1
|
Mendes EP, Ianzer D, Peruchetti DB, Santos RAS, Vieira MAR. Interaction of Angiotensin-(1-7) with kinins in the kidney circulation: Role of B 1 receptors. Peptides 2024; 179:171246. [PMID: 38821119 DOI: 10.1016/j.peptides.2024.171246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/19/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
Changes in renal hemodynamics impact renal function during physiological and pathological conditions. In this context, renal vascular resistance (RVR) is regulated by components of the Renin-Angiotensin System (RAS) and the Kallikrein-Kinin System (KKS). However, the interaction between these vasoactive peptides on RVR is still poorly understood. Here, we studied the crosstalk between angiotensin-(1-7) and kinins on RVR. The right kidneys of Wistar rats were isolated and perfused in a closed-circuit system. The perfusion pressure and renal perfusate flow were continuously monitored. Ang-(1-7) (1.0-25.0 nM) caused a sustained, dose-dependent reduction of relative RVR (rRVR). This phenomenon was sensitive to 10 nM A-779, a specific Mas receptor (MasR) antagonist. Bradykinin (BK) promoted a sustained and transient reduction in rRVR at 1.25 nM and 125 nM, respectively. The transient effect was abolished by 4 μM des-Arg9-Leu8-bradykinin (DALBK), a specific kinin B1 receptor (B1R) antagonist. Accordingly, des-Arg9-bradykinin (DABK) 1 μM (a B1R agonist) increased rRVR. Interestingly, pre-perfusion of Ang-(1-7) changed the sustained reduction of rRVR triggered by 1.25 nM BK into a transient effect. On the other hand, pre-perfusion of Ang-(1-7) primed and potentiated the DABK response, this mechanism being sensitive to A-779 and DALBK. Binding studies performed with CHO cells stably transfected with MasR, B1R, and kinin B2 receptor (B2R) showed no direct interaction between Ang-(1-7) with B1R or B2R. In conclusion, our findings suggest that Ang-(1-7) differentially modulates kinin's effect on RVR in isolated rat kidneys. These results help to expand the current knowledge regarding the crosstalk between the RAS and KKS complex network in RVR.
Collapse
Affiliation(s)
| | - Danielle Ianzer
- Department of Physiological Sciences, ICB, UFG, Goiania, GO, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics, INCT-Nanobiofar, Belo Horizonte, MG, Brazil
| | - Diogo Barros Peruchetti
- Department of Physiology and Biophysics, ICB, UFMG, Belo Horizonte, MG, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics, INCT-Nanobiofar, Belo Horizonte, MG, Brazil
| | - Robson Augusto Souza Santos
- Department of Physiology and Biophysics, ICB, UFMG, Belo Horizonte, MG, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics, INCT-Nanobiofar, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
2
|
Abou Msallem J, Chalhoub H, Al-Hariri M, Saad L, Jaffa MA, Ziyadeh FN, Jaffa AA. Mechanisms of bradykinin-induced expression of connective tissue growth factor and nephrin in podocytes. Am J Physiol Renal Physiol 2015; 309:F980-90. [PMID: 26447218 DOI: 10.1152/ajprenal.00233.2015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/29/2015] [Indexed: 12/24/2022] Open
Abstract
Diabetic nephropathy (DN) is the main cause of morbidity and mortality in diabetes and is characterized by mesangial matrix deposition and podocytopathy, including podocyte loss. The risk factors and mechanisms involved in the pathogenesis of DN are still not completely defined. In the present study, we aimed to understand the cellular mechanisms through which activation of B2 kinin receptors contribute to the initiation and progression of DN. Stimulation of cultured rat podocytes with bradykinin (BK) resulted in a significant increase in ROS generation, and this was associated with a significant increase in NADPH oxidase (NOX)1 and NOX4 protein and mRNA levels. BK stimulation also resulted in a signicant increase in the phosphorylation of ERK1/2 and Akt, and this effect was inhibited in the presence of NOX1 and Nox4 small interfering (si)RNA. Furthermore, podocytes stimulated with BK resulted in a significant increase in protein and mRNA levels of connective tissue growth factor (CTGF) and, at the same time, a significant decrease in protein and mRNA levels of nephrin. siRNA targeted against NOX1 and NOX4 significantly inhibited the BK-induced increase in CTGF. Nephrin expression was increased in response to BK in the presence of NOX1 and NOX4 siRNA, thus implicating a role for NOXs in modulating the BK response in podocytes. Moreover, nephrin expression in response to BK was also significantly increased in the presence of siRNA targeted against CTGF. These findings provide novel aspects of BK signal transduction pathways in pathogenesis of DN and identify novel targets for interventional strategies.
