1
|
Barisón MJ, Pereira IT, Waloski Robert A, Dallagiovanna B. Reorganization of Metabolism during Cardiomyogenesis Implies Time-Specific Signaling Pathway Regulation. Int J Mol Sci 2021; 22:1330. [PMID: 33572750 PMCID: PMC7869011 DOI: 10.3390/ijms22031330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding the cell differentiation process involves the characterization of signaling and regulatory pathways. The coordinated action involved in multilevel regulation determines the commitment of stem cells and their differentiation into a specific cell lineage. Cellular metabolism plays a relevant role in modulating the expression of genes, which act as sensors of the extra-and intracellular environment. In this work, we analyzed mRNAs associated with polysomes by focusing on the expression profile of metabolism-related genes during the cardiac differentiation of human embryonic stem cells (hESCs). We compared different time points during cardiac differentiation (pluripotency, embryoid body aggregation, cardiac mesoderm, cardiac progenitor and cardiomyocyte) and showed the immature cell profile of energy metabolism. Highly regulated canonical pathways are thoroughly discussed, such as those involved in metabolic signaling and lipid homeostasis. We reveal the critical relevance of retinoic X receptor (RXR) heterodimers in upstream retinoic acid metabolism and their relationship with thyroid hormone signaling. Additionally, we highlight the importance of lipid homeostasis and extracellular matrix component biosynthesis during cardiomyogenesis, providing new insights into how hESCs reorganize their metabolism during in vitro cardiac differentiation.
Collapse
Affiliation(s)
| | | | | | - Bruno Dallagiovanna
- Basic Stem Cell Biology Laboratory, Instituto Carlos Chagas-FIOCRUZ-PR, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba, PR 81350-010, Brazil; (M.J.B.); (I.T.P.); (A.W.R.)
| |
Collapse
|
2
|
Roberts C. Regulating Retinoic Acid Availability during Development and Regeneration: The Role of the CYP26 Enzymes. J Dev Biol 2020; 8:jdb8010006. [PMID: 32151018 PMCID: PMC7151129 DOI: 10.3390/jdb8010006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
This review focuses on the role of the Cytochrome p450 subfamily 26 (CYP26) retinoic acid (RA) degrading enzymes during development and regeneration. Cyp26 enzymes, along with retinoic acid synthesising enzymes, are absolutely required for RA homeostasis in these processes by regulating availability of RA for receptor binding and signalling. Cyp26 enzymes are necessary to generate RA gradients and to protect specific tissues from RA signalling. Disruption of RA homeostasis leads to a wide variety of embryonic defects affecting many tissues. Here, the function of CYP26 enzymes is discussed in the context of the RA signalling pathway, enzymatic structure and biochemistry, human genetic disease, and function in development and regeneration as elucidated from animal model studies.
Collapse
Affiliation(s)
- Catherine Roberts
- Developmental Biology of Birth Defects, UCL-GOS Institute of Child Health, 30 Guilford St, London WC1N 1EH, UK;
- Institute of Medical and Biomedical Education St George’s, University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK
| |
Collapse
|
3
|
Abstract
This chapter brings together data on the role of retinoic acid (RA) in the embryonic development of fins in zebrafish , limbs in amphibians , chicks , and mice, and regeneration of the amphibian limb . The intention is to determine whether there is a common set of principles by which we can understand the mode of action of RA in both embryos and adults. What emerges from this synthesis is that there are indeed commonalities in the involvement of RA in processes that ventralize, posteriorize, and proximalize the developing and regenerating limb . Different axes of the limb have historically been studied independently; as for example, the embryonic development of the anteroposterior (AP) axis of the chick limb bud versus the regeneration of the limb bud proximodistal (PD) axis . But when we take a broader view, a unifying principle emerges that explains why RA administration to embryos and regenerating limbs results in the development of multiple limbs in both cases. As might be expected, different molecular pathways govern the development of different systems and model organisms, but despite these differences, the pathways involve similar RA signaling genes, such as tbx5, meis, shh, fgfs and hox genes. Studies of developing and regenerating systems have highlighted that RA acts by being synthesized in one embryonic location while acting in another one, exactly as embryonic morphogens do, although there is no evidence for the presence of an RA gradient within the limb . What also emerges is that there is a paucity of information on the involvement of RA in development of the dorsoventral (DV) axis . A molecular explanation as to how RA establishes and alters positional information in all three axes is the most important area of study for the future.
Collapse
|
4
|
da Silva S, Cepko CL. Fgf8 Expression and Degradation of Retinoic Acid Are Required for Patterning a High-Acuity Area in the Retina. Dev Cell 2017; 42:68-81.e6. [PMID: 28648799 PMCID: PMC5798461 DOI: 10.1016/j.devcel.2017.05.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/29/2017] [Accepted: 05/26/2017] [Indexed: 01/08/2023]
Abstract
Species that are highly reliant on their visual system have a specialized retinal area subserving high-acuity vision, e.g., the fovea in humans. Although of critical importance for our daily activities, little is known about the mechanisms driving the development of retinal high-acuity areas (HAAs). Using the chick as a model, we found a precise and dynamic expression pattern of fibroblast growth factor 8 (Fgf8) in the HAA anlage, which was regulated by enzymes that degrade retinoic acid (RA). Transient manipulation of RA signaling, or reduction of Fgf8 expression, disrupted several features of HAA patterning, including photoreceptor distribution, ganglion cell density, and organization of interneurons. Notably, patterned expression of RA signaling components was also found in humans, suggesting that RA also plays a role in setting up the human fovea.
Collapse
Affiliation(s)
- Susana da Silva
- Departments of Genetics and Ophthalmology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Constance L Cepko
- Departments of Genetics and Ophthalmology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Sheeba CJ, Andrade RP, Palmeirim I. Mechanisms of vertebrate embryo segmentation: Common themes in trunk and limb development. Semin Cell Dev Biol 2016; 49:125-34. [DOI: 10.1016/j.semcdb.2016.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/07/2016] [Indexed: 01/02/2023]
|
6
|
Keenan SR, Beck CW. Xenopus Limb bud morphogenesis. Dev Dyn 2015; 245:233-43. [PMID: 26404044 DOI: 10.1002/dvdy.24351] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/29/2015] [Accepted: 09/12/2015] [Indexed: 01/06/2023] Open
Abstract
Xenopus laevis, the South African clawed frog, is a well-established model organism for the study of developmental biology and regeneration due to its many advantages for both classical and molecular studies of patterning and morphogenesis. While contemporary studies of limb development tend to focus on models developed from the study of chicken and mouse embryos, there are also many classical studies of limb development in frogs. These include both fate and specification maps, that, due to their age, are perhaps not as widely known or cited as they should be. This has led to some inevitable misinterpretations- for example, it is often said that Xenopus limb buds have no apical ectodermal ridge, a morphological signalling centre located at the distal dorsal/ventral epithelial boundary and known to regulate limb bud outgrowth. These studies are valuable both from an evolutionary perspective, because amphibians diverged early from the amniote lineage, and from a developmental perspective, as amphibian limbs are capable of regeneration. Here, we describe Xenopus limb morphogenesis with reference to both classical and molecular studies, to create a clearer picture of what we know, and what is still mysterious, about this process.
