Department of Animal Science and the Reproductive and Developmental Sciences Program, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA
| | - Alyssa Kim
- Department of Plant Soil and Microbial Sciences, Michigan State University, and CANR Statistical Consulting Center, Michigan State University, East Lansing, MI, 48824, USA
| | - Jessica Cassin
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Michael R. Gorman
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, 92093, USA,Department of Psychology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - David K. Welsh
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, 92093, USA,Department of Psychiatry, University of California, San Diego, La Jolla, CA, 92093, USA,Veterans Affairs San Diego Healthcare System, San Diego, CA, 92161, USA
| | - Pamela L. Mellon
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA,Center for Circadian Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Hanne M. Hoffmann
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA,Center for Circadian Biology, University of California, San Diego, La Jolla, CA, 92093, USA,Department of Animal Science and the Reproductive and Developmental Sciences Program, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA,Corresponding author. Michigan State University Interdisciplinary Science and Technology Building #3010 766 Service Road, East Lansing, MI 48224, USA.
| |
Collapse
|
44
|
Xu H, Kita Y, Bang U, Gee P, Hotta A. Optimized electroporation of CRISPR-Cas9/gRNA ribonucleoprotein complex for selection-free homologous recombination in human pluripotent stem cells. STAR Protoc 2021; 2:100965. [PMID: 34825222 PMCID: PMC8605105 DOI: 10.1016/j.xpro.2021.100965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Selection-free, scarless genome editing in human pluripotent stem cells (PSCs) by utilizing ribonucleoprotein (RNP) of CRISPR-Cas9 is a useful tool for a variety of applications. However, the process can be hampered by time-consuming subcloning steps and inefficient delivery of the RNP complex and ssDNA template. Here, we describe the optimized protocol to introduce a single nucleotide change or a loxP site insertion in feeder-free, xeno-free iPSCs by utilizing MaxCyte and 4D-Nucleofector electroporators. For complete details on the use and execution of this protocol, please refer to Kagita et al. (2021) and Xu et al. (2019).
Collapse
Affiliation(s)
- Huaigeng Xu
- Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yuto Kita
- Center for iPS cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Uikyu Bang
- Center for iPS cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | | | - Akitsu Hotta
- Center for iPS cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
45
|
IQ-Switch is a QF-based innocuous, silencing-free, and inducible gene switch system in zebrafish. Commun Biol 2021; 4:1405. [PMID: 34916605 PMCID: PMC8677817 DOI: 10.1038/s42003-021-02923-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/24/2021] [Indexed: 11/08/2022] Open
Abstract
Though various transgene expression switches have been adopted in a wide variety of organisms for basic and biomedical research, intrinsic obstacles of those existing systems, including toxicity and silencing, have been limiting their use in vertebrate transgenesis. Here we demonstrate a novel QF-based binary transgene switch (IQ-Switch) that is relatively free of driver toxicity and transgene silencing, and exhibits potent and highly tunable transgene activation by the chemical inducer tebufenozide, a non-toxic lipophilic molecule to developing zebrafish with negligible background. The interchangeable IQ-Switch makes it possible to elicit ubiquitous and tissue specific transgene expression in a spatiotemporal manner. We generated a RASopathy disease model using IQ-Switch and demonstrated that the RASopathy symptoms were ameliorated by the specific BRAF(V600E) inhibitor vemurafenib, validating the therapeutic use of the gene switch. The orthogonal IQ-Switch provides a state-of-the-art platform for flexible regulation of transgene expression in zebrafish, potentially applicable in cell-based systems and other model organisms.
