1
|
Masliukov PM, Emanuilov AI, Budnik AF. Sympathetic innervation of the development, maturity, and aging of the gastrointestinal tract. Anat Rec (Hoboken) 2023; 306:2249-2263. [PMID: 35762574 DOI: 10.1002/ar.25015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/21/2022] [Accepted: 05/24/2022] [Indexed: 11/10/2022]
Abstract
The sympathetic nervous system inhibits gut motility, secretion, and blood flow in the gut microvasculature and can modulate gastrointestinal inflammation. Sympathetic neurons signal via catecholamines, neuropeptides, and gas mediators. In the current review, we summarize the current understanding of the mature sympathetic innervation of the gastrointestinal tract with a focus mainly on the prevertebral sympathetic ganglia as the main output to the gut. We also highlight recent work regarding the developmental processes of sympathetic innervation. The anatomy, neurochemistry, and connections of the sympathetic prevertebral ganglia with different parts of the gut are considered in adult organisms during prenatal and postnatal development and aging. The processes and mechanisms that control the development of sympathetic neurons, including their migratory pathways, neuronal differentiation, and aging, are reviewed.
Collapse
Affiliation(s)
- Petr M Masliukov
- Department of Normal Physiology, Yaroslavl State Medical University, Yaroslavl, Russia
| | - Andrey I Emanuilov
- Department of Human Anatomy, Yaroslavl State Medical University, Yaroslavl, Russia
| | - Antonina F Budnik
- Department of Normal and Pathological Anatomy, Kabardino-Balkarian State University named after H.M. Berbekov, Nalchik, Russia
| |
Collapse
|
2
|
Wu HF, Huang CW, Art J, Liu HX, Hart GW, Zeltner N. O-GlcNAcylation is crucial for sympathetic neuron development, maintenance, functionality and contributes to peripheral neuropathy. Front Neurosci 2023; 17:1137847. [PMID: 37229433 PMCID: PMC10203903 DOI: 10.3389/fnins.2023.1137847] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/12/2023] [Indexed: 05/27/2023] Open
Abstract
O-GlcNAcylation is a post-translational modification (PTM) that regulates a wide range of cellular functions and has been associated with multiple metabolic diseases in various organs. The sympathetic nervous system (SNS) is the efferent portion of the autonomic nervous system that regulates metabolism of almost all organs in the body. How much the development and functionality of the SNS are influenced by O-GlcNAcylation, as well as how such regulation could contribute to sympathetic neuron (symN)-related neuropathy in diseased states, remains unknown. Here, we assessed the level of protein O-GlcNAcylation at various stages of symN development, using a human pluripotent stem cell (hPSC)-based symN differentiation paradigm. We found that pharmacological disruption of O-GlcNAcylation impaired both the growth and survival of hPSC-derived symNs. In the high glucose condition that mimics hyperglycemia, hPSC-derived symNs were hyperactive, and their regenerative capacity was impaired, which resembled typical neuronal defects in patients and animal models of diabetes mellitus. Using this model of sympathetic neuropathy, we discovered that O-GlcNAcylation increased in symNs under high glucose, which lead to hyperactivity. Pharmacological inhibition of O-GlcNAcylation rescued high glucose-induced symN hyperactivity and cell stress. This framework provides the first insight into the roles of O-GlcNAcylation in both healthy and diseased human symNs and may be used as a platform for therapeutic studies.
Collapse
Affiliation(s)
- Hsueh-Fu Wu
- Center for Molecular Medicine, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Chia-Wei Huang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Jennifer Art
- Center for Molecular Medicine, University of Georgia, Athens, GA, United States
- Biomedical and Translational Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, United States
| | - Hong-Xiang Liu
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Gerald W. Hart
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Nadja Zeltner
- Center for Molecular Medicine, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- Department of Cellular Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
3
|
Furlan JC, Liu Y, Dietrich WD, Norenberg MD, Fehlings MG. Age as a determinant of inflammatory response and survival of glia and axons after human traumatic spinal cord injury. Exp Neurol 2020; 332:113401. [PMID: 32673621 DOI: 10.1016/j.expneurol.2020.113401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/20/2020] [Accepted: 07/09/2020] [Indexed: 01/09/2023]
Abstract
Despite the shift in the demographics of traumatic spinal cord injury (SCI) with increased proportion of injuries in the elderly, little is known on the potential effects of old age on the pathobiology of SCI. Since there is an assumption that age adversely affects neural response to SCI, this study examines the clinically relevant question on whether age is a key determinant of inflammatory response, oligodendroglial apoptosis and axonal survival after traumatic SCI. This unique study includes post-mortem spinal cord tissue from 64 cases of SCI (at cervical or high-thoracic levels) and 38 control cases without CNS injury. Each group was subdivided into subgroups of younger and elderly individuals (65 years of age or older at the SCI onset). The results of this study indicate that age at the SCI onset does not adversely affect the cellular inflammatory response to, oligodendroglial apoptosis and axonal survival after SCI. These results support the conclusion that elderly individuals have similar neurobiological responses to SCI as younger people and, hence, treatment decisions should be based on an assessment of the individual patient and not an arbitrary assumption that "advanced age" should exclude patients with an acute SCI from access to advanced care and translational therapies.
Collapse
Affiliation(s)
- Julio C Furlan
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, Ontario, Canada; Lyndhurst Centre, KITE - Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.
