1
|
Öktem A, Pranoto DA, van Dijl JM. Post-translational secretion stress regulation in Bacillus subtilis is controlled by intra- and extracellular proteases. N Biotechnol 2024; 79:71-81. [PMID: 38158017 DOI: 10.1016/j.nbt.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The Gram-positive bacterium Bacillus subtilis is a prolific producer of industrial enzymes that are effectively harvested from the fermentation broth. However, the high capacity of B. subtilis for protein secretion has so far not been exploited to the full due to particular bottlenecks, including product degradation by extracellular proteases and counterproductive secretion stress responses. To unlock the Bacillus secretion pathway for difficult-to-produce proteins, various cellular interventions have been explored, including genome engineering. Our previous research has shown a superior performance of genome-reduced B. subtilis strains in the production of staphylococcal antigens compared to the parental strain 168. This was attributed, at least in part, to redirected secretion stress responses, including the presentation of elevated levels of the quality control proteases HtrA and HtrB that also catalyse protein folding. Here we show that this relates to the elimination of two homologous serine proteases, namely the cytosolic protease AprX and the extracellular protease AprE. This unprecedented posttranslational regulation of secretion stress effectors, like HtrA and HtrB, by the concerted action of cytosolic and extracellular proteases has important implications for the biotechnological application of microbial cell factories. In B. subtilis, this conclusion is underscored by extracellular degradation of the staphylococcal antigen IsaA by both AprX and AprE. Extracellular activity of the cytosolic protease AprX is remarkable since it shows that not only extracellular, but also intracellular proteases impact extracellular product levels. We therefore conclude that intracellular proteases represent new targets for improved recombinant protein production in microbial cell factories like B. subtilis.
Collapse
Affiliation(s)
- Ayşegül Öktem
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Dicky A Pranoto
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, the Netherlands.
| |
Collapse
|
2
|
Dimitrova YN, Gutierrez JA, Huard K. It's ok to be outnumbered - sub-stoichiometric modulation of homomeric protein complexes. RSC Med Chem 2023; 14:22-46. [PMID: 36760737 PMCID: PMC9890894 DOI: 10.1039/d2md00212d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
An arsenal of molecular tools with increasingly diversified mechanisms of action is being developed by the scientific community to enable biological interrogation and pharmaceutical modulation of targets and pathways of ever increasing complexity. While most small molecules interact with the target of interest in a 1 : 1 relationship, a noteworthy number of recent examples were reported to bind in a sub-stoichiometric manner to a homomeric protein complex. This approach requires molecular understanding of the physiologically relevant protein assemblies and in-depth characterization of the compound's mechanism of action. The recent literature examples summarized here were selected to illustrate methods used to identify and characterize molecules with such mechanisms. The concept of one small molecule targeting a homomeric protein assembly is not new but the subject deserves renewed inspection in light of emerging technologies and increasingly diverse target biology, to ensure relevant in vitro systems are used and valuable compounds with potentially novel sub-stoichiometric mechanisms of action aren't overlooked.
Collapse
Affiliation(s)
| | | | - Kim Huard
- Genentech 1 DNA Way South San Francisco CA 94080 USA
| |
Collapse
|
3
|
Furniss RCD, Kaderabkova N, Barker D, Bernal P, Maslova E, Antwi AA, McNeil HE, Pugh HL, Dortet L, Blair JM, Larrouy-Maumus GJ, McCarthy RR, Gonzalez D, Mavridou DA. Breaking antimicrobial resistance by disrupting extracytoplasmic protein folding. eLife 2022; 11:57974. [PMID: 35025730 PMCID: PMC8863373 DOI: 10.7554/elife.57974] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 01/11/2022] [Indexed: 11/24/2022] Open
Abstract
Antimicrobial resistance in Gram-negative bacteria is one of the greatest threats to global health. New antibacterial strategies are urgently needed, and the development of antibiotic adjuvants that either neutralize resistance proteins or compromise the integrity of the cell envelope is of ever-growing interest. Most available adjuvants are only effective against specific resistance proteins. Here, we demonstrate that disruption of cell envelope protein homeostasis simultaneously compromises several classes of resistance determinants. In particular, we find that impairing DsbA-mediated disulfide bond formation incapacitates diverse β-lactamases and destabilizes mobile colistin resistance enzymes. Furthermore, we show that chemical inhibition of DsbA sensitizes multidrug-resistant clinical isolates to existing antibiotics and that the absence of DsbA, in combination with antibiotic treatment, substantially increases the survival of Galleria mellonella larvae infected with multidrug-resistant Pseudomonas aeruginosa. This work lays the foundation for the development of novel antibiotic adjuvants that function as broad-acting resistance breakers. Antibiotics, like penicillin, are the foundation of modern medicine, but