1
|
Kole S, Qadiri SSN, Shin SM, Kim WS, Lee J, Jung SJ. Nanoencapsulation of inactivated-viral vaccine using chitosan nanoparticles: Evaluation of its protective efficacy and immune modulatory effects in olive flounder (Paralichthys olivaceus) against viral haemorrhagic septicaemia virus (VHSV) infection. FISH & SHELLFISH IMMUNOLOGY 2019; 91:136-147. [PMID: 31096061 DOI: 10.1016/j.fsi.2019.05.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/05/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
Viral haemorrhagic septicaemia virus (VHSV), a (-) ssRNA virus belonging to the genus Novirhabdovirus of rhabdoviridae family, is the aetiological agent of viral haemorrhagic septicaemia (VHS) disease which causes huge economic losses in farmed olive flounder (Paralichthys olivaceus) and significant mortalities among several other marine fish species in Korea, Japan, and China. Previously, we developed an inactivated vaccine viz., formalin-inactivated VHSV mixed with squalene as adjuvant which was effective in conferring protective immunity (58-76% relative percentage survival) against VHSV but the mode of administration was intraperitoneal injection which is not feasible for small sized fingerling fish. To overcome this limitation, we presently focused on replacing the injection route of vaccine delivery by oral and immersion routes. In this context, we encapsulated the inactivated VHSV vaccine with chitosan nanoparticles (CNPs-IV) by water-in-oil (W/O) emulsification method. After encapsulation, two sets of in vivo vaccination trials were conducted viz., preliminary trial-I and final trial-II. In preliminary trial-I, olive flounder fingerlings (10.5 ± 1.7 g) were vaccinated with CNPs-IV by different delivery strategies involving oral and immersion routes (single/booster dose) followed by challenge with VHSV (1 × 106 TCID50 virus/fish) to evaluate an effective method amongst different applied delivery strategies. Subsequently, a final trial-II was conducted to better understand the immune mechanism behind the efficacy of the employed delivery strategy and also to further improvise the delivery mechanism with prime-boost (primary immersion and oral boosting) combination in order to improve the transient anti-VHSV response in the host. Evaluation of RPS analysis in trial-I revealed higher RPS of 46.7% and 53.3% in the CNPs-IV (immersion) and CNPs-IV (immersion/immersion) groups, respectively compared to 0% RPS in the CNPs-IV (oral) group and 20% RPS in the CNPs-IV (oral/oral) group when calculated against 100% cumulative mortality percentage in the NVC (non-vaccinated challenged) control group, whereas, in the trial-II, RPS of 60% and 66.6% were obtained for CNPs-IV (immersion/immersion) and CNPs-IV (immersion/oral) groups, respectively. In addition, specific (anti-VHSV) antibody titre in the fish sera, skin mucus and intestinal mucus of the immunized groups were significantly (p < 0.05) enhanced following vaccination. Furthermore, CNPs-IV immunized fish showed significant (p < 0.05) upregulation of different immune gene transcripts (IgM, IgT, pIgR, MHC-I, MHC-II, IFN-γ, and Caspase3) compared to control, in both the systemic (kidney) and mucosal (skin and intestine) immune compartments of the host post immunization as well as post challenge. To conclude, mucosal immunization with CNPs-IV vaccine can orchestrate an effective immunization strategy in organizing a coordinative immune response against VHSV in olive flounder thereby exhibiting higher protective efficacy to the host with minimum stress.
Collapse
Affiliation(s)
- Sajal Kole
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea
| | | | - Su-Mi Shin
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea
| | - Wi-Sik Kim
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Science, Jeju National University, Republic of Korea
| | - Sung-Ju Jung
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea.
| |
Collapse
|
2
|
Miller D, Ingersoll MA, Lin MF. ErbB-2 signaling in advanced prostate cancer progression and potential therapy. Endocr Relat Cancer 2019; 26:R195-R209. [PMID: 31294537 PMCID: PMC6628717 DOI: 10.1530/erc-19-0009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Currently, prostate cancer (PCa) remains the most commonly diagnosed solid tumor and the second leading cause of cancer-related deaths in US men. Most of these deaths are attributed to the development of castration-resistant (CR) PCa. ErbB-2 and ErbB family members have been demonstrated to contribute to the progression of this lethal disease. In this review, we focus on updating the role of ErbB-2 in advanced PCa progression and its regulation, including its regulation via ligand activation, miRNAs and protein phosphorylation. We also discuss its downstream signaling pathways, including AKT, ERK1/2 and STATs, involved in advanced PCa progression. Additionally, we evaluate the potential of ErbB-2, focusing on its protein hyper-phosphorylation status, as a biomarker for aggressive PCa as well as the effectiveness of ErbB-2 as a target for the treatment of CR PCa via a multitude of approaches, including orally available inhibitors, intratumoral expression of cPAcP, vaccination and immunotherapy.