Collapse
Affiliation(s)
- J Abou Msallem
- Biochemistry and Molecular Genetics Department, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - H Chalhoub
- Biochemistry and Molecular Genetics Department, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - M Al-Hariri
- Biochemistry and Molecular Genetics Department, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - L Saad
- Biochemistry and Molecular Genetics Department, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - M A Jaffa
- Epidemiology and Population Health Department, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon; and
| | - F N Ziyadeh
- Biochemistry and Molecular Genetics Department, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - A A Jaffa
- Biochemistry and Molecular Genetics Department, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
3
|
Pereira RL, Felizardo RJF, Cenedeze MA, Hiyane MI, Bassi EJ, Amano MT, Origassa CST, Silva RC, Aguiar CF, Carneiro SM, Pesquero JB, Araújo RC, Keller ADC, Monteiro RC, Moura IC, Pacheco-Silva A, Câmara NOS. Balance between the two kinin receptors in the progression of experimental focal and segmental glomerulosclerosis in mice. Dis Model Mech 2014; 7:701-10. [PMID: 24742784 PMCID: PMC4036477 DOI: 10.1242/dmm.014548] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Focal and segmental glomerulosclerosis (FSGS) is one of the most important renal diseases related to end-stage renal failure. Bradykinin has been implicated in the pathogenesis of renal inflammation, whereas the role of its receptor 2 (B2RBK; also known as BDKRB2) in FSGS has not been studied. FSGS was induced in wild-type and B2RBK-knockout mice by a single intravenous injection of Adriamycin (ADM). In order to further modulate the kinin receptors, the animals were also treated with the B2RBK antagonist HOE-140 and the B1RBK antagonist DALBK. Here, we show that the blockage of B2RBK with HOE-140 protects mice from the development of FSGS, including podocyte foot process effacement and the re-establishment of slit-diaphragm-related proteins. However, B2RBK-knockout mice were not protected from FSGS. These opposite results were due to B1RBK expression. B1RBK was upregulated after the injection of ADM and this upregulation was exacerbated in B2RBK-knockout animals. Furthermore, treatment with HOE-140 downregulated the B1RBK receptor. The blockage of B1RBK in B2RBK-knockout animals promoted FSGS regression, with a less-inflammatory phenotype. These results indicate a deleterious role of both kinin receptors in an FSGS model and suggest a possible cross-talk between them in the progression of disease.
Collapse
Affiliation(s)
- Rafael Luiz Pereira
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Federal University of São Paulo, São Paulo 04023-900, Brazil. Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo 05508-000, Brazil
| | - Raphael José Ferreira Felizardo
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Federal University of São Paulo, São Paulo 04023-900, Brazil
| | - Marcos Antônio Cenedeze
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Federal University of São Paulo, São Paulo 04023-900, Brazil
| | - Meire Ioshie Hiyane
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo 05508-000, Brazil
| | - Enio José Bassi
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Federal University of São Paulo, São Paulo 04023-900, Brazil
| | - Mariane Tami Amano
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Federal University of São Paulo, São Paulo 04023-900, Brazil
| | - Clarice Sylvia Taemi Origassa
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Federal University of São Paulo, São Paulo 04023-900, Brazil
| | - Reinaldo Correia Silva
- Laboratory of Clinical and Experimental Immunology, Translational Medicine Division, Federal University of São Paulo, São Paulo 04039-002, Brazil
| | - Cristhiane Fávero Aguiar
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo 05508-000, Brazil
| | - Sylvia Mendes Carneiro
- Laboratory of Cellular Biology, Instituto Butantan, Av. Vital Brazil 1500, São Paulo 05503-900, Brazil
| | - João Bosco Pesquero
- Department of Biophysics, Federal University of São Paulo (UNIFESP), São Paulo 04023-062, Brazil
| | - Ronaldo Carvalho Araújo
- Department of Biophysics, Federal University of São Paulo (UNIFESP), São Paulo 04023-062, Brazil
| | - Alexandre de Castro Keller
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo 04023-062, Brazil
| | - Renato C Monteiro
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 699, Paris 75870, France
| | - Ivan Cruz Moura
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 699, Paris 75870, France
| | - Alvaro Pacheco-Silva
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Federal University of São Paulo, São Paulo 04023-900, Brazil. Instituto Israelita de Ensino e Pesquisa Albert Einstein, Renal Transplantation Unit, Albert Einstein Hospital, São Paulo 05521-000, Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Federal University of São Paulo, São Paulo 04023-900, Brazil. Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo 05508-000, Brazil.
