1
|
Huang XM, Liao E, Liao JQ, Liu YL, Shao Y. FPR1 Antagonist (BOC-MLF) Inhibits Amniotic Epithelial-mesenchymal Transition. Curr Med Sci 2024; 44:187-194. [PMID: 38300426 DOI: 10.1007/s11596-023-2794-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 06/02/2023] [Indexed: 02/02/2024]
Abstract
OBJECTIVE Premature rupture of membranes (PROM) is a common pregnancy disorder that is closely associated with structural weakening of fetal membranes. Studies have found that formyl peptide receptor 1 (FPR1) activates inflammatory pathways and amniotic epithelialmesenchymal transition (EMT), stimulates collagen degradation, and leads to membrane weakening and membrane rupture. The purpose of this study was to investigate the anti-inflammatory and EMT inhibitory effects of FPR1 antagonist (BOC-MLF) to provide a basis for clinical prevention of PROM. METHODS The relationship between PROM, FPR1, and EMT was analyzed in human fetal membrane tissue and plasma samples using Western blotting, PCR, Masson staining, and ELISA assays. Lipopolysaccharide (LPS) was used to establish a fetal membrane inflammation model in pregnant rats, and BOC-MLF was used to treat the LPS rat model. We detected interleukin (IL)-6 in blood from the rat hearts to determine whether the inflammatory model was successful and whether the anti-inflammatory treatment was effective. We used electron microscopy to analyze the structure and collagen expression of rat fetal membrane. RESULTS Western blotting, PCR and Masson staining indicated that the expression of FPR1 was significantly increased, the expression of collagen was decreased, and EMT appeared in PROM. The rat model indicated that LPS caused the collapse of fetal membrane epithelial cells, increased intercellular gaps, and decreased collagen. BOC-MLF promoted an increase in fetal membrane collagen, inhibited EMT, and reduced the weakening of fetal membranes. CONCLUSION The expression of FPR1 in the fetal membrane of PROM was significantly increased, and EMT of the amniotic membrane was obvious. BOC-MLF can treat inflammation and inhibit amniotic EMT.
Collapse
Affiliation(s)
- Xiao-Mei Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - E Liao
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, China
| | - Jun-Qun Liao
- Medical Laboratory Science, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Ya-Ling Liu
- Department of Obstetrics, Yubei Maternity and Child Healthcare Hospital, Chongqing, 400042, China
| | - Yong Shao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China.
| |
Collapse
|
2
|
Wickstead ES, Solito E, McArthur S. Promiscuous Receptors and Neuroinflammation: The Formyl Peptide Class. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122009. [PMID: 36556373 PMCID: PMC9786789 DOI: 10.3390/life12122009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022]
Abstract
Formyl peptide receptors, abbreviated as FPRs in humans, are G-protein coupled receptors (GPCRs) mainly found in mammalian leukocytes. However, they are also expressed in cell types crucial for homeostatic brain regulation, including microglia and blood-brain barrier endothelial cells. Thus, the roles of these immune-associated receptors are extensive, from governing cellular adhesion and directed migration through chemotaxis, to granule release and superoxide formation, to phagocytosis and efferocytosis. In this review, we will describe the similarities and differences between the two principal pro-inflammatory and anti-inflammatory FPRs, FPR1 and FPR2, and the evidence for their importance in the development of neuroinflammatory disease, alongside their potential as therapeutic targets.
Collapse
Affiliation(s)
- Edward S. Wickstead
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: (E.S.W.); (S.M.)
| | - Egle Solito
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
- Department of Medicina Molecolare e Biotecnologie Mediche, University of Naples “Federico II”, 80131 Naples, Italy
| | - Simon McArthur
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary University of London, Blizard Institute, 4, Newark Street, London E1 2AT, UK
- Correspondence: (E.S.W.); (S.M.)
| |
Collapse
|
3
|
Yang SS, Wu HC, Hwang TL, Chen IS, Lin CJ, Cheng MJ, Chang HS. Anti-inflammatory butanolides and lignanoids from the root of Machilus zuihoensis var. mushaensis. Bioorg Chem 2022; 129:106166. [DOI: 10.1016/j.bioorg.2022.106166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/26/2022] [Accepted: 09/15/2022] [Indexed: 11/02/2022]
|
4
|
More S, Marakalala MJ, Sathekge M. Tuberculosis: Role of Nuclear Medicine and Molecular Imaging With Potential Impact of Neutrophil-Specific Tracers. Front Med (Lausanne) 2021; 8:758636. [PMID: 34957144 PMCID: PMC8703031 DOI: 10.3389/fmed.2021.758636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/03/2021] [Indexed: 01/02/2023] Open
Abstract
With Tuberculosis (TB) affecting millions of people worldwide, novel imaging modalities and tools, particularly nuclear medicine and molecular imaging, have grown with greater interest to assess the biology of the tuberculous granuloma and evolution thereof. Much early work has been performed at the pre-clinical level using gamma single photon emission computed tomography (SPECT) agents exploiting certain characteristics of Mycobacterium tuberculosis (MTb). Both antituberculous SPECT and positron emission tomography (PET) agents have been utilised to characterise MTb. Other PET tracers have been utilised to help to characterise the biology of MTb (including Gallium-68-labelled radiopharmaceuticals). Of all the tracers, 2-[18F]FDG has been studied extensively over the last two decades in many aspects of the treatment paradigm of TB: at diagnosis, staging, response assessment, restaging, and in potentially predicting the outcome of patients with latent TB infection. Its lower specificity in being able to distinguish different inflammatory cell types in the granuloma has garnered interest in reviewing more specific agents that can portend prognostic implications in the management of MTb. With the neutrophil being a cell type that portends this poorer prognosis, imaging this cell type may be able to answer more accurately questions relating to the tuberculous granuloma transmissivity and may help in characterising patients who may be at risk of developing active TB. The formyl peptide receptor 1(FPR1) expressed by neutrophils is a key marker in this process and is a potential target to characterise these areas. The pre-clinical work regarding the role of radiolabelled N-cinnamoyl –F-(D) L – F – (D) –L F (cFLFLF) (which is an antagonist for FPR1) using Technetium 99m-labelled conjugates and more recently radiolabelled with Gallium-68 and Copper 64 is discussed. It is the hope that further work with this tracer may accelerate its potential to be utilised in responding to many of the current diagnostic dilemmas and challenges in TB management, thereby making the tracer a translatable option in routine clinical care.
Collapse
Affiliation(s)
- Stuart More
- Division of Nuclear Medicine, Department of Radiation Medicine, University of Cape Town, Cape Town, South Africa
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
- Nuclear Medicine Research Infrastructure, Steve Biko Academic Hospital, Pretoria, South Africa
- *Correspondence: Stuart More
| | - Mohlopheni J. Marakalala
- Africa Health Research Institute, Durban, South Africa
- Division of Infection and Immunity, University College London, London, United Kingdom
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Michael Sathekge
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
- Nuclear Medicine Research Infrastructure, Steve Biko Academic Hospital, Pretoria, South Africa
| |
Collapse
|
5
|
Ammendola R, Parisi M, Esposito G, Cattaneo F. Pro-Resolving FPR2 Agonists Regulate NADPH Oxidase-Dependent Phosphorylation of HSP27, OSR1, and MARCKS and Activation of the Respective Upstream Kinases. Antioxidants (Basel) 2021; 10:antiox10010134. [PMID: 33477989 PMCID: PMC7835750 DOI: 10.3390/antiox10010134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Formyl peptide receptor 2 (FPR2) is involved in the pathogenesis of chronic inflammatory diseases, being activated either by pro-resolving or proinflammatory ligands. FPR2-associated signal transduction pathways result in phosphorylation of several proteins and in NADPH oxidase activation. We, herein, investigated molecular mechanisms underlying phosphorylation of heat shock protein 27 (HSP27), oxidative stress responsive kinase 1 (OSR1), and myristolated alanine-rich C-kinase substrate (MARCKS) elicited by the pro-resolving FPR2 agonists WKYMVm and annexin A1 (ANXA1). Methods: CaLu-6 cells or p22phoxCrispr/Cas9 double nickase CaLu-6 cells were incubated for 5 min with WKYMVm or ANXA1, in the presence or absence of NADPH oxidase inhibitors. Phosphorylation at specific serine residues of HSP27, OSR1, and MARCKS, as well as the respective upstream kinases activated by FPR2 stimulation was analysed. Results: Blockade of NADPH oxidase functions prevents WKYMVm- and ANXA1-induced HSP-27(Ser82), OSR1(Ser339) and MARCKS(Ser170) phosphorylation. Moreover, NADPH oxidase inhibitors prevent WKYMVm- and ANXA1-dependent activation of p38MAPK, PI3K and PKCδ, the kinases upstream to HSP-27, OSR1 and MARCKS, respectively. The same results were obtained in p22phoxCrispr/Cas9 cells. Conclusions: FPR2 shows an immunomodulatory role by regulating proinflammatory and anti-inflammatory activities and NADPH oxidase is a key regulator of inflammatory pathways. The activation of NADPH oxidase-dependent pro-resolving downstream signals suggests that FPR2 signalling and NADPH oxidase could represent novel targets for inflammation therapeutic intervention.
Collapse
Affiliation(s)
| | | | | | - Fabio Cattaneo
- Correspondence: ; Tel.: +39-081-746-2036; Fax: +39-081-746-4359
| |
Collapse
|
6
|
Yang CL, Wu HC, Hwang TL, Lin CH, Cheng YH, Wang CC, Kan HL, Kuo YH, Chen IS, Chang HS, Lin YC. Anti-Inflammatory and Antibacterial Activity Constituents from the Stem of Cinnamomum validinerve. Molecules 2020; 25:molecules25153382. [PMID: 32722482 PMCID: PMC7435785 DOI: 10.3390/molecules25153382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/13/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022] Open
Abstract
One new dibenzocycloheptene, validinol (1), and one butanolide firstly isolated from the natural source, validinolide (2), together with 17 known compounds were isolated from the stem of Cinnamomum validinerve. Among the isolates, lincomolide A (3), secosubamolide (7), and cinnamtannin B1 (19) exhibited potent inhibition on both superoxide anion generation (IC50 values of 2.98 ± 0.3 µM, 4.37 ± 0.38 µM, and 2.20 ± 0.3 µM, respectively) and elastase release (IC50 values of 3.96 ± 0.31 µM, 3.04 ± 0.23 µM, and 4.64 ± 0.71 µM, respectively) by human neutrophils. In addition, isophilippinolide A (6), secosubamolide (7), and cinnamtannin B1 (19) showed bacteriostatic effects against Propionibacterium acnes in in vitro study, with minimal inhibitory concentration (MIC) values at 16 μg/mL, 16 μg/mL, and 500 μg/mL, respectively. Further investigations using the in vivo ear P. acnes infection model showed that the intraperitoneal administration of the major component cinnamtannin B1 (19) reduced immune cell infiltration and pro-inflammatory cytokines TNF-α and IL-6 at the infection sites. The results demonstrated the potential of cinnamtannin B1 (19) for acne therapy. In summary, these results demonstrated the anti-inflammatory potentials of Formosan C. validinerve during bacterial infections.