| | - Yang Liu
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - W Dalton Dietrich
- Department of Neurological Surgery, Neurology, and Cell Biology & Anatomy, University of Miami, Miami, Florida, USA; Miami Project to Cure Paralysis, Miami, Florida, USA
| | - Michael D Norenberg
- Miami Project to Cure Paralysis, Miami, Florida, USA; Department of Neuropathology, University of Miami, Leonard M. Miller School of Medicine, Miami, Florida, USA
| | - Michael G Fehlings
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
O'Donovan SM, Crowley EK, Brown JRM, O'Sullivan O, O'Leary OF, Timmons S, Nolan YM, Clarke DJ, Hyland NP, Joyce SA, Sullivan AM, O'Neill C. Nigral overexpression of α-synuclein in a rat Parkinson's disease model indicates alterations in the enteric nervous system and the gut microbiome. Neurogastroenterol Motil 2020; 32:e13726. [PMID: 31576631 DOI: 10.1111/nmo.13726] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND A hallmark feature of Parkinson's disease (PD) is the build-up of α-synuclein protein aggregates throughout the brain; however α-synuclein is also expressed in enteric neurons. Gastrointestinal (GI) symptoms and pathology are frequently reported in PD, including constipation, increased intestinal permeability, glial pathology, and alterations to gut microbiota composition. α-synuclein can propagate through neuronal systems but the site of origin of α-synuclein pathology, whether it be the gut or the brain, is still unknown. Physical exercise is associated with alleviating symptoms of PD and with altering the composition of the gut microbiota. METHODS This study investigated the effects of bilateral nigral injection of adeno-associated virus (AAV)-α-synuclein on enteric neurons, glia and neurochemistry, the gut microbiome, and bile acid metabolism in rats, some of whom were exposed to voluntary exercise. KEY RESULTS Nigral overexpression of α-synuclein resulted in significant neuronal loss in the ileal submucosal plexus with no change in enteric glia. In contrast, the myenteric plexus showed a significant increase in glial expression, while neuronal numbers were maintained. Concomitant alterations were observed in the gut microbiome and related bile acid metabolism. Voluntary running protected against neuronal loss, increased enteric glial expression, and modified gut microbiome composition in the brain-injected AAV-α-synuclein PD model. CONCLUSIONS AND INFERENCES These results show that developing nigral α-synuclein pathology in this PD model exerts significant alterations on the enteric nervous system (ENS) and gut microbiome that are receptive to modification by exercise. This highlights brain to gut communication as an important mechanism in PD pathology.
Collapse
Affiliation(s)
- Sarah M O'Donovan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.,Cork Neuroscience Centre, University College Cork, Cork, Ireland
| | - Erin K Crowley
- Cork Neuroscience Centre, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | - Orla O'Sullivan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre Moorepark, Cork, Ireland
| | - Olivia F O'Leary
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Cork Neuroscience Centre, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Suzanne Timmons
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Cork Neuroscience Centre, University College Cork, Cork, Ireland.,Centre of Gerontology and Rehabilitation, University College Cork, Cork, Ireland
| | - Yvonne M Nolan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Cork Neuroscience Centre, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - David J Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Niall P Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Physiology, University College Cork, Cork, Ireland
| | - Susan A Joyce
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Aideen M Sullivan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Cork Neuroscience Centre, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Cora O'Neill
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.,Cork Neuroscience Centre, University College Cork, Cork, Ireland
| |
Collapse
|
5
|
|
6
|
Cheng Z(J. Vagal cardiac efferent innervation in F344 rats: Effects of chronic intermittent hypoxia. Auton Neurosci 2017; 203:9-16. [DOI: 10.1016/j.autneu.2016.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 10/05/2016] [Accepted: 10/27/2016] [Indexed: 12/27/2022]
|
7
|
Mitsuoka K, Kikutani T, Sato I. Morphological relationship between the superior cervical ganglion and cervical nerves in Japanese cadaver donors. Brain Behav 2017; 7:e00619. [PMID: 28239529 PMCID: PMC5318372 DOI: 10.1002/brb3.619] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/25/2016] [Accepted: 11/05/2016] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION There are various communications between the superior cervical ganglion (SCG) and the vagus and glossopharyngeal nerves. However, little information exists concerning the origin of these sympathetic ganglion branches at the superior, middle, and inferior regions of the human SCG. The aim of this study was to describe the human SCG in a morphometric manner with the communication with cranial and cervical nerves and supply. METHODS This study characterized 72 SCG samples from 54 elderly Japanese human cadavers (30 males, 24 females; 65-100 years old). The SCG size (length, width, and thickness) and location were measured from the jugular foramen. We also defined the communication branches of the SCG to the vagus, glossopharyngeal, cervical, and accessory nerves at three regions (superior, middle, and inferior regions) of the SCG. Finally, we examined the arrangement and origin of the branch communications in detail and confirmed our observations, using histological sections of the SCG. RESULTS The SCG in all cadaver donors was detected at the C2 and C3 vertebra levels. The number of SCG branches supplied the communicating branches, such as the carotid branch, communicating branch of the vagus nerve, and glossopharyngeal nerve, were frequently detected in the superior region of the SCG (χ2 = 587.72, df = 26, p < .001). The number of ganglion cells with a large number of neurons per unit area (1 mm2) was most often found in the middle region with shrunken neurons of the SCG compared with other regions. CONCLUSION The communication branches of the SCG are mainly connected to the vagus and glossopharyngeal nerves. Characterizing these branches can provide useful data for head and neck ganglion block and surgical treatments.
Collapse
Affiliation(s)
- Kazuyuki Mitsuoka
- Department of Anatomy The Nippon Dental University School of Life Dentistry at Tokyo Tokyo Japan; Division of Clinical Oral Rehabilitation The Nippon Dental University Graduate School of Life Dentistry Tokyo Japan
| | - Takeshi Kikutani
- Department of Clinical Oral Rehabilitation The Nippon Dental University School of Life Dentistry at Tokyo Tokyo Japan
| | - Iwao Sato
- Department of Anatomy The Nippon Dental University School of Life Dentistry at Tokyo Tokyo Japan
| |
Collapse
|
8
|
Chandna AR, Nair M, Chang C, Pennington PR, Yamamoto Y, Mousseau DD, Campanucci VA. RAGE mediates the inactivation of nAChRs in sympathetic neurons under high glucose conditions. Eur J Neurosci 2014; 41:341-51. [PMID: 25431195 DOI: 10.1111/ejn.12795] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 12/11/2022]
Abstract
Autonomic dysfunction is a serious complication of diabetes and can lead to cardiovascular abnormalities and premature death. It was recently proposed that autonomic dysfunction is triggered by oxidation-mediated inactivation of neuronal nicotinic acetylcholine receptors (nAChRs), impairing synaptic transmission in sympathetic ganglia and resulting in autonomic failure. We investigated whether the receptor for advanced glycation end products (RAGE) and its role in the generation of reactive oxygen species (ROS) could be contributing to the events that initiate sympathetic malfunction under high glucose conditions. Using biochemical, live imaging and electrophysiological tools we demonstrated that exposure of sympathetic neurons to high glucose increases RAGE expression and oxidative markers, and that incubation with RAGE ligands (e.g. AGEs, S100 and HMGB1) mimics both ROS elevation and nAChR inactivation. In contrast, co-treatment with either antioxidants or an anti-RAGE IgG prevented the inactivation of nAChRs. Lastly, a role for RAGE in this context was corroborated by the lack of sensitivity of sympathetic neurons from RAGE knock-out mice to high glucose. These data define a pivotal role for RAGE in initiating the events associated with exposure of sympathetic neurons to high glucose, and strongly support RAGE signaling as a potential therapeutic target in the autonomic complications associated with diabetes.