bacteria are evolving to resist their effects. Some of the most harmful pathogens belong to a group called the 'Gram-negative bacteria', which have an outer layer – called the cell envelope – that acts as a drug barrier. This envelope contains antibiotic resistance proteins that can deactivate or repel antibiotics or even pump them out of the cell once they get in. One way to tackle antibiotic resistance could be to stop these proteins from working. Proteins are long chains of building blocks called amino acids that fold into specific shapes. In order for a protein to perform its role correctly, it must fold in the right way. In bacteria, a protein called DsbA helps other proteins fold correctly by holding them in place and inserting links called disulfide bonds. It was unclear whether DsbA plays a role in the folding of antibiotic resistance proteins, but if it did, it might open up new ways to treat antibiotic resistant infections. To find out more, Furniss, Kaderabkova et al. collected the genes that code for several antibiotic resistance proteins and put them into Escherichia coli bacteria, which made the bacteria resistant to antibiotics. Furniss, Kaderabkova et al. then stopped the modified E. coli from making DsbA, which led to the antibiotic resistance proteins becoming unstable and breaking down because they could not fold correctly. Further experiments showed that blocking DsbA with a chemical inhibitor in other pathogenic species of Gram-negative bacteria made these bacteria more sensitive to antibiotics that they would normally resist. To demonstrate that using this approach could work to stop infections by these bacteria, Furniss, Kaderabkova et al. used Gram-negative bacteria that produced antibiotic resistance proteins but could not make DsbA to infect insect larvae. The larvae were then treated with antibiotics, which increased their survival rate, indicating that blocking DsbA may be a good approach to tackling antibiotic resistant bacteria. According to the World Health Organization, developing new treatments against Gram-negative bacteria is of critical importance, but the discovery of new drugs has ground to a halt. One way around this is to develop ways to make existing drugs work better. Making drugs that block DsbA could offer a way to treat resistant infections using existing antibiotics in the future.
Collapse
Affiliation(s)
| | - Nikol Kaderabkova
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Declan Barker
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Patricia Bernal
- Department of Microbiology, Universidad de Sevilla, Seville, Spain
| | - Evgenia Maslova
- Department of Life Sciences, Brunel University London, London, United Kingdom
| | - Amanda Aa Antwi
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Helen E McNeil
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Hannah L Pugh
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Laurent Dortet
- Department of Bacteriology-Hygiene, Paris-Sud University, Paris, France
| | - Jessica Ma Blair
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | | | - Ronan R McCarthy
- Department of Life Sciences, Brunel University London, London, United Kingdom
| | - Diego Gonzalez
- Department of Biology, University of Neuchatel, Neuchatel, Switzerland
| | - Despoina Ai Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| |
Collapse
|
4
|
Harkness RW, Toyama Y, Ripstein ZA, Zhao H, Sever AIM, Luan Q, Brady JP, Clark PL, Schuck P, Kay LE. Competing stress-dependent oligomerization pathways regulate self-assembly of the periplasmic protease-chaperone DegP. Proc Natl Acad Sci U S A 2021. [PMID: 34362850 DOI: proc/self/fd/32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
DegP is an oligomeric protein with dual protease and chaperone activity that regulates protein homeostasis and virulence factor trafficking in the periplasm of gram-negative bacteria. A number of oligomeric architectures adopted by DegP are thought to facilitate its function. For example, DegP can form a "resting" hexamer when not engaged to substrates, mitigating undesired proteolysis of cellular proteins. When bound to substrate proteins or lipid membranes, DegP has been shown to populate a variety of cage- or bowl-like oligomeric states that have increased proteolytic activity. Though a number of DegP's substrate-engaged structures have been robustly characterized, detailed mechanistic information underpinning its remarkable oligomeric plasticity and the corresponding interplay between these dynamics and biological function has remained elusive. Here, we have used a combination of hydrodynamics and NMR spectroscopy methodologies in combination with cryogenic electron microscopy to shed light on the apo-DegP self-assembly mechanism. We find that, in the absence of bound substrates, DegP populates an ensemble of oligomeric states, mediated by self-assembly of trimers, that are distinct from those observed in the presence of substrate. The oligomeric distribution is sensitive to solution ionic strength and temperature and is shifted toward larger oligomeric assemblies under physiological conditions. Substrate proteins may guide DegP toward canonical cage-like structures by binding to these preorganized oligomers, leading to changes in conformation. The properties of DegP self-assembly identified here suggest that apo-DegP can rapidly shift its oligomeric distribution in order to respond to a variety of biological insults.