Collapse
Affiliation(s)
- Chi-Lung Yang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-L.Y.); (C.-H.L.); (C.-C.W.); (I.-S.C.)
| | - Ho-Cheng Wu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chu-Hung Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-L.Y.); (C.-H.L.); (C.-C.W.); (I.-S.C.)
| | - Yin-Hua Cheng
- PhD Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-H.C.); (H.-L.K.)
| | - Chia-Chi Wang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-L.Y.); (C.-H.L.); (C.-C.W.); (I.-S.C.)
| | - Hung-Lin Kan
- PhD Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-H.C.); (H.-L.K.)
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, Chinese Medicine Research Center, and Research Center for Chinese Herbal Medicine, China Medical University, Taichung 404, Taiwan;
| | - Ih-Sheng Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-L.Y.); (C.-H.L.); (C.-C.W.); (I.-S.C.)
| | - Hsun-Shuo Chang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-L.Y.); (C.-H.L.); (C.-C.W.); (I.-S.C.)
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (H.-S.C.); (Y.-C.L.); Tel.: +886-7-312-1101 (ext. 2664) (H.-S.C.); +886-7-312-1101 (ext. 2012) (Y.-C.L.)
| | - Ying-Chi Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-L.Y.); (C.-H.L.); (C.-C.W.); (I.-S.C.)
- PhD Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-H.C.); (H.-L.K.)
- Correspondence: (H.-S.C.); (Y.-C.L.); Tel.: +886-7-312-1101 (ext. 2664) (H.-S.C.); +886-7-312-1101 (ext. 2012) (Y.-C.L.)
| |
Collapse
|
7
|
Ge Y, Zhang S, Wang J, Xia F, Wan JB, Lu J, Ye RD. Dual modulation of formyl peptide receptor 2 by aspirin-triggered lipoxin contributes to its anti-inflammatory activity. FASEB J 2020; 34:6920-6933. [PMID: 32239559 DOI: 10.1096/fj.201903206r] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 12/28/2024]
Abstract
The eicosanoid lipoxin A4 and aspirin-triggered 15-epi-lipoxin A4 (ATL) are potent anti-inflammatory agents. How their anti-inflammatory effects are mediated by receptors such as the formyl peptide receptor 2 (FPR2/ALX) remains incompletely understood. In the present study, fluorescent biosensors of FPR2/ALX were prepared and ATL-induced conformational changes were recorded. A biphasic dose curve consisting of a descending phase and an ascending phase was observed, with the descending phase corresponding to diminished FPR2 response such as Ca2+ mobilization induced by the potent synthetic agonist WKYMVm. Preincubation of FPR2-expressing cells with 100 pM of ATL also lowered the threshold for WKYMVm to induce β-arrestin-2 membrane translocation, and inhibited WKYMVm-induced interleukin 8 secretion, suggesting signaling bias favoring anti-inflammatory activities. At 100 pM and above, ATL-induced receptor conformational changes resembling that of the WKYMVm along with a weak but measurable inhibition of forskolin-induced cAMP accumulation. However, no Ca2+ mobilization was induced by ATL until its concentration reached 1 µM. Taken together, these results suggest a dual regulatory mechanism by which ATL exerts anti-inflammatory effects through FPR2/ALX.
Collapse
Affiliation(s)
- Yunjun Ge
- State Key Laboratory for Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau Special Administrative Region, China
| | - Shuo Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Junlin Wang
- State Key Laboratory for Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau Special Administrative Region, China
| | - Fangbo Xia
- State Key Laboratory for Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau Special Administrative Region, China
| | - Jian-Bo Wan
- State Key Laboratory for Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau Special Administrative Region, China
| | - Jinjian Lu
- State Key Laboratory for Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau Special Administrative Region, China
| | - Richard D Ye
- State Key Laboratory for Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau Special Administrative Region, China
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
8
|
Katayama H. Anti-interleukin-17A and anti-interleukin-23 antibodies may be effective against Alzheimer's disease: Role of neutrophils in the pathogenesis. Brain Behav 2020; 10:e01504. [PMID: 31849180 PMCID: PMC6955921 DOI: 10.1002/brb3.1504] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/19/2019] [Accepted: 11/24/2019] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Despite the remarkable progress achieved in the research on Alzheimer's disease (AD), its exact pathogenesis is not fully understood and effective therapies do not currently exist. In order to find effective therapy for AD, I ranged extensively over the literature and found an important paper by Tiffany and colleagues. RESULTS AND CONCLUSION Neuroinflammation has been proposed as a possible cause or driving force of AD. The discovery by Tiffany et al. that amyloid β (Aβ) is a formylpeptide receptor 2 agonist indicated that Aβ is a potent chemoattractant for phagocytic leukocytes. Therefore, in all likelihood Aβ attracts peripheral blood neutrophils, monocytes, as well as microglia cells in brain parenchyma, and activates them. However, the role of microglia cells and their precursor monocytes in AD pathogenesis remains elusive. Recently, neutrophils were found to be present in areas with Aβ deposits in AD brain and in transgenic AD model mice. Because brain is vulnerable to the effects of reactive oxygen species (ROS) and neutrophils secrete a large amount of ROS, neutrophils look like a driving force of AD. Therefore, a possibility arises that anti-IL-17A and anti-IL-23 antibodies are effective against AD, because these antibodies can be thought to interfere with neutrophil trafficking from the bone marrow to the blood circulation and thus inhibit neutrophil infiltration into AD brain. Clinical studies using anti-IL-17A and anti-IL-23 antibodies in patients with AD are required.
Collapse
|
9
|
Phosphoproteomic analysis sheds light on intracellular signaling cascades triggered by Formyl-Peptide Receptor 2. Sci Rep 2019; 9:17894. [PMID: 31784636 PMCID: PMC6884478 DOI: 10.1038/s41598-019-54502-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
Formyl peptide receptors (FPRs) belong to the family of seven transmembrane Gi-protein coupled receptors (GPCR). FPR2 is considered the most promiscuous member of this family since it recognizes a wide variety of ligands. It plays a crucial role in several physio-pathological processes and different studies highlighted the correlation between its expression and the higher propensity to invasion and metastasis of some cancers. FPR2 stimulation by its synthetic agonist WKYMVm triggers multiple phosphorylations of intracellular signaling molecules, such as ERKs, PKC, PKB, p38MAPK, PI3K, PLC, and of non-signaling proteins, such as p47phox and p67phox which are involved in NADPH oxidase-dependent ROS generation. Biological effects of FPR2 stimulation include intracellular Ca2+ mobilization, cellular proliferation and migration, and wound healing. A systematic analysis of the phosphoproteome in FPR2-stimulated cells has not been yet reported. Herein, we describe a large-scale phosphoproteomic study in WKYMVm-stimulated CaLu-6 cells. By using high resolution MS/MS we identified 290 differentially phosphorylated proteins and 53 unique phosphopeptides mapping on 40 proteins. Phosphorylations on five selected phospho-proteins were further validated by western blotting, confirming their dependence on FPR2 stimulation. Interconnection between some of the signalling readout identified was also evaluated. Furthermore, we show that FPR2 stimulation with two anti-inflammatory agonists induces the phosphorylation of selected differentially phosphorylated proteins, suggesting their role in the resolution of inflammation. These data provide a promising resource for further studies on new signaling networks triggered by FPR2 and on novel molecular drug targets for human diseases.
Collapse
|
10
|
Goodarzi G, Maniati M, Qujeq D. The role of microRNAs in the healing of diabetic ulcers. Int Wound J 2019; 16:621-633. [PMID: 30821119 PMCID: PMC7949391 DOI: 10.1111/iwj.13070] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 12/28/2018] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are small protected molecules with a length of 18 to 25 nucleotides. Many studies have recently been conducted on miRNAs, illustrating their role in regulating many biological, physiological, and pathological activities, such as maintaining cellular signalling and regulating cellular pathways. The main role of miRNAs is to regulate the expression of genes after translation, which can lead to the destruction or suppression of translation by binding to mRNAs. As any change in the regulation of miRNAs is associated with several physiological abnormalities, such as type 2 diabetes and its complications, these molecules can be used for therapeutic purposes or as biomarkers for the diagnosis of diseases such as diabetes and its complications. In this review article, we will discuss important findings about the miRNAs and the role of these molecules in different phases of the wound-healing process of chronic wounds, especially diabetic ulcer.
Collapse
Affiliation(s)
- Golnaz Goodarzi
- Department of Medical Biochemistry and Biotechnology, School of MedicineNorth Khorasan University of Medical SciencesBojnurdIran
| | - Mahmood Maniati
- School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research InstituteBabol University of Medical SciencesBabolIran
- Dental Materials Research Center, Institute of HealthBabol University of Medical SciencesBabolIran
- Cancer Research Center, Health Research InstituteBabol University of Medical SciencesBabolIran
- Department of Clinical Biochemistry, School of MedicineBabol University of Medical SciencesBabolIran
| |
Collapse
|
11
|
Cuesta Torres LF, Zhu W, Öhrling G, Larsson R, Patel M, Wiese CB, Rye KA, Vickers KC, Tabet F. High-density lipoproteins induce miR-223-3p biogenesis and export from myeloid cells: Role of scavenger receptor BI-mediated lipid transfer. Atherosclerosis 2019; 286:20-29. [PMID: 31096070 DOI: 10.1016/j.atherosclerosis.2019.04.227] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 04/17/2019] [Accepted: 04/30/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS We recently showed that miR-223-3p on high-density lipoproteins (HDL) is exported to endothelial cells, where it inhibits inflammation. However, the origin of miR-223-3p on HDL is unknown. We hypothesize that HDL-associated miR-223-3p originates in myeloid cells and is exported to HDL in a scavenger receptor BI (SR-BI)-dependent manner. METHODS Polymorphonuclear neutrophils (PMNs) and human monocyte derived macrophages (HMDMs) were incubated with native HDL (nHDL) or discoidal reconstituted HDL (rHDL). Total RNA was isolated before and after incubation. Mature and primary miR-223-3p (pri-mir-223-3p) levels were quantified by real-time PCR. RESULTS Incubation with nHDL and rHDL increased miR-223-3p export from PMNs and HMDMs. In PMNs, nHDL but not rHDL, increased mature and pri-mir-223-3p. Incubation with HDL also increased Dicer mRNA, a critical regulator of miRNA biogenesis. Incubation of HMDMs with nHDL did not increase cellular levels of mature miR-223-3p, but significantly increased pri-mir-223 levels. Incubation with rHDL had no effect on either mature or pri-mir-223-3p levels. Activated PMNs increased miR-223-3p export to HDL and the production of reactive oxygen species and activated protein kinase C. Blocking HDL binding to SR-BI increased miR-223-3p export to HDL in both PMNs and HMDMs, but did not affect mature and primary miR-223-3p levels. Chemical inhibition of cholesterol flux by Block Lipid Transport (BLT)-1 inhibited HDL-induced pri-mir-223 expression in PMNs. CONCLUSIONS HDL-associated miR-223-3p originates in PMNs and macrophages. HDL stimulates miR-223-3p biogenesis in PMNs in a process that is regulated by SR-BI-mediated lipid flux.