Collapse
Affiliation(s)
- Andrew R Chandna
- Department of Physiology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | | | | | | | | | | | | |
Collapse
|
9
|
Langdale C, Thor K, Marson L, Burgard E. Maintenance of bladder innervation in diabetes: A stereological study of streptozotocin-treated female rats. Auton Neurosci 2014; 185:59-66. [DOI: 10.1016/j.autneu.2014.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 12/19/2022]
|
10
|
Phillips RJ, Hudson CN, Powley TL. Sympathetic axonopathies and hyperinnervation in the small intestine smooth muscle of aged Fischer 344 rats. Auton Neurosci 2013; 179:108-21. [PMID: 24104187 DOI: 10.1016/j.autneu.2013.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/04/2013] [Accepted: 09/09/2013] [Indexed: 01/13/2023]
Abstract
It is well documented that the intrinsic enteric nervous system of the gastrointestinal (GI) tract sustains neuronal losses and reorganizes as it ages. In contrast, age-related remodeling of the extrinsic sympathetic projections to the wall of the gut is poorly characterized. The present experiment, therefore, surveyed the sympathetic projections to the aged small intestine for axonopathies. Furthermore, the experiment evaluated the specific prediction that catecholaminergic inputs undergo hyperplastic changes. Jejunal tissue was collected from 3-, 8-, 16-, and 24-month-old male Fischer 344 rats, prepared as whole mounts consisting of the muscularis, and processed immunohistochemically for tyrosine hydroxylase, the enzymatic marker for norepinephrine, and either the protein CD163 or the protein MHCII, both phenotypical markers for macrophages. Four distinctive sympathetic axonopathy profiles occurred in the small intestine of the aged rat: (1) swollen and dystrophic terminals, (2) tangled axons, (3) discrete hyperinnervated loci in the smooth muscle wall, including at the bases of Peyer's patches, and (4) ectopic hyperplastic or hyperinnervating axons in the serosa/subserosal layers. In many cases, the axonopathies occurred at localized and limited foci, involving only a few axon terminals, in a pattern consistent with incidences of focal ischemic, vascular, or traumatic insult. The present observations underscore the complexity of the processes of aging on the neural circuitry of the gut, with age-related GI functional impairments likely reflecting a constellation of adjustments that range from selective neuronal losses, through accumulation of cellular debris, to hyperplasias and hyperinnervation of sympathetic inputs.
Collapse
Affiliation(s)
- Robert J Phillips
- Purdue University, Department of Psychological Sciences, West Lafayette, IN 47907-2081, United States.
| | | | | |
Collapse
|
11
|
Shotton HR, Lincoln J, McGorum BC. Effects of equine grass sickness on sympathetic neurons in prevertebral and paravertebral ganglia. J Comp Pathol 2011; 145:35-44. [PMID: 21457994 DOI: 10.1016/j.jcpa.2010.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 07/13/2010] [Accepted: 11/06/2010] [Indexed: 12/24/2022]
Abstract
Acute equine grass sickness (EGS) is a fatal disease of horses that is thought to be due to ingestion of a neurotoxic agent causing extensive damage to autonomic neurons. The aim of this study was to compare the effects of EGS on neurons in two sympathetic ganglia, the paravertebral cranial cervical ganglion (CCG) and the prevertebral coeliac/cranial mesenteric ganglion (CG/CMG). Specimens from horses with EGS and controls were obtained post mortem and processed using single and double immunofluorescence labelling for PGP 9.5 and HuC/HuD (pan-neuronal markers), TUNEL and caspase 3 (markers for apoptosis), vasoactive intestinal polypeptide (VIP) and galanin (markers of the cell body response to injury following axotomy or exposure to sympathetic neurotoxins) and tyrosine hydroxylase (TH, marker for noradrenaline synthesis). In control horses, all neurons contained PGP 9.5 and HuC/HuD. There was a significant loss of PGP 9.5 and HuC/HuD expression in samples from horses with EGS that occurred to a greater extent in the CG/CMG than the CCG. The number of caspase 3-positive neurons increased significantly in both ganglia, but TUNEL staining of sympathetic neurons was only significantly increased in the CG/CMG in EGS. No VIP was observed in any ganglia; however, there was a significant increase in galanin-positive neurons in both ganglia in EGS. In the CCG, there was a significant shift towards increased fluorescence intensity for TH, possibly indicating an initial accumulation of TH within the cell body. In contrast, TH fluorescence intensity was significantly reduced in the CG/CMG in EGS correlating with the greater loss of neurons. These results demonstrate that EGS can induce a cell body response that is similar to the response of sympathetic neurons to a chemical neurotoxin. EGS also causes loss of sympathetic neurons, some of which occurs via apoptosis. Changes were more marked in the CG/CMG than the CCG indicating that the prevertebral ganglia were affected earlier than the paravertebral ganglia in the pathological process and had undergone greater neurodegeneration.
Collapse
Affiliation(s)
- H R Shotton
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | |
Collapse
|
12
|
Campanucci V, Krishnaswamy A, Cooper E. Diabetes depresses synaptic transmission in sympathetic ganglia by inactivating nAChRs through a conserved intracellular cysteine residue. Neuron 2010; 66:827-34. [PMID: 20620869 DOI: 10.1016/j.neuron.2010.06.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2010] [Indexed: 10/19/2022]
Abstract
Most people with diabetes develop severe complications of the autonomic nervous system; yet, the underlying causes of many diabetic-induced dysautonomias are poorly understood. Here we explore the idea that these dysautonomias results, in part, from a defect in synaptic transmission. To test this idea, we investigated cultured sympathetic neurons and show that hyperglycemia inactivates nAChRs through a mechanism involving an elevation in reactive oxygen species and an interaction with highly conserved cysteine residues located near the intracellular mouth of the nAChR channel. Consistent with this, we show that diabetic mice have depressed ganglionic transmission and reduced sympathetic reflexes, whereas diabetic mice expressing mutant postsynaptic nAChRs that lack the conserved cysteine residues on the alpha3 subunit have normal synaptic transmission in sympathetic ganglia and normal sympathetic reflexes. Our work suggests a new model for diabetic-induced dysautonomias and identifies ganglionic nAChRs as targets of hyperglycemia-induced downstream signals.