Collapse
Affiliation(s)
- Robert W Harkness
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; .,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.,Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Yuki Toyama
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.,Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Zev A Ripstein
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.,Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Huaying Zhao
- National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD 20892
| | - Alexander I M Sever
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.,Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Qing Luan
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Jacob P Brady
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.,Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Patricia L Clark
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Peter Schuck
- National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD 20892
| | - Lewis E Kay
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; .,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.,Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
5
|
Competing stress-dependent oligomerization pathways regulate self-assembly of the periplasmic protease-chaperone DegP. Proc Natl Acad Sci U S A 2021; 118:2109732118. [PMID: 34362850 DOI: 10.1073/pnas.2109732118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DegP is an oligomeric protein with dual protease and chaperone activity that regulates protein homeostasis and virulence factor trafficking in the periplasm of gram-negative bacteria. A number of oligomeric architectures adopted by DegP are thought to facilitate its function. For example, DegP can form a "resting" hexamer when not engaged to substrates, mitigating undesired proteolysis of cellular proteins. When bound to substrate proteins or lipid membranes, DegP has been shown to populate a variety of cage- or bowl-like oligomeric states that have increased proteolytic activity. Though a number of DegP's substrate-engaged structures have been robustly characterized, detailed mechanistic information underpinning its remarkable oligomeric plasticity and the corresponding interplay between these dynamics and biological function has remained elusive. Here, we have used a combination of hydrodynamics and NMR spectroscopy methodologies in combination with cryogenic electron microscopy to shed light on the apo-DegP self-assembly mechanism. We find that, in the absence of bound substrates, DegP populates an ensemble of oligomeric states, mediated by self-assembly of trimers, that are distinct from those observed in the presence of substrate. The oligomeric distribution is sensitive to solution ionic strength and temperature and is shifted toward larger oligomeric assemblies under physiological conditions. Substrate proteins may guide DegP toward canonical cage-like structures by binding to these preorganized oligomers, leading to changes in conformation. The properties of DegP self-assembly identified here suggest that apo-DegP can rapidly shift its oligomeric distribution in order to respond to a variety of biological insults.
Collapse
|
6
|
Zarzecka U, Grinzato A, Kandiah E, Cysewski D, Berto P, Skorko-Glonek J, Zanotti G, Backert S. Functional analysis and cryo-electron microscopy of Campylobacterjejuni serine protease HtrA. Gut Microbes 2020; 12:1-16. [PMID: 32960677 PMCID: PMC7524362 DOI: 10.1080/19490976.2020.1810532] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Campylobacter jejuni is a predominant zoonotic pathogen causing gastroenteritis and other diseases in humans. An important bacterial virulence factor is the secreted serine protease HtrA (HtrA Cj ), which targets tight and adherens junctional proteins in the gut epithelium. Here we have investigated the function and structure of HtrA Cj using biochemical assays and cryo-electron microscopy. Mass spectrometry analysis identified differences and similarities in the cleavage site specificity for HtrA Cj by comparison to the HtrA counterparts from Helicobacter pylori and Escherichia coli. We defined the architecture of HtrA Cj at 5.8 Å resolution as a dodecamer, built of four trimers. The contacts between the trimers are quite loose, a fact that explains the flexibility and mobility of the dodecameric assembly. This flexibility has also been studied through molecular dynamics simulation, which revealed opening of the dodecamer to expose the proteolytically active site of the protease. Moreover, we examined the rearrangements at the level of oligomerization in the presence or absence of substrate using size exclusion chromatography, which revealed hexamers, dodecamers and larger oligomeric forms, as well as remarkable stability of higher oligomeric forms (> 12-mers) compared to previously tested homologs from other bacteria. Extremely dynamic decay of the higher oligomeric forms into lower forms was observed after full cleavage of the substrate by the proteolytically active variant of HtrA Cj . Together, this is the first report on the in-depth functional and structural analysis of HtrA Cj , which may allow the construction of therapeutically relevant HtrA Cj inhibitors in the near future.