Collapse
Affiliation(s)
- Samuel R Keenan
- Department of Zoology and Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Caroline W Beck
- Department of Zoology and Genetics Otago, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
Roeske TC, Scharff C, Olson CR, Nshdejan A, Mello CV. Long-distance retinoid signaling in the zebra finch brain. PLoS One 2014; 9:e111722. [PMID: 25393898 PMCID: PMC4230966 DOI: 10.1371/journal.pone.0111722] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 10/02/2014] [Indexed: 11/19/2022] Open
Abstract
All-trans retinoic acid (ATRA), the main active metabolite of vitamin A, is a powerful signaling molecule that regulates large-scale morphogenetic processes during vertebrate embryonic development, but is also involved post-natally in regulating neural plasticity and cognition. In songbirds, it plays an important role in the maturation of learned song. The distribution of the ATRA-synthesizing enzyme, zRalDH, and of ATRA receptors (RARs) have been described, but information on the distribution of other components of the retinoid signaling pathway is still lacking. To address this gap, we have determined the expression patterns of two obligatory RAR co-receptors, the retinoid X receptors (RXR) α and γ, and of the three ATRA-degrading cytochromes CYP26A1, CYP26B1, and CYP26C1. We have also studied the distribution of zRalDH protein using immunohistochemistry, and generated a refined map of ATRA localization, using a modified reporter cell assay to examine entire brain sections. Our results show that (1) ATRA is more broadly distributed in the brain than previously predicted by the spatially restricted distribution of zRalDH transcripts. This could be due to long-range transport of zRalDH enzyme between different nuclei of the song system: Experimental lesions of putative zRalDH peptide source regions diminish ATRA-induced transcription in target regions. (2) Four telencephalic song nuclei express different and specific subsets of retinoid-related receptors and could be targets of retinoid regulation; in the case of the lateral magnocellular nucleus of the anterior nidopallium (lMAN), receptor expression is dynamically regulated in a circadian and age-dependent manner. (3) High-order auditory areas exhibit a complex distribution of transcripts representing ATRA synthesizing and degrading enzymes and could also be a target of retinoid signaling. Together, our survey across multiple connected song nuclei and auditory brain regions underscores the prominent role of retinoid signaling in modulating the circuitry that underlies the acquisition and production of learned vocalizations.
Collapse
Affiliation(s)
- Tina C. Roeske
- Department of Psychology, Hunter College, City University of New York, New York, New York, United States of America
| | - Constance Scharff
- Department of Animal Behavior, Freie Universität Berlin, Berlin, Germany
| | - Christopher R. Olson
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Arpik Nshdejan
- Department of Animal Behavior, Freie Universität Berlin, Berlin, Germany
| | - Claudio V. Mello
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon, United States of America
| |
Collapse
|
8
|
Mok GF, Cardenas R, Anderton H, Campbell KHS, Sweetman D. Interactions between FGF18 and retinoic acid regulate differentiation of chick embryo limb myoblasts. Dev Biol 2014; 396:214-23. [PMID: 25446536 DOI: 10.1016/j.ydbio.2014.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/25/2014] [Accepted: 10/10/2014] [Indexed: 10/24/2022]
Abstract
During limb development Pax3 positive myoblasts delaminate from the hypaxial dermomyotome of limb level somites and migrate into the limb bud where they form the dorsal and ventral muscle masses. Only then do they begin to differentiate and express markers of myogenic commitment and determination such as Myf5 and MyoD. However the signals regulating this process remain poorly characterised. We show that FGF18, which is expressed in the distal mesenchyme of the limb bud, induces premature expression of both Myf5 and MyoD and that blocking FGF signalling also inhibits endogenous MyoD expression. This expression is mediated by ERK MAP kinase but not PI3K signalling. We also show that retinoic acid (RA) can inhibit the myogenic activity of FGF18 and that blocking RA signalling allows premature induction of MyoD by FGF18 at HH19. We propose a model where interactions between FGF18 in the distal limb and retinoic acid in the proximal limb regulate the timing of myogenic gene expression during limb bud development.
Collapse
Affiliation(s)
- Gi Fay Mok
- Division of Animal Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK
| | - Ryan Cardenas
- Division of Animal Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK
| | - Helen Anderton
- Division of Animal Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK
| | - Keith H S Campbell
- Division of Animal Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK
| | - Dylan Sweetman
- Division of Animal Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK.
| |
Collapse
|
9
|
Karpinski BA, Maynard TM, Fralish MS, Nuwayhid S, Zohn IE, Moody SA, LaMantia AS. Dysphagia and disrupted cranial nerve development in a mouse model of DiGeorge (22q11) deletion syndrome. Dis Model Mech 2013; 7:245-57. [PMID: 24357327 PMCID: PMC3917245 DOI: 10.1242/dmm.012484] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We assessed feeding-related developmental anomalies in the LgDel mouse model of chromosome 22q11 deletion syndrome (22q11DS), a common developmental disorder that frequently includes perinatal dysphagia – debilitating feeding, swallowing and nutrition difficulties from birth onward – within its phenotypic spectrum. LgDel pups gain significantly less weight during the first postnatal weeks, and have several signs of respiratory infections due to food aspiration. Most 22q11 genes are expressed in anlagen of craniofacial and brainstem regions critical for feeding and swallowing, and diminished expression in LgDel embryos apparently compromises development of these regions. Palate and jaw anomalies indicate divergent oro-facial morphogenesis. Altered expression and patterning of hindbrain transcriptional regulators, especially those related to retinoic acid (RA) signaling, prefigures these disruptions. Subsequently, gene expression, axon growth and sensory ganglion formation in the trigeminal (V), glossopharyngeal (IX) or vagus (X) cranial nerves (CNs) that innervate targets essential for feeding, swallowing and digestion are disrupted. Posterior CN IX and X ganglia anomalies primarily reflect diminished dosage of the 22q11DS candidate gene Tbx1. Genetic modification of RA signaling in LgDel embryos rescues the anterior CN V phenotype and returns expression levels or pattern of RA-sensitive genes to those in wild-type embryos. Thus, diminished 22q11 gene dosage, including but not limited to Tbx1, disrupts oro-facial and CN development by modifying RA-modulated anterior-posterior hindbrain differentiation. These disruptions likely contribute to dysphagia in infants and young children with 22q11DS.
Collapse
Affiliation(s)
- Beverly A Karpinski
- Department of Anatomy and Regenerative Biology, The George Washington University School of Medicine and Health Sciences, Washington DC 20037, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Lind T, Sundqvist A, Hu L, Pejler G, Andersson G, Jacobson A, Melhus H. Vitamin a is a negative regulator of osteoblast mineralization. PLoS One 2013; 8:e82388. [PMID: 24340023 PMCID: PMC3858291 DOI: 10.1371/journal.pone.0082388] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 10/26/2013] [Indexed: 12/30/2022] Open
Abstract
An excessive intake of vitamin A has been associated with an increased risk of fractures in humans. In animals, a high vitamin A intake leads to a reduction of long bone diameter and spontaneous fractures. Studies in rodents indicate that the bone thinning is due to increased periosteal bone resorption and reduced radial growth. Whether the latter is a consequence of direct effects on bone or indirect effects on appetite and general growth is unknown. In this study we therefore used pair-feeding and dynamic histomorphometry to investigate the direct effect of a high intake of vitamin A on bone formation in rats. Although there were no differences in body weight or femur length compared to controls, there was an approximately halved bone formation and mineral apposition rate at the femur diaphysis of rats fed vitamin A. To try to clarify the mechanism(s) behind this reduction, we treated primary human osteoblasts and a murine preosteoblastic cell line (MC3T3-E1) with the active metabolite of vitamin A; retinoic acid (RA), a retinoic acid receptor (RAR) antagonist (AGN194310), and a Cyp26 inhibitor (R115866) which blocks endogenous RA catabolism. We found that RA, via RARs, suppressed in vitro mineralization. This was independent of a negative effect on osteoblast proliferation. Alkaline phosphatase and bone gamma carboxyglutamate protein (Bglap, Osteocalcin) were drastically reduced in RA treated cells and RA also reduced the protein levels of Runx2 and Osterix, key transcription factors for progression to a mature osteoblast. Normal osteoblast differentiation involved up regulation of Cyp26b1, the major enzyme responsible for RA degradation, suggesting that a drop in RA signaling is required for osteogenesis analogous to what has been found for chondrogenesis. In addition, RA decreased Phex, an osteoblast/osteocyte protein necessary for mineralization. Taken together, our data indicate that vitamin A is a negative regulator of osteoblast mineralization.