Collapse
Affiliation(s)
| | - Wanying Zhu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gustav Öhrling
- School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
| | - Rasmus Larsson
- School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
| | - Mili Patel
- School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
| | - Carrie B Wiese
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Kerry-Anne Rye
- School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
| | - Kasey C Vickers
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Fatiha Tabet
- School of Medical Sciences, University of New South Wales Sydney, NSW, Australia.
| |
Collapse
|
12
|
Hemshekhar M, Choi KYG, Mookherjee N. Host Defense Peptide LL-37-Mediated Chemoattractant Properties, but Not Anti-Inflammatory Cytokine IL-1RA Production, Is Selectively Controlled by Cdc42 Rho GTPase via G Protein-Coupled Receptors and JNK Mitogen-Activated Protein Kinase. Front Immunol 2018; 9:1871. [PMID: 30158931 PMCID: PMC6104452 DOI: 10.3389/fimmu.2018.01871] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
The human host defense peptide LL-37 promotes immune activation such as induction of chemokine production and recruitment of leukocytes. Conversely, LL-37 also mediates anti-inflammatory responses such as production of anti-inflammatory cytokines, e.g., IL-1RA, and the control of pro-inflammatory cytokines, e.g., TNF. The mechanisms regulating these disparate immunomodulatory functions of LL-37 are not completely understood. Rho GTPases are GTP-binding proteins that promote fundamental immune functions such as chemokine production and recruitment of leukocytes. However, recent studies have shown that distinct Rho proteins can both negatively and positively regulate inflammation. Therefore, we interrogated the role of Rho GTPases in LL-37-mediated immunomodulation. We demonstrate that LL-37-induced production of chemokines, e.g., GRO-α and IL-8 is largely dependent on Cdc42/Rac1 Rho GTPase, but independent of the Ras pathway. In contrast, LL-37-induced production of the anti-inflammatory cytokine IL-1RA is not dependent on either Cdc42/Rac1 RhoGTPase or Ras GTPase. Functional studies confirmed that LL-37-induced recruitment of leukocytes (monocytes and neutrophils) is also dependent on Cdc42/Rac1 RhoGTPase activity. We demonstrate that Cdc42/Rac1-dependent bioactivity of LL-37 involves G-protein-coupled receptors (GPCR) and JNK mitogen-activated protein kinase (MAPK) signaling, but not p38 or ERK MAPK signaling. We further show that LL-37 specifically enhances the activity of Cdc42 Rho GTPase, and that the knockdown of Cdc42 suppresses LL-37-induced production of chemokines without altering the peptide's ability to induce IL-1RA. This is the first study to demonstrate the role of Rho GTPases in LL-37-mediated responses. We demonstrate that LL-37 facilitates chemokine production and leukocyte recruitment engaging Cdc42/Rac1 Rho GTPase via GPCR and the JNK MAPK pathway. In contrast, LL-37-mediated anti-inflammatory cytokine IL-1RA production is independent of either Rho or Ras GTPase. The results of this study suggest that Cdc42 Rho GTPase may be the molecular switch that controls the opposing functions of LL-37 in the process of inflammation.
Collapse
Affiliation(s)
- Mahadevappa Hemshekhar
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Ka-Yee Grace Choi
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Neeloffer Mookherjee
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
13
|
De Cunto G, Bartalesi B, Cavarra E, Balzano E, Lungarella G, Lucattelli M. Ongoing Lung Inflammation and Disease Progression in Mice after Smoking Cessation: Beneficial Effects of Formyl-Peptide Receptor Blockade. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2195-2206. [PMID: 30031729 DOI: 10.1016/j.ajpath.2018.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/04/2018] [Accepted: 06/18/2018] [Indexed: 01/24/2023]
Abstract
The most important risk factor for chronic obstructive pulmonary disease (COPD) is cigarette smoking. Until now, smoking cessation (SC) is the only treatment effective in slowing down the progression of the disease. However, in many cases SC may only relieve the airflow obstruction and inflammatory response. Consequently, a persistent lung inflammation in ex-smokers is associated with progressive deterioration of respiratory functions. This is an increasingly important clinical problem whose mechanistic basis remains poorly understood. Available therapies do not adequately suppress inflammation and are not able to stop the vicious cycle that is at the basis of persistent inflammation. In addition, in mice after SC an ongoing inflammation and progressive lung deterioration is observed. After 4 months of smoke exposure mice show mild emphysematous changes. Lung inflammation is still present after SC, and emphysema progresses during the next 6-month period of observation. Destruction of alveolar walls is associated with airways remodeling (goblet cell metaplasia and peribronchiolar fibrosis). Modulation of formyl-peptide receptor signaling with antagonists mitigates inflammation and prevents deterioration of lung structures. This study suggests an important role for N-formylated peptides in the progression and exacerbation of COPD. Modulating formyl-peptide receptor signal should be explored as a potential new therapy for COPD.
Collapse
Affiliation(s)
- Giovanna De Cunto
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Barbara Bartalesi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Eleonora Cavarra
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Emilia Balzano
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giuseppe Lungarella
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Monica Lucattelli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.
| |
Collapse
|
14
|
Vergelli C, Schepetkin IA, Ciciani G, Cilibrizzi A, Crocetti L, Giovannoni MP, Guerrini G, Iacovone A, Kirpotina LN, Khlebnikov AI, Ye RD, Quinn MT. 2-Arylacetamido-4-phenylamino-5-substituted pyridazinones as formyl peptide receptors agonists. Bioorg Med Chem 2016; 24:2530-2543. [PMID: 27134116 PMCID: PMC5055850 DOI: 10.1016/j.bmc.2016.04.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/01/2016] [Accepted: 04/08/2016] [Indexed: 10/22/2022]
Abstract
N-Formyl peptide receptors (FPRs: FPR1, FPR2, and FPR3) are G protein-coupled receptors that play key roles in modulating immune cells. FPRs represent potentially important therapeutic targets for the development of drugs that could enhance endogenous anti-inflammation systems associated with various pathologies, thereby reducing the progression of inflammatory conditions. Previously, we identified 2-arylacetamide pyridazin-3(2H)-ones as FPR1- or FPR2-selective agonists, as well as a large number of FPR1/FPR2-dual agonists and several mixed-agonists for the three FPR isoforms. Here, we report a new series of 2-arylacetamido-4-aniline pyridazin-3(2H)-ones substituted in position 5 as a further development of these FPR agonists. Chemical manipulation presented in this work resulted in mixed FPR agonists 8a, 13a and 27b, which had EC50 values in nanomolar range. In particular, compound 8a showed a preference for FPR1 (EC50=45nM), while 13a and 27b showed a moderate preference for FPR2 (EC50=35 and 61nM, respectively). Thus, these compounds may represent valuable tools for studying FPR activation and signaling.
Collapse
Affiliation(s)
- Claudia Vergelli
- Dipartimento di NEUROFARBA, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy
| | - Igor A Schepetkin
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Giovanna Ciciani
- Dipartimento di NEUROFARBA, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy
| | - Agostino Cilibrizzi
- Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Letizia Crocetti
- Dipartimento di NEUROFARBA, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy
| | - Maria Paola Giovannoni
- Dipartimento di NEUROFARBA, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Gabriella Guerrini
- Dipartimento di NEUROFARBA, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy
| | - Antonella Iacovone
- Dipartimento di NEUROFARBA, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy
| | - Liliya N Kirpotina
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Andrei I Khlebnikov
- Department of Biotechnology and Organic Chemistry, Tomsk Polytechnic University, Tomsk 634050, Russia; Department of Chemistry, Altai State Technical University, Barnaul, Russia
| | - Richard D Ye
- Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Mark T Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
15
|
Tripathi S, Wang G, White M, Rynkiewicz M, Seaton B, Hartshorn K. Identifying the Critical Domain of LL-37 Involved in Mediating Neutrophil Activation in the Presence of Influenza Virus: Functional and Structural Analysis. PLoS One 2015; 10:e0133454. [PMID: 26308522 PMCID: PMC4550355 DOI: 10.1371/journal.pone.0133454] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/25/2015] [Indexed: 11/18/2022] Open
Abstract
The human cathelicidin LL-37 has been shown to play a role in host defense against influenza A viruses (IAV) through direct antiviral effects and through modulating inflammatory responses to infection. We recently showed that LL-37 increases neutrophil respiratory burst and neutrophil extracellular trap (NET) responses to IAV through engaging formyl peptide receptor 2 (FPR-2). In this paper we show that a fragment of LL-37, GI-20, which is composed of the central helical segment of the peptide, has similar effects as LL-37 on neutrophil activation. In addition to increasing respiratory burst and NET responses of the cells to IAV through an FPR-2 dependent mechanism, it reduces neutrophil IL-8 production to IAV (also like LL-37). The N-terminal fragment, LL-23, did not have similar effects. Both GI-20 and LL-37 increase neutrophil intracellular calcium levels and their ability to increase neutrophil activation responses was calcium dependent and partially inhibited by pertussis toxin. These studies show that the central helix of LL-37 retains the ability of LL-37 to modulate neutrophil responses through FPR-2. Based on our findings we developed a homology model of FPR-2 and performed docking experiments of LL-37 and GI-20 with the receptor.
Collapse
Affiliation(s)
- Shweta Tripathi
- Boston University School of Medicine, Department of Medicine, Boston, MA, United States of America
| | - Guangshun Wang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Mitchell White
- Boston University School of Medicine, Department of Medicine, Boston, MA, United States of America
| | - Michael Rynkiewicz
- Boston University School of Medicine, Department of Biophysics, Boston, MA, United States of America
| | - Barbara Seaton
- Boston University School of Medicine, Department of Biophysics, Boston, MA, United States of America
| | - Kevan Hartshorn
- Boston University School of Medicine, Department of Medicine, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
16
|
Liu J, Li J, Zeng X, Rao Z, Gao J, Zhang B, Zhao Y, Yang B, Wang Z, Yu L, Wang W. Formyl peptide receptor suppresses melanoma development and promotes NK cell migration. Inflammation 2015; 37:984-92. [PMID: 24448842 DOI: 10.1007/s10753-014-9819-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In order to understand how tumor cells can escape immune surveillance mechanisms and thus develop antitumor therapies, it is critically important to investigate the mechanisms by which the immune system interacts with the tumor microenvironment. In our current study, wild-type mice were inoculated with melanoma cell line B16-F10 (1 × 10(6)/mouse) and treated with the formyl peptide receptor (FPR) agonist WKYMVm or the FPR antagonist WRW(4). Growth of melanoma cell line B16-F10 was significantly inhibited in WKYMVm-treated mice and markedly promoted in WRW(4)-treated mice compared with control. Decreased number of myeloid-derived suppressor cells (MDSCs) and increased NK cell infiltration in tumor tissues were detected from WKYMVm-treated mice. Next, we showed that depletion of NK cell significantly increased tumor development in B16 tumor-bearing mice compared with the control group, and the suppressed tumor-developing effect of WKYMVm in B16 melanoma was abrogated with NK cell depletion. We also found that WKYMVm stimulates chemotactic migration in NK cells via the FPR family, and this was dependent on extracellular signal-related kinase (ERK) activation. Moreover, in our further experiment, we showed that the increased infiltration of NK cell and promoted NK cell chemotaxis in B16 melanoma induced by WKYMVm were both abolished with ERK inhibitor PD98059 administration. In conclusion, the FPR family promoted NK cell migration through ERK activation and inhibited B16 melanoma growth in a murine model.
