1
|
Mondal A, Toyoda R, Costil R, Feringa BL. Chemically Driven Rotatory Molecular Machines. Angew Chem Int Ed Engl 2022; 61:e202206631. [PMID: 35852813 PMCID: PMC9826306 DOI: 10.1002/anie.202206631] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 01/11/2023]
Abstract
Molecular machines are at the frontier of biology and chemistry. The ability to control molecular motion and emulating the movement of biological systems are major steps towards the development of responsive and adaptive materials. Amazing progress has been seen for the design of molecular machines including light-induced unidirectional rotation of overcrowded alkenes. However, the feasibility of inducing unidirectional rotation about a single bond as a result of chemical conversion has been a challenging task. In this Review, an overview of approaches towards the design, synthesis, and dynamic properties of different classes of atropisomers which can undergo controlled switching or rotation under the influence of a chemical stimulus is presented. They are categorized as molecular switches, rotors, motors, and autonomous motors according to their type of response. Furthermore, we provide a future perspective and challenges focusing on building sophisticated molecular machines.
Collapse
Affiliation(s)
- Anirban Mondal
- Stratingh Institute for Chemistry University of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Ryojun Toyoda
- Stratingh Institute for Chemistry University of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- Department of ChemistryGraduate School of ScienceTohoku University6-3 Aramaki-Aza-AobaAobaku, Sendai980-8578Japan
| | - Romain Costil
- Stratingh Institute for Chemistry University of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry University of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| |
Collapse
|
2
|
Mondal A, Toyoda R, Costil R, Feringa BL. Chemically Driven Rotatory Molecular Machines. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anirban Mondal
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Ryojun Toyoda
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chmistry NETHERLANDS
| | - Romain Costil
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Ben L Feringa
- University of Groningen Stratingh Institute for Chemistry, Faculty of Science and Engineering Nijenborgh 4 9747 AG Groningen NETHERLANDS
| |
Collapse
|
3
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
4
|
Hemmatian Z, Tunuguntla RH, Noy A, Rolandi M. Electronic control of H+ current in a bioprotonic device with carbon nanotube porins. PLoS One 2019; 14:e0212197. [PMID: 30794578 PMCID: PMC6386364 DOI: 10.1371/journal.pone.0212197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 01/29/2019] [Indexed: 01/04/2023] Open
Abstract
Hybrid biotic abiotic devices can be used to interface electronics with biological systems for novel therapies or to increase device functionality beyond silicon. Many strategies exist to merge the electronic and biological worlds, one dominated by electrons and holes as charge carriers, the other by ions. In the biological world, lipid bilayers and ion channels are essential to compartmentalize the cell machinery and regulate ionic fluxes across the cell membrane. Here, we demonstrate a bioelectronic device in which a lipid bilayer supported on H+-conducting Pd/PdHx contacts contains carbon nanotubes porin (CNTP) channels. This bioelectronic device uses CNTPs to control of H+ flow across the lipid bilayer with a voltage applied to the Pd/PdHx contacts. Potential applications of these devices include local pH sensing and control.