Collapse
Affiliation(s)
- Urszula Zarzecka
- Division of Microbiology, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany,Department of General and Medical Biochemistry, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | | | | | - Dominik Cysewski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Science, Warsaw, Poland
| | - Paola Berto
- Department of Biomedical Sciences, University of Padua, Padova, Italy
| | - Joanna Skorko-Glonek
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Giuseppe Zanotti
- Department of Biomedical Sciences, University of Padua, Padova, Italy,Giuseppe Zanotti Department of Biomedical Sciences, University of Padua, Padova, Italy
| | - Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany,CONTACT Steffen Backert Division of Microbiology, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
7
|
The evolutionarily conserved HtrA is associated with stress tolerance and protein homeostasis in the halotolerant cyanobacterium Halothece sp. PCC7418. Extremophiles 2020; 24:377-389. [PMID: 32146515 DOI: 10.1007/s00792-020-01162-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/21/2020] [Indexed: 12/22/2022]
Abstract
The HtrA protein family represents an important class of serine proteases that are widely distributed across taxa. These evolutionarily conserved proteins are crucial for survival and function as monitors of protein synthesis during various stresses. Here, we performed gene expression analysis of the entire set of putative serine protease genes in Halothece sp. PCC7418 under salt stress conditions. The gene-encoding HtrA2 (H3553) was highly upregulated. This gene was cloned and functionally characterized, and its sub-cellular localization was determined. The recombinant H3553 protein (rH3553) displayed a pH optimum of 8.0, remained stable at 45 °C, and its proteolytic activity was not affected by salts. H3553 completely degraded the unfolded model protein, β-casein. In contrast, the folded model substrates (lysozyme or BSA) were not degraded by rH3553. Denaturation of BSA at a high temperature significantly increased its degradation by rH3553. H3553 was detected in the soluble protein fraction as well as the plasma membrane and thylakoid membrane fractions. Interestingly, the majority of H3553 was present in the plasma membrane under salt and heat stress conditions. Thus, H3553 resides in multiple sub-cellular locations and its localization drastically changes after exposure to stresses. Taken together, H3553 underpins protein quality-control process and is involved in the response and adaptation to salinity and heat stresses.
Collapse
|
8
|
Abfalter CM, Bernegger S, Jarzab M, Posselt G, Ponnuraj K, Wessler S. The proteolytic activity of Listeria monocytogenes HtrA. BMC Microbiol 2019; 19:255. [PMID: 31726993 PMCID: PMC6857308 DOI: 10.1186/s12866-019-1633-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/04/2019] [Indexed: 12/26/2022] Open
Abstract
Background High temperature requirement A (HtrA) is a widely expressed chaperone and serine protease in bacteria. HtrA proteases assemble and hydrolyze misfolded proteins to enhance bacterial survival under stress conditions. Listeria monocytogenes (L. monocytogenes) is a foodborne pathogen that induces listeriosis in humans. In previous studies, it was shown that deletion of htrA in the genome of L. monocytogenes increased the susceptibility to cellular stress and attenuated virulence. However, expression and protease activity of listerial HtrA (LmHtrA) were never analyzed in detail. Results In this study, we cloned LmHtrA wildtype (LmHtrAwt) and generated a proteolytic inactive LmHtrASA mutant. Recombinant LmHtrAwt and LmHtrASA were purified and the proteolytic activity was analyzed in casein zymography and in vitro cleavage assays. LmHtrA activity could be efficiently blocked by a small molecule inhibitor targeting bacterial HtrA proteases. The expression of LmHtrA was enhanced in the stationary growth phase of L. monocytogenes and significantly contributed to bacterial survival at high temperatures. Conclusions Our data show that LmHtrA is a highly active caseinolytic protease and provide a deeper insight into the function and mechanism, which could lead to medical and biotechnological applications in the future.