Collapse
Affiliation(s)
- Jian Liu
- Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, 627 Wuluo Road, Wuhan, 430070, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lacivita E, Schepetkin IA, Stama ML, Kirpotina LN, Colabufo NA, Perrone R, Khlebnikov AI, Quinn MT, Leopoldo M. Novel 3-(1H-indol-3-yl)-2-[3-(4-methoxyphenyl)ureido]propanamides as selective agonists of human formyl-peptide receptor 2. Bioorg Med Chem 2014; 23:3913-24. [PMID: 25549897 DOI: 10.1016/j.bmc.2014.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/28/2014] [Accepted: 12/04/2014] [Indexed: 02/07/2023]
Abstract
N-Formyl peptide receptors (FPRs) are G protein-coupled receptors (GPCRs) that play critical roles in inflammatory reactions, and FPR-specific interactions can possibly be used to facilitate the resolution of pathological inflammatory reactions. We here report the synthesis and biological evaluation of six pairs of chiral ureidopropanamido derivatives as potent and selective formyl peptide receptor-2 (FPR2) agonists that were designed starting from our lead agonist (S)-3-(1H-indol-3-yl)-2-[3-(4-methoxyphenyl)ureido]-N-[[1-(5-methoxy-2-pyridinyl)cyclohexyl]methyl]propanamide ((S)-9a). The new compounds were obtained in overall yields considerably higher than (S)-9a. Several of the new compounds showed agonist properties comparable to that of (S)-9a along with higher selectivity over FPR1. Molecular modeling was used to define chiral recognition by FPR2. In vitro metabolic stability of selected compounds was also assessed to obtain preliminary insight on drug-like properties of this class of compounds.
Collapse
Affiliation(s)
- Enza Lacivita
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari 'Aldo Moro', via Orabona, 4, 70125 Bari, Italy
| | - Igor A Schepetkin
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Madia L Stama
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari 'Aldo Moro', via Orabona, 4, 70125 Bari, Italy
| | - Liliya N Kirpotina
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Nicola A Colabufo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari 'Aldo Moro', via Orabona, 4, 70125 Bari, Italy
| | - Roberto Perrone
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari 'Aldo Moro', via Orabona, 4, 70125 Bari, Italy
| | - Andrei I Khlebnikov
- Department of Chemistry, Altai State Techical University, Barnaul, Russia; Department of Biotechnology and Organic Chemistry, Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Mark T Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Marcello Leopoldo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari 'Aldo Moro', via Orabona, 4, 70125 Bari, Italy.
| |
Collapse
|
18
|
Moura J, Børsheim E, Carvalho E. The Role of MicroRNAs in Diabetic Complications-Special Emphasis on Wound Healing. Genes (Basel) 2014; 5:926-56. [PMID: 25268390 PMCID: PMC4276920 DOI: 10.3390/genes5040926] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/05/2014] [Accepted: 09/10/2014] [Indexed: 12/19/2022] Open
Abstract
Overweight and obesity are major problems in today’s society, driving the prevalence of diabetes and its related complications. It is important to understand the molecular mechanisms underlying the chronic complications in diabetes in order to develop better therapeutic approaches for these conditions. Some of the most important complications include macrovascular abnormalities, e.g., heart disease and atherosclerosis, and microvascular abnormalities, e.g., retinopathy, nephropathy and neuropathy, in particular diabetic foot ulceration. The highly conserved endogenous small non-coding RNA molecules, the micro RNAs (miRNAs) have in recent years been found to be involved in a number of biological processes, including the pathogenesis of disease. Their main function is to regulate post-transcriptional gene expression by binding to their target messenger RNAs (mRNAs), leading to mRNA degradation, suppression of translation or even gene activation. These molecules are promising therapeutic targets and demonstrate great potential as diagnostic biomarkers for disease. This review aims to describe the most recent findings regarding the important roles of miRNAs in diabetes and its complications, with special attention given to the different phases of diabetic wound healing.
Collapse
Affiliation(s)
- João Moura
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal.
| | - Elisabet Børsheim
- Arkansas Children's Nutrition Center, Little Rock, Arkansas, AR 72202, USA.
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal.
| |
Collapse
|
19
|
Qin Y, Li ZW, Yang Y, Yu CM, Gu DD, Deng H, Zhang T, Wang X, Wang AP, Luo WZ. Liposomes formulated with fMLP-modified cholesterol for enhancing drug concentration at inflammatory sites. J Drug Target 2014; 22:165-74. [PMID: 24392736 DOI: 10.3109/1061186x.2013.851683] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Improving efficacy of inflammation treatment by increasing drug delivery to the inflammatory sites is a challenging endeavor. N-formyl-methionyl-leucyl-phenylalanine (fMLP), the first discovered leukocyte chemotaxis peptide, is composed of formyl methionine, leucine and phenylalanine. It conjugates with formyl peptide receptors on the target cells with high receptor expression on the surface such as macrophages. With this in mind, we developed a novel fMLP-modified liposome (fMLP-LIP) for enhancing drug delivery to the inflammatory sites and resolving the systemic reaction issue with conventional anti-inflammatory drugs. Being a more stable and cheaper liposomal component than phospholipids, cholesterol (CHO) has been thoroughly investigated as an alternative anchor. In this study, fMLP was covalently conjugated with CHO with polyethylene glycol link to prepare the liposomes, cellular uptake of liposomes by differentiated human U937 cells was examined and cellular uptake experiment in vitro was employed to optimize fMLP-LIP prescription and investigate the uptake mechanism. An in vivo inflammatory model was established to evaluate the targeting performance of fMLP-LIP to inflammatory site. The in vitro and in vivo findings indicate that the fMLP ligands playing an important role in increasing drug delivery to inflammatory sites and fMLP-LIP as a promising anti-inflammatory drug carrier.
Collapse
Affiliation(s)
- Yao Qin
- Department of Medicinal Chemistry, Chongqing Institute of Traditional Chinese Medicine , Chongqing , China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wood MP, Cole AL, Eade CR, Chen LM, Chai KX, Cole AM. The HIV-1 gp41 ectodomain is cleaved by matriptase to produce a chemotactic peptide that acts through FPR2. Immunology 2014; 142:474-83. [PMID: 24617769 PMCID: PMC4080963 DOI: 10.1111/imm.12278] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 12/21/2022] Open
Abstract
Several aspects of HIV-1 virulence and pathogenesis are mediated by the envelope protein gp41. Additionally, peptides derived from the gp41 ectodomain have been shown to induce chemotaxis in monocytes and neutrophils. Whereas this chemotactic activity has been reported, it is not known how these peptides could be produced under biological conditions. The heptad repeat 1 (HR1) region of gp41 is exposed to the extracellular environment and could therefore be susceptible to proteolytic processing into smaller peptides. Matriptase is a serine protease expressed at the surface of most epithelia, including the prostate and mucosal surfaces. Here, we present evidence that matriptase efficiently cleaves the HR1 portion of gp41 into a 22-residue chemotactic peptide MAT-1, the sequence of which is highly conserved across HIV-1 clades. We found that MAT-1 induced migration of primary neutrophils and monocytes, the latter of which act as a cellular reservoir of HIV during early stage infection. We then used formyl peptide receptor 1 (FPR1) and FPR2 inhibitors, along with HEK 293 cells, to demonstrate that MAT-1 can induce chemotaxis specifically using FPR2, a receptor found on the surface of monocytes, macrophages and neutrophils. These findings are the first to identify a proteolytic cleavage product of gp41 with chemotactic activity and highlight a potential role for matriptase in HIV-1 transmission and infection at epithelial surfaces and within tissue reservoirs of HIV-1.
Collapse
Affiliation(s)
- Matthew P Wood
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| | | | | | | | | | | |
Collapse
|
21
|
Deficiency of formyl peptide receptor 1 and 2 is associated with increased inflammation and enhanced liver injury after LPS-stimulation. PLoS One 2014; 9:e100522. [PMID: 24956481 PMCID: PMC4067326 DOI: 10.1371/journal.pone.0100522] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 05/28/2014] [Indexed: 12/30/2022] Open
Abstract
Introduction Formyl peptide-receptor 1 and 2 (FPR1 and FPR2) in mice were identified as receptors with contrary affinity for the PAMP fMLF. Formyl-methionyl-leucyl-phenylalanine is either part of the bacterial membrane and is secreted by the mitochondria of eukaryotic ceslls during apoptosis. Furthermore FPR1 and 2 are described as highly relevant factors for the chemotaxis of immune cells. Their role during the acute liver injury has not been investigated yet. Materials and Methods Constitutive knockout mice for FPR1 (mFPR1-/-), FPR2 (mFPR2-/-) and wild type (WT) mice were challenged with LPS i.p. for 3 h and 6 h. Liver and serum were sampled for further analysis. Results Liver transaminases were elevated in all mice 3 h and 6 h post LPS stimulation. Gene expression analysis displayed a reduced expression of the pro-inflammatory cytokines IL-6 and CXCL1 after 3 h in the mFPR1-/- compared to wild type and mFPR2-/- mice. After 6 h, IL-6, TNF-α and CXCL1 were significantly higher in mice lacking mFPR1 or 2. Consistent to these findings the numbers of CD11b+ and Ly6G+ immune cells were altered in the livers. The analysis of TLR2 and TLR4 revealed time and genotype specific changes in theirs gene expression. Additionally, the liver in mFPR1- and mFPR2-deficient mice seem to be more susceptible to apoptosis by showing a significant higher number of TUNEL+-cells in the liver than WT-mice and displayed less Ki67-positive nuclei in the liver. Conclusion The results suggest a prominent role of FPRs in the regulation of the hepatic inflammatory response after LPS induced liver injury. Deletion of mFPR1 or mFPR2 leads to deregulation of the inflammatory response compared to WT mice, associated with more severe liver injury represented by higher levels of transaminases, apoptotic cells and a reduced regenerative capacity.
Collapse
|
22
|
Tsuruki T, Yoshikawa M. Design of Soymetide-4 Derivatives to Potentiate the Anti-alopecia Effect. Biosci Biotechnol Biochem 2014; 68:1139-41. [PMID: 15170122 DOI: 10.1271/bbb.68.1139] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Previously, we found that soymetide-4 (MITL), an N-formyl-methionyl-leucyl-phenylalanine (fMLP) agonist peptide derived from soybean beta-conglycinin alpha' subunit, stimulated phagocytosis of human polymorphonuclear leukocytes, and inhibited alopecia induced by etoposide, an anticancer drug, in neonatal rats after oral administration. We found that the fMLP receptor affinity and phagocytosis-stimulating activity of soymetide-4 was potentiated by replacement of Thr(3) with hydrophobic residues. Among the derivatives synthesized, [Trp](3)-soymetide-4 (MIWL) was the most potent, stronger by 180 and 130 times than soymetide-4 in receptor affinity and phagocytosis-stimulating activity, respectively. The anti-alopecia effect of [Trp](3)-soymetide-4 was about 3 times larger than that of soymetide-4 after oral administration.