| |
Collapse
|
4
|
Sharma JN, Al-Shoumer KAS, Matar KM, Al-Gharee HY, Madathil NV. Bradykinin-forming components in Kuwaiti patients with type 2 diabetes. Int J Immunopathol Pharmacol 2014; 26:699-705. [PMID: 24067466 DOI: 10.1177/039463201302600313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Diabetes is the most common risk factor in inducing hypertension, nephropathy and retinopathy. The bradykinin (BK)-forming system has been proposed to protect cardiovascular and renal functions. We therefore evaluated urinary active and proactive kallikrein, total kininogen, plasma tissue kallikrein, plasma creatinine, plasma glucose and plasma HbA1c in newly diagnosed untreated type 2 diabetic patients and healthy subjects. In diabetic patients, urinary and plasma tissue kallikrein concentrations were significantly increased. In addition, plasma prekallikrein levels were also significantly higher. However, urinary kininogen values were significantly reduced in diabetic patients when compared with healthy subjects. This is the first investigation among Kuwaiti Arab patients with type 2 diabetes showing abnormal activities in the BK-forming system. High levels of plasma prekallikrein may be a risk factor for developing high blood pressure as well as nephropathy. The urinary and plasma tissue kallikrein concentrations were higher in diabetic patients, which could indicate the hyperactivities of these components, and may result in increased levels of plasma glucose to induce diabetes. Furthermore, the urinary kininogen levels were reduced in diabetic patients. These alterations might reflect the utilization of urinary kininogen to form BK, a potent inflammatory agent. However, this hypothesis needs further investigation.
Collapse
Affiliation(s)
- J N Sharma
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Health Sciences Centre, Kuwait University, Kuwait
| | | | | | | | | |
Collapse
|
5
|
Jaffa MA, Kobeissy F, Al Hariri M, Chalhoub H, Eid A, Ziyadeh FN, Jaffa AA. Global renal gene expression profiling analysis in B2-kinin receptor null mice: impact of diabetes. PLoS One 2012; 7:e44714. [PMID: 23028588 PMCID: PMC3445541 DOI: 10.1371/journal.pone.0044714] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 08/07/2012] [Indexed: 02/06/2023] Open
Abstract
Diabetic nephropathy (DN), the leading cause of end-stage renal failure, is clinically manifested by albuminuria and a progressive decline in glomerular filtration rate. The risk factors and mechanisms that contribute to the development and progression of DN are still incompletely defined. To address the involvement of bradykinin B2-receptors (B2R) in DN, we used a genome wide approach to study the effects of diabetes on differential renal gene expression profile in wild type and B2R knockout (B2R−/−) mice. Diabetes was induced with streptozotocin and plasma glucose levels and albumin excretion rate (AER) were measured at predetermined times throughout the 23 week study period. Longitudinal analysis of AER indicated that diabetic B2R−/−D null mice had a significantly decreased AER levels compared to wild type B2R+/+D mice (P = 0.0005). Results from the global microarray study comparing gene expression profiles among four groups of mice respectively: (B2R+/+C, B2R+/+D, B2R−/−C and B2R−/−D) highlighted the role of several altered pathological pathways in response to disruption of B2R and to the diabetic state that included: endothelial injury, oxidative stress, insulin and lipid metabolism and inflammatory process with a marked alteration in the pro-apoptotic genes. The findings of the present study provide a global genomics view of biomarkers that highlight the mechanisms and putative pathways involved in DN.
Collapse
Affiliation(s)
- Miran A. Jaffa
- Epidemiology and Population Health Department, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Firas Kobeissy
- Departments of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Moustafa Al Hariri
- Departments of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Hussein Chalhoub
- Departments of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Assaad Eid
- Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Fuad N. Ziyadeh
- Departments of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Ayad A. Jaffa
- Departments of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
6
|
Abstract
Diabetic nephropathy is the major cause of end-stage renal disease worldwide. Although the renin-angiotensin system has been implicated in the pathogenesis of diabetic nephropathy, angiotensin I-converting enzyme inhibitors have a beneficial effect on diabetic nephropathy independently of their effects on blood pressure and plasma angiotensin II levels. This suggests that the kallikrein-kinin system (KKS) is also involved in the disease. To study the role of the KKS in diabetic nephropathy, mice lacking either the bradykinin B1 receptor (B1R) or the bradykinin B2 receptor (B2R) have been commonly used. However, because absence of either receptor causes enhanced expression of the other, it is difficult to determine the precise functions of each receptor. This difficulty has recently been overcome by comparing mice lacking both receptors with mice lacking each receptor. Deletion of both B1R and B2R reduces nitric oxide (NO) production and aggravates renal diabetic phenotypes, relevant to either lack of B1R or B2R, demonstrating that both B1R and B2R exert protective effects on diabetic nephropathy presumably via NO. Here, we review previous epidemiological and experimental studies, and discuss novel insights regarding the therapeutic implications of the importance of the KKS in averting diabetic nephropathy.