Collapse
Affiliation(s)
- Thomas Lind
- Department of Medical Sciences, Section of Clinical Pharmacology, Uppsala University, Uppsala, Sweden
| | - Anders Sundqvist
- Department of Medical Sciences, Section of Clinical Pharmacology, Uppsala University, Uppsala, Sweden
| | - Lijuan Hu
- Department of Medical Sciences, Section of Clinical Pharmacology, Uppsala University, Uppsala, Sweden
| | - Gunnar Pejler
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Göran Andersson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, Huddinge, Sweden
| | - Annica Jacobson
- Department of Medical Sciences, Section of Clinical Pharmacology, Uppsala University, Uppsala, Sweden
| | - Håkan Melhus
- Department of Medical Sciences, Section of Clinical Pharmacology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Kayam G, Kohl A, Magen Z, Peretz Y, Weisinger K, Bar A, Novikov O, Brodski C, Sela-Donenfeld D. A novel role for Pax6 in the segmental organization of the hindbrain. Development 2013; 140:2190-202. [PMID: 23578930 DOI: 10.1242/dev.089136] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Complex patterns and networks of genes coordinate rhombomeric identities, hindbrain segmentation and neuronal differentiation and are responsible for later brainstem functions. Pax6 is a highly conserved transcription factor crucial for neuronal development, yet little is known regarding its early roles during hindbrain segmentation. We show that Pax6 expression is highly dynamic in rhombomeres, suggesting an early function in the hindbrain. Utilization of multiple gain- and loss-of-function approaches in chick and mice revealed that loss of Pax6 disrupts the sharp expression borders of Krox20, Kreisler, Hoxa2, Hoxb1 and EphA and leads to their expansion into adjacent territories, whereas excess Pax6 reduces these expression domains. A mutual negative cross-talk between Pax6 and Krox20 allows these genes to be co-expressed in the hindbrain through regulation of the Krox20-repressor gene Nab1 by Pax6. Rhombomere boundaries are also distorted upon Pax6 manipulations, suggesting a mechanism by which Pax6 acts to set hindbrain segmentation. Finally, FGF signaling acts upstream of the Pax6-Krox20 network to regulate Pax6 segmental expression. This study unravels a novel role for Pax6 in the segmental organization of the early hindbrain and provides new evidence for its significance in regional organization along the central nervous system.
Collapse
Affiliation(s)
- Galya Kayam
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, 76100 Rehovot, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Saenz-Méndez P, Elmabsout AA, Sävenstrand H, Awadalla MKA, Strid Å, Sirsjö A, Eriksson LA. Homology Models of Human All-Trans Retinoic Acid Metabolizing Enzymes CYP26B1 and CYP26B1 Spliced Variant. J Chem Inf Model 2012; 52:2631-7. [DOI: 10.1021/ci300264u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Patricia Saenz-Méndez
- Computational Chemistry and Biology
Group, Facultad de Química, UdelaR, 11800 Montevideo, Uruguay
| | - Ali Ateia Elmabsout
- Department of Clinical Medicine, School of Health Sciences, Örebro University, SE-701 82, Örebro,
Sweden
| | - Helena Sävenstrand
- Department of Science
and Technology, Örebro Life Science Center, Örebro University, SE-701 82, Örebro, Sweden
| | | | - Åke Strid
- Department of Science
and Technology, Örebro Life Science Center, Örebro University, SE-701 82, Örebro, Sweden
| | - Allan Sirsjö
- Department of Clinical Medicine, School of Health Sciences, Örebro University, SE-701 82, Örebro,
Sweden
| | - Leif A. Eriksson
- Department of Chemistry and Molecular
Biology, University of Gothenburg, 412
96 Göteborg, Sweden
| |
Collapse
|
13
|
Sheeba CJ, Palmeirim I, Andrade RP. Retinoic acid signaling regulates embryonic clock hairy2 gene expression in the developing chick limb. Biochem Biophys Res Commun 2012; 423:889-94. [DOI: 10.1016/j.bbrc.2012.06.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 06/17/2012] [Indexed: 12/20/2022]
|
14
|
Visualization of retinoic acid signaling in transgenic axolotls during limb development and regeneration. Dev Biol 2012; 368:63-75. [PMID: 22627291 DOI: 10.1016/j.ydbio.2012.05.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 04/26/2012] [Accepted: 05/10/2012] [Indexed: 12/16/2022]
Abstract
Retinoic acid (RA) plays a necessary role in limb development and regeneration, but the precise mechanism by which it acts during these processes is unclear. The role of RA in limb regeneration was first highlighted by the remarkable effect that it has on respecifying the proximodistal axis of the regenerating limb so that serially repeated limbs are produced. To facilitate the study of RA signaling during development and then during regeneration of the same structure we have turned to the axolotl, the master of vertebrate regeneration, and generated transgenic animals that fluorescently report RA signaling in vivo. Characterization of these animals identified an anterior segment of the developing embryo where RA signaling occurs revealing conserved features of the early vertebrate embryo. During limb development RA signaling was present in the developing forelimb bud mesenchyme, but was not detected during hindlimb development. During limb regeneration, RA signaling was surprisingly almost exclusively observed in the apical epithelium suggesting a different role of RA during limb regeneration. After the addition of supplemental RA to regenerating limbs that leads to pattern duplications, the fibroblast stem cells of the blastema responded showing that they are capable of transcriptionally responding to RA. These findings are significant because it means that RA signaling may play a multifunctional role during forelimb development and regeneration and that the fibroblast stem cells that regulate proximodistal limb patterning during regeneration are targets of RA signaling.
Collapse
|
15
|
Abstract
Retinoic acid (RA) is a vitamin A-derived, non-peptidic, small lipophilic molecule that acts as ligand for nuclear RA receptors (RARs), converting them from transcriptional repressors to activators. The distribution and levels of RA in embryonic tissues are tightly controlled by regulated synthesis through the action of specific retinol and retinaldehyde dehydrogenases and by degradation via specific cytochrome P450s (CYP26s). Recent studies indicate that RA action involves an interplay between diffusion (morphogen-like) gradients and the establishment of signalling boundaries due to RA metabolism, thereby allowing RA to finely control the differentiation and patterning of various stem/progenitor cell populations. Here, we provide an overview of the RA biosynthesis, degradation and signalling pathways and review the main functions of this molecule during embryogenesis.
