1
|
Aoki Y, Kitagawa T, Kiyofuji H. Surfacing and diving behavior associated with thermal physiology in oceanic habitats of skipjack tuna ( Katsuwonus pelamis) in the western north Pacific Ocean. Front Physiol 2025; 16:1462940. [PMID: 39958691 PMCID: PMC11825450 DOI: 10.3389/fphys.2025.1462940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/07/2025] [Indexed: 02/18/2025] Open
Abstract
Introduction Thermal physiology is a pivotal biotic factor for the ecophysiology of commercially valuable tuna, influencing not only horizontal but also vertical behaviors. We aimed to examine how the thermal physiology of skipjack tuna (Katsuwonus pelamis, SKJ) can explain the differences in their vertical behavior, focusing on surfacing and diving, among various thermal environments during their northward migration in the western North Pacific. Methods We analyzed archival tag data collected during 2012-2015, with individual time series (Fork length: 38-49 cm, N = 38) of swimming depth, water temperature, and peritoneal body temperature during northward migration from subtropical areas to temperate regions around Japan. We quantified surfacing and diving behavior as an index of vertical behavior and estimated the whole-body heat transfer coefficient (λ) during the cooling and warming phases associated with diving using body and water temperature records as indicators of thermal physiology. Results In the southern mixed layer areas, SKJ were widely distributed at a depth layer <200 m, whereas they were restricted to the surface in the strong thermocline areas in the north. The dive duration was significantly shortened with a strong thermal gradient during northward migration. We observed minor to no differences in λ values between the cooling and warming phases in the southern areas, whereas the λ values in temperate areas differed by a factor of 2-3 between the phases. Discussion Our findings of changes in λ values between the cooling and warming phases represent the first evidence of thermoregulation in SKJ. Surfacing preference behavior and short dive duration in temperate areas may be an avoidance of prolonged exposure to cold temperatures, a behavior commonly exhibited in other tuna. Moreover, we discussed how the changes in vertical behavior driven by thermal physiology can explain spatial heterogeneity in SKJ fishery grounds in the western Pacific Ocean.
Collapse
Affiliation(s)
- Yoshinori Aoki
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, Japan
| | - Takashi Kitagawa
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Hidetada Kiyofuji
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, Japan
| |
Collapse
|
2
|
Benoit-Bird KJ. Resource Patchiness as a Resolution to the Food Paradox in the Sea. Am Nat 2024; 203:1-13. [PMID: 38207143 DOI: 10.1086/727473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
AbstractAverage concentrations of biota in the ocean are low, presenting a critical problem for ocean consumers. High-resolution sampling, however, demonstrates that the ocean is peppered with narrow hot spots of organism activity. To determine whether these resource aggregations could provide a significant solution to the ocean's food paradox, a conceptual graphical model was developed that facilitates comparisons of the role of patchiness in predator-prey interactions across taxa, size scales, and ecosystems. The model predicts that predators are more reliant on aggregated resources for foraging success when the average concentrations of resources is low, the size discrepancy between predator and prey is great, the predator has a high metabolic rate, and/or the predator's foraging time is limited. Size structure differences between marine and terrestrial food webs and a vast disparity in the overall mean density of their resources lead to the conclusion that high-density aggregations of prey are much more important to the survival of oceanic predators than their terrestrial counterparts, shaping the foraging decisions that are available to an individual and setting the stage on which evolutionary pressures can act. Patches of plenty may be rare, but they play an outsized role in behavioral, ecological, and evolutionary processes, particularly in the sea.
Collapse
|
3
|
Artetxe-Arrate I, Fraile I, Marsac F, Farley JH, Rodriguez-Ezpeleta N, Davies CR, Clear NP, Grewe P, Murua H. A review of the fisheries, life history and stock structure of tropical tuna (skipjack Katsuwonus pelamis, yellowfin Thunnus albacares and bigeye Thunnus obesus) in the Indian Ocean. ADVANCES IN MARINE BIOLOGY 2020; 88:39-89. [PMID: 34119046 DOI: 10.1016/bs.amb.2020.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Skipjack (Katsuwonus pelamis), yellowfin (Thunnus albacares) and bigeye (Thunnus obesus) tuna are the target species of tropical tuna fisheries in the Indian Ocean, with high commercial value in the international market. High fishing pressure over the past three decades has raised concerns about their sustainability. Understanding life history strategies and stock structure is essential to determine species resilience and how they might respond to exploitation. Here we provide a comprehensive review of available knowledge on the biology, ecology, and stock structure of tropical tuna species in the Indian Ocean. We describe the characteristics of Indian Ocean tropical tuna fisheries and synthesize skipjack, yellowfin, and bigeye tuna key life history attributes such as biogeography, trophic ecology, growth, and reproductive biology. In addition, we evaluate the available literature about their stock structure using different approaches such as analysis of fisheries data, genetic markers, otolith microchemistry and tagging, among others. Based on this review, we conclude that there is a clear lack of ocean basin-scale studies on skipjack, yellowfin and bigeye tuna life history, and that regional stock structure studies indicate that the panmictic population assumption of these stocks should be investigated further. Finally, we identify specific knowledge gaps that should be addressed with priority to ensure a sustainable and effective management of these species.
Collapse
Affiliation(s)
- Iraide Artetxe-Arrate
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrea Kaia, Pasaia, Gipuzkoa, Spain.
| | - Igaratza Fraile
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrea Kaia, Pasaia, Gipuzkoa, Spain
| | - Francis Marsac
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France; Institut de Recherche pour le Développement (IRD), Sète, France
| | - Jessica H Farley
- CSIRO Oceans and Atmosphere, Castray Esplanade, Hobart, TAS, Australia
| | - Naiara Rodriguez-Ezpeleta
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrea Kaia, Pasaia, Gipuzkoa, Spain
| | - Campbell R Davies
- CSIRO Oceans and Atmosphere, Castray Esplanade, Hobart, TAS, Australia
| | - Naomi P Clear
- CSIRO Oceans and Atmosphere, Castray Esplanade, Hobart, TAS, Australia
| | - Peter Grewe
- CSIRO Oceans and Atmosphere, Castray Esplanade, Hobart, TAS, Australia
| | - Hilario Murua
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrea Kaia, Pasaia, Gipuzkoa, Spain; International Seafood Sustainability Foundation, Washington, DC, United States
| |
Collapse
|
4
|
Blanco E, Reglero P, Ortega A, Folkvord A, de la Gándara F, Hernández de Rojas A, Moyano M. First estimates of metabolic rate in Atlantic bluefin tuna larvae. JOURNAL OF FISH BIOLOGY 2020; 97:1296-1305. [PMID: 32710475 DOI: 10.1111/jfb.14473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/13/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Atlantic bluefin tuna is an iconic scombrid species with a high commercial and ecological value. Despite their importance, many physiological aspects, especially during the larval stages, are still unknown. Metabolic rates are one of the understudied aspects in scombrid larvae, likely due to challenges associated to larval handling before and during respirometry trials. Gaining reliable estimates of metabolic rates is essential to understand how larvae balance their high growth needs and activity and other physiological functions, which can be very useful for fisheries ecology and aquaculture. This is the first study to (a) estimate the relationship between routine metabolic rate (RMR) and larval dry weight (DW) (mass scaling exponent) at a constant temperature of 26°C, (b) measure the RMR under light and darkness and (c) test whether the interindividual differences in the RMR are related to larval nutritional status (RNA/DNA and DNA/DW). The RMR scaled nearly isometrically with body size (b = 0.99, 0.60-31.56 mg DW) in contrast to the allometric relationship observed in most fish larvae (average b = 0.87). The results show no significant differences in larval RMR under light and darkness, suggesting similar larval activity levels in both conditions. The size explained most of the variability in RMR (97%), and nutritional condition was unrelated to the interindividual differences in routine metabolism. This is the first study to report the metabolic rates of Atlantic bluefin tuna larvae and discuss the challenges of performing bioenergetic studies with early life stages of scombrids.
Collapse
Affiliation(s)
- Edurne Blanco
- Instituto Español de Oceanografía, Centre Oceanogràfic de les Balears, Ecosystem Oceanography Group (GRECO), Palma de Mallorca, Spain
- Instituto Español de Oceanografía, Centro Oceanográfico de Murcia, Murcia, Spain
| | - Patricia Reglero
- Instituto Español de Oceanografía, Centre Oceanogràfic de les Balears, Ecosystem Oceanography Group (GRECO), Palma de Mallorca, Spain
| | - Aurelio Ortega
- Instituto Español de Oceanografía, Centro Oceanográfico de Murcia, Murcia, Spain
| | - Arild Folkvord
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Institute of Marine Research, Bergen, Norway
| | | | | | - Marta Moyano
- Institute of Hydrobiology and Fisheries Science, University of Hamburg, Hamburg, Germany
- Center of Coastal Research, University of Agder, Kristiansand, Norway
| |
Collapse
|
5
|
Ciezarek A, Gardner L, Savolainen V, Block B. Skeletal muscle and cardiac transcriptomics of a regionally endothermic fish, the Pacific bluefin tuna, Thunnus orientalis. BMC Genomics 2020; 21:642. [PMID: 32942994 PMCID: PMC7499911 DOI: 10.1186/s12864-020-07058-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 09/08/2020] [Indexed: 11/29/2022] Open
Abstract
Background The Pacific bluefin tuna (Thunnus orientalis) is a regionally endothermic fish that maintains temperatures in their swimming musculature, eyes, brain and viscera above that of the ambient water. Within their skeletal muscle, a thermal gradient exists, with deep muscles, close to the backbone, operating at elevated temperatures compared to superficial muscles near the skin. Their heart, by contrast, operates at ambient temperature, which in bluefin tunas can range widely. Cardiac function in tunas reduces in cold waters, yet the heart must continue to supply blood for metabolically demanding endothermic tissues. Physiological studies indicate Pacific bluefin tuna have an elevated cardiac capacity and increased cold-tolerance compared to warm-water tuna species, primarily enabled by increased capacity for sarcoplasmic reticulum calcium cycling within the cardiac muscles. Results Here, we compare tissue-specific gene-expression profiles of different cardiac and skeletal muscle tissues in Pacific bluefin tuna. There was little difference in the overall expression of calcium-cycling and cardiac contraction pathways between atrium and ventricle. However, expression of a key sarcoplasmic reticulum calcium-cycling gene, SERCA2b, which plays a key role maintaining intracellular calcium stores, was higher in atrium than ventricle. Expression of genes involved in aerobic metabolism and cardiac contraction were higher in the ventricle than atrium. The two morphologically distinct tissues that derive the ventricle, spongy and compact myocardium, had near-identical levels of gene expression. More genes had higher expression in the cool, superficial muscle than in the warm, deep muscle in both the aerobic red muscle (slow-twitch) and anaerobic white muscle (fast-twitch), suggesting thermal compensation. Conclusions We find evidence of widespread transcriptomic differences between the Pacific tuna ventricle and atrium, with potentially higher rates of calcium cycling in the atrium associated with the higher expression of SERCA2b compared to the ventricle. We find no evidence that genes associated with thermogenesis are upregulated in the deep, warm muscle compared to superficial, cool muscle. Heat generation may be enabled by by the high aerobic capacity of bluefin tuna red muscle.