Collapse
Affiliation(s)
- Verónica Campanucci
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | |
Collapse
|
13
|
Jiang Y, Walker RJ, Kern TS, Steinle JJ. Application of isoproterenol inhibits diabetic-like changes in the rat retina. Exp Eye Res 2010; 91:171-9. [PMID: 20493839 DOI: 10.1016/j.exer.2010.04.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 02/05/2010] [Accepted: 04/27/2010] [Indexed: 10/19/2022]
Abstract
Diabetic retinopathy is the leading cause of blindness to working-age adults. We have recently shown that surgical removal or genetic manipulations to eliminate sympathetic neurotransmission produces many of the retinal changes similar to rodent diabetic retinopathy with normal glucose levels. We hypothesized that application of a beta-adrenergic receptor agonist, isoproterenol, could reach the retina to elicit normal cellular signaling and inhibit the functional and morphological markers of early stage diabetic retinopathy in the rat. Rats were made diabetic by injection of 60 mg/kg streptozotocin. Within 3 days of diabetes-induction, rats were placed into 1 of 3 groups (control, diabetes, or diabetic + isoproterenol). Dose and time course studies were done for isoproterenol using a PKA ELISA and CREB analyses. Once the optimal dose and time course were established, electrical activity of the retina was analyzed by electroretinogram each month for the 8-month study. Western blotting was done for insulin receptor signaling and Akt and ELISA analyses for TNFalpha concentration and cleavage of caspase 3 at 2- and 8-months of diabetes. Diabetes-induced degeneration of neural cells and retinal thickness were assessed at 2 months, while degenerate capillaries were quantitated at 8 months of treatment. Daily application of 50 mM isoproterenol was effective in inhibiting the diabetes-induced loss of a- and b-wave and oscillatory potential amplitudes in the electroretinogram. Isoproterenol blocked the increase in TNFalpha and apoptosis in the diabetic retina. The numbers of degenerate capillaries were also reduced in the treated + diabetes retina. These data strongly suggest that loss of beta-adrenergic receptor signaling may be a key factors in early stage diabetic retinopathy. Resolution of this loss of adrenergic receptor signaling can inhibit some of the hallmarks of diabetic retinopathy in the retina.
Collapse
Affiliation(s)
- Youde Jiang
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | |
Collapse
|
14
|
Furlan JC, Bracken MB, Fehlings MG. Is age a key determinant of mortality and neurological outcome after acute traumatic spinal cord injury? Neurobiol Aging 2010; 31:434-46. [DOI: 10.1016/j.neurobiolaging.2008.05.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 04/08/2008] [Accepted: 05/01/2008] [Indexed: 11/26/2022]
|
15
|
NGF protects paravertebral but not prevertebral sympathetic neurons against exposure to high glucose in vitro. Brain Res 2009; 1285:164-73. [DOI: 10.1016/j.brainres.2009.05.089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 05/20/2009] [Accepted: 05/24/2009] [Indexed: 12/26/2022]
|
16
|
Schmidt RE, Green KG, Snipes LL, Feng D. Neuritic dystrophy and neuronopathy in Akita (Ins2(Akita)) diabetic mouse sympathetic ganglia. Exp Neurol 2009; 216:207-18. [PMID: 19111542 PMCID: PMC2672346 DOI: 10.1016/j.expneurol.2008.11.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Revised: 11/24/2008] [Accepted: 11/30/2008] [Indexed: 12/14/2022]
Abstract
Diabetic autonomic neuropathy is a debilitating, poorly studied complication of diabetes. Our previous studies of non-obese diabetic (NOD) and related mouse models identified rapidly developing, dramatic pathology in prevertebral sympathetic ganglia; however, once diabetic, the mice did not survive for extended periods needed to examine the ability of therapeutic agents to correct established neuropathy. In the current manuscript we show that the Akita (Ins2(Akita)) mouse is a robust model of diabetic sympathetic autonomic neuropathy with unambiguous, spontaneous, rapidly-developing neuropathology which corresponds closely to the characteristic pathology of other rodent models and man. Akita mice diabetic for 2, 4 or 8 months of diabetes progressively developed markedly swollen axons and dendrites ("neuritic dystrophy") in the prevertebral superior mesenteric (SMG) and celiac ganglia (CG). Comparable changes failed to develop in the superior cervical ganglia (SCG) of the Akita mouse or in any ganglia of non-diabetic mice. Morphometric studies demonstrate an overall increase in presynaptic axon terminal cross sectional area, including those without any ultrastructural features of dystrophy. Neurons in Akita mouse prevertebral sympathetic ganglia show an unusual perikaryal alteration characterized by the accumulation of membranous aggregates and minute mitochondria and loss of rough endoplasmic reticulum. These changes result in the loss of a third of neurons in the CG over the course of 8 months of diabetes. The extended survival of diabetic mice and robust pathologic findings provide a clinically relevant paradigm that will facilitate the analysis of novel therapeutic agents on the reversal of autonomic neuropathy.
Collapse
Affiliation(s)
- Robert E Schmidt
- Division of Neuropathology, Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | | | | | | |
Collapse
|
17
|
Schmidt RE, Parvin CA, Green KG. Synaptic ultrastructural alterations anticipate the development of neuroaxonal dystrophy in sympathetic ganglia of aged and diabetic mice. J Neuropathol Exp Neurol 2008; 67:1166-86. [PMID: 19018240 PMCID: PMC2665250 DOI: 10.1097/nen.0b013e318190d6db] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Neuroaxonal dystrophy, a distinctive axonopathy characterized by marked enlargement of distal axons, is the hallmark pathologic alteration in aged and diabetic human prevertebral sympathetic ganglia and in corresponding rodent models. Neuroaxonal dystrophy is thought to represent the abnormal outcome of cycles of synaptic degeneration and regeneration; a systematic study of identified axon terminals in aged and diabetic prevertebral ganglia, however, has not previously been performed. We examined the initial changes that develop in presynaptic and postsynaptic elements in sympathetic ganglia of aged and diabetic mice and found numerous synaptic changes involving both presynaptic and postsynaptic elements. Early alterations in presynaptic axon terminal size, vesicle content, and morphology culminate in the development of anastomosing membranous tubulovesicular aggregates, accumulation of autophagosomes, and amorphous debris that form a continuum with progressively larger classically dystrophic swellings. Dendritic changes consist of the development of swellings composed of delicate tubulovesicular elements and mitochondriopathy characterized by increased numbers of small mitochondria and, exclusively in aged ganglia, megamitochondria. These results support the hypothesis that neuroaxonal dystrophy results from progressive changes in presynaptic axon terminals that likely involve membrane dynamics and which are accompanied by distinctive changes in postsynaptic dendritic elements.