Collapse
|
7
|
Pereira RL, Buscariollo BN, Corrêa-Costa M, Semedo P, Oliveira CD, Reis VO, Maquigussa E, Araújo RC, Braga TT, Soares MF, Moura IC, Malheiros DMAC, Filho APS, Keller AC, Câmara NOS. Bradykinin receptor 1 activation exacerbates experimental focal and segmental glomerulosclerosis. Kidney Int 2011; 79:1217-27. [PMID: 21412216 DOI: 10.1038/ki.2011.14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Focal and segmental glomerulosclerosis (FSGS) is one of the most important causes of end-stage renal failure. The bradykinin B1 receptor has been associated with tissue inflammation and renal fibrosis. To test for a role of the bradykinin B1 receptor in podocyte injury, we pharmacologically modulated its activity at different time points in an adriamycin-induced mouse model of FSGS. Estimated albuminuria and urinary protein to creatinine ratios correlated with podocytopathy. Adriamycin injection led to loss of body weight, proteinuria, and upregulation of B1 receptor mRNA. Early treatment with a B1 antagonist reduced albuminuria and glomerulosclerosis, and inhibited the adriamycin-induced downregulation of podocin, nephrin, and α-actinin-4 expression. Moreover, delayed treatment with antagonist also induced podocyte protection. Conversely, a B1 agonist aggravated renal dysfunction and even further suppressed the levels of podocyte-related molecules. Thus, we propose that kinin has a crucial role in the pathogenesis of FSGS operating through bradykinin B1 receptor signaling.
Collapse
Affiliation(s)
- Rafael L Pereira
- Departamento de Medicina, Laboratório de Imunologia Clínica e Experimental, Disciplina de Nefrologia, Universidade Federal de São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Bautista-Pérez R, Arellano A, Franco M, Osorio H, Coronel I. Enalaprilat-Mediated Activation of Kinin B 1 Receptors and Vasodilation in the Rat Isolated Perfused Kidney. Pharmacology 2011; 87:195-203. [DOI: 10.1159/000324513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 01/13/2011] [Indexed: 01/06/2023]
|
9
|
Tang SC, Chan LY, Leung JC, Cheng AS, Chan KW, Lan HY, Lai KN. Bradykinin and high glucose promote renal tubular inflammation. Nephrol Dial Transplant 2009; 25:698-710. [DOI: 10.1093/ndt/gfp599] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Bodin S, Chollet C, Goncalves-Mendes N, Gardes J, Pean F, Heudes D, Bruneval P, Marre M, Alhenc-Gelas F, Bouby N. Kallikrein protects against microalbuminuria in experimental type I diabetes. Kidney Int 2009; 76:395-403. [DOI: 10.1038/ki.2009.208] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Tan Y, Keum JS, Wang B, McHenry MB, Lipsitz SR, Jaffa AA. Targeted deletion of B2-kinin receptors protects against the development of diabetic nephropathy. Am J Physiol Renal Physiol 2007; 293:F1026-35. [PMID: 17596525 DOI: 10.1152/ajprenal.00203.2007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diabetic nephropathy (DN), the leading cause of end-stage renal failure, is clinically manifested by albuminuria and a progressive decline in glomerular filtration rate. The factors and mechanisms that contribute to progression of DN are still undefined. To address the contribution of B(2)-kinin receptors (B2KR) to the development of DN, we studied B2KR knockout mice (B2KR(-/-)) and their wild-type littermates (B2KR(+/+)). Diabetes was induced by daily injections of streptozotocin (50 mg/kg body wt) for 3-5 days. A total of 48 mice divided into 4 groups were used: group 1, wild-type control (B2KR(+/+) C); group 2, wild-type diabetic (B2KR(+/+) D); group 3, B2KR knockout control (B2KR(-/-) C); and group 4, B2KR knockout diabetic (B2KR(-/-) D). Glucose levels and albumin excretion rate (AER) were measured at predetermined intervals. Half of the mice were killed at 3 mo, and the remaining half, at 6 mo. Plasma glucose levels were markedly elevated in both B2KR(+/+) D and B2KR(-/-) D groups of mice compared with their controls. Diabetic B2KR(-/-) mice displayed reduced AER as well as reduced glomerular and tubular injury compared with diabetic B2KR(+/+) mice. The renoprotection conferred by deletion of B2KR was associated with increased renal expression of B(1)-kinin and angiotensin II AT(2) receptors and decreased expression of connective tissue growth factor. At a cellular level, our findings demonstrate that bradykinin downregulates the expression of AT(2) receptors in mesangial cells. These findings provide the first evidence that targeted deletion of B2KR protects against the development of DN.
Collapse
Affiliation(s)
- Yan Tan
- Department of Medicine, Division of Endocrinology-Diabetes-Medical Genetics, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | |
Collapse
|
12
|
Abadir PM, Periasamy A, Carey RM, Siragy HM. Angiotensin II type 2 receptor-bradykinin B2 receptor functional heterodimerization. Hypertension 2006; 48:316-22. [PMID: 16754789 DOI: 10.1161/01.hyp.0000228997.88162.a8] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Angiotensin II type 2 (AT2R) or bradykinin B2 (B2R) receptor activation enhances NO production. Recently, we demonstrated enhancement of NO production when AT2R and B2R are simultaneously activated in vivo. However, the mechanism involved in this enhancement is unknown. Using confocal fluorescence resonance energy transfer microscopy, we report the distance between the AT2R and B2R in PC12W cell membranes to be 50+/-5 A, providing evidence and quantification of receptor heterodimerization as the mechanism for enhancing NO production. The rate of AT2R-B2R heterodimer formation is largely a function of the degree of AT2R-B2R expression. The physical association between the dimerized receptors initiates changes in intracellular phosphoprotein signaling activities leading to phosphorylation of c-Jun terminal kinase, phosphotyrosine phosphatase, inhibitory protein kappaBalpha, and activating transcription factor 2; dephosphorylation of p38 and p42/44 mitogen-activated protein kinase and signal transducer inhibitor of transcription 3; and enhancing production of NO and cGMP. Controlling the expression of AT2R-B2R, consequently influencing their biologically active dimerization, presents a potential therapeutic target for the treatment of hypertension and other cardiovascular and renal disorders.