Collapse
Affiliation(s)
- Adam Ciezarek
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, UK. .,Earlham Institute, Norwich Research Park, Norwich, UK.
| | - Luke Gardner
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Vincent Savolainen
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, UK
| | - Barbara Block
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| |
Collapse
|
6
|
Wainwright DK, Lauder GV. Tunas as a high-performance fish platform for inspiring the next generation of autonomous underwater vehicles. BIOINSPIRATION & BIOMIMETICS 2020; 15:035007. [PMID: 32053798 DOI: 10.1088/1748-3190/ab75f7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tunas of the genus Thunnus are a group of high-performance pelagic fishes with many locomotor traits that are convergently shared with other high-performance fish groups. Because of their swimming abilities, tunas continue to be an inspiration for both comparative biomechanics and the design of biomimetic autonomous underwater vehicles (AUVs). Despite the strong history of studies in tuna physiology and current interest in tuna biomechanics and bio-inspired design, we lack quantitative data on the function of many features of tunas. Here we present data on the morphology, behavior, and function of tunas, focusing especially on experimentally examining the function of tuna lateral keels, finlets, and pectoral fins by using simple physical models. We find that both triangular lateral keels and flexible finlets decrease power requirements during swimming, likely by reducing lateral forces and yaw torques (compared to models either without keels or with rectangular keels, and models with stiff finlets or strip fins of equal area, respectively). However, both triangular keels and flexible finlets generate less thrust than other models either without these features or with modified keels or finlets, leading to a tradeoff between power consumption and thrust. In addition, we use micro computed tomography (µCT) to show that the flexible lateral keels possess a lateral line canal, suggesting these keels have a sensory function. The curved and fully-attached base of tuna pectoral fins provides high lift-to-drag ratio at low angles of attack, and generates the highest torques across speeds and angles of attack. Therefore, curved, fully-attached pectoral fins grant both better gliding and maneuvering performance compared to flat or curved, partially-attached designs. We provide both 3D models of tuna morphology derived from µCT scans and conclusions about the performance effects of tuna-like features as a resource for future biological and engineering work for next-generation tuna-inspired AUV designs.
Collapse
Affiliation(s)
- Dylan K Wainwright
- Harvard University, Museum of Comparative Zoology, 26 Oxford Street, Cambridge MA 02143, United States of America. Yale University, Peabody Museum of Natural History, 21 Sachem Street, New Haven CT 06511, United States of America. Author to whom any correspondence should be addressed
| | | |
Collapse
|
7
|
Endothermy in the smalleye opah (Lampris incognitus): A potential role for the uncoupling protein sarcolipin. Comp Biochem Physiol A Mol Integr Physiol 2019; 233:48-52. [DOI: 10.1016/j.cbpa.2019.03.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/21/2022]
|
8
|
Song J, Brill RW, McDowell JR. Plasticity in Standard and Maximum Aerobic Metabolic Rates in Two Populations of an Estuarine Dependent Teleost, Spotted Seatrout ( Cynoscion nebulosus). BIOLOGY 2019; 8:biology8020046. [PMID: 31197073 PMCID: PMC6627818 DOI: 10.3390/biology8020046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/16/2019] [Accepted: 06/11/2019] [Indexed: 01/28/2023]
Abstract
We studied the effects of metabolic cold adaptation (MCA) in two populations of a eurythermal species, spotted seatrout (Cynoscion nebulosus) along the U.S. East Coast. Fish were captured from their natural environment and acclimated at control temperatures 15 °C or 20 °C. Their oxygen consumption rates, a proxy for metabolic rates, were measured using intermittent flow respirometry during acute temperature decrease or increase (2.5 °C per hour). Mass-specific standard metabolic rates (SMR) were higher in fish from the northern population across an ecologically relevant temperature gradient (5 °C to 30 °C). SMR were up to 37% higher in the northern population at 25 °C and maximum metabolic rates (MMR) were up to 20% higher at 20 °C. We found evidence of active metabolic compensation in the southern population from 5 °C to 15 °C (Q10 < 2), but not in the northern population. Taken together, our results indicate differences in metabolic plasticity between the northern and southern populations of spotted seatrout and provide a mechanistic basis for predicting population-specific responses to climate change.
Collapse
Affiliation(s)
- Jingwei Song
- Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, VA 23062, USA.
| | - Richard W Brill
- Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, VA 23062, USA.
| | - Jan R McDowell
- Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, VA 23062, USA.
| |
Collapse
|
9
|
Gleiss AC, Schallert RJ, Dale JJ, Wilson SG, Block BA. Direct measurement of swimming and diving kinematics of giant Atlantic bluefin tuna ( Thunnus thynnus). ROYAL SOCIETY OPEN SCIENCE 2019; 6:190203. [PMID: 31218059 PMCID: PMC6549966 DOI: 10.1098/rsos.190203] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/09/2019] [Indexed: 05/24/2023]
Abstract
Tunas possess a range of physiological and mechanical adaptations geared towards high-performance swimming that are of considerable interest to physiologists, ecologists and engineers. Advances in biologging have provided significant improvements in understanding tuna migrations and vertical movement patterns, yet our understanding of the locomotion and swimming mechanics of these fish under natural conditions is limited. We equipped Atlantic bluefin tuna (Thunnus thynnus) with motion-sensitive tags and video cameras to quantify the gaits and kinematics used by wild fish. Our data reveal significant variety in the locomotory kinematics of Atlantic bluefin tuna, ranging from continuous locomotion to two types of intermittent locomotion. The tuna sustained swimming speeds in excess of 1.5 m s-1 (0.6 body lengths s-1), while beating their tail at a frequency of approximately 1 Hz. While diving, some descents were entirely composed of passive glides, with slower descent rates featuring more gliding, while ascents were primarily composed of active swimming. The observed swimming behaviour of Atlantic bluefin tuna is consistent with theoretical models predicting such intermittent locomotion to result in mechanical and physiological advantages. Our results confirm that Atlantic bluefin tuna possess behavioural specializations to increase their locomotory performance, which together with their unique physiology improve their capacity to use pelagic and mesopelagic habitats.
Collapse
Affiliation(s)
- Adrian C. Gleiss
- Tuna Research and Conservation Centre, Hopkins Marine Station, Stanford University, 120 Oceanview Boulevard, 93950 Pacific Grove, USA
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
- College of Science, Health, Engineering and Education, Environment and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
| | - Robert J. Schallert
- Tuna Research and Conservation Centre, Hopkins Marine Station, Stanford University, 120 Oceanview Boulevard, 93950 Pacific Grove, USA
| | - Jonathan J. Dale
- Tuna Research and Conservation Centre, Hopkins Marine Station, Stanford University, 120 Oceanview Boulevard, 93950 Pacific Grove, USA
| | - Steve G. Wilson
- Tuna Research and Conservation Centre, Hopkins Marine Station, Stanford University, 120 Oceanview Boulevard, 93950 Pacific Grove, USA
| | - Barbara A. Block
- Tuna Research and Conservation Centre, Hopkins Marine Station, Stanford University, 120 Oceanview Boulevard, 93950 Pacific Grove, USA
| |
Collapse
|
10
|
Marcoux TM, Korsmeyer KE. Energetics and behavior of coral reef fishes during oscillatory swimming in a simulated wave surge. ACTA ACUST UNITED AC 2019; 222:jeb.191791. [PMID: 30659085 DOI: 10.1242/jeb.191791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/11/2019] [Indexed: 11/20/2022]
Abstract
Oxygen consumption rates were measured for coral reef fishes during swimming in a bidirectional, oscillatory pattern to simulate station-holding in wave-induced, shallow-water flows. For all species examined, increases in wave intensity, as simulated by increases in frequency and amplitude of oscillation, yielded increased metabolic rates and net costs of swimming (NCOS; swimming metabolic rate minus standard metabolic rate). Comparing species with different swimming modes, the caudal fin swimming Kuhlia spp. (Kuhliidae) and simultaneous pectoral-caudal fin swimming Amphiprion ocellaris (Pomacentridae) turned around to face the direction of swimming most of the time, whereas the median-paired fin (MPF) swimmers, the pectoral fin swimming Ctenochaetus strigosus (Acanthuridae) and dorsal-anal fin swimming Sufflamen bursa (Balistidae), more frequently swam in reverse for one half of the oscillation to avoid turning. Contrary to expectations, the body-caudal fin (BCF) swimming Kuhlia spp. had the lowest overall NCOS in the oscillatory swimming regime compared with the MPF swimmers. However, when examining the effect of increasing frequency of oscillation at similar average velocities, Ku hlia spp. showed a 24% increase in NCOS with a 50% increase in direction changes and accelerations. The two strict MPF swimmers had lower increases on average, suggestive of reduced added costs with increasing frequency of direction changes with this swimming mode. Further studies are needed on the costs of unsteady swimming to determine whether these differences can explain the observed prevalence of fishes using the MPF pectoral fin swimming mode in reef habitats exposed to high, wave-surge-induced water flows.
Collapse
Affiliation(s)
- Travis M Marcoux
- Department of Natural Sciences, Hawaii Pacific University, 1 Aloha Tower Drive, Honolulu, HI 96813, USA
| | - Keith E Korsmeyer
- Department of Natural Sciences, Hawaii Pacific University, 1 Aloha Tower Drive, Honolulu, HI 96813, USA
| |
Collapse
|
11
|
Pavlov V, Rosental B, Hansen NF, Beers JM, Parish G, Rowbotham I, Block BA. Hydraulic control of tuna fins: A role for the lymphatic system in vertebrate locomotion. Science 2018; 357:310-314. [PMID: 28729512 DOI: 10.1126/science.aak9607] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 05/15/2017] [Indexed: 11/02/2022]
Abstract
The lymphatic system in teleost fish has genetic and developmental origins similar to those of the mammalian lymphatic system, which is involved in immune response and fluid homeostasis. Here, we show that the lymphatic system of tunas functions in swimming hydrodynamics. Specifically, a musculo-vascular complex, consisting of fin muscles, bones, and lymphatic vessels, is involved in the hydraulic control of median fins. This specialization of the lymphatic system is associated with fish in the family Scombridae and may have evolved in response to the demand for swimming and maneuvering control in these high-performance species.