Collapse
Affiliation(s)
- Dannah Miller
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Matthew A. Ingersoll
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Ming-Fong Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Section of Urology, Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Corresponding Author: Ming-Fong Lin, Ph. D., Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198-5870, USA, TEL: (402) 559-6658, FAX: (402) 559-6650, (MFL)
| |
Collapse
|
3
|
Tiptiri-Kourpeti A, Spyridopoulou K, Pappa A, Chlichlia K. DNA vaccines to attack cancer: Strategies for improving immunogenicity and efficacy. Pharmacol Ther 2016; 165:32-49. [DOI: 10.1016/j.pharmthera.2016.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
4
|
Chitosan microspheres as candidate plasmid vaccine carrier for oral immunisation of Japanese flounder (Paralichthys olivaceus). Vet Immunol Immunopathol 2008; 126:220-9. [DOI: 10.1016/j.vetimm.2008.07.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2007] [Revised: 06/16/2008] [Accepted: 07/03/2008] [Indexed: 11/18/2022]
|
5
|
The formulation and immunisation of oral poly(DL-lactide-co-glycolide) microcapsules containing a plasmid vaccine against lymphocystis disease virus in Japanese flounder (Paralichthys olivaceus). Int Immunopharmacol 2008; 8:900-8. [DOI: 10.1016/j.intimp.2008.02.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2007] [Revised: 02/18/2008] [Accepted: 02/18/2008] [Indexed: 11/23/2022]
|
6
|
Laust AK, Sur BW, Wang K, Hubby B, Smith JF, Nelson EL. VRP immunotherapy targeting neu: treatment efficacy and evidence for immunoediting in a stringent rat mammary tumor model. Breast Cancer Res Treat 2007; 106:371-82. [PMID: 17351745 DOI: 10.1007/s10549-007-9517-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Accepted: 01/07/2007] [Indexed: 10/23/2022]
Abstract
The ability to overcome intrinsic tolerance to a strict "self" tumor-associated antigen (TAA) and successfully treat pre-existing tumor is the most stringent test for anti-tumor immunotherapeutic strategies. Although this capacity has been demonstrated in various models using complicated strategies that may not be readily translated into the clinical arena, straightforward antigen-specific immunotherapeutic strategies in the most stringent models of common epithelial cancers have largely failed to meet this standard. We employed an immunotherapeutic strategy using an alphavirus-based, virus-like replicon particle (VRP), which has in vivo tropism for dendritic cells, to elicit immune responses to the non-mutated TAA rat neu in an aggressive rat mammary tumor model. Using this VRP-based immunotherapeutic strategy targeting a single TAA, we generated effective anti-tumor immunity in the setting of pre-existing tumor resulting in the cure of 36% of rats over multiple experiments, P = 0.002. We also observed down-regulation of rat neu expression in tumors that showed initial responses followed by tumor escape with resumption of rapid tumor growth. These responses were accompanied by significant anti-tumor proliferative responses and CD8+ cellular tumor infiltrates, all of which were restricted to animals receiving the anti-neu immunotherapy. Together these data, obtained in a stringent "self" TAA model, indicate that the VRP-based antigen-specific immunotherapy elicits sufficiently potent immune responses to exert immunologic pressure, selection, and editing of the growing tumors, thus supporting the activity of this straightforward immunotherapy and suggesting that it is a promising platform upon which to build even more potent strategies.