Collapse
Affiliation(s)
- Peter M Abadir
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | | | | | | |
Collapse
|
13
|
Rodriguez AI, Pereira-Flores K, Hernández-Salinas R, Boric MP, Velarde V. High glucose increases B1-kinin receptor expression and signaling in endothelial cells. Biochem Biophys Res Commun 2006; 345:652-9. [PMID: 16696940 DOI: 10.1016/j.bbrc.2006.04.127] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 04/19/2006] [Indexed: 11/28/2022]
Abstract
The loss of endothelial function is the initiating factor in the development of diabetic vascular disease. Kinins control endothelial function by the activation of two receptors: the B2 which is constitutively expressed, and the B1 which is highly induced in pathological conditions. In the present study, we observed that the levels of B1-receptor mRNA and protein are induced in endothelial cells incubated in high glucose. An increase in B1-receptor was also observed in the endothelial layer of aortas, from 4-week diabetic rats. When cells were grown in high glucose, the B1 agonist des-Arg9-BK increased nitrite levels, whereas in normal glucose nitrite levels were unchanged. Nitrite increase was blocked by L-NAME and 1400W indicating the participation of the inducible Nitric Oxide Synthase (iNOS). iNOS protein levels were also increased in high glucose. These results demonstrate the participation of the B1 receptor in the signaling pathways mediated by kinins in high glucose.
Collapse
Affiliation(s)
- Andrés I Rodriguez
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
14
|
Araújo RC, Mori MA, Merino VF, Bascands JL, Schanstra JP, Zollner RL, Villela CA, Nakaie CR, Paiva ACM, Pesquero JL, Bader M, Pesquero JB. Role of the kinin B1 receptor in insulin homeostasis and pancreatic islet function. Biol Chem 2006; 387:431-6. [PMID: 16606341 DOI: 10.1515/bc.2006.057] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Kinins are potent vasoactive peptides generated in blood and tissues by the kallikrein serine proteases. Two distinct kinin receptors have been described, one constitutive (subtype B2) and one inducible (subtype B1), and many physiological functions have been attributed to these receptors, including glucose homeostasis and control of vascular permeability. In this study we show that mice lacking the kinin B1 receptor (B1
-/- mice) have lower fasting plasma glucose concentrations but exhibit higher glycemia after feeding when compared to wild-type mice. B1
-/- mice also present pancreas abnormalities, characterized by fewer pancreatic islets and lower insulin content, which leads to hypoinsulinemia and reduced insulin release after a glucose load. Nevertheless, an insulin tolerance test indicated higher sensitivity in B1
-/- mice. In line with this phenotype, pancreatic vascular permeability was shown to be reduced in B1 receptor-ablated mice. The B1 agonist desArg9bradykinin injected intravenously can induce the release of insulin into serum, and this effect was not observed in the B1
-/- mice or in isolated islets. Our data demonstrate the importance of the kinin B1 receptor in the control of pancreatic vascular homeostasis and insulin release, highlighting a new role for this receptor in the pathogenesis of diabetes and related diseases.
Collapse
|
15
|
Stanisavljevic S, Ignjatovic T, Deddish PA, Brovkovych V, Zhang K, Erdös EG, Skidgel RA. Angiotensin I-converting enzyme inhibitors block protein kinase C epsilon by activating bradykinin B1 receptors in human endothelial cells. J Pharmacol Exp Ther 2006; 316:1153-8. [PMID: 16282523 DOI: 10.1124/jpet.105.093849] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Angiotensin I-converting enzyme (ACE) inhibitors are widely used to treat patients with cardiovascular and kidney diseases, but inhibition of ACE alone does not fully explain the beneficial effects. We reported that ACE inhibitors directly activate bradykinin B1 receptor at the canonical Zn2+ binding site, leading to prolonged nitric oxide (NO) production in endothelial cells. Protein kinase C (PKC) epsilon, a novel PKC isoform, is up-regulated in myocardium after infarction, suggesting a role in the development of cardiac dysfunction. In cytokine-treated human lung microvascular endothelial cells, B1 receptor activation by ACE inhibitors (enalaprilat, quinaprilat) or peptide ligands (des-Arg10-Lys1-bradykinin, des-Arg9-bradykinin) inhibited PKC epsilon with an IC50 = 7 x 10(-9) M. Despite the reported differences in binding affinity to receptor, the two peptide ligands were equally active, even when inhibitor blocked the cleavage of Lys(1), thus the conversion by aminopeptidase. The synthetic undecapeptide (LLPHEAWHFAR) representing the binding site for ACE inhibitors on human B(1) receptors reduced PKC epsilon inhibition by enalaprilat but not by peptide agonist. A combination of inducible and endothelial NO synthase inhibitors, 1400W [N-(3(aminomethyl) benzyl) acetamidine dihydrochloride] and N omega-nitro-L-arginine (2 microM), significantly reduced inhibition by enalaprilat (100 nM), whereas the NO donor (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl) amino]diazen-1-ium-1,2-diolate (100 microM) inhibited PKC epsilon activity just as the B1 ligands did. In conclusion, NO generated by B1 receptor activation inhibits PKC epsilon.