Collapse
Affiliation(s)
- Vadim Pavlov
- Department of Biology, Stanford University, Hopkins Marine Station, 120 Oceanview Boulevard, Pacific Grove, CA 93950, USA.
| | - Benyamin Rosental
- Department of Biology, Stanford University, Hopkins Marine Station, 120 Oceanview Boulevard, Pacific Grove, CA 93950, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nathaniel F Hansen
- Department of Biology, Stanford University, Hopkins Marine Station, 120 Oceanview Boulevard, Pacific Grove, CA 93950, USA
| | - Jody M Beers
- Department of Biology, Stanford University, Hopkins Marine Station, 120 Oceanview Boulevard, Pacific Grove, CA 93950, USA
| | - George Parish
- Tuna Research and Conservation Center, Monterey Bay Aquarium, Monterey, CA 93950, USA
| | - Ian Rowbotham
- Tuna Research and Conservation Center, Monterey Bay Aquarium, Monterey, CA 93950, USA
| | - Barbara A Block
- Department of Biology, Stanford University, Hopkins Marine Station, 120 Oceanview Boulevard, Pacific Grove, CA 93950, USA.
| |
Collapse
|
12
|
Drevnick PE, Brooks BA. Mercury in tunas and blue marlin in the North Pacific Ocean. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:1365-1374. [PMID: 28264147 DOI: 10.1002/etc.3757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/16/2017] [Accepted: 02/03/2017] [Indexed: 05/04/2023]
Abstract
Models and data from the North Pacific Ocean indicate that mercury concentrations in water and biota are increasing in response to (global or hemispheric) anthropogenic mercury releases. In the present study, we provide an updated record of mercury in yellowfin tuna (Thunnus albacares) caught near Hawaii that confirms an earlier conclusion that mercury concentrations in these fish are increasing at a rate similar to that observed in waters shallower than 1000 m. We also compiled and reanalyzed data from bigeye tuna (Thunnus obesus) and blue marlin (Makaira nigricans) caught near Hawaii in the 1970s and 2000s. Increases in mercury concentrations in bigeye tuna are consistent with the trend found in yellowfin tuna, in both timing and magnitude. The data available for blue marlin do not allow for a fair comparison among years, because mercury concentrations differ between sexes for this species, and sex was identified (or reported) in only 3 of 7 studies. Also, mercury concentrations in blue marlin may be insensitive to modest changes in mercury exposure, because this species appears to have the ability to detoxify mercury. The North Pacific Ocean is a region of both relatively high rates of atmospheric mercury deposition and capture fisheries production. Other data sets that allow temporal comparisons in mercury concentrations, such as pacific cod (Gadus macrocephalus) in Alaskan waters and albacore tuna (Thunnus alalunga) off the US Pacific coast, should be explored further, to aid in understanding human health and ecological risks and to develop additional baseline knowledge for assessing changes in a region expected to respond strongly to reductions in anthropogenic mercury emissions. Environ Toxicol Chem 2017;36:1365-1374. © 2017 SETAC.
Collapse
Affiliation(s)
- Paul E Drevnick
- University of Michigan Biological Station and School of Natural Resources and Environment, Ann Arbor, Michigan, USA
- Environmental Monitoring and Science Division, Alberta Environment and Parks, Calgary, Alberta, Canada
| | - Barbara A Brooks
- Hazard Evaluation and Emergency Response Office, Hawaii Department of Health, Honolulu, Hawaii, USA
| |
Collapse
|
13
|
van de Pol I, Flik G, Gorissen M. Comparative Physiology of Energy Metabolism: Fishing for Endocrine Signals in the Early Vertebrate Pool. Front Endocrinol (Lausanne) 2017; 8:36. [PMID: 28303116 PMCID: PMC5332387 DOI: 10.3389/fendo.2017.00036] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/10/2017] [Indexed: 01/23/2023] Open
Abstract
Energy is the common currency of life. To guarantee a homeostatic supply of energy, multiple neuro-endocrine systems have evolved in vertebrates; systems that regulate food intake, metabolism, and distribution of energy. Even subtle (lasting) dysregulation of the delicate balance of energy intake and expenditure may result in severe pathologies. Feeding-related pathologies have fueled research on mammals, including of course the human species. The mechanisms regulating food intake and body mass are well-characterized in these vertebrates. The majority of animal life is ectothermic, only birds and mammals are endotherms. What can we learn from a (comparative) study on energy homeostasis in teleostean fishes, ectotherms, with a very different energy budget and expenditure? We present several adaptation strategies in fish. In recent years, the components that regulate food intake in fishes have been identified. Although there is homology of the major genetic machinery with mammals (i.e., there is a vertebrate blueprint), in many cases this does not imply analogy. Although both mammals and fish must gain their energy from food, the expenditure of the energy obtained is different. Mammals need to spend vast amounts of energy to maintain body temperature; fishes seem to utilize a broader metabolic range to their advantage. In this review, we briefly discuss ecto- and endothermy and their consequences for energy balance. Next, we argue that the evolution of endothermy and its (dis-)advantages may explain very different strategies in endocrine regulation of energy homeostasis among vertebrates. We follow a comparative and evolutionary line of thought: we discuss similarities and differences between fish and mammals. Moreover, given the extraordinary radiation of teleostean fishes (with an estimated number of 33,400 contemporary species, or over 50% of vertebrate life forms), we also compare strategies in energy homeostasis between teleostean species. We present recent developments in the field of (neuro)endocrine regulation of energy balance in teleosts, with a focus on leptin.
Collapse
Affiliation(s)
- Iris van de Pol
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Gert Flik
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
- *Correspondence: Gert Flik,
| | - Marnix Gorissen
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
14
|
Ciezarek AG, Dunning LT, Jones CS, Noble LR, Humble E, Stefanni SS, Savolainen V. Substitutions in the Glycogenin-1 Gene Are Associated with the Evolution of Endothermy in Sharks and Tunas. Genome Biol Evol 2016; 8:3011-3021. [PMID: 27614233 PMCID: PMC5630876 DOI: 10.1093/gbe/evw211] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite 400–450 million years of independent evolution, a strong phenotypic convergence has occurred between two groups of fish: tunas and lamnid sharks. This convergence is characterized by centralization of red muscle, a distinctive swimming style (stiffened body powered through tail movements) and elevated body temperature (endothermy). Furthermore, both groups demonstrate elevated white muscle metabolic capacities. All these traits are unusual in fish and more likely evolved to support their fast-swimming, pelagic, predatory behavior. Here, we tested the hypothesis that their convergent evolution was driven by selection on a set of metabolic genes. We sequenced white muscle transcriptomes of six tuna, one mackerel, and three shark species, and supplemented this data set with previously published RNA-seq data. Using 26 species in total (including 7,032 tuna genes plus 1,719 shark genes), we constructed phylogenetic trees and carried out maximum-likelihood analyses of gene selection. We inferred several genes relating to metabolism to be under selection. We also found that the same one gene, glycogenin-1, evolved under positive selection independently in tunas and lamnid sharks, providing evidence of convergent selective pressures at gene level possibly underlying shared physiology.
Collapse
Affiliation(s)
- Adam G Ciezarek
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, UK
| | - Luke T Dunning
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, UK Present address: Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Catherine S Jones
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, Scotland, UK
| | - Leslie R Noble
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, Scotland, UK
| | - Emily Humble
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, UK Present address: Department of Animal Behaviour, University of Bielefeld, Postfach 100131, Bielefeld, Germany
| | | | - Vincent Savolainen
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, UK
| |
Collapse
|
15
|
Stieglitz JD, Mager EM, Hoenig RH, Benetti DD, Grosell M. Impacts of Deepwater Horizon crude oil exposure on adult mahi-mahi (Coryphaena hippurus) swim performance. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:2613-2622. [PMID: 27018209 DOI: 10.1002/etc.3436] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/22/2016] [Accepted: 03/17/2016] [Indexed: 05/25/2023]
Abstract
The temporal and geographic attributes of the Deepwater Horizon incident in 2010 likely exposed pelagic game fish species, such as mahi-mahi, to crude oil. Although much of the research assessing the effects of the spill has focused on early life stages of fish, studies examining whole-animal physiological responses of adult marine fish species are lacking. Using swim chamber respirometry, the present study demonstrates that acute exposure to a sublethal concentration of the water accommodated fraction of Deepwater Horizon crude oil results in significant swim performance impacts on young adult mahi-mahi, representing the first report of acute sublethal toxicity on adult pelagic fish in the Gulf of Mexico following the spill. At an exposure concentration of 8.4 ± 0.6 µg L-1 sum of 50 selected polycyclic aromatic hydrocarbons (PAHs; mean of geometric means ± standard error of the mean), significant decreases in the critical and optimal swimming speeds of 14% and 10%, respectively (p < 0.05), were observed. In addition, a 20% reduction in the maximum metabolic rate and a 29% reduction in aerobic scope resulted from exposure to this level of ΣPAHs. Using environmentally relevant crude oil exposure concentrations and a commercially and ecologically valuable Gulf of Mexico fish species, the present results provide insight into the effects of the Deepwater Horizon oil spill on adult pelagic fish. Environ Toxicol Chem 2016;35:2613-2622. © 2016 SETAC.
Collapse
Affiliation(s)
- John D Stieglitz
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA.
| | - Edward M Mager
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA
| | - Ronald H Hoenig
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA
| | - Daniel D Benetti
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA
| | - Martin Grosell
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA
| |
Collapse
|
16
|
McDonnell LH, Chapman LJ. Effects of thermal increase on aerobic capacity and swim performance in a tropical inland fish. Comp Biochem Physiol A Mol Integr Physiol 2016; 199:62-70. [DOI: 10.1016/j.cbpa.2016.05.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/18/2016] [Accepted: 05/18/2016] [Indexed: 11/16/2022]
|
17
|
Rummer JL, Binning SA, Roche DG, Johansen JL. Methods matter: considering locomotory mode and respirometry technique when estimating metabolic rates of fishes. CONSERVATION PHYSIOLOGY 2016; 4:cow008. [PMID: 27382471 PMCID: PMC4922262 DOI: 10.1093/conphys/cow008] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 02/11/2016] [Accepted: 02/19/2016] [Indexed: 05/26/2023]
Abstract
Respirometry is frequently used to estimate metabolic rates and examine organismal responses to environmental change. Although a range of methodologies exists, it remains unclear whether differences in chamber design and exercise (type and duration) produce comparable results within individuals and whether the most appropriate method differs across taxa. We used a repeated-measures design to compare estimates of maximal and standard metabolic rates (MMR and SMR) in four coral reef fish species using the following three methods: (i) prolonged swimming in a traditional swimming respirometer; (ii) short-duration exhaustive chase with air exposure followed by resting respirometry; and (iii) short-duration exhaustive swimming in a circular chamber. We chose species that are steady/prolonged swimmers, using either a body-caudal fin or a median-paired fin swimming mode during routine swimming. Individual MMR estimates differed significantly depending on the method used. Swimming respirometry consistently provided the best (i.e. highest) estimate of MMR in all four species irrespective of swimming mode. Both short-duration protocols (exhaustive chase and swimming in a circular chamber) produced similar MMR estimates, which were up to 38% lower than those obtained during prolonged swimming. Furthermore, underestimates were not consistent across swimming modes or species, indicating that a general correction factor cannot be used. However, SMR estimates (upon recovery from both of the exhausting swimming methods) were consistent across both short-duration methods. Given the increasing use of metabolic data to assess organismal responses to environmental stressors, we recommend carefully considering respirometry protocols before experimentation. Specifically, results should not readily be compared across methods; discrepancies could result in misinterpretation of MMR and aerobic scope.