Collapse
Affiliation(s)
- Takahiro Tsuruki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
23
|
Wong DYQ, Yeo CHF, Ang WH. Immuno-chemotherapeutic platinum(IV) prodrugs of cisplatin as multimodal anticancer agents. Angew Chem Int Ed Engl 2014; 53:6752-6. [PMID: 24844571 DOI: 10.1002/anie.201402879] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Indexed: 12/22/2022]
Abstract
There is growing consensus that the clinical therapeutic efficacy of some chemotherapeutic agents depends on their off-target immune-modulating effects. Pt anticancer drugs have previously been identified to be potent immunomodulators of both the innate and the adaptive immune system. Nevertheless, there has been little development in the rational design of Pt-based chemotherapeutic agents to exploit their immune-activating capabilities. The FPR1/2 formyl peptide receptors are highly expressed in immune cells, as well as in many metastatic cancers. Herein, we report a rationally designed multimodal Pt(IV) prodrug containing a FPR1/2-targeting peptide that combines chemotherapy with immunotherapy to achieve therapeutic synergy and demonstrate the feasibility of this approach.
Collapse
Affiliation(s)
- Daniel Yuan Qiang Wong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore (Singapore)
| | | | | |
Collapse
|
24
|
Wong DYQ, Yeo CHF, Ang WH. Immuno-Chemotherapeutic Platinum(IV) Prodrugs of Cisplatin as Multimodal Anticancer Agents. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402879] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
Janotová T, Jalovecká M, Auerová M, Švecová I, Bruzlová P, Maierová V, Kumžáková Z, Čunátová Š, Vlčková Z, Caisová V, Rozsypalová P, Lukáčová K, Vácová N, Wachtlová M, Salát J, Lieskovská J, Kopecký J, Ženka J. The use of anchored agonists of phagocytic receptors for cancer immunotherapy: B16-F10 murine melanoma model. PLoS One 2014; 9:e85222. [PMID: 24454822 PMCID: PMC3890306 DOI: 10.1371/journal.pone.0085222] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 11/25/2013] [Indexed: 01/03/2023] Open
Abstract
The application of the phagocytic receptor agonists in cancer immunotherapy was studied. Agonists (laminarin, molecules with terminal mannose, N-Formyl-methioninyl-leucyl-phenylalanine) were firmly anchored to the tumor cell surface. When particular agonists of phagocytic receptors were used together with LPS (Toll-like receptor agonist), high synergy causing tumour shrinkage and a temporary or permanent disappearance was observed. Methods of anchoring phagocytic receptor agonists (charge interactions, anchoring based on hydrophobic chains, covalent bonds) and various regimes of phagocytic agonist/LPS mixture applications were tested to achieve maximum therapeutic effect. Combinations of mannan/LPS and f-MLF/LPS (hydrophobic anchors) in appropriate (pulse) regimes resulted in an 80% and 60% recovery for mice, respectively. We propose that substantial synergy between agonists of phagocytic and Toll-like receptors (TLR) is based on two events. The TLR ligand induces early and massive inflammatory infiltration of tumors. The effect of this cell infiltrate is directed towards tumor cells, bearing agonists of phagocytic receptors on their surface. The result of these processes was effective killing of tumor cells. This novel approach represents exploitation of innate immunity mechanisms for treating cancer.
Collapse
Affiliation(s)
- Tereza Janotová
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Marie Jalovecká
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Marie Auerová
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Ivana Švecová
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Pavlína Bruzlová
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Veronika Maierová
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Zuzana Kumžáková
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Štěpánka Čunátová
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Zuzana Vlčková
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Veronika Caisová
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Petra Rozsypalová
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Katarína Lukáčová
- Department of Pathology, Regional Hospital, České Budějovice, Czech Republic
| | - Nikol Vácová
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Markéta Wachtlová
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Jiří Salát
- Department of Virology, Veterinary Research Institute, Brno, Czech Republic
| | - Jaroslava Lieskovská
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Jan Kopecký
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Jan Ženka
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- * E-mail:
| |
Collapse
|
26
|
T4-lysozyme fusion for the production of human formyl peptide receptors for structural determination. Appl Biochem Biotechnol 2014; 172:2571-81. [PMID: 24407945 DOI: 10.1007/s12010-013-0704-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/25/2013] [Indexed: 10/25/2022]
Abstract
T4-lysozyme (T4L) fusion was introduced in the intracellular loop of a G protein-coupled receptor (GPCR) of human formyl peptide receptor 3 (FPR3), and the ability of T4L fusion to be used in the production of human FPR3 for structural determination was evaluated in this work. The T4L variant of human FPR3 termed FPR3-T4L was expressed in stable tetracycline-inducible HEK293 cells. A systematic detergent screening showed that fos-choline-14 was the optimal detergent to solubilize and subsequently purify FPR3-T4L from HEK293 cells. Immunoaffinity purification in combination with gel filtration was employed to purify the T4L-fused receptor to high homogeneity. The final yield of the human FPR3-T4L monomer from 2 g of cells was 0.2 mg. Circular dichroism spectroscopy indicated that the receptor adopted a correct secondary structure after purification, while ligand binding measurement indicated that the receptor was functional. Thus, the presence of T4L fusion did not evidently disturb the expression in HEK293 cells, proper folding, and functionality of human FPR3. Our study of evaluating T4L fusion for the recombinant production of human formyl peptide receptor would facilitate ongoing efforts in the structural characterization of GPCRs.
Collapse
|
27
|
Chung YM, El-Shazly M, Chuang DW, Hwang TL, Asai T, Oshima Y, Ashour ML, Wu YC, Chang FR. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, induces the production of anti-inflammatory cyclodepsipeptides from Beauveria felina. JOURNAL OF NATURAL PRODUCTS 2013; 76:1260-1266. [PMID: 23822585 DOI: 10.1021/np400143j] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The addition of the histone deacetylase inhibitor suberoylanilide hydroxamic acid to a culture of the filamentous fungus Beauveria felina significantly changed its secondary metabolite profile and led to the isolation of eight compounds, including three new cyclodepsipeptides, desmethylisaridin E (1), desmethylisaridin C2 (2), and isaridin F (3), along with five known cyclodepsipeptide compounds. Isaridin F (3) possesses a cyclodepsipeptide ring with N-methylbutyric acid, which is rare in natural peptides. Absolute configurations of the new cyclodepsipeptides were achieved by Marfey's method. The anti-inflammatory activity of the isolated compounds was investigated through evaluating their effect on superoxide anion production and elastase release by FMLP-induced human neutrophils. Among the tested compounds, desmethylisaridin E (1) inhibited superoxide anion production and desmethylisaridin C2 (2) inhibited elastase release, with IC50 values of 10.00 ± 0.80 and 10.01 ± 0.46 μM, respectively.
Collapse
Affiliation(s)
- Yu-Ming Chung
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Stasiuk GJ, Smith H, Wylezinska-Arridge M, Tremoleda JL, Trigg W, Luthra SK, Iveson VM, Gavins FNE, Long NJ. Gd3+cFLFLFK conjugate for MRI: a targeted contrast agent for FPR1 in inflammation. Chem Commun (Camb) 2013. [DOI: 10.1039/c2cc37460a] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Liu M, Zhao J, Chen K, Bian X, Wang C, Shi Y, Wang JM. G protein-coupled receptor FPR1 as a pharmacologic target in inflammation and human glioblastoma. Int Immunopharmacol 2012; 14:283-8. [PMID: 22863814 PMCID: PMC3547636 DOI: 10.1016/j.intimp.2012.07.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 07/23/2012] [Indexed: 11/30/2022]
Abstract
Formylpeptide receptor1 (FPR1) is a G protein-coupled receptor (GPCR) originally identified in phagocytic leucocytes and mediates cell chemotaxis and activation in response to bacterial formylated chemotactic peptides. However, FPR1 also participates in a signal relay which regulates the infiltration of phagocytes, in particular neutrophils, to inflammatory sites in response to tissue-derived chemoattractant ligands. In addition to participating in innate immune responses, recently, FPR1 has been shown to be expressed by highly malignant glioblastoma (GBM) cells. Upon activation by an endogenous agonist Annexin 1 (Anx A1) released by necrotic glioma cells, FPR1 transactivates the receptor for epithelial growth factor (EGFR) and consequently to promote glioma cell chemotaxis, invasion, growth and production of angiogenic factors. The observations demonstrate that FPR1, as a multifunctional GPCR with pattern recognition properties, is not only involved in innate immune responses but also in the progression of GBM. Thus, FPR1 is an immunopharmacologic target for development of novel therapies.
Collapse
Affiliation(s)
- Mingyong Liu
- Department of Spine Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jianhua Zhao
- Department of Spine Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Keqiang Chen
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Xiuwu Bian
- Institute of Pathology and Southwest Cancer Center, Third Military Medical University, Chongqing 400038, China
| | - Chunyan Wang
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Xuzhou Yes Biotech Laboratories Ltd. Xuzhou, Jiangsu, 221004, China
| | - Ying Shi
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ji Ming Wang
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| |
Collapse
|
30
|
Zhang C, Wang ZJ, Lok KH, Yin M. β-amyloid42 induces desensitization of CXC chemokine receptor-4 via formyl peptide receptor in neural stem/progenitor cells. Biol Pharm Bull 2012; 35:131-8. [PMID: 22293341 DOI: 10.1248/bpb.35.131] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The deposition of β-amyloid (Aβ) plaques and progressive loss of neurons are two main characteristics of Alzheimer's disease (AD). Supplement of neural stem/progenitor cells (NSPCs) is a promising strategy for repair of the neurodegenerative diseases. However, hostile microenvironment of neurodegenerative brain is harmful for the neuroregeneration. Aβ(42) promoted the proliferation of NSPCs. Moreover, Aβ(42) (10-1000 nM) promoted the migration of NSPCs in a dose-dependent manner. The attraction of NSPCs toward Aβ(42) was significantly offset by 10 μM cyclosporin H, a potent and selective formyl peptide receptor antagonist. After incubation with Aβ(42) for 9 d, the migration ability of NSPCs was significantly decreased (p<0.05). The expression of formyl peptide receptor (FPR) and CXC chemokine receptor-4 (CXCR4) were significantly decreased in NSPCs. The expression of G protein-coupled receptor kinase 2 (GRK2) was up-regulated on the membrane of NSPCs correspondingly. Our results suggested that Aβ(42) decreases the migratory capacity of NSPCs by FPR heterologous desensitization after long time incubation, and GRK2 in NSPCs may be responsible for the damaged migratory capacity.
Collapse
Affiliation(s)
- Can Zhang
- School of Pharmacy, Shanghai Jiaotong University, China
| | | | | | | |
Collapse
|
31
|
Abstract
The serum amyloid A (SAA) protein is an acute phase protein that is synthesized under the regulation of inflammatory cytokines during both acute and chronic inflammation. It is suggested that the SAA increases correlate with many types of carcinogenesis and neoplastic diseases. Th changes in SAA in serum could therefore indicate the progress and malignancy of the disease, as well as the host responses. The present paper reviewed the rationale of using SAA as potential cancer biomarker in clinical diagnosis, including the contribution and involvement of SAA in cancer growth and development. Then we discussed the current applications of SAA in diagnosis and tracing of different types of cancers. Finally the proteomics techniques, especially the SELDI-TOF MS to identify SAA in serum from patients were appreciated as an important manner in clinical diagnosis.