Collapse
Affiliation(s)
- Amanda K Laust
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | |
Collapse
|
7
|
Glinka EM, Edelweiss EF, Sapozhnikov AM, Deyev SM. A new vector for controllable expression of an anti-HER2/neu mini-antibody-barnase fusion protein in HEK 293T cells. Gene 2006; 366:97-103. [PMID: 16300908 DOI: 10.1016/j.gene.2005.06.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2005] [Accepted: 06/27/2005] [Indexed: 11/18/2022]
Abstract
Tumor-targeted vectors with controllable expression of therapeutic genes and specific antitumor antibodies are promising tools for the reduction of malignant tumors. Here we describe a new plasmid for the eukaryotic expression of an anti-HER2/neu mini-antibody-barnase fusion protein (4D5 scFv-barnase-His(5)) with an NH(2)-terminal leader peptide. The 4D5 scFv-barnase-His(5) gene was placed downstream of the tetracycline responsive-element minimal promoter in the vector using the Tet-Off gene-expression system. The Bacillus amyloliquefaciens ribonuclease barnase is toxic for the host cells. To overcome this problem, barstar gene under its own minimal cytomegalovirus promoter was used in designed vector. Barstar inhibits the background level of barnase in the cells in the presence of tetracycline in culture medium. The HEK 293T cells were transfected with the designed vector, and the 4D5 scFv-barnase-His(5) fusion protein was identified by anti-barnase antibodies in cell culture medium and after purification from cell lysates using metal-affinity chromatography. The overexpression of the anti-HER2/neu mini-antibody-barnase fusion protein decreased the intensity of fluorescence of HEK 293T cells co-transfected with the generated plasmid and a plasmid containing the gene of enhanced green fluorescent protein (pEGFP-N1), in comparison with the intensity of fluorescence of HEK 293T cells transfected with pEGFP-N1, in the absence of tetracycline in the medium. The effect of the 4D5 scFv-barnase-His(5) on EGFP fluorescence indicates that the introduced barnase functions as a ribonuclease inside the cells. The anti-HER2/neu mini-antibody could be used to deliver barnase to HER2/neu-positive cells and provide its penetration into the target cells, as HER2/neu is a ligand-internalizing receptor. This expression vector has potential applications to both gene and antibody therapies of cancer.
Collapse
Affiliation(s)
- Elena M Glinka
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian, Academy of Sciences, Miklukho-Maklaya, 16/10, Moscow, 117997, Russia.
| | | | | | | |
Collapse
|
8
|
Chinnasamy N, Treisman JS, Oaks MK, Hanson JP, Chinnasamy D. Ex vivo generation of genetically modified dendritic cells for immunotherapy: implications of lymphocyte contamination. Gene Ther 2005; 12:259-71. [PMID: 15668698 DOI: 10.1038/sj.gt.3302407] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genetically modified dendritic cell (DC) vaccines expressing tumor-associated antigens are currently used for cancer immunotherapy. Peripheral blood (PB) monocyte precursors are a relatively convenient source of DCs for use in clinical studies, but are often contaminated by lymphocytes. The current study was conducted to examine the impact of T-lymphocyte contamination on genetically modified DC product. PB monocyte-derived DCs were efficiently transduced (75-95%) with an HIV-1-based self-inactivating lentiviral vector encoding a model antigen, the enhanced green fluorescent protein (eGFP). The lymphocyte-free DC culture transduced with Lenti-eGFP showed stable expression of eGFP without measurable decline in viability. In contrast, the eGFP-positive DCs disappeared rapidly in transduced DC cultures containing lymphocyte contaminants, concurrent with detectable activation and expansion of T-lymphocytes. Upon antigen recall, these T cells elicited major histocompatability complex-restricted antigen-specific cytotoxicity against eGFP-positive autologous DCs and mitogen-stimulated T lymphoblasts, mainly through the perforin-mediated pathway. In summary, this study demonstrate that the relative purity of DC cultures could determine the persistence of gene-modified DC, which may affect the induction of effective immune responses by DC vaccination strategies.
Collapse
Affiliation(s)
- N Chinnasamy
- Immunotherapy Program, Vince Lombardi Gene Therapy Laboratory, Aurora Health Care, St Luke's Medical Center, Milwaukee, WI 53215, USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
DNA vaccines have been used to generate protective immunity against tumors in a variety of experimental models. The favorite target antigens have been those that are frequently expressed by human tumors, such as carcinoembryonic antigen (CEA), ErbB2/neu, and melanoma-associated antigens. DNA vaccines have the advantage of being simple to construct, produce and deliver. They can activate all arms of the immune system, and allow substantial flexibility in modifying the type of immune response generated through codelivery of cytokine genes. DNA vaccines can be applied by intramuscular, dermal/epidermal, oral, respiratory and other routes, and pose relatively few safety concerns. Compared to other nucleic acid vectors, they are usually devoid of viral or bacterial antigens and can be designed to deliver only the target tumor antigen(s). This is likely to be important when priming a response against weak tumor antigens. DNA vaccines have been more effective in rodents than in larger mammals or humans. However, a large number of methods that might be applied clinically have been shown to ameliorate these vaccines. This includes in vivo electroporation, and/or inclusion of various immunostimulatory molecules, xenoantigens (or their epitopes), antigen-cytokine fusion genes, agents that improve antigen uptake or presentation, and molecules that activate innate immunity mechanisms. In addition, CpG motifs carried by plasmids can overcome the negative effects of regulatory T cells. There have been few studies in humans, but recent clinical trials suggest that plasmid/virus, or plasmid/antigen-adjuvant, prime-boost strategies generate strong immune responses, and confirm the usefulness of plasmid-based vaccination.