Collapse
Affiliation(s)
- Sinisa Stanisavljevic
- Department of Pharmacology, University of Illinois at Chicago, 835 South Wolcott Avenue (MC 868), Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Campos MM, Ongali B, De Souza Buck H, Schanstra JP, Girolami JP, Chabot JG, Couture R. Expression and distribution of kinin B1 receptor in the rat brain and alterations induced by diabetes in the model of streptozotocin. Synapse 2005; 57:29-37. [PMID: 15858836 DOI: 10.1002/syn.20150] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A role for kinin B1 receptors was suggested in the spinal cord and peripheral organs of streptozotocin (STZ)-diabetic rats. The present study aims at determining whether B1 receptors are also induced and over-expressed in the brain of STZ-rats at 2, 7, and 21 days post-treatment. This was addressed by in situ hybridization using the [35S]-UTPalphaS-labeled riboprobe and by in vitro autoradiography with the radioligand [125I]-HPP-des-Arg10-Hoe 140. In control rats, B1 receptor mRNA was found widely distributed in many brain regions. Low mRNA levels were found in thalamus and hypothalamus (7-12 nCi/g) while high mRNA signals were detected in cortical regions and hippocampus (18-29 nCi/g). In diabetic rats, B1 receptor mRNA was markedly increased in hippocampus, temporal/parietal cortices and amygdala at 2 and 7 days (+88 to +150%). Low densities of B1 receptor binding sites were detected in all analyzed regions in control rats (0.18-0.37 fmol/mg tissue). In diabetic rats, B1 receptor binding sites were significantly increased in hippocampus, amygdala, temporal/parietal, and perhinal/piriform cortices (+ 55 to + 165 %) at 7 days only. Results highlight an early but transient and reversible up-regulation of B1 receptors in specific brain regions of STZ-diabetic rats. This may offer the advantage of reducing putative central side effects with B1 receptor antagonists if used for the treatment of diabetic complications in the periphery.
Collapse
Affiliation(s)
- Maria Martha Campos
- Département de Physiologie, Faculté de Médecine, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
| | | | | | | | | | | | | |
Collapse
|
17
|
Saad SY, Najjar TAO. Effects of STZ-induced diabetes and its treatment with vanadyl sulphate on cyclosporine A-induced nephrotoxicity in rats. Arch Toxicol 2005; 79:493-9. [PMID: 15940472 DOI: 10.1007/s00204-005-0663-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Accepted: 02/17/2005] [Indexed: 10/25/2022]
Abstract
The aim of this study was to analyze the effect of streptozotocin (STZ)-induced diabetic state and the insulin-like acting, vanadyl sulphate (VS) on cyclosporine A (CyA) related nephrotoxicity in rats. Male Wistar rats were divided into six groups, of 12 animals each: The control, diabetic rats and diabetic rats whose drinking VS in the drinking water in a concentration of 1 mg/ml. Another three similarly treated groups were injected intra-peritoneally (ip) with CyA in a dose of 25 mg/kg/day for ten doses, 10 days after diabetic induction by using a single dose of STZ of 65 mg/kg. Rats were sacrificed 48 h after the last CyA dose and serum as well as kidneys were isolated and analyzed. Treatment with CyA to control normoglycemic rats resulted in significant increases in kidney weight, serum creatinine, urea nitrogen, cholesterol and triglycerides (TG) levels. Also, the kidney tissue of CyA-treated control animals showed significant increases in total nitrate/nitrite (NO(x)) concentration and malondialdehyde (MDA) production level as well as depletion of glutathione (GSH) content and glutathione peroxidase (GSH-P(x)) activity level. Histopathologic evaluation of CyA-treated control rats revealed tubular atrophy, hyaline casts and focal tubular necrosis. However, treatment of diabetic rats with CyA showed significant reduction in serum creatinine and elevation in TG level as well as reductions in the kidney NO(x) concentration and MDA production level and increase in GSH concentration compared to CyA-treated control rats. Moreover, histopathology of the kidney of CyA-treated diabetics showed typical changes of the diabetic controls revealing glomerular hypertrophy and tubular dilation. On the other hand, treatment with CyA to those diabetic animals administered VS in the drinking water resulted in exacerbation of renal dysfunction, manifested by significant increases in serum indices of nephrotoxicity, cholesterol, TG and bilirubin levels. Also, VS administration to CyA-treated diabetics showed significant increase in kidney NO(x) concentration compared to those CyA-treated diabetics drinking plain tap water, and to a level significantly lower than those CyA-treated controls. Histopathologically, kidney of CyA/VS-treated diabetic showed marked CyA related changes. In conclusion, STZ-induced diabetes might provide partial protection against CyA-induced renal dysfunction. Also, treatment of hyperglycemia with VS might exacerbate CyA related nephrotoxicity.