Collapse
Affiliation(s)
- Muriel Rhinn
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.
| | | |
Collapse
|
16
|
He B, Lin J, Li J, Mi Y, Zeng W, Zhang C. Basic fibroblast growth factor suppresses meiosis and promotes mitosis of ovarian germ cells in embryonic chickens. Gen Comp Endocrinol 2012; 176:173-81. [PMID: 22309941 DOI: 10.1016/j.ygcen.2012.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 01/12/2012] [Accepted: 01/13/2012] [Indexed: 11/23/2022]
Abstract
Basic fibroblast growth factor (bFGF or FGF2) plays diverse roles in regulating cell proliferation, migration and differentiation during embryo development. In this study, the effect of bFGF on ovarian germ cell development was investigated in the embryonic chicken by in vitro and in vivo experiments. Results showed that a remarkable decrease in bFGF expression in the ovarian cortex was manifested during meiosis progression. With ovary organ culture, we revealed that meiosis was initiated after retinoic acid (RA) treatment alone but was decreased after combined bFGF treatment that was detected by real time RT-PCR, fluorescence immunohistochemistry and Giemsa staining. Further, no significant difference in mRNA expression of either RA metabolism-related enzymes (Raldh2 and Cyp26b1) or RA receptors was displayed after bFGF challenge. This result suggests that the suppression of bFGF on meiosis was unlikely through inhibition of RA signaling. In addition, as a mitogen, bFGF administration increased germ cell proliferation (via BrdU incorporation) in cultured organ or cells in vitro and also in developing embryos in vivo. In contrast, blockade of bFGF action by SU5402 (an FGFR1 antagonist) or inhibition of protein kinase C signaling showed inhibited effect of bFGF on mitosis. In conclusion, bFGF suppresses RA-induced entry of germ cells into meiosis to ensure embryonic ovarian germ cells to maintain at undifferentiated status and accelerate germ cell proliferation by binding with FGFR1 involving PKC activation in the chicken.
Collapse
Affiliation(s)
- Bin He
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | |
Collapse
|
17
|
Alfano G, Conte I, Caramico T, Avellino R, Arnò B, Pizzo MT, Tanimoto N, Beck SC, Huber G, Dollé P, Seeliger MW, Banfi S. Vax2 regulates retinoic acid distribution and cone opsin expression in the vertebrate eye. Development 2011; 138:261-71. [PMID: 21148184 DOI: 10.1242/dev.051037] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Vax2 is an eye-specific homeobox gene, the inactivation of which in mouse leads to alterations in the establishment of a proper dorsoventral eye axis during embryonic development. To dissect the molecular pathways in which Vax2 is involved, we performed a transcriptome analysis of Vax2(-/-) mice throughout the main stages of eye development. We found that some of the enzymes involved in retinoic acid (RA) metabolism in the eye show significant variations of their expression levels in mutant mice. In particular, we detected an expansion of the expression domains of the RA-catabolizing enzymes Cyp26a1 and Cyp26c1, and a downregulation of the RA-synthesizing enzyme Raldh3. These changes determine a significant expansion of the RA-free zone towards the ventral part of the eye. At postnatal stages of eye development, Vax2 inactivation led to alterations of the regional expression of the cone photoreceptor genes Opn1sw (S-Opsin) and Opn1mw (M-Opsin), which were significantly rescued after RA administration. We confirmed the above described alterations of gene expression in the Oryzias latipes (medaka fish) model system using both Vax2 gain- and loss-of-function assays. Finally, a detailed morphological and functional analysis of the adult retina in mutant mice revealed that Vax2 is necessary for intraretinal pathfinding of retinal ganglion cells in mammals. These data demonstrate for the first time that Vax2 is both necessary and sufficient for the control of intraretinal RA metabolism, which in turn contributes to the appropriate expression of cone opsins in the vertebrate eye.
Collapse
Affiliation(s)
- Giovanna Alfano
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lynch J, McEwan J, Beck CW. Analysis of the expression of retinoic acid metabolising genes during Xenopus laevis organogenesis. Gene Expr Patterns 2010; 11:112-7. [PMID: 20969978 DOI: 10.1016/j.gep.2010.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 10/12/2010] [Accepted: 10/15/2010] [Indexed: 11/17/2022]
Abstract
Retinoic acid (RA) is a known teratogen that is also required endogenously for normal development of the embryo. RA can act as a morphogen, through direct binding to receptors and RA response elements in the genome, and classical studies of limb development and regeneration in amphibians have shown that it is likely to provide positional information. Availability of RA depends on both metabolic synthesis and catabolic degradation, and specific binding proteins act to further modulate the binding of RA to response elements. Here, we describe the expression of seven genes involved in metabolism (Raldh1-3), catabolism (Cyp26a and b) and binding of RA (Crabp1 and 2) during organogenesis in the clawed frog Xenopus laevis. Taken together, this data indicates regions of the embryo that could be affected by RA mediated patterning, and identifies some differences with other vertebrates.
Collapse
Affiliation(s)
- Joshua Lynch
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin, New Zealand
| | | | | |
Collapse
|
19
|
Marotta F, Tiboni GM. Molecular aspects of azoles-induced teratogenesis. Expert Opin Drug Metab Toxicol 2010; 6:461-82. [DOI: 10.1517/17425251003592111] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Bowles J, Feng CW, Knight D, Smith CA, Roeszler KN, Bagheri-Fam S, Harley VR, Sinclair AH, Koopman P. Male-specific expression of Aldh1a1 in mouse and chicken fetal testes: implications for retinoid balance in gonad development. Dev Dyn 2009; 238:2073-80. [PMID: 19618468 DOI: 10.1002/dvdy.22024] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Balanced production and degradation of retinoids is important in regulating development of several organ systems in the vertebrate embryo. Among these, it is known that retinoic acid (RA), and the retinoid-catabolyzing enzyme CYP26B1 together regulate the sex-specific behavior of germ cells in developing mouse gonads. We report here that the gene encoding a cytosolic class-1 aldehyde dehydrogenase, ALDH1A1, a weak catalyst of RA production, is strongly expressed in a male-specific manner in somatic cells of the developing mouse testis, beginning shortly after Sry expression is first detectable. This expression pattern is conserved in the developing male gonad of the chicken and is dependent on the testis-specific transcription factor SOX9. Our data suggest that low levels of RA may be required for early developmental events in the testis, or that Aldh1a1 expression in the fetus may prefigure a later requirement for ALDH1A1 in regulating spermatogenesis postnatally.
Collapse
Affiliation(s)
- Josephine Bowles
- Division of Molecular Genetics and Development, Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Chen S, Wang K, Wan YJY. Retinoids activate RXR/CAR-mediated pathway and induce CYP3A. Biochem Pharmacol 2009; 79:270-6. [PMID: 19686701 DOI: 10.1016/j.bcp.2009.08.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 08/07/2009] [Accepted: 08/11/2009] [Indexed: 10/20/2022]
Abstract
Retinoids and carotenoids are frequently used as antioxidants to prevent cancer. In this study, a panel of retinoids and carotenoids was examined to determine their effects on activation of RXR/CAR-mediated pathway and regulation of CYP3A gene expression. Transient transfection assays of HepG2 cells revealed that five out of thirteen studied retinoids significantly induced RXRalpha/CAR-mediated activation of luciferase activity that is driven by the thymidine kinase promoter linked with a PXR binding site in the CYP3A4 gene [tk-(3A4)(3)-Luc reporter]. All-trans retinoic acid (RA) and 9-cis RA were more effective than CAR agonist TCBOPOP in induction of the tk-(3A4)(3)-Luc reporter. Addition of retinoid and TCBOPOP further enhanced the inducibility and the induction was preferentially mediated by RXRalpha/CAR and RXRgamma/CAR heterodimer. Chromatin immunoprecipitation assay showed that retinoids recruit RXRalpha and CAR to the proximal ER6 and distal XREM nuclear receptor response elements of the CYP3A4 gene promoter. The experimental data demonstrate that retinoids can effectively regulate CYP3A gene expression through the RXR/CAR-mediated pathway.