Collapse
Affiliation(s)
- Gérald J Prud'homme
- Department of Laboratory Medicine and Pathobiology, St. Michael's Hospital and University of Toronto, Ontario M5B 1W8, Canada.
| |
Collapse
|
10
|
Ren J, Zheng L, Chen Q, Li H, Zhang L, Zhu H. Co-administration of a DNA vaccine encoding the prostate specific membrane antigen and CpG oligodeoxynucleotides suppresses tumor growth. J Transl Med 2004; 2:29. [PMID: 15357867 PMCID: PMC517950 DOI: 10.1186/1479-5876-2-29] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Accepted: 09/09/2004] [Indexed: 12/22/2022] Open
Abstract
Background Prostate-specific membrane antigen (PSMA) is a well characterized prostate-specific tumor associated antigen. Its expression is elevated in prostate carcinoma, particularly in metastatic and recurrent lesions. These observations suggest that PSMA can be used as immune target to induce tumor cell-specific recognition by the host and, consequently tumor rejection. We utilized a DNA-based vaccine to specifically enhance PSMA expression. An immune modulator, such as CpG oligodeoxynucleotides which promote Th1-type immune responses was combined to increase the efficacy of tumor recognition and elimination. Methods A eukaryotic expression plasmid pCDNA3.1-PSMA encoding full-length PSMA was constructed. C57BL/6 mice were immunized with endotoxin-free pCDNA3.1-PSMA alone or in combination with CpG oligodeoxynucleotides by intramuscular injection. After 4 immunizations, PSMA specific antibodies and cytotoxic T lymphocyte reactivity were measured. Immunized C57BL/6 mice were also challenged subcutaneously with B16 cells transfected with PSMA to evaluate suppression of tumor growth. Results Vaccine-specific cytotoxic T lymphocytes reactive with B16 cells expressing PSMA could be induced with this treatment schedule. Immune protection was observed in vaccinated mice as indicated by increased tumor growth in the control group (100%) compared with the groups vaccinated with DNA alone (66.7%) or DNA plus CpG oligodeoxynucleotides (50%) respectively. Average tumor volume was smaller in vaccinated groups and tumor-free survival time was prolonged by the vaccination. Conclusion The current findings suggest that specific anti-tumor immune response can be induced by DNA vaccines expressing PSMA. In addition, the suppression of in vivo growth of tumor cells expressing PSMA was augmented by CpG oligodeoxynucleotides. This strategy may provide a new venue for the treatment of carcinoma of prostate after failure of standard therapy.