Collapse
Affiliation(s)
- Robert E Schmidt
- Division of Neuropathology, Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
18
|
[Patterns of lipofuscin accumulation in ganglionic nerve cells of superior cervical ganglion in humans]. VOJNOSANIT PREGL 2008; 65:738-42. [PMID: 19024118 DOI: 10.2298/vsp0810738z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/AIM Considering available literature lipofuscin is a classical age pigment of postmitotic cells, and a consistently recognized phenomenon in humans and animals. Lipofuscin accumulation is characteristic for nerve cells that are postmitotic. This research was focused on lipofuscin accumulation in ganglionic cells (GC) (postganglionic sympathetic cell bodies) of superior cervical ganglion in humans during ageing. METHODS We analysed 30 ganglions from cadavers ranging from 20 to over 80 years of age. As material the tissue samples were used from the middle portion of the ganglion, which was separated from the surrounding tissue by the method of macrodissection. The tissue samples were routinely fixed in 10% neutral formalin and embedded in paraffin for classical histological analysis, then three consecutive (successive) sections 5 microm thick were made and stained with hematoxylin and eosin method (HE), silver impregnation technique by Masson Fontana and trichrome stain by Florantin. RESULTS Immersion microscopy was used to analyse patterns of lipofuscin accumulation during ageing making possible to distinguish diffuse type (lipofuscin granules were irregularly distributed and non-confluent), unipolar type (lipofuscin granules were grouped at the end of the cell), bipolar type (lipofuscin granules were concentrated at the two opposite ends of a cell with the nucleus in between at the center of a cell), annular type (lipofuscin granules were in the shape of a complete or incomplete ring around the nucleus) and a cell completely filled with lipofuscin (two subtypes distinguishing, one with visible a nucleus, and the other with invisible one). Even at the age of 20 there were cells with lipofuscin granules accumulated in diffuse way, but in smaller numbers; the GC without lipofuscin were dominant. Growing older, especially above 60 years, all of the above mentioned patterns of lipofuscin accumulation were present with the evident increase in cells completely filled with lipofuscin, but cells without lipofuscin were also present even in the oldest persons. CONCLUSION Lipofuscin is present in all periods of ageing with a different intensity of accumulation. GC without the pigment, diffusely distributed, as well as very rare cells with a unipolar type of lipofuscin distribution are characteristic for the age of 20-60 years. In the age above 60 years, except the cells without pigment and diffuse accumulation type, there are also bipolar and annular types and forms in which cells are completely filled with lipofuscin granules.
Collapse
|
19
|
Lin M, Ai J, Li L, Huang C, Chapleau MW, Liu R, Gozal D, Wead WB, Wurster RD, Cheng Z'J'. Structural remodeling of nucleus ambiguus projections to cardiac ganglia following chronic intermittent hypoxia in C57BL/6J mice. J Comp Neurol 2008; 509:103-17. [PMID: 18425809 DOI: 10.1002/cne.21732] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The baroreflex control of heart rate (HR) is reduced following chronic intermittent hypoxia (CIH). Since the nucleus ambiguus (NA) plays a key role in baroreflex control of HR, we examined whether CIH remodels vagal efferent projections to cardiac ganglia. C57BL/6J mice (3-4 months of age) were exposed to either room air (RA) or CIH for 3 months. Confocal microscopy was used to examine NA axons and terminals in cardiac ganglia following Fluoro-Gold (FG) injections to label cardiac ganglia, and microinjections of tracer DiI into the left NA to anterogradely label vagal efferents. We found that: 1) Cardiac ganglia were widely distributed on the dorsal surface of the atria. Although the total number of cardiac ganglia did not differ between RA and CIH mice, the size of ganglia and the somatic area of cardiac principal neurons (PNs) were significantly decreased (P < 0.01), and the size of the PN nuclei was increased following CIH (P < 0.01). 2) NA axons entered cardiac ganglia and innervated PNs with dense basket endings in both RA and CIH mice, and the percentage of innervated PNs was similar (RA: 50 +/- 1.0%; CIH: 49 +/- 1.0%; P > 0.10). In CIH mice, however, swollen cardiac axons and terminals without close contacts to PNs were found. Furthermore, varicose endings around PNs appeared swollen and the axonal varicose area around PNs was almost doubled in size (CIH: 163.1 +/- 6.4 microm(2); RA: 88 +/- 3.9 microm(2), P < 0.01). Thus, CIH significantly altered the structure of cardiac ganglia and resulted in reorganized vagal efferent projections to cardiac ganglia. Such remodeling of cardiac ganglia and vagal efferent projections provides new insight into the effects of CIH on the brain-heart circuitry of C57BL/6J mice.
Collapse
Affiliation(s)
- Min Lin
- Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32816, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Alzoubi KH, Aleisa AM, Alkadhi KA. In vivo expression of ganglionic long-term potentiation in superior cervical ganglia from hypertensive aged rats. Neurobiol Aging 2008; 31:805-12. [PMID: 18649973 DOI: 10.1016/j.neurobiolaging.2008.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2008] [Revised: 04/15/2008] [Accepted: 06/11/2008] [Indexed: 01/11/2023]
Abstract
Sustained increase in central sympathetic outflow to ganglia may provide the repeated high frequency presynaptic activity required for induction of long-term potentiation in sympathetic ganglia (gLTP), which is known to be involved in the manifestation of a neurogenic form of hypertension, namely stress-hypertension. Aging is often viewed as a progressive decline in physiological competence with a corresponding impaired ability to adapt to stressful stimuli. Old animals have exaggerated sympathetic activity as well as increased morbidity and mortality during prolonged exposure to stressful stimuli. Using the superior cervical ganglion (SCG) as a model for sympathetic ganglia, electrophysiological and biochemical evidence show that mildly hypertensive aged rats (22-month old) have expressed gLTP in vivo. This is suggested by a number of lines of evidence. Firstly, a shift in input/output (I/O) curve of ganglia from aged rats to the left side of I/O curve of ganglia from 6-month old (adult) rats indicating expression of gLTP. Secondly, failure of in vitro high frequency stimulation to induce gLTP in ganglia isolated from aged rats, which indicates occlusion due to saturation, which, in turn, suggests in vivo expression of gLTP in these ganglia. Thirdly, in vitro inhibition of basal ganglionic transmission by blockers of gLTP (5-HT(3) antagonists) is observed in ganglia isolated from aged rats, but not in those from adult rats. Finally, immunoblot analysis revealed that protein levels of signaling molecules such as calcium-calmodulin kinase II (CaMKII; phosphorylated and total), which normally increase during expression of LTP, are elevated in ganglia isolated from aged rats compared to those from adult ones. Protein levels of calcineurin, which dephosphorylates P-CaMKII, were reduced in ganglia isolated from aged rats, probably as a support mechanism to allow prolonged phosphorylation of CaMKII. Our findings suggest in vivo expression of gLTP in sympathetic ganglia of aged animals, which may contribute to the moderate hypertension often seen in aged subjects.