Collapse
Affiliation(s)
- Carmen M Abfalter
- Department of Biosciences, University of Salzburg, Billroth Str. 11, A-5020, Salzburg, Austria
| | - Sabine Bernegger
- Department of Biosciences, University of Salzburg, Billroth Str. 11, A-5020, Salzburg, Austria
| | - Miroslaw Jarzab
- Department of Biosciences, University of Salzburg, Billroth Str. 11, A-5020, Salzburg, Austria
| | - Gernot Posselt
- Department of Biosciences, University of Salzburg, Billroth Str. 11, A-5020, Salzburg, Austria
| | - Karthe Ponnuraj
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, India
| | - Silja Wessler
- Department of Biosciences, University of Salzburg, Billroth Str. 11, A-5020, Salzburg, Austria.
| |
Collapse
|
9
|
Zarzecka U, Modrak-Wójcik A, Figaj D, Apanowicz M, Lesner A, Bzowska A, Lipinska B, Zawilak-Pawlik A, Backert S, Skorko-Glonek J. Properties of the HtrA Protease From Bacterium Helicobacter pylori Whose Activity Is Indispensable for Growth Under Stress Conditions. Front Microbiol 2019; 10:961. [PMID: 31130939 PMCID: PMC6509562 DOI: 10.3389/fmicb.2019.00961] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/16/2019] [Indexed: 12/22/2022] Open
Abstract
The protease high temperature requirement A from the gastric pathogen Helicobacter pylori (HtrAHp) belongs to the well conserved family of serine proteases. HtrAHp is an important secreted virulence factor involved in the disruption of tight and adherens junctions during infection. Very little is known about the function of HtrAHp in the H. pylori cell physiology due to the lack of htrA knockout strains. Here, using a newly constructed ΔhtrA mutant strain, we found that bacteria deprived of HtrAHp showed increased sensitivity to certain types of stress, including elevated temperature, pH and osmotic shock, as well as treatment with puromycin. These data indicate that HtrAHp plays a protective role in the H. pylori cell, presumably associated with maintenance of important periplasmic and outer membrane proteins. Purified HtrAHp was shown to be very tolerant to a wide range of temperature and pH values. Remarkably, the protein exhibited a very high thermal stability with the melting point (Tm) values of above 85°C. Moreover, HtrAHp showed the capability to regain its active structure following treatment under denaturing conditions. Taken together, our work demonstrates that HtrAHp is well adapted to operate under harsh conditions as an exported virulence factor, but also inside the bacterial cell as an important component of the protein quality control system in the stressed cellular envelope.
Collapse
Affiliation(s)
- Urszula Zarzecka
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdańsk, Gdańsk, Poland.,Division of Microbiology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Modrak-Wójcik
- Division of Biophysics, Faculty of Physics, Institute of Experimental Physics, University of Warsaw, Warsaw, Poland
| | - Donata Figaj
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Malgorzata Apanowicz
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Adam Lesner
- Department of Environmental Technology, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Agnieszka Bzowska
- Division of Biophysics, Faculty of Physics, Institute of Experimental Physics, University of Warsaw, Warsaw, Poland
| | - Barbara Lipinska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Anna Zawilak-Pawlik
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Joanna Skorko-Glonek
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
10
|
Zhang Z, Huang Q, Tao X, Song G, Zheng P, Li H, Sun H, Xia W. The unique trimeric assembly of the virulence factor HtrA from Helicobacter pylori occurs via N-terminal domain swapping. J Biol Chem 2019; 294:7990-8000. [PMID: 30936204 DOI: 10.1074/jbc.ra119.007387] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
Knowledge of the molecular mechanisms of specific bacterial virulence factors can significantly contribute to antibacterial drug discovery. Helicobacter pylori is a Gram-negative microaerophilic bacterium that infects almost half of the world's population, leading to gastric disorders and even gastric cancer. H. pylori expresses a series of virulence factors in the host, among which high-temperature requirement A (HpHtrA) is a newly identified serine protease secreted by H. pylori. HpHtrA cleaves the extracellular domain of the epithelial cell surface adhesion protein E-cadherin and disrupts gastric epithelial cell junctions, allowing H. pylori to access the intercellular space. Here we report the first crystal structure of HpHtrA at 3.0 Å resolution. The structure revealed a new type of HtrA protease trimer stabilized by unique N-terminal domain swapping distinct from other known HtrA homologs. We further observed that truncation of the N terminus completely abrogates HpHtrA trimer formation as well as protease activity. In the presence of unfolded substrate, HpHtrA assembled into cage-like 12-mers or 24-mers. Combining crystallographic, biochemical, and mutagenic data, we propose a mechanistic model of how HpHtrA recognizes and cleaves the well-folded E-cadherin substrate. Our study provides a fundamental basis for the development of anti-H. pylori agents by using a previously uncharacterized HtrA protease as a target.