Collapse
|
46
|
Ubina T, Vahedi-Hunter T, Agnew-Svoboda W, Wong W, Gupta A, Santhakumar V, Riccomagno MM. ExBoX - a simple Boolean exclusion strategy to drive expression in neurons. J Cell Sci 2021; 134:272538. [PMID: 34515305 PMCID: PMC8572001 DOI: 10.1242/jcs.257212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 09/03/2021] [Indexed: 11/20/2022] Open
Abstract
The advent of modern single-cell biology has revealed the striking molecular diversity of cell populations once thought to be more homogeneous. This newly appreciated complexity has made intersectional genetic approaches essential to understanding and probing cellular heterogeneity at the functional level. Here, we build on previous knowledge to develop a simple adeno-associated virus (AAV)-based approach to define specific subpopulations of cells by Boolean exclusion logic (AND NOT). This expression by Boolean exclusion (ExBoX) system encodes for a gene of interest that is turned on by a particular recombinase (Cre or FlpO) and turned off by another. ExBoX allows for the specific transcription of a gene of interest in cells expressing only the activating recombinase, but not in cells expressing both. We show the ability of the ExBoX system to tightly regulate expression of fluorescent reporters in vitro and in vivo, and further demonstrate the adaptability of the system by achieving expression of a variety of virally delivered coding sequences in the mouse brain. This simple strategy will expand the molecular toolkit available for cell- and time-specific gene expression in a variety of systems. Summary: The generation of a novel AAV-based intersectional approach to define and target specific subpopulations of cells in time and space via a Expression by Boolean Exclusion (ExBoX) system.
Collapse
Affiliation(s)
- Teresa Ubina
- Neuroscience Graduate Program, Department of Molecular, Cell & Systems Biology, University of California, Riverside, CA 92521, USA
| | - Tyler Vahedi-Hunter
- Neuroscience Graduate Program, Department of Molecular, Cell & Systems Biology, University of California, Riverside, CA 92521, USA
| | - Will Agnew-Svoboda
- Neuroscience Graduate Program, Department of Molecular, Cell & Systems Biology, University of California, Riverside, CA 92521, USA
| | - Wenny Wong
- Neuroscience Graduate Program, Department of Molecular, Cell & Systems Biology, University of California, Riverside, CA 92521, USA
| | - Akshay Gupta
- Neuroscience Graduate Program, Department of Molecular, Cell & Systems Biology, University of California, Riverside, CA 92521, USA
| | - Vijayalakshmi Santhakumar
- Neuroscience Graduate Program, Department of Molecular, Cell & Systems Biology, University of California, Riverside, CA 92521, USA
| | - Martin M Riccomagno
- Neuroscience Graduate Program, Department of Molecular, Cell & Systems Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
47
|
Andrews LP, Vignali KM, Szymczak-Workman AL, Burton AR, Brunazzi EA, Ngiow SF, Harusato A, Sharpe AH, Wherry EJ, Taniuchi I, Workman CJ, Vignali DAA. A Cre-driven allele-conditioning line to interrogate CD4 + conventional T cells. Immunity 2021; 54:2209-2217.e6. [PMID: 34551314 DOI: 10.1016/j.immuni.2021.08.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/04/2021] [Accepted: 08/30/2021] [Indexed: 01/22/2023]
Abstract
CD4+ T cells share common developmental pathways with CD8+ T cells, and upon maturation, CD4+ T conventional T (Tconv) cells lack phenotypic markers that distinguish these cells from FoxP3+ T regulatory cells. We developed a tamoxifen-inducible ThPOKCreERT2.hCD2 line with Frt sites inserted on either side of the CreERT2-hCD2 cassette, and a Foxp3Ametrine-FlpO strain, expressing Ametrine and FlpO in Foxp3+ cells. Breeding these mice resulted in a CD4conviCreERT2-hCD2 line that allows for the specific manipulation of a gene in CD4+ Tconv cells. As FlpO removes the CreERT2-hCD2 cassette, CD4+ Treg cells are spared from Cre activity, which we refer to as allele conditioning. Comparison with an E8IiCreERT2.GFP mouse that enables inducible targeting of CD8+ T cells, and deletion of two inhibitory receptors, PD-1 and LAG-3, in a melanoma model, support the fidelity of these lines. These engineered mouse strains present a resource for the temporal manipulation of genes in CD4+ T cells and CD4+ Tconv cells.
Collapse
Affiliation(s)
- Lawrence P Andrews
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Kate M Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | | | - Amanda R Burton
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Erin A Brunazzi
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Shin Foong Ngiow
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Akihito Harusato
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - E John Wherry
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ichiro Taniuchi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA.