Collapse
Affiliation(s)
- Shiyong Chen
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Biomedical Research Center Building/KLSIC, 2146 W 39th Avenue, Kansas City, KS 66160, USA
| | | | | |
Collapse
|
22
|
Maclean G, Dollé P, Petkovich M. Genetic disruption of CYP26B1 severely affects development of neural crest derived head structures, but does not compromise hindbrain patterning. Dev Dyn 2009; 238:732-45. [DOI: 10.1002/dvdy.21878] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
23
|
Abstract
The vitamin A derivative retinoic acid performs many functions in vertebrate development and is thought to act as a diffusible morphogen that patterns the anterior-posterior axis of the hindbrain. Recent work in several systems has led to insights into how the spatial distribution of retinoic acid is regulated. These have shown local control of synthesis and degradation, and computational models suggest that degradation by the Cyp26 enzymes plays a critical role in the formation of a morphogen gradient as well as its ability to compensate for fluctuations in RA levels.
Collapse
Affiliation(s)
- Richard J. White
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Thomas F. Schilling
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
24
|
Smith CA, Roeszler KN, Bowles J, Koopman P, Sinclair AH. Onset of meiosis in the chicken embryo; evidence of a role for retinoic acid. BMC DEVELOPMENTAL BIOLOGY 2008; 8:85. [PMID: 18799012 PMCID: PMC2564928 DOI: 10.1186/1471-213x-8-85] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 09/17/2008] [Indexed: 11/10/2022]
Abstract
Background Meiosis in higher vertebrates shows a dramatic sexual dimorphism: germ cells enter meiosis and arrest at prophase I during embryogenesis in females, whereas in males they enter mitotic arrest during embryogenesis and enter meiosis only after birth. Here we report the molecular analysis of meiosis onset in the chicken model and provide evidence for conserved regulation by retinoic acid. Results Meiosis in the chicken embryo is initiated late in embryogenesis (day 15.5), relative to gonadal sex differentiation (from day 6). Meiotic germ cells are first detectable only in female gonads from day 15.5, correlating with the expression of the meiosis marker, SCP3. Gonads isolated from day 10.5 female embryos and grown in serum-free medium could still initiate meiosis at day 16.5, suggesting that this process is controlled by an endogenous clock in the germ cells themselves, and/or that germ cells are already committed to meiosis at the time of explantation. Early commitment is supported by the analysis of chicken STRA8, a pre-meiotic marker shown to be essential for meiosis in mouse. Chicken STRA8 is expressed female-specifically from embryonic day 12.5, preceding morphological evidence of meiosis at day 15.5. Previous studies have shown that, in the mouse embryo, female-specific induction of STRA8 and meiosis are triggered by retinoic acid. A comprehensive analysis of genes regulating retinoic acid metabolism in chicken embryos reveals dynamic expression in the gonads. In particular, the retinoic acid-synthesising enzyme, RALDH2, is expressed in the left ovarian cortex at the time of STRA8 up-regulation, prior to meiosis. Conclusion This study presents the first molecular analysis of meiosis onset in an avian embryo. Although aspects of avian meiosis differ from that of mammals, a role for retinoic acid may be conserved.
Collapse
Affiliation(s)
- Craig A Smith
- Murdoch Childrens Research Institute and University of Melbourne Department of Paediatrics, Royal Children's Hospital, Melbourne, 3052, Australia.
| | | | | | | | | |
Collapse
|
25
|
Wang G, Scott SA. Retinoid signaling is involved in governing the waiting period for axons in chick hindlimb. Dev Biol 2008; 321:216-26. [PMID: 18602384 PMCID: PMC2596718 DOI: 10.1016/j.ydbio.2008.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 05/12/2008] [Accepted: 06/12/2008] [Indexed: 01/01/2023]
Abstract
During embryonic development in chick, axons pause in a plexus region for approximately 1 day prior to invading the limb. We have previously shown that this "waiting period" is governed by maturational changes in the limb. Here we provide a detailed description of the spatiotemporal pattern of Raldh2 expression in lumbosacral motoneurons and in the limb, and show that retinoid signaling in the limb contributes significantly to terminating the waiting period. Raldh2, indicative of retinoid signaling, first appears in hindlimb mesenchyme near the end of the waiting period. Transcripts are more abundant in connective tissue associated with predominantly fast muscles than predominantly slow muscles, but are not expressed in muscle cells themselves. The tips of ingrowing axons are always found in association with domains of Raldh2, but development of Raldh2 expression is not regulated by the axons. Instead, retinoid signaling appears to regulate axon entry into the limb. Supplying exogenous retinoic acid to proximal limb during the waiting period caused both motor and sensory axons to invade the limb prematurely and altered the normal stereotyped pattern of axon ingrowth without obvious effects on limb morphogenesis or motoneuron specification. Conversely, locally decreasing retinoid synthesis reduced axon growth into the limb. Retinoic acid significantly enhanced motor axon growth in vitro, suggesting that retinoic acid may directly promote axon growth into the limb in vivo. In addition, retinoid signaling may indirectly affect the waiting period by regulating the maturation of other gate keeping or guidance molecules in the limb. Together these findings reveal a novel function of retinoid signaling in governing the timing and patterning of axon growth into the limb.
Collapse
Affiliation(s)
- Guoying Wang
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, 20 N 1900 East, Salt Lake City, UT 84108
| | - Sheryl A. Scott
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, 20 N 1900 East, Salt Lake City, UT 84108
| |
Collapse
|
26
|
Simões-Costa MS, Azambuja AP, Xavier-Neto J. The search for non-chordate retinoic acid signaling: lessons from chordates. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:54-72. [PMID: 17109394 DOI: 10.1002/jez.b.21139] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Signaling by retinoic acid (RA) is an important pathway in the development and homeostasis of vertebrate and invertebrate chordates, with a critical role in mesoderm patterning. Classical studies on the distribution of nuclear receptors of animals suggested that the family of RA receptors (RARs/NR1B) was restricted to chordates, while the family of RA X receptors (RXR/NR2B) was distributed from cnidarians to chordates. However, the accumulation of data from genome projects and studies in non-model species is questioning this traditional view. Here we discuss the evidence for non-chordate RA signaling systems in the light of recent advances in our understanding of carotene (pro-Vitamin A) metabolism and of the identification of potential RARs and members of the NR1 family in echinoderms and lophotrochozoan trematodes, respectively. We conclude, as have others before (Bertrand et al., 2004. Mol Biol Evol 21(10):1923-1937), that signaling by RA is more likely an ancestral feature of bilaterians than a chordate innovation.