Collapse
Affiliation(s)
- Jiaqiang Ren
- Department of Pathology, Fudan University Shanghai Medical College, Yixueyuan Road 138, Shanghai, China
| | - Li Zheng
- Department of Pathology, Fudan University Shanghai Medical College, Yixueyuan Road 138, Shanghai, China
| | - Qi Chen
- Department of Pathology, Fudan University Shanghai Medical College, Yixueyuan Road 138, Shanghai, China
| | - Hua Li
- Department of Pathology, Fudan University Shanghai Medical College, Yixueyuan Road 138, Shanghai, China
| | - Lin Zhang
- Department of Pathology, Fudan University Shanghai Medical College, Yixueyuan Road 138, Shanghai, China
| | - Hongguang Zhu
- Department of Pathology, Fudan University Shanghai Medical College, Yixueyuan Road 138, Shanghai, China
| |
Collapse
|
11
|
Lin CC, Chou CW, Shiau AL, Tu CF, Ko TM, Chen YL, Yang BC, Tao MH, Lai MD. Therapeutic HER2/Neu DNA Vaccine Inhibits Mouse Tumor Naturally Overexpressing Endogenous Neu. Mol Ther 2004; 10:290-301. [PMID: 15294176 DOI: 10.1016/j.ymthe.2004.05.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Accepted: 05/10/2004] [Indexed: 10/26/2022] Open
Abstract
The therapeutic efficacy of HER2/c-erbB-2/neu DNA immunization on mouse tumor cells expressing exogenous human or rat p185neu but not on mouse tumor cells naturally expressing mouse p185neu has been demonstrated. We investigated the feasibility of using N-terminal rat neu DNA immunization on mouse tumor overexpressing endogenous p185neu and enhancing the therapeutic efficacy of this vaccine by fusion to various cytokine genes, including interleukin-2 (IL-2), interleukin-4 (IL-4), or granulocyte-macrophage colony-stimulating factor. In a therapeutic model, N'-neu-IL-2 DNA vaccine was significantly better than N'-neu DNA vaccine, and N'-neu DNA vaccine was significantly better than control DNA or N'-neu-IL-4 DNA vaccine. The therapeutic efficacy of DNA vaccines was correlated with tumor infiltration of CD8+ T cells. Depletion of CD8+ T cells completely abolished the therapeutic effects of N'-neu-IL-2 DNA vaccine and N'-neu DNA vaccine. Depletion of CD4+ T cells after tumor implantation had no influence on N'-neu-IL-2 DNA vaccine, but enhanced the therapeutic efficacy of N'-neu DNA vaccine. Our results demonstrate that rat N'-neu DNA vaccine has a therapeutic effect on established tumor through the CD8+ T-cell-dependent pathway. Depletion of CD4+ T cells or fusion to the IL-2 gene can thus further enhance the therapeutic effects of N'-neu DNA immunization on mouse tumor expressing endogenous p185neu.
Collapse
Affiliation(s)
- Chi-Chen Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Yuan SF, Wang L, Li KZ, Yan Z, Han W, Zhang YQ. Inhibitory effect of MUC1 gene immunization on H22 hepatocellular carcinoma growth. Shijie Huaren Xiaohua Zazhi 2003; 11:1322-1325. [DOI: 10.11569/wcjd.v11.i9.1322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the special anti-H22 hepatocellular carcinoma growth effect of the MUC1 gene immunization.
METHODS Balb/c mice were immunized intramuscularly with 100 mg MUC1 cDNA 3 times at 3-weekly intervals. Three weeks after the last immunization, tumor challenge experiments were performed by using MUC1 expressing tumor cell line H22. Tumor growth inhibition and body protection were observed two weeks later. After 43d of challenge experiments, all mice were killed and tumors were weighed. Histological analysis of tumor tissue was carried out with HE staining.
RESULTS After 43 d of challenge experiments, the volumes of H22 hepatocellular carcinoma in MUC1cDNA, pcDNA3.1(+) and NS groups were 547±59 mm3, 1 185±84 mm3 and 1 220±95 mm3 (P <0.01), respectively. The average mass of H22 hepatocellular carcinoma in the three groups was 1.87±0.96 g, 4.19±1.34 g and 4.23±1.32 g (P <0.01), respectively . Tumorigenic rate was only 50 % in MUC1cDNA group, and was 100 % in pcDNA3.1(+) and NS group. H22 hepatocellular carcinoma growth in mice of MUC1cDNA group was significantly suppressed (P <0.01), and a significant body protective effect was found in mice of MUC1cDNA group (P <0.05), compared with control group. Histological analysis showed that the H22 hepatocellular carcinoma tissues were markedly necrosed in mice of MUC1cDNA group compared with that in control group.
CONCLUSION MUC1 gene immunization can significantly suppress H22 hepatocellular carcinoma growth.
Collapse
Affiliation(s)
- Shi-Fang Yuan
- Department of Vascular and Endocrine Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710033, Shaanxi Provice, China
| | - Ling Wang
- Department of Vascular and Endocrine Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710033, Shaanxi Provice, China
| | - Kai-Zong Li
- Department of Hepato-biliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710033, Shaanxi Provice, China
| | - Zhen Yan
- Biotechnology Center, Fourth Military Medical University, Xi'an 710033, Shaanxi Provice, China
| | - Wei Han
- Biotechnology Center, Fourth Military Medical University, Xi'an 710033, Shaanxi Provice, China
| | - Ying-Qi Zhang
- Biotechnology Center, Fourth Military Medical University, Xi'an 710033, Shaanxi Provice, China
| |
Collapse
|