Collapse
Affiliation(s)
- Chibo Liu
- Department of Clinical Laboratory, Taizhou Municipal Hospital, Taizhou, Zhejiang, 318000, China.
| |
Collapse
|
32
|
Wu W, Kim CH, Liu R, Kucia M, Greco N, Ratajczak J, Laughlin ML, Ratajczak MZ. The bone marrow-expressed antimicrobial cationic peptide LL-37 enhances the responsiveness of hematopoietic stem progenitor cells to an SDF-1 gradient and accelerates their engraftment after transplantation. Leukemia 2012; 26:736-745. [PMID: 21931324 PMCID: PMC3244577 DOI: 10.1038/leu.2011.252] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 08/11/2011] [Indexed: 01/05/2023]
Abstract
We report that the bone marrow (BM) stroma-released LL-37, a member of the cathelicidin family of antimicrobial peptides, primes/increases the responsiveness of murine and human hematopoietic stem/progenitor cells (HSPCs) to an α-chemokine stromal-derived factor-1 (SDF-1) gradient. Accordingly, LL-37 is upregulated in irradiated BM cells and enhances the chemotactic responsiveness of hematopoietic progenitors from all lineages to a low physiological SDF-1 gradient as well as increasing their (i) adhesiveness, (ii) SDF-1-mediated actin polymerization and (iii) MAPK(p42/44) phosphorylation. Mice transplanted with BM cells ex vivo primed by LL-37 showed accelerated recovery of platelet and neutrophil counts by ∼3-5 days compared with mice transplanted with unprimed control cells. These priming effects were not mediated by LL-37 binding to its receptor and depended instead on the incorporation of the CXCR4 receptor into membrane lipid rafts. We propose that LL-37, which has primarily antimicrobial functions and is harmless to mammalian cells, could be clinically applied to accelerate engraftment as an ex vivo priming agent for transplanted human HSPCs. This novel approach would be particularly important in cord blood transplantations, where the number of HSCs available is usually limited.
Collapse
Affiliation(s)
- Wan Wu
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, KY 40202, USA
| | - Chi Hwa Kim
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, KY 40202, USA
| | - Rui Liu
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, KY 40202, USA
| | - Magda Kucia
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, KY 40202, USA
- Department of Physiology Pomeranian Medcial University, Szczecin, Poland
| | | | - Janina Ratajczak
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, KY 40202, USA
- Department of Physiology Pomeranian Medcial University, Szczecin, Poland
| | - Mary L. Laughlin
- Hematopoietic Stem Cell Transplant Program University of Virginia, Charlottesville, USA
| | - Mariusz Z. Ratajczak
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, KY 40202, USA
- Department of Physiology Pomeranian Medcial University, Szczecin, Poland
| |
Collapse
|
33
|
Cho JY, Lee TH, Hwang TL, Yang SZ, Chen IS, Chou TH, Sung PJ, Chen JJ. A New Ferulic Acid Ester, a New Ellagic Acid Derivative, and Other Constituents from Pachycentria formosana: Effects on Neutrophil Pro-Inflammatory Responses. Chem Biodivers 2011; 8:1709-16. [DOI: 10.1002/cbdv.201000228] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Cattaneo F, Iaccio A, Guerra G, Montagnani S, Ammendola R. NADPH-oxidase-dependent reactive oxygen species mediate EGFR transactivation by FPRL1 in WKYMVm-stimulated human lung cancer cells. Free Radic Biol Med 2011; 51:1126-36. [PMID: 21708247 DOI: 10.1016/j.freeradbiomed.2011.05.040] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/25/2011] [Accepted: 05/31/2011] [Indexed: 01/23/2023]
Abstract
Cross talk between unrelated cell surface receptors, such as G-protein-coupled receptors (GPCR) and receptor tyrosine kinases (RTK), is a crucial signaling mechanism to expand the cellular communication network. We investigated the ability of the GPCR formyl peptide receptor-like 1 (FPRL1) to transactivate the RTK epidermal growth factor receptor (EGFR) in CaLu-6 cells. We observed that stimulation with WKYMVm, an FPRL1 agonist isolated by screening synthetic peptide libraries, induces EGFR tyrosine phosphorylation, p47(phox) phosphorylation, NADPH-oxidase-dependent superoxide generation, and c-Src kinase activity. As a result of EGFR transactivation, phosphotyrosine residues provide docking sites for recruitment and triggering of the STAT3 pathway. WKYMVm-induced EGFR transactivation is prevented by the FPRL1-selective antagonist WRWWWW, by pertussis toxin (PTX), and by the c-Src inhibitor PP2. The critical role of NADPH-oxidase-dependent superoxide generation in this cross-talk mechanism is corroborated by the finding that apocynin or a siRNA against p22(phox) prevents EGFR transactivation and c-Src kinase activity. In addition, WKYMVm promotes CaLu-6 cell growth, which is prevented by PTX and by WRWWWW. These results highlight the role of FPRL1 as a potential target of new drugs and suggest that targeting both FPRL1 and EGFR may yield superior therapeutic effects compared with targeting either receptor separately.
Collapse
Affiliation(s)
- Fabio Cattaneo
- Dipartimento di Biochimica e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy
| | | | | | | | | |
Collapse
|
35
|
Wang X, Zhang S. Production of a bioengineered G-protein coupled receptor of human formyl peptide receptor 3. PLoS One 2011; 6:e23076. [PMID: 21853070 PMCID: PMC3154916 DOI: 10.1371/journal.pone.0023076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 07/05/2011] [Indexed: 01/07/2023] Open
Abstract
G-protein coupled receptors (GPCRs) participate in a wide range of vital regulations of our physiological actions. They are also of pharmaceutical importance and have become many therapeutic targets for a number of disorders and diseases. Purified GPCR-based approaches including structural study and novel biophysical and biochemical function analyses are increasingly being used in GPCR-directed drug discovery. Before these approaches become routine, however, several hurdles need to be overcome; they include overexpression, solubilization, and purification of large quantities of functional and stable receptors on a regular basis. Here we report milligram production of a human formyl peptide receptor 3 (FPR3). FPR3 comprises a functionally distinct GPCR subfamily that is involved in leukocyte chemotaxis and activation. The bioengineered FPR3 was overexpressed in stable tetracycline-inducible mammalian cell lines (HEK293S). After a systematic detergent screening, fos-choline-14 (FC-14) was selected for subsequent solubilization and purification processes. A two-step purification method, immunoaffinity using anti-rho-tag monoclonal antibody 1D4 and gel filtration, was used to purify the receptors to near homogeneity. Immunofluorescence analysis showed that expressed FPR3 was predominantly displayed on cellular membrane. Secondary structural analysis using circular dichroism showed that the purified FPR3 receptor was correctly folded with >50% α-helix, which is similar to other known GPCR secondary structures. Our method can readily produce milligram quantities of human FPR3, which would facilitate in developing human FPR as therapeutic drug targets.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, China
| | - Shuguang Zhang
- Laboratory for Molecular Fabrication, Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
36
|
Ramos R, Silva JP, Rodrigues AC, Costa R, Guardão L, Schmitt F, Soares R, Vilanova M, Domingues L, Gama M. Wound healing activity of the human antimicrobial peptide LL37. Peptides 2011; 32:1469-76. [PMID: 21693141 DOI: 10.1016/j.peptides.2011.06.005] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 06/01/2011] [Accepted: 06/03/2011] [Indexed: 01/14/2023]
Abstract
Antimicrobial peptides (AMPs) are part of the innate immune system and are generally defined as cationic, amphipathic peptides, with less than 50 amino acids, including multiple arginine and lysine residues. The human cathelicidin antimicrobial peptide LL37 can be found at different concentrations in many different cells, tissues and body fluids and has a broad spectrum of antimicrobial and immunomodulatory activities. The healing of wound is a complex process that involves different steps: hemostasis, inflammation, remodeling/granulation tissue formation and re-epithelialization. Inflammation and angiogenesis are two fundamental physiological conditions implicated in this process. We have recently developed a new method for the expression and purification of recombinant LL37. In this work, we show that the recombinant peptide P-LL37 with a N-terminus proline preserves its immunophysiological properties in vitro and in vivo. P-LL37 neutralized the activation of macrophages by lipopolysaccharide (LPS). Besides, the peptide induced proliferation, migration and tubule-like structures formation by endothelial cells. Wound healing experiments were performed in dexamethasone-treated mice to study the effect of LL37 on angiogenesis and wound regeneration. The topical application of synthetic and recombinant LL37 increased vascularization and re-epithelialization. Taken together, these results clearly demonstrate that LL37 may have a key role in wound regeneration through vascularization.
Collapse
Affiliation(s)
- Reinaldo Ramos
- IBB, Institute of Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wang TY, Wu JB, Hwang TL, Kuo YH, Chen JJ. A new quinolone and other constituents from the fruits of Tetradium ruticarpum: effects on neutrophil pro-inflammatory responses. Chem Biodivers 2010; 7:1828-34. [PMID: 20658672 DOI: 10.1002/cbdv.200900289] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The fruit of Tetradium ruticarpum is widely used in healthcare products for the improvement of blood circulation, headache, abdominal pain, amenorrhea, chill limbs, migraine, and nausea. A new quinolone, 2-[(6Z,9Z)-pentadeca-6,9-dienyl]quinolin-4(1H)-one (1), has been isolated from the fruits of T. ruticarpum, together with eleven known compounds. The structure of the new compound was determined by NMR and MS analyses. Rutaecarpine (4), evodiamine (5), and skimmianine (7) exhibited inhibition (IC(50) < or = 20.9 microM) of O2(.-) generation by human neutrophils in response to N-formyl-L-methionyl-L-leucyl-L-phenylalanine/cytochalasin B (fMLP/CB). In addition, 1, evocarpine (2), 4, 7, and evodol (8) inhibited fMLP/CB-induced elastase release with IC(50) values < or =14.4 microM.