Collapse
Affiliation(s)
- Jodie L. Rummer
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Sandra A. Binning
- Australian Research Council Centre of Excellence for Coral Reef Studies, Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
- Éco-Éthologie, Institut de Biologie, Université de Neuchâtel, Neuchâtel 2000, Switzerland
| | - Dominique G. Roche
- Australian Research Council Centre of Excellence for Coral Reef Studies, Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
- Éco-Éthologie, Institut de Biologie, Université de Neuchâtel, Neuchâtel 2000, Switzerland
| | - Jacob L. Johansen
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA
| |
Collapse
|
18
|
Shibata M, Mekuchi M, Mori K, Muta S, Chowdhury VS, Nakamura Y, Ojima N, Saitoh K, Kobayashi T, Wada T, Inouye K, Kuhara S, Tashiro K. Transcriptomic features associated with energy production in the muscles of Pacific bluefin tuna and Pacific cod. Biosci Biotechnol Biochem 2016; 80:1114-24. [PMID: 26924100 DOI: 10.1080/09168451.2016.1151341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Bluefin tuna are high-performance swimmers and top predators in the open ocean. Their swimming is grounded by unique features including an exceptional glycolytic potential in white muscle, which is supported by high enzymatic activities. Here we performed high-throughput RNA sequencing (RNA-Seq) in muscles of the Pacific bluefin tuna (Thunnus orientalis) and Pacific cod (Gadus macrocephalus) and conducted a comparative transcriptomic analysis of genes related to energy production. We found that the total expression of glycolytic genes was much higher in the white muscle of tuna than in the other muscles, and that the expression of only six genes for glycolytic enzymes accounted for 83.4% of the total. These expression patterns were in good agreement with the patterns of enzyme activity previously reported. The findings suggest that the mRNA expression of glycolytic genes may contribute directly to the enzymatic activities in the muscles of tuna.
Collapse
Affiliation(s)
- Mami Shibata
- a Graduate School of Bioresource and Bioenvironmental Sciences , Kyushu University , Fukuoka , Japan
| | - Miyuki Mekuchi
- b Research Center for Aquatic Genomics, National Research Institute of Fisheries Science , Fisheries Research Agency , Yokohama , Japan
| | - Kazuki Mori
- c Biotechnology Research Institute for Drug Discovery , National Institute of Advanced Industrial Science and Technology (AIST) , Tokyo , Japan
| | - Shigeru Muta
- d Laboratory of Molecular Gene Techniques, Division of Molecular Biosciences, Department of Bioscience and Biotechnology, Faculty of Agriculture , Kyushu University , Fukuoka , Japan
| | - Vishwajit Sur Chowdhury
- e Division for Experimental Natural Science, Faculty of Arts and Science , Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University , Fukuoka , Japan
| | - Yoji Nakamura
- b Research Center for Aquatic Genomics, National Research Institute of Fisheries Science , Fisheries Research Agency , Yokohama , Japan
| | - Nobuhiko Ojima
- b Research Center for Aquatic Genomics, National Research Institute of Fisheries Science , Fisheries Research Agency , Yokohama , Japan
| | - Kenji Saitoh
- b Research Center for Aquatic Genomics, National Research Institute of Fisheries Science , Fisheries Research Agency , Yokohama , Japan
| | | | - Tokio Wada
- f Fisheries Research Agency , Yokohama , Japan
| | - Kiyoshi Inouye
- g Japan Fisheries Science and Technology Association , Tokyo , Japan
| | - Satoru Kuhara
- d Laboratory of Molecular Gene Techniques, Division of Molecular Biosciences, Department of Bioscience and Biotechnology, Faculty of Agriculture , Kyushu University , Fukuoka , Japan
| | - Kosuke Tashiro
- d Laboratory of Molecular Gene Techniques, Division of Molecular Biosciences, Department of Bioscience and Biotechnology, Faculty of Agriculture , Kyushu University , Fukuoka , Japan
| |
Collapse
|
19
|
Horodysky AZ, Cooke SJ, Graves JE, Brill RW. Fisheries conservation on the high seas: linking conservation physiology and fisheries ecology for the management of large pelagic fishes. CONSERVATION PHYSIOLOGY 2016; 4:cov059. [PMID: 27382467 PMCID: PMC4922246 DOI: 10.1093/conphys/cov059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/09/2015] [Accepted: 11/15/2015] [Indexed: 05/26/2023]
Abstract
Populations of tunas, billfishes and pelagic sharks are fished at or over capacity in many regions of the world. They are captured by directed commercial and recreational fisheries (the latter of which often promote catch and release) or as incidental catch or bycatch in commercial fisheries. Population assessments of pelagic fishes typically incorporate catch-per-unit-effort time-series data from commercial and recreational fisheries; however, there have been notable changes in target species, areas fished and depth-specific gear deployments over the years that may have affected catchability. Some regional fisheries management organizations take into account the effects of time- and area-specific changes in the behaviours of fish and fishers, as well as fishing gear, to standardize catch-per-unit-effort indices and refine population estimates. However, estimates of changes in stock size over time may be very sensitive to underlying assumptions of the effects of oceanographic conditions and prey distribution on the horizontal and vertical movement patterns and distribution of pelagic fishes. Effective management and successful conservation of pelagic fishes requires a mechanistic understanding of their physiological and behavioural responses to environmental variability, potential for interaction with commercial and recreational fishing gear, and the capture process. The interdisciplinary field of conservation physiology can provide insights into pelagic fish demography and ecology (including environmental relationships and interspecific interactions) by uniting the complementary expertise and skills of fish physiologists and fisheries scientists. The iterative testing by one discipline of hypotheses generated by the other can span the fundamental-applied science continuum, leading to the development of robust insights supporting informed management. The resulting species-specific understanding of physiological abilities and tolerances can help to improve stock assessments, develop effective bycatch-reduction strategies, predict rates of post-release mortality, and forecast the population effects of environmental change. In this synthesis, we review several examples of these interdisciplinary collaborations that currently benefit pelagic fisheries management.
Collapse
Affiliation(s)
- Andrij Z. Horodysky
- Department of Marine and Environmental Science, Hampton University, 100 East Queen Street, Hampton, VA 23668, USA
| | - Steven J. Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| | - John E. Graves
- Department of Fisheries Science, Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, VA 23062, USA
| | - Richard W. Brill
- Department of Fisheries Science, Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, VA 23062, USA
- Behavioral Ecology Branch, James J. Howard Marine Sciences Laboratory, Northeast Fisheries Science Center, National Marine Fisheries Service, NOAA, Highlands, NJ 07732, USA
| |
Collapse
|
20
|
Bar I, Dutney L, Lee P, Yazawa R, Yoshizaki G, Takeuchi Y, Cummins S, Elizur A. Small-scale capture, transport and tank adaptation of live, medium-sized Scombrids using "Tuna Tubes". SPRINGERPLUS 2015; 4:604. [PMID: 26543739 PMCID: PMC4627978 DOI: 10.1186/s40064-015-1391-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/29/2015] [Indexed: 11/10/2022]
Abstract
The transport of live fish is a crucial step to establish fish culture in captivity, and is especially challenging for species that have not been commonly cultured before, therefore transport and handling methods need to be optimized and tailored. This study describes the use of tuna tubes for small-scale transport of medium-sized pelagic fish from the Scombridae family. Tuna tubes are an array of vertical tubes that hold the fish, while fresh seawater is pumped up the tubes and through the fish mouth and gills, providing oxygen and removing wastes. In this study, 19 fish were captured using rod and line and 42 % of the captured fish were transported alive in the custom-designed tuna tubes to an on-shore holding tank: five mackerel tuna (Euthynnus affinis) and three leaping bonito (Cybiosarda elegans). Out of these, just three (15.8 % of total fish) acclimatized to the tank's condition. Based on these results, we discuss an improved design of the tuna tubes that has the potential to increase survival rates and enable a simple and low cost method of transporting of live pelagic fish.
Collapse
Affiliation(s)
- Ido Bar
- Faculty of Science, Health, Education and Engineering, Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, QLD 4558 Australia
| | - Luke Dutney
- QDAFF, Bribie Island Research Centre, PO Box 2066, Woorim, QLD 4507 Australia
| | - Peter Lee
- QDAFF, Bribie Island Research Centre, PO Box 2066, Woorim, QLD 4507 Australia
| | - Ryosuke Yazawa
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477 Japan
| | - Goro Yoshizaki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477 Japan
| | - Yutaka Takeuchi
- Research Center for Advanced Science and Technology, Tokyo University of Marine and Science Technology, 670 Banda, Tateyama-shi, Chiba 294-0308 Japan
| | - Scott Cummins
- Faculty of Science, Health, Education and Engineering, Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, QLD 4558 Australia
| | - Abigail Elizur
- Faculty of Science, Health, Education and Engineering, Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, QLD 4558 Australia
| |
Collapse
|
21
|
Comparative analyses of animal-tracking data reveal ecological significance of endothermy in fishes. Proc Natl Acad Sci U S A 2015; 112:6104-9. [PMID: 25902489 DOI: 10.1073/pnas.1500316112] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite long evolutionary separations, several sharks and tunas share the ability to maintain slow-twitch, aerobic red muscle (RM) warmer than ambient water. Proximate causes of RM endothermy are well understood, but ultimate causes are unclear. Two advantages often proposed are thermal niche expansion and elevated cruising speeds. The thermal niche hypothesis is generally supported, because fishes with RM endothermy often exhibit greater tolerance to broad temperature ranges. In contrast, whether fishes with RM endothermy cruise faster, and achieve any ecological benefits from doing so, remains unclear. Here, we compiled data recorded by modern animal-tracking tools for a variety of free-swimming marine vertebrates. Using phylogenetically informed allometry, we show that both cruising speeds and maximum annual migration ranges of fishes with RM endothermy are 2-3 times greater than fishes without it, and comparable to nonfish endotherms (i.e., penguins and marine mammals). The estimated cost of transport of fishes with RM endothermy is twice that of fishes without it. We suggest that the high energetic cost of RM endothermy in fishes is offset by the benefit of elevated cruising speeds, which not only increase prey encounter rates, but also enable larger-scale annual migrations and potentially greater access to seasonally available resources.