Collapse
Affiliation(s)
- Marcos S Simões-Costa
- Laboratório de Genética e Cardiologia Molecular InCor--HC.FMUSP São Paulo-SP, Brazil
| | | | | |
Collapse
|
27
|
Langton S, Gudas LJ. CYP26A1 knockout embryonic stem cells exhibit reduced differentiation and growth arrest in response to retinoic acid. Dev Biol 2007; 315:331-54. [PMID: 18241852 DOI: 10.1016/j.ydbio.2007.12.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 12/13/2007] [Accepted: 12/17/2007] [Indexed: 01/08/2023]
Abstract
CYP26A1, a cytochrome P450 enzyme, metabolizes all-trans-retinoic acid (RA) into polar metabolites, e.g. 4-oxo-RA and 4-OH-RA. To determine if altering RA metabolism affects embryonic stem (ES) cell differentiation, we disrupted both alleles of Cyp26a1 by homologous recombination. CYP26a1(-/-) ES cells had a 11.0+/-3.2-fold higher intracellular RA concentration than Wt ES cells after RA treatment for 48 h. RA-treated CYP26A1(-/-) ES cells exhibited 2-3 fold higher mRNA levels of Hoxa1, a primary RA target gene, than Wt ES cells. Despite increased intracellular RA levels, CYP26a1(-/-) ES cells were more resistant than Wt ES cells to RA-induced proliferation arrest. Transcripts for parietal endodermal differentiation markers, including laminin, J6(Hsp 47), and J31(SPARC, osteonectin) were expressed at lower levels in RA-treated CYP26a1(-/-) ES cells, indicating that the lack of CYP26A1 activity inhibits RA-associated differentiation. Microarray analyses revealed that RA-treated CYP26A1(-/-) ES cells exhibited lower mRNA levels than Wt ES cells for genes involved in differentiation, particularly in neural (Epha4, Pmp22, Nrp1, Gap43, Ndn) and smooth muscle differentiation (Madh3, Nrp1, Tagln Calponin, Caldesmon1). In contrast, genes involved in the stress response (e.g. Tlr2, Stk2, Fcgr2b, Bnip3, Pdk1) were expressed at higher levels in CYP26A1(-/-) than in Wt ES cells without RA. Collectively, our results show that CYP26A1 activity regulates intracellular RA levels, cell proliferation, transcriptional regulation of primary RA target genes, and ES cell differentiation to parietal endoderm.
Collapse
Affiliation(s)
- Simne Langton
- Department of Pharmacology, Weill Cornell Medical College, 1300 York Avenue, Rm. E-409, New York, NY 10021, USA
| | | |
Collapse
|
28
|
Ocaya P, Gidlöf AC, Olofsson PS, Törmä H, Sirsjö A. CYP26 Inhibitor R115866 Increases Retinoid Signaling in Intimal Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2007; 27:1542-8. [PMID: 17510468 DOI: 10.1161/atvbaha.106.138602] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Intimal smooth muscle cells (SMCs) are dedifferentiated SMCs that have a powerful ability to proliferate and migrate. This cell-type is responsible for the development of intimal hyperplasia after vascular angioplasty. Retinoids, especially all-trans retinoid acid, are known to regulate many processes activated at sites of vascular injury, including modulation of SMC phenotype and inhibition of SMC proliferation. Intracellular levels of active retinoids are under firm control. A key enzyme is the all-trans retinoic acid-degrading enzyme cytochrome p450 isoform 26 (CYP26). Thus, an alternative approach to exogenous retinoid administration could be to increase the intracellular level of all-trans retinoic acid by blocking CYP26-mediated degradation of retinoids. METHODS AND RESULTS Vascular intimal and medial SMCs expressed CYP26A1 and B1 mRNA. Although medial cells remained unaffected, treatment with the CYP26-inhibitor R115866 significantly increased cellular levels of all-trans retinoic acid in intimal SMCs. The increased levels of all-trans retinoic acid induced retinoid-regulated genes and decreased mitogenesis. CONCLUSIONS Blocking of the CYP26-mediated catabolism mimics the effects of exogenously administrated active retinoids on intimal SMCs. Therefore, CYP26-inhibitors offer a potential new therapeutic approach to vascular proliferative disorders.
Collapse
Affiliation(s)
- Pauline Ocaya
- Division of Biomedicine, Department of Clinical Medicine, University of Orebro, 701 82 Orebro, Sweden
| | | | | | | | | |
Collapse
|
29
|
Ribes V, Fraulob V, Petkovich M, Dollé P. The oxidizing enzyme CYP26a1 tightly regulates the availability of retinoic acid in the gastrulating mouse embryo to ensure proper head development and vasculogenesis. Dev Dyn 2007; 236:644-53. [PMID: 17211890 DOI: 10.1002/dvdy.21057] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Retinoic acid (RA) has been implicated as one of the signals providing a posterior character to the developing vertebrate central nervous system. Embryonic RA first appears in the posterior region of the gastrulating embryo up to the node level, where it may signal within the adjacent epiblast and/or newly induced neural plate to induce a hindbrain and spinal cord fate. Conversely, rostral head development requires forebrain-inducing signals produced by the anterior visceral endoderm and/or prechordal mesoderm, and there is evidence that RA receptors must be in an unliganded state to ensure proper head development. As RA is a diffusible lipophilic molecule, some mechanism(s) must therefore have evolved to prevent activation of RA targets in anterior regions of the embryo. This might result from RA catabolism mediated by the CYP26A1 oxidizing enzyme, which is transiently expressed in anteriormost embryonic tissues; however, previous analysis of Cyp26a1(-/-) mouse mutants did not clearly support this hypothesis. Here we show that Cyp26a1(-/-) null mutants undergo head truncations when exposed to maternally-derived RA, at doses that do not affect wild-type head development. These anomalies are linked to a widespread ectopic RA signaling activity in rostral head tissues of CYP26A1-deficient embryos. Thus, CYP26A1 is required in the anterior region of the gastrulating mouse embryo to prevent teratological effects that may result from RA signaling. We also report a novel role of CYP26A1 during early development of the intra- and extra-embryonic vascular networks.
Collapse
Affiliation(s)
- Vanessa Ribes
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, BP 10142, Illkirch, France
| | | | | | | |
Collapse
|
30
|
Ribes V, Otto DME, Dickmann L, Schmidt K, Schuhbaur B, Henderson C, Blomhoff R, Wolf CR, Tickle C, Dollé P. Rescue of cytochrome P450 oxidoreductase (Por) mouse mutants reveals functions in vasculogenesis, brain and limb patterning linked to retinoic acid homeostasis. Dev Biol 2006; 303:66-81. [PMID: 17126317 DOI: 10.1016/j.ydbio.2006.10.032] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2006] [Revised: 09/26/2006] [Accepted: 10/23/2006] [Indexed: 12/14/2022]
Abstract
Cytochrome P450 oxidoreductase (POR) acts as an electron donor for all cytochrome P450 enzymes. Knockout mouse Por(-/-) mutants, which are early embryonic (E9.5) lethal, have been found to have overall elevated retinoic acid (RA) levels, leading to the idea that POR early developmental function is mainly linked to the activity of the CYP26 RA-metabolizing enzymes (Otto et al., Mol. Cell. Biol. 23, 6103-6116). By crossing Por mutants with a RA-reporter lacZ transgene, we show that Por(-/-) embryos exhibit both elevated and ectopic RA signaling activity e.g. in cephalic and caudal tissues. Two strategies were used to functionally demonstrate that decreasing retinoid levels can reverse Por(-/-) phenotypic defects, (i) by culturing Por(-/-) embryos in defined serum-free medium, and (ii) by generating compound mutants defective in RA synthesis due to haploinsufficiency of the retinaldehyde dehydrogenase 2 (Raldh2) gene. Both approaches clearly improved the Por(-/-) early phenotype, the latter allowing mutants to be recovered up until E13.5. Abnormal brain patterning, with posteriorization of hindbrain cell fates and defective mid- and forebrain development and vascular defects were rescued in E9.5 Por(-/-) embryos. E13.5 Por(-/-); Raldh2(+/-) embryos exhibited abdominal/caudal and limb defects that strikingly phenocopy those of Cyp26a1(-/-) and Cyp26b1(-/-) mutants, respectively. Por(-/-); Raldh2(+/-) limb buds were truncated and proximalized and the anterior-posterior patterning system was not established. Thus, POR function is indispensable for the proper regulation of RA levels and tissue distribution not only during early embryonic development but also in later morphogenesis and molecular patterning of the brain, abdominal/caudal region and limbs.