Collapse
Affiliation(s)
- Tzu-Ying Wang
- Graduate Institute of Pharmaceutical Chemistry, College of Pharmacy, China Medical University, Taichung 404, Taiwan
| | | | | | | | | |
Collapse
|
38
|
Sumi Y, Woehrle T, Chen Y, Yao Y, Li A, Junger WG. Adrenergic receptor activation involves ATP release and feedback through purinergic receptors. Am J Physiol Cell Physiol 2010; 299:C1118-26. [PMID: 20668211 PMCID: PMC2980303 DOI: 10.1152/ajpcell.00122.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 07/26/2010] [Indexed: 01/15/2023]
Abstract
Formyl peptide receptor-induced chemotaxis of neutrophils depends on the release of ATP and autocrine feedback through purinergic receptors. Here, we show that adrenergic receptor signaling requires similar purinergic feedback mechanisms. Real-time RT-PCR analysis revealed that human embryonic kidney (HEK)-293 cells express several subtypes of adrenergic (α(1)-, α(2)-, and β-receptors), adenosine (P1), and nucleotide receptors (P2). Stimulation of G(q)-coupled α(1)-receptors caused release of cellular ATP and MAPK activation, which was blocked by inhibiting P2 receptors with suramin. Stimulation of G(i)-coupled α(2)-receptors induced weak ATP release, while G(s)-coupled β-receptors caused accumulation of extracellular ADP and adenosine. β-Receptors triggered intracellular cAMP signaling, which was blocked by scavenging extracellular adenosine with adenosine deaminase or by inhibiting A2a adenosine receptors with SCH58261. These findings suggest that adrenergic receptors require purinergic receptors to elicit downstream signaling responses in HEK-293 cells. We evaluated the physiological relevance of these findings using mouse aorta tissue rings. Stimulation of α(1)-receptors induced ATP release and tissue contraction, which was reduced by removing extracellular ATP with apyrase or in the absence of P2Y(2) receptors in aorta rings from P2Y(2) receptor knockout mice. We conclude that, like formyl peptide receptors, adrenergic receptors require purinergic feedback mechanisms to control complex physiological processes such as smooth muscle contraction and regulation of vascular tone.
Collapse
Affiliation(s)
- Yuka Sumi
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
39
|
Lee HY, Kim SD, Shim JW, Kim HJ, Kwon JY, Kim JM, Baek SH, Park JS, Bae YS. Activation of human monocytes by a formyl peptide receptor 2-derived pepducin. FEBS Lett 2010; 584:4102-8. [DOI: 10.1016/j.febslet.2010.08.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/25/2010] [Accepted: 08/25/2010] [Indexed: 12/22/2022]
|
40
|
Kim SD, Kim JM, Jo SH, Lee HY, Lee SY, Shim JW, Seo SK, Yun J, Bae YS. Functional expression of formyl peptide receptor family in human NK cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:5511-7. [PMID: 19843937 DOI: 10.4049/jimmunol.0802986] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We determined the expression of the formyl peptide receptor (FPR) family and the functional roles of the FPR family in NK cells. All tested human NK cells express two members of the FPR family (FPR1 and FPR2). The expression of FPR3 was noted to occur in a donor-specific manner. The stimulation of NK cells with FPR family-selective agonists (fMLF (N-formyl-Met-Leu-Phe), MMK-1, F2L, and WKYMVm (Trp-Lys-Tyr-Met-Val-d-Met)) elicited cytolytic activity in resting NK cells, but not in IL-2-activated NK cells; the cytolytic activity was not inhibited by pertussis toxin. The FPR family agonists also stimulated chemotactic migration of IL-2-activated NK cells, but not resting NK cells; the chemotactic migration was completely inhibited by pertussis toxin. WKYMVm stimulates ERK, p38 MAPK, and JNK activities in both resting and IL-2-activated NK cells. WKYMVm-induced chemotactic migration was partially inhibited by PD98059 (2'-amino-3'-methoxyflavone); however, the inhibition of JNK by its selective inhibitor (SP600125, anthra[1,9-cd]pyrazol-6(2H)-one) dramatically inhibited the WKYMVm-induced cytolytic activity. Furthermore, WKYMVm-induced chemotactic migration and cytolytic activity were partly inhibited by FPR family-selective antagonists (cyclosporin H and WRWWWW). Taken together, our findings indicate that human NK cells express functional members of the FPR family, and in turn the activation of the three members of the FPR receptor family elicit cytolytic activity in NK cells, thus suggesting that the receptors are potentially important therapeutic targets for the modulation of NK cell-mediated immune responses.
Collapse
Affiliation(s)
- Sang Doo Kim
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Seil M, Kabré E, Nagant C, Vandenbranden M, Fontanils U, Marino A, Pochet S, Dehaye JP. Regulation by CRAMP of the responses of murine peritoneal macrophages to extracellular ATP. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:569-78. [PMID: 19913495 DOI: 10.1016/j.bbamem.2009.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 10/27/2009] [Accepted: 11/04/2009] [Indexed: 10/20/2022]
Abstract
Peritoneal macrophages were isolated from wild type (WT) mice and from mice invalidated for the P2X(7) receptor (KO) which had been pretreated with thioglycolate. In cells from WT mice, 1 mM ATP increased the intracellular concentration of calcium ([Ca(2+)](i)), the uptake of ethidium bromide, the production of reactive oxygen species (ROS), the secretion of IL-1beta, the release of oleic acid and of lactate dehydrogenase; it decreased the intracellular concentration of potassium ([K(+)](i)). In KO mice, ATP transiently increased the [Ca(2+)](i) confirming that the P2X(7) receptor is a major receptor of peritoneal macrophages. WKYMVm, an agonist of receptors for formylated peptides (FPR) also increased the [Ca(2+)](i) in murine macrophages. The slight increase of the [Ca(2+)](i) was strongly potentiated by ivermectin confirming the expression of functional P2X(4) receptors by murine peritoneal macrophages. CRAMP, the unique antimicrobial peptide derived from cathelin in mouse inhibited all the responses coupled to P2X(7) receptors in macrophages from WT mice. Agonists for FPR had no effect on the increase of the [Ca(2+)](i) in response to ATP. CRAMP had no effect on the increase of the [Ca(2+)](i) evoked by a combination of ATP and ivermectin in macrophages from P2X(7)-KO mice. In summary CRAMP inhibits the responses secondary to the activation of the murine P2X(7) receptors expressed by peritoneal macrophages. This inhibition is not mediated by FPR receptors and is specific since CRAMP has no effect on the response coupled to P2X(4) receptors. It can thus be concluded that the interaction between P2X(7) receptors and cathelin-derived antimicrobial peptides is species-specific, in some cases (man) positive in others (mouse) negative.
Collapse
Affiliation(s)
- Michèle Seil
- Laboratoire de Chimie biologique et médicale et de Microbiologie pharmaceutique, Institut de Pharmacie C.P. 205/3, Université libre de Bruxelles, Bruxelles, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Chiu SC, Hung HS, Lin SZ, Chiang E, Liu DD. Therapeutic potential of olfactory ensheathing cells in neurodegenerative diseases. J Mol Med (Berl) 2009; 87:1179-89. [PMID: 19756447 DOI: 10.1007/s00109-009-0528-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 08/17/2009] [Accepted: 08/26/2009] [Indexed: 12/28/2022]
Abstract
The regenerative capacity of the olfactory system has generated interest in potential clinical application of cells from the olfactory epithelium in the treatment of neurodegenerative diseases. Experimental evidence from animal models and clinical studies suggest that transplantation of olfactory ensheathing cells (OEC), specialized glia in the olfactory system, may be therapeutically useful in neurodegenerative diseases such as spinal cord injury and stroke. This review article describes the different experimental approaches in OEC transplantation. We also discuss the possible effects of OEC implantation on the underlying pathophysiology in neurological disease, including neuroplasticity. Our recent study of this particular population of cells has disclosed some of the molecular basis of the regenerative mechanism of OECs. In summary OECs produce several neurotrophic factors such as stromal cell-derived factor 1alpha and brain-derived neurotrophic factor and enhance axonal regeneration to promote neuroplasticity in neurodegenerative diseases.
Collapse
Affiliation(s)
- Shao-Chih Chiu
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
43
|
Strouse JJ, Young SM, Mitchell HD, Ye RD, Prossnitz ER, Sklar LA, Edwards BS. A novel fluorescent cross-reactive formylpeptide receptor/formylpeptide receptor-like 1 hexapeptide ligand. Cytometry A 2009; 75:264-70. [PMID: 19006074 DOI: 10.1002/cyto.a.20670] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Formylpeptide receptors (FPRs) are implicated in a variety of immunological and inflammatory response cascades. Further understanding of FPR-family ligand interactions could play an integral role in biological and therapeutic discovery. Fluorescent reporter ligands for the family are desirable experimental tools for increased understanding of ligand/receptor interactions. The ligand binding affinity and fluorescent reporting activity of the peptide WK(FL)YMVm was explored though use of the high throughput HyperCyt flow cytometric platform. Relative binding affinities of several known FPR and FPRL1 peptide ligands were compared in a duplex assay format. The fluorescent W-peptide ligand, WK(FL)YMVm, proved to be a high-affinity, cross-reactive reporter ligand for the FPR/FPRL1 duplex assay. Ligand specificity was demonstrated for each receptor, with known, selective peptide ligands. The binding site specificity of the reporter ligand was further verified by a fluorescent confocal microscopy internalization experiment. The fluorescent peptide ligand WK(FL)YMVm binds with high affinity to both FPR and FPRL1. The differential affinities of known peptide ligands were observed with the use of this fluorescent probe in high throughput screening flow cytometry.
Collapse
Affiliation(s)
- J Jacob Strouse
- Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, 87131, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Young SM, Bologa CM, Fara D, Bryant BK, Strouse JJ, Arterburn JB, Ye RD, Oprea TI, Prossnitz ER, Sklar LA, Edwards BS. Duplex high-throughput flow cytometry screen identifies two novel formylpeptide receptor family probes. Cytometry A 2009; 75:253-63. [PMID: 18785269 DOI: 10.1002/cyto.a.20645] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Of recent, clinical interest have been two related human G-protein coupled receptors: formylpeptide receptor (FPR), linked to antibacterial inflammation and malignant glioma cell metastasis; and FPR like-1 (FPRL1), linked to chronic inflammation in systemic amyloidosis, Alzheimer's disease, and prion diseases. In association with the National Institutes of Health (NIH) Molecular Library Screening Network, we implemented a flow-cytometry-based high-throughput screening (HTS) approach for identifying selective small molecule FPR and FPRL1 ligands. The screening assay measured the ability of test compounds to competitively displace a high-affinity, fluorescein- labeled peptide ligand from FPR, FPRL1, or both. U937 cells expressing FPR and rat basophil leukemia (RBL) cells expressing FPRL1 were tested together in a "duplex" format. The U937 cells were color coded with red-fluorescent dye allowing their distinction during analysis. Compounds, cells, and fluorescent ligand were sequentially combined (no wash) in 15 microl assay volumes in 384-well plates. Throughput averaged approximately 11 min per plate to analyze approximately 4,000 cells ( approximately 2,000/receptor) in a 2 microl aspirate from each well. In primary single concentration HTS of 24,304 NIH Small Molecule Repository compounds, 253 resulted in inhibition >30% (181 for FPR, 72 for FPRL1) of which 40 had selective binding inhibition constants (K(i)) < or = 4 microM (34 for FPR and 6 for FPRL1). An additional 1,446 candidate compounds were selected by structure-activity-relationship analysis of the hits and screened to identify novel ligands for FPR (3570-0208, K(i) = 95 +/- 10 nM) and FPRL1 (BB-V-115, K(i) = 270 +/- 51 nM). Each was a selective antagonist in calcium response assays and the most potent small molecule antagonist reported for its respective receptor to date. The duplex assay format reduced assay time, minimized reagent requirements, and provided selectivity information at every screening stage, thus proving to be an efficient means to screen for selective receptor ligand probes.