Collapse
Affiliation(s)
- K H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | | | | |
Collapse
|
21
|
Phillips RJ, Powley TL. Innervation of the gastrointestinal tract: patterns of aging. Auton Neurosci 2007; 136:1-19. [PMID: 17537681 PMCID: PMC2045700 DOI: 10.1016/j.autneu.2007.04.005] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 04/10/2007] [Accepted: 04/24/2007] [Indexed: 12/12/2022]
Abstract
The gastrointestinal (GI) tract is innervated by intrinsic enteric neurons and by extrinsic projections, including sympathetic and parasympathetic efferents as well as visceral afferents, all of which are compromised by age to different degrees. In the present review, we summarize and illustrate key structural changes in the aging innervation of the gut, and suggest a provisional list of the general patterns of aging of the GI innervation. For example, age-related neuronal losses occur in both the myenteric plexus and submucosal plexus of the intestines. These losses start in adulthood, increase over the rest of the life span, and are specific to cholinergic neurons. Parallel losses of enteric glia also occur. The extent of neuronal and glial loss varies along an oral-to-anal gradient, with the more distal GI tract being more severely affected. Additionally, with aging, dystrophic axonal swellings and markedly dilated varicosities progressively accumulate in the sympathetic, vagal, dorsal root, and enteric nitrergic innervation of the gut. These dramatic and consistent patterns of neuropathy that characterize the aging autonomic nervous system of the GI tract are candidate mechanisms for some of the age-related declines in function evidenced in the elderly.
Collapse
Affiliation(s)
- Robert J Phillips
- Purdue University, Department of Psychological Sciences, 703 Third Street, West Lafayette, IN 47907-2081, USA.
| | | |
Collapse
|
22
|
Ai J, Gozal D, Li L, Wead WB, Chapleau MW, Wurster R, Yang B, Li H, Liu R, Cheng Z. Degeneration of vagal efferent axons and terminals in cardiac ganglia of aged rats. J Comp Neurol 2007; 504:74-88. [PMID: 17614301 DOI: 10.1002/cne.21431] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Baroreflex control of the heart rate is significantly reduced during aging. However, neural mechanisms that underlie such a functional reduction are not fully understood. We injected the tracer DiI into the left nucleus ambiguus (NA), then used confocal microscopy and a Neurolucida Digitization System to examine qualitatively and quantitatively vagal efferent projections to cardiac ganglia of young adult (5-6 months) and aged (24-25 months) rats (Sprague Dawley). Fluoro-Gold was injected intraperitoneally to counterstain cardiac ganglionic principal neurons (PNs). In aged, as in young rats, NA axons projected to all cardiac ganglia and formed numerous basket endings around PNs in the hearts. However, significant structural changes were found in aged rats compared with young rats. Vagal efferent axons contained abnormally swollen axonal segments and exhibited reduced or even absent synaptic-like terminals around PNs, such that the numbers of vagal fibers and basket endings around PNs were substantially reduced (P < 0.01). Furthermore, synaptic-like varicose contacts of vagal cardiac axons with PNs were significantly reduced by approximately 50% (P < 0.01). These findings suggest that vagal efferents continue to maintain homeostatic control over the heart during aging. However, the marked morphological reorganization of vagal efferent axons and terminals in cardiac ganglia may represent the structural substrate for reduced vagal control of the heart rate and attenuated baroreflex function during aging.
Collapse
Affiliation(s)
- Jing Ai
- Biomolecular Science Center, Burnett College of Biomedical Sciences, University of Central Florida, Orlando, Florida 32816, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Alkadhi K, Alzoubi K. Role of long-term potentiation of sympathetic ganglia (gLTP) in hypertension. Clin Exp Hypertens 2007; 29:267-86. [PMID: 17653963 DOI: 10.1080/10641960701500356] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ganglionic long-term potentiation (gLTP) is an activity-dependent sustained increase in the synaptic efficacy of the nicotinic pathway that has been demonstrated in autonomic ganglia. Sustained enhancement in ganglionic transmission as in chronic mental stress may affect the activity of autonomic functions, including blood pressure and heart rate. An increase in sympathetic activity associated with psychosocial stress and stress-prone conditions such as obesity and aging could result in in vivo expression of gLTP leading to hypertension of a neural origin. Recent reports indicated that the prevention of the expression of gLTP in animal models of hypertension prevented or reduced high blood pressure. Although stress-induced hypertension normalizes within a few days of stress relief, prolonged mild-moderate hypertension may contribute to atherosclerotic cardiovascular diseases. The relation between hypertension and enhanced ganglionic transmission as a result of in vivo expression of gLTP is discussed in this review.