Collapse
Affiliation(s)
- Vanessa Ribes
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104 du CNRS, U. 596 de l'INSERM, Université Louis Pasteur, BP 10142, 67404 Illkirch Cedex, CU de Strasbourg, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Roberts C, Ivins S, Cook AC, Baldini A, Scambler PJ. Cyp26 genes a1, b1 and c1 are down-regulated in Tbx1 null mice and inhibition of Cyp26 enzyme function produces a phenocopy of DiGeorge Syndrome in the chick. Hum Mol Genet 2006; 15:3394-410. [PMID: 17047027 DOI: 10.1093/hmg/ddl416] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cyp26a1, a gene required for retinoic acid (RA) inactivation during embryogenesis, was previously identified as a potential Tbx1 target from a microarray screen comparing wild-type and null Tbx1 mouse embryo pharyngeal arches (pa) at E9.5. Using real-time PCR and in situ hybridization analysis of Cyp26a1 and its two functionally related family members Cyp26b1 and c1, we demonstrate reduced and/or altered expression for all three genes in pharyngeal tissues of Tbx1 null embryos. Blockade of Cyp26 function in the chick embryo using R115866, a specific inhibitor of Cyp26 enzyme function, resulted in a dose-dependent phenocopy of the Tbx1 null mouse including loss of caudal pa and pharyngeal arch arteries (paa), small otic vesicles, loss of head mesenchyme and, at later stages, DiGeorge Syndrome-like heart defects, including common arterial trunk and perimembranous ventricular septal defects. Molecular markers revealed a serious disruption of pharyngeal pouch endoderm (ppe) morphogenesis and reduced staining for smooth muscle cells in paa. Expression of the RA synthesizing enzyme Raldh2 was also up-regulated and altered Hoxb1 expression indicated that RA levels are raised in R115866-treated embryos as reported for Tbx1 null mice. Down-regulation of Tbx1 itself was observed, in accordance with previous observations that RA represses Tbx1 expression. Thus, by specifically blocking the action of the Cyp26 enzymes we can recapitulate many elements of the Tbx1 mutant mouse, supporting the hypothesis that the dysregulation of RA-controlled morphogenesis contributes to the Tbx1 loss of function phenotype.
Collapse
|
32
|
Abstract
The inner ear originates from an embryonic ectodermal placode and rapidly develops into a three-dimensional structure (the otocyst) through complex molecular and cellular interactions. Many genes and their products are involved in inner ear induction, organogenesis, and cell differentiation. Retinoic acid (RA) is an endogenous signaling molecule that may play a role during different phases of inner ear development, as shown from pathological observations. To gain insight into the function of RA during inner ear development, we have investigated the spatio-temporal expression patterns of major components of RA signaling pathway, including cellular retinoic acid binding proteins (CRABPs), cellular retinoid binding proteins (CRBPs), retinaldehyde dehydrogenases (RALDHs), catabolic enzymes (CYP26s), and nuclear receptors (RARs). Although the CrbpI, CrabpI, and -II genes are specifically expressed in the inner ear throughout development, loss-of-function studies have revealed that these proteins are dispensable for inner development and function. Several Raldh and Cyp26 gene transcripts are expressed at embryological day (E) 9.0-9.5 in the otocyst and show mainly complementary distributions in the otic epithelium and mesenchyme during following stages. From Western blot, RT-PCR, and in situ hybridization analysis, there is a low expression of Raldhs in the early otocyst at E9, while Cyp26s are strongly expressed. During the following days, there is an up-regulation of Raldhs and a down-regulation for Cyp26s. Specific RA receptor (Rar and Rxr) genes are expressed in the otocyst and during further development of the inner ear. At the otocyst stage, most of the components of the retinoid pathway are present, suggesting that the embryonic inner ear might act as an autocrine system, which is able to synthesize and metabolize RA necessary for its development. We propose a model in which two RA-dependent pathways may control inner ear ontogenesis: one indirect with RA from somitic mesoderm acting to regulate gene expression within the hindbrain neuroepithelium, and another with RA acting directly on the otocyst. Current evidence suggests that RA may regulate several genes involved in mesenchyme-epithelial interactions, thereby controlling inner ear morphogenesis. Our investigations suggest that RA signaling is a critical component not only of embryonic development, but also of postnatal maintenance of the inner ear.
Collapse
Affiliation(s)
- Raymond Romand
- Institut Clinique de la Souris and Institut de Génétique et de Biologie Moléculaire et cellulaire, B.P. 10142, 67404 Illkirch Cedex, France.
| | | | | |
Collapse
|
33
|
Sen J, Harpavat S, Peters MA, Cepko CL. Retinoic acid regulates the expression of dorsoventral topographic guidance molecules in the chick retina. Development 2005; 132:5147-59. [PMID: 16251210 DOI: 10.1242/dev.02100] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Asymmetric expression of several genes in the early eye anlagen is required for the dorsoventral (DV) and anteroposterior (AP) patterning of the retina. Some of these early patterning genes play a role in determining the graded expression of molecules that are needed to form the retinotectal map. The polarized expression of retinoic acid synthesizing and degrading enzymes along the DV axis in the retina leads to several zones of varied retinoic acid (RA)activity. This is suggestive of RA playing a role in DV patterning of the retina. A dominant-negative form of the retinoic acid receptor α(DNhRARα) was expressed in the chick retina to block RA activity. RA signaling was found to play a role in regulating the expression of EphB2,EphB3 and ephrin B2, three molecules whose graded expression in the retina along the DV axis is important for establishing the correct retinotectal map. Blocking RA signaling by misexpression of a RA degrading enzyme, Cyp26A1 recapitulated some but not all the effects of DNhRARα. It also was found that Vax, a ventrally expressed transcription factor that regulates the expression of the EphB and ephrin B molecules, functions upstream of, or in parallel to, RA. Expression of DNhRARα led to increased levels of RA-synthesizing enzymes and loss of RA-degrading enzymes. Activation of such compensatory mechanisms when RA activity is blocked suggests that RA homeostasis is very strictly regulated in the retina.
Collapse
Affiliation(s)
- Jonaki Sen
- Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
34
|
Reijntjes S, Blentic A, Gale E, Maden M. The control of morphogen signalling: regulation of the synthesis and catabolism of retinoic acid in the developing embryo. Dev Biol 2005; 285:224-37. [PMID: 16054125 DOI: 10.1016/j.ydbio.2005.06.019] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 05/18/2005] [Accepted: 06/10/2005] [Indexed: 11/16/2022]
Abstract
We consider here how morphogenetic signals involving retinoic acid (RA) are switched on and off in the light of positive and negative feedback controls which operate in other embryonic signalling systems. Switching on the RA signal involves the synthetic retinaldehyde dehydrogenase (RALDH) enzymes and it is currently thought that switching off the RA signal involves the CYP26 enzymes which catabolise RA. We have tested whether these enzymes are regulated by the presence or absence of all-trans-RA using the vitamin A-deficient quail model system and the application of excess retinoids on beads to various locations within the embryo. The Raldhs are unaffected either by the absence or presence of excess RA, whereas the Cyps are strongly affected. In the absence of RA some, but not all domains of Cyp26A1, Cyp26B1 and Cyp26C1 are down-regulated, in particular the spinal cord (Cyp26A1), the heart and developing vasculature (Cyp26B1) and the rhombomeres (Cyp26C1). In the presence of excess RA, the Cyps show a differential regulation-Cyp26A1 and Cyp26B1 are up-regulated whereas Cyp26C1 is down-regulated. We tested whether the Cyp products have a similar influence on these genes and indeed 4-oxo-RA, 4-OH-RA and 5,6-epoxy-RA do. Furthermore, these 3 metabolites are biologically active in that they fully rescue the vitamin A-deficient quail embryo. Finally, by using retinoic acid receptor selective agonists we show that these compounds regulate the Cyps through the RARalpha receptor. These results are discussed with regard to positive and negative feedback controls in developing systems.