Collapse
|
45
|
Benachour H, Zaiou M, Herbeth B, Lambert D, Lamont JV, Pfister M, Siest G, Tiret L, Blankenberg S, Fitzgerald PS, Visvikis-Siest S. Human formyl peptide receptor 1 (FPR1) c.32C>T SNP is associated with decreased soluble E-selectin levels. Pharmacogenomics 2009; 10:951-959. [PMID: 19530962 DOI: 10.2217/pgs.09.29] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIMS The human formyl peptide receptor (FPR) is a G protein-coupled chemoattractant receptor that is thought to mediate inflammatory responses. The FPR1 gene is highly polymorphic. In a recent study, the FPR1 c.32C>T SNP, resulting in the amino-acid substitution I11T, was reported to be significantly associated with C-reactive protein levels. Therefore, this study sought to determine if the impact of such a genetic variation extends to other clinical parameters associated with inflammation, including cytokines, adhesion molecules and inflammatory markers. MATERIALS & METHODS This study was carried out on a subsample of 325 adults selected from the STANISLAS cohort study. The FPR1 c.32C>T SNP was genotyped using PCR amplification followed by restriction enzyme digestion. Anthropometric measurements and biochemical profiles were assessed for each individual. RESULTS The allele frequencies of FPR1 c.32C>T were 0.74 for the 32C allele and 0.26 for the 32T allele. Genotype frequencies were 0.55 for C/C, 0.38 for C/T and 0.07 for T/T. After adjusting for age, sex, BMI, alcohol and cigarette consumption, oral contraceptive, antibiotics and anti-inflammatory drug use, statistical analysis (under a recessive model of inheritance) demonstrated that serum E-selectin levels were 68% lower in individuals homozygous for T/T than in those with C/T or C/C genotypes (p = 0.001). However, no significant correlations were found for C-reactive protein or the other 18 tested clinical parameters that were analyzed in this study. CONCLUSION The FPR1 c.32C>T SNP may be associated with E-selectin levels in the French population. Although of importance, these findings need confirmation in larger studies.
Collapse
|
46
|
Chen JJ, Ting CW, Hwang TL, Chen IS. Benzophenone derivatives from the fruits of Garcinia multiflora and their anti-inflammatory activity. JOURNAL OF NATURAL PRODUCTS 2009; 72:253-258. [PMID: 19203247 DOI: 10.1021/np8006364] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Five new benzophenone derivatives, 13,14-didehydoxyisogarcinol (1), garcimultiflorone A (2), garcimultiflorone B (3), 13-hydroxygarcimultiflorone B (4), and garcimultiflorone C (5), have been isolated from the fruits of Garcinia multiflora, together with seven known compounds (6-12). The structures of these new compounds were determined through spectroscopic and MS analyses. 13,14-Didehydoxyisogarcinol (1), garcimultiflorone A (2), garcimultiflorone B (3), and 13-hydroxygarcimultiflorone B (4) exhibited inhibition with an IC(50) range of 0.11-5.58 microM on superoxide anion generation and elastase release by human neutrophils in response to fMet-Leu-Phe/cytochalasin B (fMLP/CB).
Collapse
Affiliation(s)
- Jih-Jung Chen
- Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung 907, Taiwan, Republic of China.
| | | | | | | |
Collapse
|
47
|
Innate microbial sensors and their relevance to allergy. J Allergy Clin Immunol 2008; 122:846-58; quiz 858-60. [PMID: 19000576 DOI: 10.1016/j.jaci.2008.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 10/02/2008] [Accepted: 10/02/2008] [Indexed: 01/01/2023]
Abstract
The innate immune system oversees the gateway to immunity with its microbial sensors. Innate microbial sensors are germ line-encoded receptors with genetically predetermined specificities for microbes. The readiness and effectiveness of the innate immune system to provide immediate and appropriate responses at the host-environment interface is dependent on its sensitive and comprehensive microbial detection systems. The purpose of this review is to provide an overview of innate microbial sensors, our growing understanding of their diverse repertoire, and their elegant structural and functional approaches to microbial recognition. Their relevance to allergic disease is also discussed: the potential recognition and uptake of allergens by some of these receptors, inhibited expression of other microbial sensors by allergic immune responses and inflammation, and their upregulation by microbial exposures in early life that may help to protect against the development of allergic immune responses and disease.
Collapse
|
48
|
Huggins A, Paschalidis N, Flower RJ, Perretti M, D'Acquisto F. Annexin-1-deficient dendritic cells acquire a mature phenotype during differentiation. FASEB J 2008; 23:985-96. [PMID: 19029200 DOI: 10.1096/fj.08-119040] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dendritic cells play a key role in the adaptive immune system by influencing T-cell differentiation. Annexin-1 (Anx-A1) has recently been shown to modulate the adaptive immune response by regulating T-cell activation and differentiation. Here we investigated the role of endogenous Anx-A1 in dendritic cells as major cellular counterpart of T-cell-driven immune response. We found that Anx-A1(-/-) bone marrow-derived dendritic cells show an increased number of CD11c(+) cells expressing high levels of some maturation markers, such as CD40, CD54, and CD80, coupled to a decreased capacity to take up antigen compared to control Anx-A1(+/+) cells. However, analysis of LPS-treated dendritic cells from Anx-A1(-/-) mice demonstrated a diminished up-regulation of maturation markers, a decreased migratory activity in vivo, and an attenuated production of the inflammatory cytokines interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha, and IL-12. This defect was also accompanied by impaired nuclear factor (NF)-kappaB/DNA-binding activity and lack of Anx-A1 signaling, as demonstrated by the reduced activation of extracellular-signal regulated kinase (ERK)1/2 and Akt compared to cells from control littermates. As a consequence of this phenotype, Anx-A1(-/-) dendritic cells showed an impaired capacity to stimulate T-cell proliferation and differentiation in mixed leukocyte reaction. Together, these findings suggest that inhibition of Anx-A1 expression or function in dendritic cells might represent a useful way to modulate the adaptive immune response and pathogen-induced T-cell-driven immune diseases.
Collapse
Affiliation(s)
- Anthony Huggins
- William Harvey Research Institute, Barts and The London School of Medicine, London, UK
| | | | | | | | | |
Collapse
|
49
|
Shyu WC, Liu DD, Lin SZ, Li WW, Su CY, Chang YC, Wang HJ, Wang HW, Tsai CH, Li H. Implantation of olfactory ensheathing cells promotes neuroplasticity in murine models of stroke. J Clin Invest 2008; 118:2482-95. [PMID: 18596986 DOI: 10.1172/jci34363] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 04/16/2008] [Indexed: 12/22/2022] Open
Abstract
Murine olfactory ensheathing cells (OECs) promote central nervous system axonal regeneration in models of spinal cord injury. We investigated whether OECs could induce a neuroplastic effect to improve the neurological dysfunction caused by hypoxic/ischemic stress. In this study, human OECs/olfactory nerve fibroblasts (hOECs/ONFs) specifically secreted trophic factors including stromal cell-derived factor-1alpha (SDF-1alpha). Rats with intracerebral hOEC/ONF implantation showed more improvement on behavioral measures of neurological deficit following stroke than control rats. [18F]fluoro-2-deoxyglucose PET (FDG-PET) showed increased glucose metabolic activity in the hOEC/ONF-treated group compared with controls. In mice, transplanted hOECs/ONFs and endogenous homing stem cells including intrinsic neural progenitor cells and bone marrow stem cells colocalized with specific neural and vascular markers, indicating stem cell fusion. Both hOECs/ONFs and endogenous homing stem cells enhanced neuroplasticity in the rat and mouse ischemic brain. Upregulation of SDF-1alpha and CXCR4 in hOECs/ONFs promoted neurite outgrowth of cocultured primary cortical neurons under oxygen glucose deprivation conditions and in stroke animals through upregulation of cellular prion protein (PrP C) expression. Therefore, the upregulation of SDF-1alpha and the enhancement of CXCR4 and PrP C interaction induced by hOEC/ONF implantation mediated neuroplastic signals in response to hypoxia and ischemia.
Collapse
Affiliation(s)
- Woei-Cherng Shyu
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Shimizu N, Tanaka A, Mori T, Ohtsuki T, Hoque A, Jinno-Oue A, Apichartpiyakul C, Kusagawa S, Takebe Y, Hoshino H. A formylpeptide receptor, FPRL1, acts as an efficient coreceptor for primary isolates of human immunodeficiency virus. Retrovirology 2008; 5:52. [PMID: 18577234 PMCID: PMC2453146 DOI: 10.1186/1742-4690-5-52] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 06/25/2008] [Indexed: 12/05/2022] Open
Abstract
Background More than 10 members of seven-transmembrane G protein-coupled receptors (GPCRs) have been shown to work as coreceptors for human immunodeficiency virus type 1 (HIV-1), HIV type 2 (HIV-2), and simian immunodeficiency viruses (SIVs). As a common feature of HIV/SIV coreceptors, tyrosine residues are present with asparagines, aspartic acids or glutamic acids in the amino-terminal extracellular regions (NTRs). We noticed that a receptor for N-formylpeptides, FPRL1, also contains two tyrosine residues accompanied by glutamic acids in its NTR. It was reported that monocytes expressing CCR5 and FPRL1 in addition to CD4 are activated by treatment with ligands or agonists of FPRL1. Activated monocytes down-modulate CCR5 and become resistant to infection by HIV-1 strains. Thus, FPRL1 plays important roles in protection of monocyptes against HIV-1 infection. However, its own coreceptor activity has not been elucidated yet. In this study, we examined coreceptor activities of FPRL1 for HIV/SIV strains including primary HIV-1 isolates. Results A CD4-transduced human glioma cell line, NP-2/CD4, is strictly resistant to HIV/SIV infection. We have reported that when NP-2/CD4 cells are transduced with a GPCR having coreceptor activity, the cells become susceptible to HIV/SIV strains. When NP-2/CD4 cells were transduced with FPRL1, the resultant NP-2/CD4/FPRL1 cells became markedly susceptible to some laboratory-adapted HIV/SIV strains. We found that FPRL1 is also efficiently used as a coreceptor by primary HIV-1 isolates as well as CCR5 or CXCR4. Amino acid sequences linked to the FPRL1 use could not be detected in the V3 loop of the HIV-1 Env protein. Coreceptor activities of FPRL1 were partially blocked by the forymyl-Met-Leu-Phe (fMLF) peptide. Conclusion We conclude that FPRL1 is a novel and efficient coreceptor for HIV/SIV strains. FPRL1 works as a bifunctional factor in HIV-1 infection. Namely, the role of FPRL1 in HIV-1 infection is protective and/or promotive in different conditions. FPRL1 has been reported to be abundantly expressed in the lung, spleen, testis, and neutrophils. We detected mRNA expression of FPRL1 in 293T (embryonal kidney cell line), C8166 (T cell line), HOS (osteosarcoma cell line), Molt4#8 (T cell line), U251MG (astrocytoma cell line), U87/CD4 (CD4-transduced glioma cell line), and peripheral blood lymphocytes. Roles of FPRL1 in HIV-1 infection in vivo should be further investigated.
Collapse
Affiliation(s)
- Nobuaki Shimizu
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma 371-8511, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|