Collapse
|
22
|
Wootton TP, Sepulveda CA, Wegner NC. Gill morphometrics of the thresher sharks (GenusAlopias): Correlation of gill dimensions with aerobic demand and environmental oxygen. J Morphol 2015; 276:589-600. [DOI: 10.1002/jmor.20369] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 12/17/2014] [Accepted: 01/02/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Thomas P. Wootton
- Center for Marine Biotechnology and Biomedicine; Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego; La Jolla CA 92093
| | | | - Nicholas C. Wegner
- Center for Marine Biotechnology and Biomedicine; Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego; La Jolla CA 92093
- Fisheries Resource Division; Southwest Fisheries Science Center, NOAA Fisheries; La Jolla CA 92037
| |
Collapse
|
23
|
Field Studies of Elasmobranch Physiology. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/b978-0-12-801289-5.00008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
24
|
Gordoa A, Carreras G. Determination of temporal spawning patterns and hatching time in response to temperature of Atlantic bluefin tuna (Thunnus thynnus) in the Western Mediterranean. PLoS One 2014; 9:e90691. [PMID: 24608107 PMCID: PMC3946554 DOI: 10.1371/journal.pone.0090691] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 02/04/2014] [Indexed: 11/18/2022] Open
Abstract
This study analysed the temporal pattern of Atlantic bluefin tuna (ABFT) spawning in the Balearic spawning ground and examined its reproductive performance after years in captivity. Furthermore, ABFT hatching time at different on-site temperatures was determined for the first time. Spawning surveys were carried out in 4 spawning seasons (2009–2012) aboard tuna transport vessels. Three groups of spawners were monitored: a captive group transported to the spawning region and monitored throughout the four spawning seasons and two wild groups caught in 2009 and 2010 which were transferred to a monitoring transport cage immediately after being caught. Surface plankton samples were collected nightly, beginning immediately after the first purse seine catches were made and concluding after spawning was observed to have ended. All groups displayed the same spawning hours, restricted between 2:00–5:00 a.m. The captive group, as they got older, shifted towards the earliest hour, suggesting an age influence on reproductive time. The onset of spawning varied annually from the end of May to the beginning of June at temperatures around 19°C–20°C, ending by the second week of July. The peak of spawning was consistently around the summer solstice, June 15th–30th. The results showed the negative effect of unstable oceanographic conditions in the spawning process which might influence the annual reproductive success of ABFT. The influence of temperature on hatching time was higher than that observed in other tuna species, twice as fast at 26°C (23 h) as at 19.5°C (49 h). Overall, this study shows the strength of the internal mechanism in ABFT that controls spawning traits. Spawning in ABFT is cyclical and highly synchronised on diel and annual scales. We consider that the timing of spawning is rather influenced by day length and its adaptive significance is discussed.
Collapse
Affiliation(s)
- Ana Gordoa
- Department of Marine Ecology, Centro de Estudios Avanzados de Blanes, Spanish National Research Council (CSIC), Blanes, Gerona, Spain
- * E-mail:
| | - Gustavo Carreras
- Department of Marine Ecology, Centro de Estudios Avanzados de Blanes, Spanish National Research Council (CSIC), Blanes, Gerona, Spain
| |
Collapse
|
25
|
Lapointe D, Vogelbein WK, Fabrizio MC, Gauthier DT, Brill RW. Temperature, hypoxia, and mycobacteriosis: effects on adult striped bass Morone saxatilis metabolic performance. DISEASES OF AQUATIC ORGANISMS 2014; 108:113-27. [PMID: 24553417 DOI: 10.3354/dao02693] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Mycobacteriosis, a chronic bacterial disease of fishes, is prevalent in adult striped bass from Chesapeake Bay (USA). Although environmental factors may play a role in disease expression, the interaction between the disease and environmental stress remains unexplored. We therefore examined the individual and interactive effects of elevated temperature, hypoxia, and mycobacteriosis on the metabolism of wild-caught adult striped bass from Chesapeake Bay using respirometry. Because the spleen is the primary target organ of mycobacteriosis in striped bass, we hypothesized that the disease interferes with the ability of fish to increase their hematocrit in the face of increasing oxygen demands. We determined standard metabolic rate (SMR), maximum metabolic rate under normoxia (MMRN), critical oxygen saturation (S(crit)), and MMR under hypoxia (3 mg O(2) l-1: MMR(H)) for healthy and visibly diseased fish (i.e. exhibiting skin lesions indicative of mycobacteriosis). Measurements were taken at a temperature within the preferred thermal range (20°C) and at an elevated temperature (28°C) considered stressful to striped bass. In addition, we calculated aerobic scope (AS(N) = MMR(N) - SMR, AS(H) = MMR(H) - SMR) and factorial scope (FS(N) = MMR(N) SMR-1, FS(H) = MMR(H) SMR-1). SMR increased with increasing temperature, and hypoxia reduced MMR, AS, and FS. Mycobacteriosis alone did not affect either MMR(N) or MMR(H). However, elevated temperature affected the ability of diseased striped bass to tolerate hypoxia (S(crit)). Overall, our data indicate that striped bass performance under hypoxia is impaired, and that elevated water temperatures, hypoxia, and severe mycobacteriosis together reduce aerobic scope more than any of these stressors acting alone. We conclude that the scope for activity of diseased striped bass in warm hypoxic waters is significantly compromised.
Collapse
Affiliation(s)
- Dominique Lapointe
- Virginia Institute of Marine Science, College of William & Mary, PO Box 1346, Gloucester Point, Virginia 23062, USA Department of Biological Sciences, Old Dominion University, Norfolk, Virginia 23529, USA Ecosystem Processes Division, Northeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Atlantic Highlands, New Jersey 07732, USA Present address: Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | | | | | | | | |
Collapse
|
26
|
Can fish consumption rate estimates be improved by linking bioenergetics and mercury mass balance models? Application to tunas. Ecol Modell 2014. [DOI: 10.1016/j.ecolmodel.2013.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Addis P, Corrias S, Garau C, Secci M. Physiologic Responses to Stress and Changes in Atlantic Bluefin Tuna ( T. thynnus) Meat Color During Trap Fisheries Capture and Processing in Sardinia (W. Mediterranean). JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2013. [DOI: 10.1080/10498850.2011.647596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
28
|
Fulton CJ, Johansen JL, Steffensen JF. Energetic extremes in aquatic locomotion by coral reef fishes. PLoS One 2013; 8:e54033. [PMID: 23326566 PMCID: PMC3541231 DOI: 10.1371/journal.pone.0054033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/07/2012] [Indexed: 11/18/2022] Open
Abstract
Underwater locomotion is challenging due to the high friction and resistance imposed on a body moving through water and energy lost in the wake during undulatory propulsion. While aquatic organisms have evolved streamlined shapes to overcome such resistance, underwater locomotion has long been considered a costly exercise. Recent evidence for a range of swimming vertebrates, however, has suggested that flapping paired appendages around a rigid body may be an extremely efficient means of aquatic locomotion. Using intermittent flow-through respirometry, we found exceptional energetic performance in the Bluelined wrasse Stethojulis bandanensis, which maintains tuna-like optimum cruising speeds (up to 1 metre s(-1)) while using 40% less energy than expected for their body size. Displaying an exceptional aerobic scope (22-fold above resting), streamlined rigid-body posture, and wing-like fins that generate lift-based thrust, S. bandanensis literally flies underwater to efficiently maintain high optimum swimming speeds. Extreme energetic performance may be key to the colonization of highly variable environments, such as the wave-swept habitats where S. bandanensis and other wing-finned species tend to occur. Challenging preconceived notions of how best to power aquatic locomotion, biomimicry of such lift-based fin movements could yield dramatic reductions in the power needed to propel underwater vehicles at high speed.
Collapse
Affiliation(s)
- Christopher J Fulton
- ARC Centre of Excellence for Coral Reef Studies, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.
| | | | | |
Collapse
|
29
|
Tissue turnover rates and isotopic trophic discrimination factors in the endothermic teleost, pacific bluefin tuna (Thunnus orientalis). PLoS One 2012; 7:e49220. [PMID: 23145128 PMCID: PMC3492276 DOI: 10.1371/journal.pone.0049220] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 10/08/2012] [Indexed: 11/29/2022] Open
Abstract
Stable isotope analysis (SIA) of highly migratory marine pelagic animals can improve understanding of their migratory patterns and trophic ecology. However, accurate interpretation of isotopic analyses relies on knowledge of isotope turnover rates and tissue-diet isotope discrimination factors. Laboratory-derived turnover rates and discrimination factors have been difficult to obtain due to the challenges of maintaining these species in captivity. We conducted a study to determine tissue- (white muscle and liver) and isotope- (nitrogen and carbon) specific turnover rates and trophic discrimination factors (TDFs) using archived tissues from captive Pacific bluefin tuna (PBFT), Thunnus orientalis, 1–2914 days after a diet shift in captivity. Half-life values for 15N turnover in white muscle and liver were 167 and 86 days, and for 13C were 255 and 162 days, respectively. TDFs for white muscle and liver were 1.9 and 1.1‰ for δ15N and 1.8 and 1.2‰ for δ13C, respectively. Our results demonstrate that turnover of 15N and 13C in bluefin tuna tissues is well described by a single compartment first-order kinetics model. We report variability in turnover rates between tissue types and their isotope dynamics, and hypothesize that metabolic processes play a large role in turnover of nitrogen and carbon in PBFT white muscle and liver tissues. 15N in white muscle tissue showed the most predictable change with diet over time, suggesting that white muscle δ15N data may provide the most reliable inferences for diet and migration studies using stable isotopes in wild fish. These results allow more accurate interpretation of field data and dramatically improve our ability to use stable isotope data from wild tunas to better understand their migration patterns and trophic ecology.
Collapse
|
30
|
Wegner NC, Sepulveda CA, Aalbers SA, Graham JB. Structural adaptations for ram ventilation: Gill fusions in scombrids and billfishes. J Morphol 2012; 274:108-20. [DOI: 10.1002/jmor.20082] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/21/2012] [Accepted: 08/23/2012] [Indexed: 11/11/2022]
|
31
|
Dickson KA, Donley JM, Hansen MW, Peters JA. Maximum sustainable speed, energetics and swimming kinematics of a tropical carangid fish, the green jack Caranx caballus. JOURNAL OF FISH BIOLOGY 2012; 80:2494-2516. [PMID: 22650430 DOI: 10.1111/j.1095-8649.2012.03302.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Maximum sustained swimming speeds, swimming energetics and swimming kinematics were measured in the green jack Caranx caballus (Teleostei: Carangidae) using a 41 l temperature-controlled, Brett-type swimming-tunnel respirometer. In individual C. caballus [mean ±s.d. of 22·1 ± 2·2 cm fork length (L(F) ), 190 ± 61 g, n = 11] at 27·2 ± 0·7° C, mean critical speed (U(crit)) was 102·5 ± 13·7 cm s⁻¹ or 4·6 ± 0·9 L(F) s⁻¹. The maximum speed that was maintained for a 30 min period while swimming steadily using the slow, oxidative locomotor muscle (U(max,c)) was 99·4 ± 14·4 cm s⁻¹ or 4·5 ± 0·9 L(F) s⁻¹. Oxygen consumption rate (M in mg O₂ min⁻¹) increased with swimming speed and with fish mass, but mass-specific M (mg O₂ kg⁻¹ h⁻¹) as a function of relative speed (L(F) s⁻¹) did not vary significantly with fish size. Mean standard metabolic rate (R(S) ) was 170 ± 38 mg O₂ kg⁻¹ h⁻¹, and the mean ratio of M at U(max,c) to R(S) , an estimate of factorial aerobic scope, was 3·6 ± 1·0. The optimal speed (U(opt) ), at which the gross cost of transport was a minimum of 2·14 J kg⁻¹ m⁻¹, was 3·8 L(F) s⁻¹. In a subset of the fish studied (19·7-22·7 cm L(F) , 106-164 g, n = 5), the swimming kinematic variables of tailbeat frequency, yaw and stride length all increased significantly with swimming speed but not fish size, whereas tailbeat amplitude varied significantly with speed, fish mass and L(F) . The mean propulsive wavelength was 86·7 ± 5·6 %L(F) or 73·7 ± 5·2 %L(T) . Mean ±s.d. yaw and tailbeat amplitude values, calculated from lateral displacement of each intervertebral joint during a complete tailbeat cycle in three C. caballus (19·7, 21·6 and 22·7 cm L(F) ; 23·4, 25·3 and 26·4 cm L(T) ), were 4·6 ± 0·1 and 17·1 ± 2·2 %L(T) , respectively. Overall, the sustained swimming performance, energetics, kinematics, lateral displacement and intervertebral bending angles measured in C. caballus were similar to those of other active ectothermic fishes that have been studied, and C. caballus was more similar to the chub mackerel Scomber japonicus than to the kawakawa tuna Euthynnus affinis.