Collapse
Affiliation(s)
- Zahra Hemmatian
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, United States of America
| | - Ramya H. Tunuguntla
- Physics and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Aleksandr Noy
- Physics and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
- School of Natural Sciences, University of California Merced, Merced, CA, United States of America
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, United States of America
| |
Collapse
|
5
|
Soto-Rodríguez J, Hemmatian Z, Black J, Rolandi M, Baneyx F. Two-Channel Bioprotonic Photodetector. ACS APPLIED BIO MATERIALS 2019; 2:930-935. [DOI: 10.1021/acsabm.8b00789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jessica Soto-Rodríguez
- Department of Chemical Engineering, University of Washington, Box 351750, Seattle, Washington 98195, United States
| | - Zahra Hemmatian
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, California 95064, United States
| | - Jennifer Black
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, California 95064, United States
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, California 95064, United States
| | - François Baneyx
- Department of Chemical Engineering, University of Washington, Box 351750, Seattle, Washington 98195, United States
| |
Collapse
|
6
|
A protonic biotransducer controlling mitochondrial ATP synthesis. Sci Rep 2018; 8:10423. [PMID: 30002478 PMCID: PMC6043558 DOI: 10.1038/s41598-018-28435-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/20/2018] [Indexed: 12/14/2022] Open
Abstract
In nature, protons (H+) play an important role in biological activities such as in mitochondrial ATP synthesis, which is driven by a H+ gradient across the inner membrane, or in the activation of acid sensing ion channels in neuron cells. Bioprotonic devices directly interface with the H+ concentration (pH) to facilitate engineered interactions with these biochemical processes. Here we develop a H+ biotransducer that changes the pH in a mitochondrial matrix by controlling the flow of H+ between a conductive polymer of sulfonated polyaniline and solution. We have successfully modulated the rate of ATP synthesis in mitochondria by altering the solution pH. Our H+ biotransducer provides a new way to monitor and modulate pH dependent biological functions at the interface between the electronic devices and biological materials.
Collapse
|
7
|
Hemmatian Z, Keene S, Josberger E, Miyake T, Arboleda C, Soto-Rodríguez J, Baneyx F, Rolandi M. Electronic control of H + current in a bioprotonic device with Gramicidin A and Alamethicin. Nat Commun 2016; 7:12981. [PMID: 27713411 PMCID: PMC5059763 DOI: 10.1038/ncomms12981] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 08/19/2016] [Indexed: 12/04/2022] Open
Abstract
In biological systems, intercellular communication is mediated by membrane proteins and ion channels that regulate traffic of ions and small molecules across cell membranes. A bioelectronic device with ion channels that control ionic flow across a supported lipid bilayer (SLB) should therefore be ideal for interfacing with biological systems. Here, we demonstrate a biotic-abiotic bioprotonic device with Pd contacts that regulates proton (H+) flow across an SLB incorporating the ion channels Gramicidin A (gA) and Alamethicin (ALM). We model the device characteristics using the Goldman-Hodgkin-Katz (GHK) solution to the Nernst-Planck equation for transport across the membrane. We derive the permeability for an SLB integrating gA and ALM and demonstrate pH control as a function of applied voltage and membrane permeability. This work opens the door to integrating more complex H+ channels at the Pd contact interface to produce responsive biotic-abiotic devices with increased functionality.
Collapse
Affiliation(s)
- Zahra Hemmatian
- Department of Electrical Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Scott Keene
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Erik Josberger
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA
- Department of Electrical Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Takeo Miyake
- Department of Electrical Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Carina Arboleda
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Jessica Soto-Rodríguez
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA
| | - François Baneyx
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Marco Rolandi
- Department of Electrical Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
8
|
Proton transfer pathways in an aspartate-water cluster sampled by a network of discrete states. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Soto-Rodríguez J, Hemmatian Z, Josberger EE, Rolandi M, Baneyx F. A Palladium-Binding Deltarhodopsin for Light-Activated Conversion of Protonic to Electronic Currents. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:6581-5. [PMID: 27185384 DOI: 10.1002/adma.201600222] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/01/2016] [Indexed: 05/24/2023]
Abstract
Fusion of a palladium-binding peptide to an archaeal rhodopsin promotes intimate integration of the lipid-embedded membrane protein with a palladium hydride protonic contact. Devices fabricated with the palladium-binding deltarhodopsin enable light-activated conversion of protonic currents to electronic currents with on/off responses complete in seconds and a nearly tenfold increase in electrical signal relative to those made with the wild-type protein.