Collapse
Affiliation(s)
- Karim Alkadhi
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204-5515, USA.
| | | |
Collapse
|
24
|
Liutkiene G, Stropus R, Pilmane M, Dabuzinskiene A. Age-related structural and neurochemical changes of the human superior cervical ganglion. Ann Anat 2007; 189:499-509. [PMID: 17910404 DOI: 10.1016/j.aanat.2007.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aim of this study was to investigate age-related morphological and neurochemical changes in the human superior cervical ganglion (SCG). Thirty-seven superior sympathetic human cervical ganglia of young, adult, and aged subjects were examined using morphometric analysis, biotin-streptavidin immunohistochemistry for detecting neurofilament, myelin protein, protein gene product 9.5, nerve growth factor receptor p75 in sympathetic neurons and nerve fibers. Morphometric parameters of neurons (area, long and short axis, shape factor of the neuron body, nucleus, cytoplasm, and lipofuscin) were investigated in every sixth serial section of the ganglion. Seven hundred neurons with clearly visible nuclei were measured in each studied group. The present study showed that human SCG of older subjects had larger areas of neuron body, cytoplasm and nucleus, a lower shape factor, an increased amount of lipofuscin, and a greater number of large-size neurons, as compared to SCG obtained from young subjects. Neuronal cytoskeletal alterations manifested themselves through a decreased number of neurofilament-positive neurons were detected in old human SCG. The amount of myelinated fibers decreased with age, although the amount of myelinated fibers in the young and the adult subjects varied from few to a moderate number. PGP 9.5 immunoreactivity varied in different age groups. A marked reduction of nerve growth factor receptor p75 in old human sympathetic neurons was detected. In conclusion, the findings of this study confirm age-related morphological changes in the human SCG. Structural neuronal changes may influence the deterioration of neuronal functional capacity, neuronal plasticity, and regenerative characteristics.
Collapse
Affiliation(s)
- Gineta Liutkiene
- Institute of Anatomy, Kaunas University of Medicine, A. Mickeviciaus Street 9, 44307 Kaunas, Lithuania.
| | | | | | | |
Collapse
|
25
|
Phillips RJ, Pairitz JC, Powley TL. Age-related neuronal loss in the submucosal plexus of the colon of Fischer 344 rats. Neurobiol Aging 2007; 28:1124-37. [DOI: 10.1016/j.neurobiolaging.2006.05.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 03/07/2006] [Accepted: 05/10/2006] [Indexed: 11/28/2022]
|
26
|
Moriyama H, Itoh M, Shimada K, Otsuka N. Morphometric analysis of fibers of the human vestibular nerve: sex differences. Eur Arch Otorhinolaryngol 2006; 264:471-5. [PMID: 17115169 DOI: 10.1007/s00405-006-0197-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 10/16/2006] [Indexed: 10/23/2022]
Abstract
The aim of this study was to analyze myelinated axons in the human vestibular nerve (VN). We assumed that a smaller total number and average transverse area of myelinated axons in the female than male VN, would partly explain the female preponderance of vestibular disorders. The materials were obtained from 24 cadavers (12 females and 12 males) aged 54-90 years (average 74.8 years). We counted the myelinated axons, measured the transverse area of the myelinated axons, and analyzed morphological differences between the female and male specimens. The total number differed significantly between the female and male specimens. The older generation of both sexes tended to have lower total counts, but there was no significant difference among the generations. The average transverse area of the myelinated axons did not differ significantly between the female and male specimens. The older generation of both sexes tended to have a smaller average transverse area, and there was a significant difference among the generations. The presented results indicated that the lower total number, not the average transverse area, of myelinated axons in the female VN might be one of the reasons why vestibular disorders have a female preponderance.
Collapse
Affiliation(s)
- Hiroshi Moriyama
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan.
| | | | | | | |
Collapse
|
27
|
Phillips RJ, Rhodes BS, Powley TL. Effects of age on sympathetic innervation of the myenteric plexus and gastrointestinal smooth muscle of Fischer 344 rats. ACTA ACUST UNITED AC 2006; 211:673-83. [PMID: 17024301 DOI: 10.1007/s00429-006-0123-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2006] [Indexed: 01/26/2023]
Abstract
Loss of myenteric neurons with age is well documented, however little is known about age-related changes of the sympathetic innervation of the myenteric plexus and gastrointestinal smooth muscle. The goal of the present study, therefore, was to evaluate the influence of age on the sympathetic innervation of the myenteric plexus throughout the gastrointestinal tract. Ad libitum fed virgin male Fischer 344 rats at 3, 15-16, 24, and 27-28 months of age were sampled. Whole mounts of the stomach, small intestine, and large intestine were processed with an antibody to tyrosine hydroxylase (TH). Additionally, some specimens labeled for TH were stained for NADPH-diaphorase to selectively label the nitrergic subpopulation of neurons in the myenteric plexus. Age-related changes in the TH-positive axons occurred as early as 15-16 months and became more pronounced by 27-28 months. Changes included markedly swollen axons and terminals and a decrease in the intensity of TH staining in some of the surviving processes. Similarly, swollen NADPH-diaphorase-positive axons were found in the myenteric ganglia and secondary plexus between ganglia in the whole mounts of rats 15-28 months of age, but swollen nitrergic axons and dystrophic TH-positive axons were never present in the same ganglion or connective. Therefore, in the aged rat, deterioration of the sympathetic innervation of the myenteric plexus could be one possible mechanism for the age-related decline in gastrointestinal motor function evidenced in the elderly.
Collapse
Affiliation(s)
- Robert J Phillips
- Department of Psychological Sciences, Purdue University, 703 Third Street, West Lafayette, IN 47907-2081, USA.
| | | | | |
Collapse
|
28
|
Yi E, Love JA. Alpha-adrenergic modulation of synaptic transmission in rabbit pancreatic ganglia. Auton Neurosci 2005; 122:45-57. [PMID: 16126010 DOI: 10.1016/j.autneu.2005.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 07/18/2005] [Accepted: 07/20/2005] [Indexed: 11/24/2022]
Abstract
Pancreatic ganglia contain noradrenergic nerve terminals whose role in ganglionic transmission is unknown. Intracellular recordings from rabbit pancreatic neurons were used to study the effects of alpha-adrenergic agonists and antagonists on ganglionic transmission and to determine if endogenously released norepinephrine contributed to synaptic depression. Significant regional differences in alpha adrenergic effects were observed. In neurons from ganglia of the head/neck region norepinephrine or selective alpha(2) agonists presynaptically inhibited ganglionic transmission and this effect was antagonized by the alpha(2) antagonist yohimbine. In the majority of cells membrane hyperpolarization accompanied presynaptic inhibition during superfusion of alpha(2) agonists. Repetitive nerve stimulation evoked a presynaptic post-train depression (PTD) of ganglionic transmission in all neurons tested. A combination of nisoxetine (selective inhibitor of the norepinephrine transporter) and tyramine (releaser of endogenous catecholamines) increased PTD. Pretreatment with clonidine inhibited synaptic transmission and abolished PTD while yohimbine did not affect it. Pretreatment with guanethidine (>or=3.5 h) also failed reduce PTD while neurons unresponsive to alpha(2) adrenoceptor agonists routinely exhibited PTD, implying the presence of other inhibitory neurotransmitters sharing a common presynaptic mechanism with alpha(2) agonists. In the majority of neurons from ganglia of the body region superfusion of norepinephrine or the selective alpha(1) agonist phenylephrine evoked membrane depolarization and facilitated ganglionic transmission. These effects were antagonized by the alpha(1) antagonist prazosin. The remaining neurons exhibited either alpha(2)-mediated synaptic inhibition or no-response. In conclusion, inhibitory alpha(2) and excitatory alpha(1) adrenoceptors exist in pancreatic ganglia and predominate in the head/neck and body, respectively. Norepinephrine, released during repetitive nerve stimulation, may contribute to synaptic depression in the head/neck region and appeared to share a common mechanism with other, unidentified neurotransmitters mediating synaptic depression in both regions. These differences indicate a functional heterogeneity of pancreatic sympathetic innervation that may reflect the reported regional differences in exocrine and endocrine cells.