Collapse
Affiliation(s)
- K A Dickson
- Department of Biological Science, California State University Fullerton, Fullerton, CA 92834, USA.
| | | | | | | |
Collapse
|
32
|
Nisbet RM, Jusup M, Klanjscek T, Pecquerie L. Integrating dynamic energy budget (DEB) theory with traditional bioenergetic models. J Exp Biol 2012; 215:892-902. [DOI: 10.1242/jeb.059675] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Dynamic energy budget (DEB) theory offers a systematic, though abstract, way to describe how an organism acquires and uses energy and essential elements for physiological processes, in addition to how physiological performance is influenced by environmental variables such as food density and temperature. A ‘standard’ DEB model describes the performance (growth, development, reproduction, respiration, etc.) of all life stages of an animal (embryo to adult), and predicts both intraspecific and interspecific variation in physiological rates. This approach contrasts with a long tradition of more phenomenological and parameter-rich bioenergetic models that are used to make predictions from species-specific rate measurements. These less abstract models are widely used in fisheries studies; they are more readily interpretable than DEB models, but lack the generality of DEB models. We review the interconnections between the two approaches and present formulae relating the state variables and fluxes in the standard DEB model to measured bioenergetic rate processes. We illustrate this synthesis for two large fishes: Pacific bluefin tuna (Thunnus orientalis) and Pacific salmon (Oncorhynchus spp.). For each, we have a parameter-sparse, full-life-cycle DEB model that requires adding only a few species-specific features to the standard model. Both models allow powerful integration of knowledge derived from data restricted to certain life stages, processes and environments.
Collapse
Affiliation(s)
- Roger M. Nisbet
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106-9610, USA
| | - Marko Jusup
- Rudjer Boskovic Institute, Department for Marine and Environmental Research, Bijenicka cesta 54, POB 180, HR-10002 Zagreb, Croatia
- Faculty of Environment and Information Sciences, Yokohama National University, 79-7, Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Tin Klanjscek
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106-9610, USA
- Rudjer Boskovic Institute, Department for Marine and Environmental Research, Bijenicka cesta 54, POB 180, HR-10002 Zagreb, Croatia
| | - Laure Pecquerie
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106-9610, USA
| |
Collapse
|
33
|
Shirakashi S, Kishimoto Y, Kinami R, Katano H, Ishimaru K, Murata O, Itoh N, Ogawa K. Morphology and distribution of blood fluke eggs and associated pathology in the gills of cultured Pacific bluefin tuna, Thunnus orientalis. Parasitol Int 2011; 61:242-9. [PMID: 22041101 DOI: 10.1016/j.parint.2011.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 10/15/2011] [Accepted: 10/15/2011] [Indexed: 10/16/2022]
Abstract
Infestations of blood flukes of the genus Cardicola have been observed in juvenile Pacific bluefin tuna (PBT) cultured in Japan. Infected fish harbor large numbers of parasite eggs in their gills. Although the link between blood fluke infection and juvenile mortality is not clear, accumulation of parasite eggs appears to be pathogenic to the fish. We investigated the origins, general morphology/distribution, and histopathology of these eggs in artificially produced 0 yr old PBT. Dead and live fish were sampled on several occasions from two culture facilities in Wakayama prefecture, Japan. The number of eggs in each gill filament was enumerated under a microscope. In addition, we estimated the total number of eggs by dissolving the gills in a weak NaOH solution. We observed two morphologically distinct egg types in the gill filaments, smaller, oval shaped eggs in the gill lamellae and larger, crescent shaped eggs that occurred primarily in the filamentary arteries. Based on the ITS2 sequence, the ovoid and crescent shaped eggs were identified as C. orientalis and C. opisthorchis, respectively. Eggs of the former species were more abundant (maximum: 6400 per filament) than the latter (maximum: 1400), but the number was highly variable among filaments. The eggs of the latter species were relatively evenly distributed among the filaments. In a heavily infected individual, we estimated a total of >4.5 million eggs were present in the gills on one side of the fish. The number of eggs from the two species was positively correlated to each other and the dead fish tended to harbor more eggs than the live fish. Histological observation revealed host responses around the eggs, including encapsulation by fibroblasts and nodule formation, as seen in response to other aporocotylid eggs. In addition, we observed widespread fusion of gill lamellae and blockage of the filamentary arteries in some instances. Our results provide information that can be used for routine diagnosis of Cardicola blood flukes in cultured tuna and suggest they represent a risk to juvenile PBT.
Collapse
Affiliation(s)
- Sho Shirakashi
- Fisheries Laboratory, Kinki University, Nishimuro, Wakayama 649-2211, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Jusup M, Klanjscek T, Matsuda H, Kooijman SALM. A full lifecycle bioenergetic model for bluefin tuna. PLoS One 2011; 6:e21903. [PMID: 21779352 PMCID: PMC3133599 DOI: 10.1371/journal.pone.0021903] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 06/14/2011] [Indexed: 12/30/2022] Open
Abstract
We formulated a full lifecycle bioenergetic model for bluefin tuna relying on the principles of Dynamic Energy Budget theory. Traditional bioenergetic models in fish research deduce energy input and utilization from observed growth and reproduction. In contrast, our model predicts growth and reproduction from food availability and temperature in the environment. We calibrated the model to emulate physiological characteristics of Pacific bluefin tuna (Thunnus orientalis, hereafter PBT), a species which has received considerable scientific attention due to its high economic value. Computer simulations suggest that (i) the main cause of different growth rates between cultivated and wild PBT is the difference in average body temperature of approximately 6.5°C, (ii) a well-fed PBT individual can spawn an average number of 9 batches per spawning season, (iii) food abundance experienced by wild PBT is rather constant and sufficiently high to provide energy for yearly reproductive cycle, (iv) energy in reserve is exceptionally small, causing the weight-length relationship of cultivated and wild PBT to be practically indistinguishable and suggesting that these fish are poorly equipped to deal with starvation, (v) accelerated growth rate of PBT larvae is connected to morphological changes prior to metamorphosis, while (vi) deceleration of growth rate in the early juvenile stage is related to efficiency of internal heat production. Based on these results, we discuss a number of physiological and ecological traits of PBT, including the reasons for high Feed Conversion Ratio recorded in bluefin tuna aquaculture.
Collapse
Affiliation(s)
- Marko Jusup
- Faculty of Environment and Information Sciences, Yokohama National University, Yokohama, Japan.
| | | | | | | |
Collapse
|
35
|
Clark TD, Brandt WT, Nogueira J, Rodriguez LE, Price M, Farwell CJ, Block BA. Postprandial metabolism of Pacific bluefin tuna (Thunnus orientalis). J Exp Biol 2010; 213:2379-85. [DOI: 10.1242/jeb.043455] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Specific dynamic action (SDA) is defined as the energy expended during ingestion, digestion, absorption and assimilation of a meal. This study presents the first data on the SDA response of individual tunas of any species. Juvenile Pacific bluefin tunas (Thunnus orientalis; body mass 9.7–11.0 kg; N=7) were individually fed known quantities of food consisting primarily of squid and sardine (meal energy range 1680–8749 kJ, ~4–13% of tuna body mass). Oxygen consumption rates () were measured in a swim tunnel respirometer during the postprandial period at a swimming speed of 1 body length (BL) s−1 and a water temperature of 20°C. was markedly elevated above routine levels in all fish following meal consumption [routine metabolic rate (RMR)=174±9 mg kg−1 h−1]. The peak during the SDA process ranged from 250 to 440 mg kg−1 h−1 (1.5–2.3 times RMR) and was linearly related to meal energy content. The duration of the postprandial increment in ranged from 21 h to 33 h depending upon meal energy content. Consequently, the total energy used in SDA increased linearly with meal energy and ranged from 170 kJ to 688 kJ, such that the SDA process accounted for 9.2±0.7% of ingested energy across all experiments. These values suggest rapid and efficient food conversion in T. orientalis in comparison with most other fishes. Implanted archival temperature tags recorded the increment in visceral temperature (TV) in association with SDA. returned to routine levels at the end of the digestive period 2–3 h earlier than TV. The qualitative patterns in and TV during digestion were similar, strengthening the possibility that archival measurements of TV can provide new insight into the energetics and habitat utilization of free-swimming bluefin in the natural environment. Despite efficient food conversion, SDA is likely to represent a significant component of the daily energy budget of wild bluefin tunas due to a regular and high ingestion of forage.
Collapse
Affiliation(s)
- T. D. Clark
- Tuna Research and Conservation Center, Stanford University, Hopkins Marine Station/Monterey Bay Aquarium, Pacific Grove, CA 93950, USA
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, Canada, V6T 1Z4
| | - W. T. Brandt
- Tuna Research and Conservation Center, Stanford University, Hopkins Marine Station/Monterey Bay Aquarium, Pacific Grove, CA 93950, USA
| | - J. Nogueira
- Tuna Research and Conservation Center, Stanford University, Hopkins Marine Station/Monterey Bay Aquarium, Pacific Grove, CA 93950, USA
| | - L. E. Rodriguez
- Tuna Research and Conservation Center, Stanford University, Hopkins Marine Station/Monterey Bay Aquarium, Pacific Grove, CA 93950, USA
| | - M. Price
- Tuna Research and Conservation Center, Stanford University, Hopkins Marine Station/Monterey Bay Aquarium, Pacific Grove, CA 93950, USA
| | - C. J. Farwell
- Tuna Research and Conservation Center, Stanford University, Hopkins Marine Station/Monterey Bay Aquarium, Pacific Grove, CA 93950, USA
| | - B. A. Block
- Tuna Research and Conservation Center, Stanford University, Hopkins Marine Station/Monterey Bay Aquarium, Pacific Grove, CA 93950, USA
| |
Collapse
|
36
|
Wegner NC, Sepulveda CA, Olson KR, Hyndman KA, Graham JB. Functional morphology of the gills of the shortfin mako, Isurus oxyrinchus, a lamnid shark. J Morphol 2010; 271:937-48. [DOI: 10.1002/jmor.10845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Boye J, Musyl M, Brill R, Malte H. Transectional heat transfer in thermoregulating bigeye tuna (Thunnus obesus) – a 2D heat flux model. J Exp Biol 2009; 212:3708-18. [DOI: 10.1242/jeb.031427] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYWe developed a 2D heat flux model to elucidate routes and rates of heat transfer within bigeye tuna Thunnus obesus Lowe 1839 in both steady-state and time-dependent settings. In modeling the former situation, we adjusted the efficiencies of heat conservation in the red and the white muscle so as to make the output of the model agree as closely as possible with observed cross-sectional isotherms. In modeling the latter situation, we applied the heat exchanger efficiencies from the steady-state model to predict the distribution of temperature and heat fluxes in bigeye tuna during their extensive daily vertical excursions. The simulations yielded a close match to the data recorded in free-swimming fish and strongly point to the importance of the heat-producing and heat-conserving properties of the white muscle. The best correspondence between model output and observed data was obtained when the countercurrent heat exchangers in the blood flow pathways to the red and white muscle retained 99% and 96% (respectively) of the heat produced in these tissues. Our model confirms that the ability of bigeye tuna to maintain elevated muscle temperatures during their extensive daily vertical movements depends on their ability to rapidly modulate heating and cooling rates. This study shows that the differential cooling and heating rates could be fully accounted for by a mechanism where blood flow to the swimming muscles is either exclusively through the heat exchangers or completely shunted around them, depending on the ambient temperature relative to the body temperature. Our results therefore strongly suggest that such a mechanism is involved in the extensive physiological thermoregulatory abilities of endothermic bigeye tuna.