Collapse
Affiliation(s)
| | - Zahra Hemmatian
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
- Department of Electrical Engineering, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Erik E Josberger
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
- Department of Electrical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Marco Rolandi
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
- Department of Electrical Engineering, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - François Baneyx
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
10
|
Miyake T, Rolandi M. Grotthuss mechanisms: from proton transport in proton wires to bioprotonic devices. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:023001. [PMID: 26657711 DOI: 10.1088/0953-8984/28/2/023001] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In 1804, Theodore von Grotthuss proposed a mechanism for proton (H(+)) transport between water molecules that involves the exchange of a covalent bond between H and O with a hydrogen bond. This mechanism also supports the transport of OH(-) as a proton hole and is essential in explaining proton transport in intramembrane proton channels. Inspired by the Grotthuss mechanism and its similarity to electron and hole transport in semiconductors, we have developed semiconductor type devices that are able to control and monitor a current of H(+) as well as OH(-) in hydrated biopolymers. In this topical review, we revisit these devices that include protonic diodes, complementary, transistors, memories and transducers as well as a phenomenological description of their behavior that is analogous to electronic semiconductor devices.
Collapse
Affiliation(s)
- Takeo Miyake
- Department of Electrical Engineering, University of California, Santa Cruz, CA 95064, USA. Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
11
|
Deng Y, Josberger E, Jin J, Rousdari AF, Helms BA, Zhong C, Anantram MP, Rolandi M. H+-type and OH- -type biological protonic semiconductors and complementary devices. Sci Rep 2013; 3:2481. [PMID: 24089083 PMCID: PMC3789148 DOI: 10.1038/srep02481] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/05/2013] [Indexed: 01/05/2023] Open
Abstract
Proton conduction is essential in biological systems. Oxidative phosphorylation in mitochondria, proton pumping in bacteriorhodopsin, and uncoupling membrane potentials by the antibiotic Gramicidin are examples. In these systems, H(+) hop along chains of hydrogen bonds between water molecules and hydrophilic residues - proton wires. These wires also support the transport of OH(-) as proton holes. Discriminating between H(+) and OH(-) transport has been elusive. Here, H(+) and OH(-) transport is achieved in polysaccharide- based proton wires and devices. A H(+)- OH(-) junction with rectifying behaviour and H(+)-type and OH(-)-type complementary field effect transistors are demonstrated. We describe these devices with a model that relates H(+) and OH(-) to electron and hole transport in semiconductors. In turn, the model developed for these devices may provide additional insights into proton conduction in biological systems.
Collapse
Affiliation(s)
- Yingxin Deng
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Erik Josberger
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
- Department of Electrical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Jungho Jin
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Anita Fadavi Rousdari
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, CA
| | - Brett A. Helms
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Chao Zhong
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - M. P. Anantram
- Department of Electrical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Marco Rolandi
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
12
|
Abstract
Flagellated bacteria, such as Escherichia coli, swim by rotating thin helical filaments, each driven at its base by a reversible rotary motor, powered by an ion flux. A motor is about 45 nm in diameter and is assembled from about 20 different kinds of parts. It develops maximum torque at stall but can spin several hundred Hz. Its direction of rotation is controlled by a sensory system that enables cells to accumulate in regions deemed more favorable. We know a great deal about motor structure, genetics, assembly, and function, but we do not really understand how it works. We need more crystal structures. All of this is reviewed, but the emphasis is on function.
Collapse
Affiliation(s)
- Howard C Berg
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
13
|
Abstract
Three protein motors have been unambiguously identified as rotary engines: the bacterial flagellar motor and the two motors that constitute ATP synthase (F(0)F(1) ATPase). Of these, the bacterial flagellar motor and F(0) motors derive their energy from a transmembrane ion-motive force, whereas the F(1) motor is driven by ATP hydrolysis. Here, we review the current understanding of how these protein motors convert their energy supply into a rotary torque.
Collapse
Affiliation(s)
- George Oster
- Depts Molecular and Cellular Biology and ESPM, College of Natural Resources, University of California, Berkeley, CA 94720, USA.
| | | |
Collapse
|