Collapse
Affiliation(s)
- Sherif Y Saad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | | |
Collapse
|
18
|
Lawson SR, Gabra BH, Nantel F, Battistini B, Sirois P. Effects of a selective bradykinin B1 receptor antagonist on increased plasma extravasation in streptozotocin-induced diabetic rats: Distinct vasculopathic profile of major key organs. Eur J Pharmacol 2005; 514:69-78. [PMID: 15878326 DOI: 10.1016/j.ejphar.2005.03.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 02/28/2005] [Accepted: 03/16/2005] [Indexed: 10/25/2022]
Abstract
Diffuse vasculopathy is a common feature of the morbidity and increased mortality associated with insulino-dependent type 1 diabetes. Increased vascular permeability leading to plasma extravasation occurs in surrounding tissues following endothelial dysfunction. Such micro- and macro-vascular complications develop over time and lead to oedema, hypertension, cardiomyopathy, renal failure (nephropathy) and other complications (neuropathy, retinopathy). In the present investigation, we studied the effect of a selective bradykinin B(1) receptor antagonist, R-954, on the enhanced vascular permeability in streptozotocin (STZ)-induced diabetic Wistar rats compared with age-matched controls. Plasma extravasation was determined using Evans blue dye in selected target tissues (left and right heart atria, ventricles, lung, abdominal and thoracic aortas, liver, spleen, renal cortex and medulla), at 1 and 4 weeks following STZ administration. The vascular permeability was significantly increased in the aortas, cortex, medulla, and spleen in 1-week STZ rats and remained elevated at 4 weeks of diabetes. Both atria showed an increased vascular permeability only after 4-week STZ-administration. R-954 (2 mg/kg, bolus, s.c.), given 2 h prior to Evans blue dye, to 1- and 4-week diabetic rats significantly inhibited (by 48-100%) plasma leakage in most tested tissues affected by diabetes with no effect in healthy rats. These results showed that the inducible bradykinin B(1) receptor subtype participates in the modulation of the vascular permeability in diabetic rats and suggest that selective bradykinin B(1) receptor antagonism could have a beneficial role in reducing diabetic vascular complications.
Collapse
Affiliation(s)
- Sibi R Lawson
- Institute of Pharmacology of Sherbrooke (IPS), School of Medicine, University of Sherbrooke, Sherbrooke, Province of Quebec, Canada J1H 5N4
| | | | | | | | | |
Collapse
|
19
|
Tan Y, Wang B, Keum JS, Jaffa AA. Mechanisms through which bradykinin promotes glomerular injury in diabetes. Am J Physiol Renal Physiol 2005; 288:F483-92. [PMID: 15692059 DOI: 10.1152/ajprenal.00165.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In diabetes, mesangial cell proliferation and extracellular matrix expansion are critical components in the development of glomerulosclerosis. We reported that diabetes alters the activity of the kallikrein-kinin system and that these alterations contribute to the development of diabetic nephropathy. The present study examined the influence of streptozotocin-induced diabetes on the renal expression of bradykinin (BK) B2 receptors (B2KR), connective tissue growth factor (CTGF), transforming growth factor-beta (TGF-beta), and TGF-beta type II receptor (TGF-betaRII) and assessed the signaling mechanisms through which B2KR activation may promote glomerular injury. Eight weeks after the induction of diabetes, renal mRNA levels of B2KR, CTGF, and TGF-beta as well as protein levels of CTGF and TGF-betaRII were measured in control (C), diabetic (D), and insulin-treated diabetic (D+I) rats. Renal B2KR and TGF-beta mRNA levels expressed relative to beta-actin mRNA levels and CTGF and TGF-betaRII protein levels were significantly increased in D and D+I rats compared with C rats (P < 0.03, n = 5). To assess the contribution of B2KR activation on modulating the expression of CTGF, TGF-betaRII, and collagen I, mesangial cells (MC) were treated with BK (10(-8) M) for 24 h and CTGF and TGF-betaRII protein levels were measured by Western blots and collagen I mRNA levels were measured by RT-PCR. A two- to threefold increase in CTGF and TGF-betaRII protein levels was observed in response to BK stimulation (P < 0.001, n = 6). In addition, a marked increase in collagen I mRNA levels was observed in response to BK stimulation. Treatment of MC with BK (10(-8) M) for 5 min significantly increased the tyrosine phosphorylation of p60src kinase and of p42/p44 MAPK (P < 0.05, n = 4). Inhibition of src kinase by PP1 (10 microM) inhibited the increase in p42/p44 MAPK activation in response to BK. Finally, to determine whether BK stimulates CTGF, TGF-betaRII, and collagen I expression via activation of MAPK pathways, MC were pretreated with an inhibitor of p42/p44 MAPK (PD-98059) for 45 min, followed by BK (10(-8) M) stimulation for 24 h. Selective inhibition of p42/p44 MAPK significantly inhibited the BK-induced increase in CTGF, TGF-betaRII, and collagen I levels. These findings are the first to demonstrate that BK regulates the expression of CTGF, TGF-betaRII, and collagen I in MC and provide a mechanistic pathway through which B2KR activation may contribute to the development of diabetic nephropathy.