| |
Collapse
|
48
|
Wang F, Ji YT, Tian C, Wang YC, Xu S, Wang RY, Yang QQ, Zhao P, Xia QY. An inducible constitutive expression system in Bombyx mori mediated by phiC31 integrase. INSECT SCIENCE 2021; 28:1277-1289. [PMID: 32803790 DOI: 10.1111/1744-7917.12866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Inducible gene-expression systems play important roles in gene functional assays in the post-genome era. Streptomyces phage-derived phiC31 integrase, which mediates an irreversible site-specific cassette exchange between the phage attachment site (attP) and the bacterial attachment site (attB), provides a promising option for the construction of a controllable gene-expression system. Here, we report a phiC31 integrase-mediated promoter flip system (FLIP) for the inducible expression of target genes in silkworm (Bombyx mori). First, we constructed a FLIP reporter system, in which a BmAct4 promoter with enhanced translational efficiency was flanked by the attB and attP sites in a head-to-head orientation and further linked in a reverse orientation to a DsRed reporter gene. The coexpression of a C-terminal modified phiC31-NLS integrase carrying a simian virus 40 (SV40) nuclear localization signal (NLS) effectively flipped the BmAct4 promoter through an attB/attP exchange, thereby activating the downstream expression of DsRed in a silkworm embryo-derived cell line, BmE. Subsequently, the FLIP system, together with a system continuously expressing the phiC31-NLS integrase, was used to construct binary transgenic silkworm lines. Hybridization between FLIP and phiC31-NLS transgenic silkworm lines resulted in the successful flipping of the BmAct4 promoter, with an approximately 39% heritable transformation efficiency in silkworm offspring, leading to the constitutive and high-level expression of DsRed in silkworms, which accounted for approximately 0.81% of the silkworm pupal weight. Our successful development of the FLIP system offers an effective alternative for manipulating gene expression in silkworms and other lepidopteran species.
Collapse
Affiliation(s)
- Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Biological Science Research Center, Southwest University, Chongqing, China
| | - Yan-Ting Ji
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Biological Science Research Center, Southwest University, Chongqing, China
| | - Chi Tian
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Biological Science Research Center, Southwest University, Chongqing, China
| | - Yuan-Cheng Wang
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Biological Science Research Center, Southwest University, Chongqing, China
| | - Shen Xu
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Biological Science Research Center, Southwest University, Chongqing, China
| | - Ri-Yuan Wang
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qian-Qian Yang
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Biological Science Research Center, Southwest University, Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qing-You Xia
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
49
|
Manipulation of the Tyrosinase gene permits improved CRISPR/Cas editing and neural imaging in cichlid fish. Sci Rep 2021; 11:15138. [PMID: 34302019 PMCID: PMC8302579 DOI: 10.1038/s41598-021-94577-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
Direct tests of gene function have historically been performed in a limited number of model organisms. The CRISPR/Cas system is species-agnostic, offering the ability to manipulate genes in a range of models, enabling insights into evolution, development, and physiology. Astatotilapia burtoni, a cichlid fish from the rivers and shoreline around Lake Tanganyika, has been extensively studied in the laboratory to understand evolution and the neural control of behavior. Here we develop protocols for the creation of CRISPR-edited cichlids and create a broadly useful mutant line. By manipulating the Tyrosinase gene, which is necessary for eumelanin pigment production, we describe a fast and reliable approach to quantify and optimize gene editing efficiency. Tyrosinase mutants also remove a major obstruction to imaging, enabling visualization of subdermal structures and fluorophores in situ. These protocols will facilitate broad application of CRISPR/Cas9 to studies of cichlids as well as other non-traditional model aquatic species.
Collapse
|
50
|
Of mice and men - and guinea pigs? Ann Anat 2021; 238:151765. [PMID: 34000371 DOI: 10.1016/j.aanat.2021.151765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/31/2022]
Abstract
This year marks the twentieth anniversary of the publication of the first draft of the human genome and its broad availability to the scientific community. In parallel, the annotation of the mouse genome led to the identification and analysis of countless genes by means of genetic manipulation. Today, when comparing both genomes, it might surprise that some genes are still seeking their respective homologs in either species. In this review, we aim at raising awareness for the remarkable differences between the researcher's favorite rodents, i.e., mice and rats, when it comes to the generation of rodent research models regarding genes with a particular delicate localization, namely the pseudoautosomal region on both sex chromosomes. Many of these genes are of utmost clinical relevance in humans and still miss a rodent disease model giving their absence in mice and rats or low sequence similarity compared to humans. The abundance of rodents within mammals prompted us to investigate different branches of rodents leading us to the re-discovery of the guinea pig as a mammalian research model for a distinct group of genes.
Collapse
|