Collapse
Affiliation(s)
- Eunyoung Yi
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA
| | | |
Collapse
|
29
|
Loers G, Aboul-Enein F, Bartsch U, Lassmann H, Schachner M. Comparison of myelin, axon, lipid, and immunopathology in the central nervous system of differentially myelin-compromised mutant mice: a morphological and biochemical study. Mol Cell Neurosci 2005; 27:175-89. [PMID: 15485773 DOI: 10.1016/j.mcn.2004.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Revised: 05/27/2004] [Accepted: 06/08/2004] [Indexed: 01/06/2023] Open
Abstract
The present study was carried out to compare different myelin-compromised mouse mutants with regard to myelin morphology in relation to axon-, lipid-, and immunopathology as a function of age. Mouse mutants deficient in the myelin-associated glycoprotein (MAG) and myelin basic protein (MBP) display subtle and severe myelin pathologies in the central nervous system (CNS), respectively. Animals doubly deficient in MAG and the neural cell adhesion molecule (NCAM) show defects similar to those present in MAG single mutants while mice deficient in MAG and the nonreceptor type tyrosine kinase Fyn are severely hypomyelinated, in addition to the MAG-specific myelin abnormalities. These mutant mice showed distinct myelin pathologies in different regions of the central nervous system and generally displayed a decrease in axonal integrity with age. Myelin pathology did not correlate locally with axon transection and with an involvement of the immune system as seen by numbers of CD3-positive lymphocytes and MAC-3-positive macrophages. Interestingly, the degree of these cellular abnormalities also did not correlate with abnormalities in levels of phospholipids, arachidonic acid, cholesterol, and apolipoprotein E (apoE). Moreover, these changes in lipid metabolism, including immune system-related arachidonic acid, preceded cellular pathology. The combined observations point to differences, but also similarities in the relation of myelin, axon, and immunopathology with genotype, and to a common aggravation of the phenotype with age.
Collapse
Affiliation(s)
- Gabriele Loers
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, D-20251 Hamburg, Germany
| | | | | | | | | |
Collapse
|
30
|
Phillips RJ, Kieffer EJ, Powley TL. Aging of the myenteric plexus: neuronal loss is specific to cholinergic neurons. Auton Neurosci 2003; 106:69-83. [PMID: 12878075 DOI: 10.1016/s1566-0702(03)00072-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neuron loss occurs in the myenteric plexus of the aged rat. The myenteric plexus is composed of two mutually exclusive neuronal subpopulations expressing, respectively, nitrergic and cholinergic phenotypes. The goal of the present study, therefore, was to determine if neuron loss is specific to one phenotype, or occurs in both. Ad libitum fed virgin male Fischer 344 rats of 3 and 24 months of age were used in each of two neuronal staining protocols (n=10/age/neuron stain). The stomach, duodenum, jejunum, ileum, colon, and rectum were prepared as whole mounts and processed with either NADPHd or Cuprolinic Blue to stain, respectively, the nitrergic subpopulation or the entire population of myenteric neurons. Neuron numbers and sizes were determined for each preparation. Neuron counts from 24-month-old rats were corrected for changes in tissue area resulting from growth. There was no age-related loss of NADPHd-positive neurons for any of the regions sampled, whereas significant losses of Cuprolinic Blue-labeled neurons occurred in the small and large intestines of 24-month-old rats. At the two ages, the average neuron sizes were similar in the stomach and small intestine for both stains, but neurons in the large intestine were significantly larger at 24 months. In addition, numerous swollen NADPHd-positive axons were found in the large intestine at 24 months. These findings support the hypothesis that age-related cell loss in the small and large intestines occurs exclusively in the cholinergic subpopulation. It appears, however, from the somatic hypertrophy and the presence of swollen axons that the nitrergic neurons are not completely spared from the effects of age.
Collapse
Affiliation(s)
- Robert J Phillips
- Department of Psychological Sciences, Purdue University, 703 Third Street, West Lafayette, IN 47907-2004, USA.
| | | | | |
Collapse
|
31
|
Wade PR. Aging and neural control of the GI tract. I. Age-related changes in the enteric nervous system. Am J Physiol Gastrointest Liver Physiol 2002; 283:G489-95. [PMID: 12181159 DOI: 10.1152/ajpgi.00091.2002] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
As we enter the 21st century, the segment of the population that is the most rapidly expanding is that comprised of individuals 85 yr of age and older. Dysfunctions of the gastrointestinal (GI) system, including dysphagia, constipation, diarrhea, and irritable bowel syndrome are more common complaints of the elderly, yet our knowledge of the aging GI tract is incomplete. Compared with the rapid advances in the neurobiology of aging in the central nervous system, the understanding of age-related changes in the enteric nervous system (ENS) is poor. In this brief review, I recap experiments that reveal neurodegenerative changes and their functional correlates in the ENS of mice, rats, and guinea pigs. Clinical literature seems indicative of similar structural and functional age-related changes in the human ENS. Current studies that address the mechanisms underlying age-related changes in the ENS are introduced. The future directions for this field include physiological and pharmacological studies, especially at cellular and molecular levels. Research in the aging ENS is poised to make major advances, and this new knowledge will be useful for clinicians seeking to better understand and treat GI dysfunction in the elderly.
Collapse
Affiliation(s)
- Paul R Wade
- Department of Zoology and Physiology, and Wyoming WWAMI* Medical Education Program, University of Wyoming, Laramie, Wyoming 82071, USA.
| |
Collapse
|