Collapse
Affiliation(s)
- Jess Boye
- Department of Zoophysiology, Institute of Biological Sciences, University of Aarhus, Denmark
| | - Michael Musyl
- Joint Institute for Marine and Atmospheric Research, Pelagic Fisheries Research Program, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Richard Brill
- Cooperative Marine Education and Research Program, Northeast Fisheries Science Center, National Marine Fisheries Service, NOAA, Woods Hole, MA 02543,USA
| | - Hans Malte
- Department of Zoophysiology, Institute of Biological Sciences, University of Aarhus, Denmark
| |
Collapse
|
38
|
Wegner NC, Sepulveda CA, Bull KB, Graham JB. Gill morphometrics in relation to gas transfer and ram ventilation in high-energy demand teleosts: Scombrids and billfishes. J Morphol 2009; 271:36-49. [DOI: 10.1002/jmor.10777] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Mourente G, Tocher DR. Tuna Nutrition and Feeds: Current Status and Future Perspectives. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/10641260902752207] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Runcie RM, Dewar H, Hawn DR, Frank LR, Dickson KA. Evidence for cranial endothermy in the opah (Lampris guttatus). ACTA ACUST UNITED AC 2009; 212:461-70. [PMID: 19181893 DOI: 10.1242/jeb.022814] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cranial endothermy evolved independently in lamnid sharks, billfishes and tunas, and is thought to minimize the effects of ambient temperature change on both vision and neural function during deep dives. The opah, Lampris guttatus, is a large epipelagic-mesopelagic predator that makes repeated dives into cool waters to forage. To determine if L. guttatus exhibits cranial endothermy, we measured cranial temperatures in live, decked fish and identified potential sources of heat and mechanisms to conserve heat. In 40 opah (95.1+/-7.6 cm fork length), the temperature of the tissue behind the eye was elevated by a mean (+/-s.e.m.) of 2.1+/-0.3 degrees C and a maximum of 6.3 degrees C above myotomal muscle temperature (T(m)), used as a proxy for ambient temperature. Cranial temperature varied significantly with T(m) and temperature elevation was greater at lower T(m). The proximal region of the paired lateral rectus extraocular muscle appears to be the primary source of heat. This muscle is the largest extraocular muscle, is adjacent to the optic nerve and brain and is separated from the brain only by a thin layer of bone. The proximal lateral rectus muscle is darker red in color and has a higher citrate synthase activity, indicating a higher capacity for aerobic heat production, than all other extraocular muscles. Furthermore, this muscle has a layer of fat insulating it from the gill cavity and is perfused by a network of arteries and veins that forms a putative counter-current heat exchanger. Taken together, these results support the hypothesis that the opah can maintain elevated cranial temperatures.
Collapse
Affiliation(s)
- Rosa M Runcie
- Department of Biological Science, California State University Fullerton, Fullerton, CA 92834, USA
| | | | | | | | | |
Collapse
|
41
|
Small Scale Vertical Behaviour of Juvenile Albacore in Relation to Their Biotic Environment in the Bay of Biscay. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/978-1-4020-9640-2_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
42
|
Fitzgibbon QP, Baudinette RV, Musgrove RJ, Seymour RS. Routine metabolic rate of southern bluefin tuna (Thunnus maccoyii). Comp Biochem Physiol A Mol Integr Physiol 2008; 150:231-8. [PMID: 17081787 DOI: 10.1016/j.cbpa.2006.08.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 07/27/2006] [Accepted: 08/14/2006] [Indexed: 10/24/2022]
Abstract
Routine metabolic rate (RMR) was measured in fasting southern bluefin tuna, Thunnus maccoyii, the largest tuna species studied so far (body mass=19.6 kg (+/-1.9 SE)). Mean mass-specific RMR was 460 mg kg(-1) h(-1) (+/-34.9) at a mean water temperature of 19 degrees C. When evaluated southern bluefin tuna standard metabolic rate (SMR) is added to published values of other tuna species, there is a strong allometeric relationship with body mass (423 M(0.86), R(2)=0.97). This demonstrates that tuna interspecific SMR scale with respect to body mass similar to that of other active teleosts, but is approximately 4-fold higher. However, RMR (not SMR) is most appropriate in ram-ventilating species that are physiologically unable to achieve complete rest. Respiration was measured in a large (250,000 l) flexible polypropylene respirometer (mesocosm respirometer) that was deployed within a marine-farm sea cage for 29 days. Fasted fish were maintained within the respirometer up to 42 h while dissolved oxygen dropped by 0.056 (+/-0.004) mg l(-1) h(-1). Fish showed no obvious signs of stress. They swam at 1.1 (+/-0.1) fork lengths per second and several fed within the respirometer immediately after measurements.
Collapse
Affiliation(s)
- Q P Fitzgibbon
- School of Earth and Environmental Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia.
| | | | | | | |
Collapse
|
43
|
Blank JM, Morrissette JM, Farwell CJ, Price M, Schallert RJ, Block BA. Temperature effects on metabolic rate of juvenile Pacific bluefin tunaThunnus orientalis. J Exp Biol 2007; 210:4254-61. [DOI: 10.1242/jeb.005835] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYPacific bluefin tuna inhabit a wide range of thermal environments across the Pacific ocean. To examine how metabolism varies across this thermal range,we studied the effect of ambient water temperature on metabolic rate of juvenile Pacific bluefin tuna, Thunnus thynnus, swimming in a swim tunnel. Rate of oxygen consumption(ṀO2) was measured at ambient temperatures of 8–25°C and swimming speeds of 0.75–1.75 body lengths (BL) s–1. Pacific bluefin swimming at 1 BL s–1 per second exhibited a U-shaped curve of metabolic rate vs ambient temperature, with a thermal minimum zone between 15°C to 20°C. Minimum ṀO2 of 175±29 mg kg–1 h–1 was recorded at 15°C, while both cold and warm temperatures resulted in increased metabolic rates of 331±62 mg kg–1 h–1at 8°C and 256±19 mg kg–1 h–1 at 25°C. Tailbeat frequencies were negatively correlated with ambient temperature. Additional experiments indicated that the increase in ṀO2 at low temperature occurred only at low swimming speeds. Ambient water temperature data from electronic tags implanted in wild fish indicate that Pacific bluefin of similar size to the experimental fish used in the swim tunnel spend most of their time in ambient temperatures in the metabolic thermal minimum zone.
Collapse
Affiliation(s)
- Jason M. Blank
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950,USA
| | | | | | | | | | - Barbara A. Block
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950,USA
| |
Collapse
|
44
|
Fitzgibbon QP, Seymour RS, Ellis D, Buchanan J. The energetic consequence of specific dynamic action in southern bluefin tuna Thunnus maccoyii. ACTA ACUST UNITED AC 2007; 210:290-8. [PMID: 17210965 DOI: 10.1242/jeb.02641] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effect of feeding on the rate of oxygen consumption (M(O2)) of four groups of three southern bluefin tuna Thunnus maccoyii (SBT) was examined in a large static respirometer at water temperatures of 18.2-20.3 degrees C. Six feeding events of rations between 2.1-8.5% body mass (%M(b)) of Australian sardines (Sardinops neopilchardus) were recorded (two of the groups were fed twice). Before feeding, fish swam between 0.71 and 1.4 body lengths s(-1) (BL s(-1)) and the routine metabolic rate (RMR) was 366+/-32.5 mg kg(-1) h(-1) (mean +/- s.e.m.). For all trials, M(O2) was elevated post feeding, presumably as a result of specific dynamic action (SDA). Swimming velocity was also elevated post feeding for periods similar to that of M(O2) (between 20-45 h, longest for the largest rations). Post feeding swimming velocity increased to between 0.87-2.6 BL s(-1) and was also dependent on ration consumed. It is suggested that the purpose of increased post-feeding swimming velocity was to increase ventilation volume as a response to the enhanced metabolic demand associated with SDA. Peak post-prandial M(O2) increased linearly with ration size to a maximum of 1290 mg kg(-1) h(-1), corresponding to 2.8 times the RMR. When converted to its energy equivalent, total magnitude of SDA was linearly correlated with ration size to a maximum of 192 kJ kg(-1) h(-1), and as a proportion of gross energy ingested (SDA coefficient), it averaged 35+/-2.2%. These results demonstrate that, although the factorial increase of SDA in SBT is similar to that of other fish species, the absolute energetic cost of SDA is much higher. These results support the contention that tuna are energy speculators, gambling high rates of energy expenditure for potentially higher rates of energy returns. The ration that southern bluefin tuna require to equal the combined metabolic costs of SDA and RMR is estimated in this study to be 3.5%M(b) of Australian sardines per day.