Collapse
Affiliation(s)
- Yan Tan
- Dept. of Medicine, Division of Endocrinology-Diabetes-Medical Genetics, Medical Univ. of South Carolina, 114 Doughty St., PO Box 250776, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
20
|
Campos MM, Ongali B, Thibault G, Neugebauer W, Couture R. Autoradiographic distribution and alterations of kinin B2 receptors in the brain and spinal cord of streptozotocin-diabetic rats. Synapse 2005; 58:184-92. [PMID: 16138314 DOI: 10.1002/syn.20196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This study investigates whether bradykinin (BK) B(2) receptor binding sites are increased in the brain and thoracic spinal cord of streptozotocin (STZ)-diabetic rats at 2, 7, and 21 days posttreatment by in vitro autoradiography with the radioligand [(125)I]HPP-Hoe 140. In control and diabetic rats, specific binding sites for B(2) receptors were detected in the brain and in various laminae of the spinal cord, predominantly in superficial laminae (K(d)=34 pM). In diabetic rats, B(2) receptor densities were significantly increased in lamina l of the dorsal horn (+35% at 7 and 21 days), spinal trigeminal nucleus (+70% at 7 and 21 days) and nucleus tractus solitarius (+100% at 2 and 7 days). B(2) receptor analogues D-Arg[Hyp(3),Thi(5),D-Tic(7),Oic(8)]-BK (Hoe 140), 3-(4 hydroxyphenyl)propionyl-Hoe 140 (HPP-Hoe 140), LF16-0687 mesylate ((2-Pyrrolidinecarboxamide, N-[3-[[4-aminoiminomethyl)benzoyl]amino]propyl]-1-[[2,4-dichoro-3-[[(2,4-dimethyl-8-quinolinyl)oxy]methyl]phenyl]sulfonyl]-(2S)-(9Cl)), and BK decreased binding of [(125)I]-HPP-Hoe 140 in the spinal dorsal horn, with K(i) values of 0.5, 1.5, 3.2, and 3.7 nM, respectively. These values were not significantly different in diabetic rats at 7 days (0.5 (Hoe 140), 0.7 (HPP-Hoe 140), 1.2 (BK), and 1.7 (LF16-0687) nM). While des-Arg(10)-Hoe 140 was three orders of magnitude less potent than Hoe 140, B(1) receptor agonist (des-Arg(9)-BK) and antagonist (AcLys[D-betaNal(7),Ile(8)]des-Arg(9)-BK, R-715) did not affect [(125)I]-HPP-Hoe 140 binding at 1 microM concentration. Data suggest a very discrete and temporal increase of B(2) receptor density (without affinity changes) in the spinal cord and hindbrain of STZ-diabetic rats. This contrasts with the early induction and over-expression of B(1) receptors reported in the brain and spinal cord of STZ-diabetic rats.
Collapse
MESH Headings
- Animals
- Autonomic Nervous System Diseases/etiology
- Autonomic Nervous System Diseases/metabolism
- Autonomic Nervous System Diseases/physiopathology
- Autoradiography
- Baroreflex/drug effects
- Baroreflex/physiology
- Binding, Competitive/drug effects
- Binding, Competitive/physiology
- Brain/metabolism
- Brain/physiopathology
- Cardiovascular Diseases/etiology
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/physiopathology
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Hypertension/etiology
- Hypertension/metabolism
- Hypertension/physiopathology
- Iodine Radioisotopes
- Kinins/metabolism
- Ligands
- Male
- Neural Pathways/metabolism
- Neural Pathways/physiopathology
- Radioligand Assay
- Rats
- Rats, Wistar
- Receptor, Bradykinin B2/agonists
- Receptor, Bradykinin B2/metabolism
- Spinal Cord/metabolism
- Spinal Cord/physiopathology
- Tachycardia/etiology
- Tachycardia/metabolism
- Tachycardia/physiopathology
Collapse
Affiliation(s)
- Maria Martha Campos
- Département de Physiologie, Faculté de Médecine, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
| | | | | | | | | |
Collapse
|