Collapse
Affiliation(s)
- Susan Reijntjes
- MRC Centre for Developmental Neurobiology, 4th floor New Hunt's House, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK
| | | | | | | |
Collapse
|
35
|
Roberts C, Ivins SM, James CT, Scambler PJ. Retinoic acid down-regulates Tbx1 expression in vivo and in vitro. Dev Dyn 2005; 232:928-38. [PMID: 15736167 DOI: 10.1002/dvdy.20268] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Both Tbx1 and retinoic acid (RA) are key players in embryonic pharyngeal development; loss of Tbx1 produces DiGeorge syndrome-like phenotypes in mouse models as does disruption of retinoic acid homeostasis. We have demonstrated that perturbation of retinoic acid levels in the avian embryo produces altered Tbx1 expression. In vitamin A-deficient quails, which lack endogenous retinoic acid, Tbx1 expression patterns were disrupted early in development and expression was subsequently lost in all tissues. "Gain-of-function" experiments where RA-soaked beads were grafted into the pharyngeal region produced localized down-regulation of Tbx1 expression. In these embryos, analysis of Shh and Foxa2, upstream control factors for Tbx1, suggested that the effect of RA was independent of this regulatory pathway. Real-time polymerase chain reaction analysis of retinoic acid-treated P19 cells showed a dose-dependent repression of Tbx1 by retinoic acid. Repression of Tbx1 transcript levels was first evident after 8-12 hr in culture in the presence of retinoic acid, and to achieve the highest levels of repression, de novo protein synthesis was required.
Collapse
Affiliation(s)
- Catherine Roberts
- Molecular Medicine Unit, Institute of Child Health, London WC1N 1EH, United Kingdom.
| | | | | | | |
Collapse
|
36
|
Sirbu IO, Gresh L, Barra J, Duester G. Shifting boundaries of retinoic acid activity control hindbrain segmental gene expression. Development 2005; 132:2611-22. [PMID: 15872003 PMCID: PMC2833012 DOI: 10.1242/dev.01845] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Retinoic acid (RA) generated by Raldh2 in paraxial mesoderm is required for specification of the posterior hindbrain, including restriction of Hoxb1 expression to presumptive rhombomere 4 (r4). Hoxb1 expression requires 3' and 5' RA response elements for widespread induction up to r4 and for r3/r5 repression, but RA has previously been detected only from r5-r8, and vHnf1 is required for repression of Hoxb1 posterior to r4 in zebrafish. We demonstrate in mouse embryos that an RA signal initially travels from the paraxial mesoderm to r3, forming a boundary next to the r2 expression domain of Cyp26a1 (which encodes an RA-degrading enzyme). After Hoxb1 induction, the RA boundary quickly shifts to r4/r5, coincident with induction of Cyp26c1 in r4. A functional role for Cyp26c1 in RA degradation was established through examination of RA-treated embryos. Analysis of Raldh2-/- and vHnf1-/- embryos supports a direct role for RA in Hoxb1 induction up to r4 and repression in r3/r5, as well as an indirect role for RA in Hoxb1 repression posterior to r4 via RA induction of vHnf1 up to the r4/r5 boundary. Our findings suggest that Raldh2 and Cyp26 generate shifting boundaries of RA activity, such that r3-r4 receives a short pulse of RA and r5-r8 receives a long pulse of RA. These two pulses of RA activity function to establish expression of Hoxb1 and vHnf1 on opposite sides of the r4/r5 boundary.
Collapse
Affiliation(s)
- Ioan Ovidiu Sirbu
- OncoDevelopmental Biology Program, Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Lionel Gresh
- Unité d’Expression Génétique et Maladie URA 1644, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Jacqueline Barra
- Unité de Biologie du Développement URA 2578, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Gregg Duester
- OncoDevelopmental Biology Program, Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
- Author for correspondence ()
| |
Collapse
|
37
|
Zhao Q, Dobbs-McAuliffe B, Linney E. Expression of cyp26b1 during zebrafish early development. Gene Expr Patterns 2005; 5:363-9. [PMID: 15661642 DOI: 10.1016/j.modgep.2004.09.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Revised: 09/28/2004] [Accepted: 09/30/2004] [Indexed: 10/26/2022]
Abstract
We have cloned the zebrafish ortholog of the mammalian cyp26b1 gene. The predicted zebrafish cyp26b1 protein shares greater than 73% identity with mammalian homologues. cDNA transfection assays showed that like human cyp26b1, zebrafish cyp26b1 is involved in limiting the activity of retinoic acid. Reverse transcription-polymerase chain reaction (RT-PCR) analysis of embryonic RNAs suggested that no maternal cyp26b1 message is detectable. Zygotic cyp26b1 message could be detected at 75% epiboly by RT-PCR and localized to presumptive rhombomere 3 and rhombomere 4 at the early two-somite (2S) stage (10.5 hpf: hour post fertilization) by whole mount in situ hybridization. As development proceeds expression expands anteriorly to include rhombomere 2 at the 10S stage (14hpf). By 14S (16hpf) expression in the hindbrain has also expanded posteriorly and encompasses rhombomere 2 through rhombomere 6. At later stages, 24 through 48 hpf, additional expression was found in the eyes, diencephalon, midbrain-hindbrain boundary, cerebellum, pectoral fin and the pharyngeal arch primordia.
Collapse
Affiliation(s)
- Qingshun Zhao
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
38
|
Reijntjes S, Gale E, Maden M. Generating gradients of retinoic acid in the chick embryo: Cyp26C1 expression and a comparative analysis of the Cyp26 enzymes. Dev Dyn 2004; 230:509-17. [PMID: 15188435 DOI: 10.1002/dvdy.20025] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have cloned a novel retinoic acid (RA) catabolizing enzyme, Cyp26C1, in the chick and describe here its distribution during early stages of chick embryogenesis. It is expressed from stage 4 in the presumptive anterior (cephalic) mesoderm, in a subset of cephalic neural crest cells, the ventral otic vesicle, mesenchyme adjacent to the otic vesicle, the branchial pouches and grooves, a part of the neural retina, and the anterior telencephalon, and shows a dynamic expression in the hindbrain rhombomeres and neuronal populations within them. By examining the distribution of Cyp26C1 in the RA-free quail embryo, we can determine which of these expression domains is dependent on RA, and it is only the rhombomeric sites that do not appear, suggesting a role for RA in this location. The most striking domain of Cyp26C1 distribution is in the anterior cephalic mesoderm, which is adjacent to the domain of Raldh2 in the trunk mesoderm, but separated from it by a gap dorsal to which the posterior hindbrain will develop. We suggest that a gradient of RA within the mesoderm generated by Raldh2 and catabolized by Cyp26C1 could be responsible for patterning the hindbrain. We have compared this distribution of Cyp26C1 with that of Cyp26A1 and Cyp26B1 in the chick and shown that they generally occupy nonoverlapping sites of expression in the embryo, and as a result, we suggest individual roles for each of the Cyp enzymes in the developing embryo.
Collapse
Affiliation(s)
- Susan Reijntjes
- MRC Centre for Developmental Neurobiology, King's College London, London United Kingdom
| | | | | |
Collapse
|