Collapse
|
45
|
Clark TD, Seymour RS. Cardiorespiratory physiology and swimming energetics of a high-energy-demand teleost, the yellowtail kingfish (Seriola lalandi). J Exp Biol 2006; 209:3940-51. [PMID: 16985209 DOI: 10.1242/jeb.02440] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThis study utilizes a swimming respirometer to investigate the effects of exercise and temperature on cardiorespiratory function of an active teleost,the yellowtail kingfish (Seriola lalandi). The standard aerobic metabolic rate (SMR) of S. lalandi (mean body mass 2.1 kg) ranges from 1.55 mg min-1 kg-1 at 20°C to 3.31 mg min-1 kg-1 at 25°C. This 2.1-fold increase in SMR with temperature is associated with a 1.5-fold increase in heart rate from 77 to 117 beats min-1, while cardiac stroke volume remains constant at 0.38 ml beat-1 kg-1 and the difference in oxygen content between arterial and mixed venous blood[(CaO2-Cv̄O2)]increases marginally from 0.06 to 0.08 mg ml-1. During maximal aerobic exercise (2.3 BL s-1) at both temperatures,however, increases in cardiac output are limited to about 1.3-fold, and increases in oxygen consumption rates (up to 10.93 mg min-1kg-1 at 20°C and 13.32 mg min-1 kg-1 at 25°C) are mediated primarily through augmentation of(CaO2-Cv̄O2)to 0.29 mg ml-1 at 20°C and 0.25 mg ml-1 at 25°C. It seems, therefore, that the heart of S. lalandi routinely works close to its maximum capacity at a given temperature, and changes in aerobic metabolism due to exercise are greatly reliant on high blood oxygen-carrying capacity and(CaO2-Cv̄O2). Gross aerobic cost of transport (GCOT) is 0.06 mg kg-1BL-1 at 20°C and 0.09 mg kg-1BL-1 at 25°C at the optimal swimming velocities(U) of 1.2 BL s-1opt and 1.7 BL s-1, respectively. These values are comparable with those reported for salmon and tuna, implying that the interspecific diversity in locomotor mode (e.g. subcarangiform, carangiform and thunniform) is not concomitant with similar diversity in swimming efficiency. A low GCOT is maintained as swimming velocity increases above Uopt,which may partly result from energy savings associated with the progressive transition from opercular ventilation to ram ventilation.
Collapse
Affiliation(s)
- T D Clark
- Earth and Environmental Sciences, University of Adelaide, South Australia 5005, Australia.
| | | |
Collapse
|
46
|
Duong CA, Sepulveda CA, Graham JB, Dickson KA. Mitochondrial proton leak rates in the slow, oxidative myotomal muscle and liver of the endothermic shortfin mako shark (Isurus oxyrinchus)and the ectothermic blue shark (Prionace glauca) and leopard shark(Triakis semifasciata). J Exp Biol 2006; 209:2678-85. [PMID: 16809458 DOI: 10.1242/jeb.02317] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYMitochondrial proton leak was assessed as a potential heat source in the slow, oxidative (red) locomotor muscle and liver of the shortfin mako shark(Isurus oxyrinchus), a regional endotherm that maintains the temperature of both tissues elevated above ambient seawater temperature. We hypothesized that basal proton leak rates in red muscle and liver mitochondria of the endothermic shortfin mako shark would be greater than those of the ectothermic blue shark (Prionace glauca) and leopard shark(Triakis semifasciata). Respiration rate and membrane potential in isolated mitochondria were measured simultaneously at 20°C using a Clark-type oxygen electrode and a lipophilic probe(triphenylmethylphosphonium, TPMP+). Succinate-stimulated respiration was titrated with inhibitors of the electron transport chain, and the non-linear relationship between respiration rate and membrane potential was quantified. Mitochondrial densities of both tissues were measured by applying the point-contact method to electron micrographs so that proton leak activity of the entire tissue could be assessed. In all three shark species,proton leak occurred at a higher rate in red muscle mitochondria than in liver mitochondria. For each tissue, the proton leak curves of the three species overlapped and, at a membrane potential of 160 mV, mitochondrial proton leak rate (nmol H+ min-1 mg-1 protein) did not differ significantly between the endothermic and ectothermic sharks. This finding indicates that red muscle and liver mitochondria of the shortfin mako shark are not specialized for thermogenesis by having a higher proton conductance. However, mako mitochondria did have higher succinate-stimulated respiration rates and membrane potentials than those of the two ectothermic sharks. This means that under in vivo conditions mitochondrial proton leak rates may be higher in the mako than in the ectothermic species, due to greater electron transport activity and a larger proton gradient driving proton leak. We also estimated each tissue's total proton leak by combining mitochondrial proton leak rates at 160 mV and tissue mitochondrial density data with published values of relative liver or red muscle mass for each of the three species. In red muscle, total proton leak was not elevated in the mako shark relative to the two ectothermic species. In the liver, total proton leak would be higher in the mako shark than in both ectothermic species, due to a lower proton conductance in the blue shark and a lower liver mitochondrial content in the leopard shark, and thus may contribute to endothermy.
Collapse
Affiliation(s)
- Cindy A Duong
- Department of Biological Science, California State University Fullerton, Fullerton, CA 92834, USA
| | | | | | | |
Collapse
|
47
|
Abstract
SUMMARYThunniform swimming, the capacity to conserve metabolic heat in red muscle and other body regions (regional endothermy), an elevated metabolic rate and other physiological rate functions, and a frequency-modulated cardiac output distinguish tunas from most other fishes. These specializations support continuous, relatively fast swimming by tunas and minimize thermal barriers to habitat exploitation, permitting niche expansion into high latitudes and to ocean depths heretofore regarded as beyond their range.
Collapse
Affiliation(s)
- Jeffrey B Graham
- Center for Marine Biotechnology and Biomedicine, and Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0204, USA.
| | | |
Collapse
|
48
|
Blank JM, Morrissette JM, Landeira-Fernandez AM, Blackwell SB, Williams TD, Block BA. In situcardiac performance of Pacific bluefin tuna hearts in response to acute temperature change. J Exp Biol 2004; 207:881-90. [PMID: 14747418 DOI: 10.1242/jeb.00820] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThis study reports the cardiovascular physiology of the Pacific bluefin tuna (Thunnus orientalis) in an in situ heart preparation. The performance of the Pacific bluefin tuna heart was examined at temperatures from 30°C down to 2°C. Heart rates ranged from 156 beats min–1 at 30°C to 13 beats min–1 at 2°C. Maximal stroke volumes were 1.1 ml kg–1 at 25°C and 1.3 ml kg–1 at 2°C. Maximal cardiac outputs were 18.1 ml kg–1 min–1 at 2°C and 106 ml kg–1 min–1 at 25°C. These data indicate that cardiovascular function in the Pacific bluefin tuna exhibits a strong temperature dependence, but cardiac function is retained at temperatures colder than those tolerated by tropical tunas. The Pacific bluefin tuna's cardiac performance in the cold may be a key adaptation supporting the broad thermal niche of the bluefin tuna group in the wild. In situ data from Pacific bluefin are compared to in situ measurements of cardiac performance in yellowfin tuna and preliminary results from albacore tuna.
Collapse
Affiliation(s)
- Jason M Blank
- Department of Biological Sciences, Stanford University, Oceanview Boulevard, Pacific Grove, CA 93950, USA
| | | | | | | | | | | |
Collapse
|
49
|
Bernal D, Sepulveda C, Mathieu-Costello O, Graham JB. Comparative studies of high performance swimming in sharks I. Red muscle morphometrics, vascularization and ultrastructure. J Exp Biol 2003; 206:2831-43. [PMID: 12847127 DOI: 10.1242/jeb.00481] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tunas (family Scombridae) and sharks in the family Lamnidae are highly convergent for features commonly related to efficient and high-performance (i.e. sustained, aerobic) swimming. High-performance swimming by fishes requires adaptations augmenting the delivery, transfer and utilization of O(2) by the red myotomal muscle (RM), which powers continuous swimming. Tuna swimming performance is enhanced by a unique anterior and centrally positioned RM (i.e. closer to the vertebral column) and by structural features (relatively small fiber diameter, high capillary density and greater myoglobin concentration) increasing O(2) flux from RM capillaries to the mitochondria. A study of the structural and biochemical features of the mako shark (Isurus oxyrinchus) RM was undertaken to enable performance-capacity comparisons of tuna and lamnid RM. Similar to tunas, mako RM is positioned centrally and more anterior in the body. Another lamnid, the salmon shark (Lamna ditropis), also has this RM distribution, as does the closely related common thresher shark (Alopias vulpinus; family Alopiidae). However, in both the leopard shark (Triakis semifasciata) and the blue shark (Prionace glauca), RM occupies the position where it is typically found in most fishes; more posterior and along the lateral edge of the body. Comparisons among sharks in this study revealed no differences in the total RM quantity (approximately 2-3% of body mass) and, irrespective of position within the body, RM scaling is isometric in all species. Sharks thus have less RM than do tunas (4-13% of body mass). Relative to published data on other shark species, mako RM appears to have a higher capillary density, a greater capillary-to-fiber ratio and a higher myoglobin concentration. However, mako RM fiber size does not differ from that reported for other shark species and the total volume of mitochondria in mako RM is similar to that reported for other sharks and for tunas. Lamnid RM properties thus suggest a higher O(2) flux capacity than in other sharks; however, lamnid RM aerobic capacity appears to be less than that of tuna RM.
Collapse
Affiliation(s)
- D Bernal
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0204, USA.
| | | | | | | |
Collapse
|
50
|
Bernal D, Smith D, Lopez G, Weitz D, Grimminger T, Dickson K, Graham JB. Comparative studies of high performance swimming in sharks II. Metabolic biochemistry of locomotor and myocardial muscle in endothermic and ectothermic sharks. J Exp Biol 2003; 206:2845-57. [PMID: 12847128 DOI: 10.1242/jeb.00504] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Metabolic enzyme activities in red (RM) and white (WM) myotomal muscle and in the heart ventricle (HV) were compared in two lamnid sharks (shortfin mako and salmon shark), the common thresher shark and several other actively swimming shark species. The metabolic enzymes measured were citrate synthase (CS), an index of aerobic capacity, and lactate dehydrogenase (LDH), an index of anaerobic capacity. WM creatine phosphokinase (CPK) activity, an index of rapid ATP production during burst swimming, was also quantified. Enzyme activities in RM, WM and HV were similar in the two lamnid species. Interspecific comparisons of enzyme activities at a common reference temperature (20 degrees C) show no significant differences in RM CS activity but higher CS activity in the WM and HV of the lamnid sharks compared with the other species. For the other enzymes, activities in lamnids overlapped with those of other shark species. Comparison of the HV spongy and compact myocardial layers in mako, salmon and thresher sharks reveals a significantly greater spongy CS activity in all three species but no differences in LDH activity. Adjustment of enzyme activities to in vivo RM and WM temperatures in the endothermic lamnids elevates CS and LDH in both tissues relative to the ectothermic sharks. Thus, through its enhancement of both RM and WM enzyme activity, endothermy may be an important determinant of energy supply for sustained and burst swimming in the lamnids. Although lamnid WM is differentially warmed as a result of RM endothermy, regional differences in WM CS and LDH activities and thermal sensitivities (Q(10) values) were not found. The general pattern of the endothermic myotomal and ectothermic HV muscle metabolic enzyme activities in the endothermic lamnids relative to other active, ectothermic sharks parallels the general pattern demonstrated for the endothermic tunas relative to their ectothermic sister species. However, the activities of all enzymes measured are lower in lamnids than in tunas. Relative to lamnids, the presence of lower WM enzyme activities in the thresher shark (which is in the same order as the lamnids, has an RM morphology similar to that of the mako and salmon sharks and may be endothermic) suggests that other factors, such as behavior and swimming pattern, also affect shark myotomal organization and metabolic function.
Collapse
Affiliation(s)
- D Bernal
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0204, USA.
| | | | | | | | | | | | | |
Collapse
|