Collapse
Affiliation(s)
- Zhemin Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qi Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xuan Tao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Guobing Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hongyan Li
- Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Hongzhe Sun
- Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Wei Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
11
|
Israeli M, Elia U, Rotem S, Cohen H, Tidhar A, Bercovich-Kinori A, Cohen O, Chitlaru T. Distinct Contribution of the HtrA Protease and PDZ Domains to Its Function in Stress Resilience and Virulence of Bacillus anthracis. Front Microbiol 2019; 10:255. [PMID: 30833938 PMCID: PMC6387919 DOI: 10.3389/fmicb.2019.00255] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/30/2019] [Indexed: 12/19/2022] Open
Abstract
Anthrax is a lethal disease caused by the Gram-positive spore-producing bacterium Bacillus anthracis. We previously demonstrated that disruption of htrA gene, encoding the chaperone/protease HtrABA (High Temperature Requirement A of B. anthracis) results in significant virulence attenuation, despite unaffected ability of ΔhtrA strains (in which the htrA gene was deleted) to synthesize the key anthrax virulence factors: the exotoxins and capsule. B. anthracis ΔhtrA strains exhibited increased sensitivity to stress regimens as well as silencing of the secreted starvation-associated Neutral Protease A (NprA) and down-modulation of the bacterial S-layer. The virulence attenuation associated with disruption of the htrA gene was suggested to reflect the susceptibility of ΔhtrA mutated strains to stress insults encountered in the host indicating that HtrABA represents an important B. anthracis pathogenesis determinant. As all HtrA serine proteases, HtrABA exhibits a protease catalytic domain and a PDZ domain. In the present study we interrogated the relative impact of the proteolytic activity (mediated by the protease domain) and the PDZ domain (presumably necessary for the chaperone activity and/or interaction with substrates) on manifestation of phenotypic characteristics mediated by HtrABA. By inspecting the phenotype exhibited by ΔhtrA strains trans-complemented with either a wild-type, truncated (ΔPDZ), or non-proteolytic form (mutated in the catalytic serine residue) of HtrABA, as well as strains exhibiting modified chromosomal alleles, it is shown that (i) the proteolytic activity of HtrABA is essential for its N-terminal autolysis and subsequent release into the extracellular milieu, while the PDZ domain was dispensable for this process, (ii) the PDZ domain appeared to be dispensable for most of the functions related to stress resilience as well as involvement of HtrABA in assembly of the bacterial S-layer, (iii) conversely, the proteolytic activity but not the PDZ domain, appeared to be dispensable for the role of HtrABA in mediating up-regulation of the extracellular protease NprA under starvation stress, and finally (iv) in a murine model of anthrax, the HtrABA PDZ domain, was dispensable for manifestation of B. anthracis virulence. The unexpected dispensability of the PDZ domain may represent a unique characteristic of HtrABA amongst bacterial serine proteases of the HtrA family.
Collapse
Affiliation(s)
- Ma'ayan Israeli
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Uri Elia
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Shahar Rotem
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Hila Cohen
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Avital Tidhar
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Adi Bercovich-Kinori
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ofer Cohen
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Theodor Chitlaru
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| |
Collapse
|
12
|
Albrecht N, Tegtmeyer N, Sticht H, Skórko-Glonek J, Backert S. Amino-Terminal Processing of Helicobacter pylori Serine Protease HtrA: Role in Oligomerization and Activity Regulation. Front Microbiol 2018; 9:642. [PMID: 29713313 PMCID: PMC5911493 DOI: 10.3389/fmicb.2018.00642] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/19/2018] [Indexed: 12/17/2022] Open
Abstract
The HtrA family of serine proteases is found in most bacteria, and plays an essential role in the virulence of the gastric pathogen Helicobacter pylori. Secreted H. pylori HtrA (HtrA Hp ) cleaves various junctional proteins such as E-cadherin disrupting the epithelial barrier, which is crucial for bacterial transmigration across the polarized epithelium. Recent studies indicated the presence of two characteristic HtrA Hp forms of 55 and 52 kDa (termed p55 and p52, respectively), in worldwide strains. In addition, p55 and p52 were produced by recombinant HtrA Hp , indicating auto-cleavage. However, the cleavage sites and their functional importance are yet unclear. Here, we determined the amino-terminal ends of p55 and p52 by Edman sequencing. Two proteolytic cleavage sites were identified (H46/D47 and K50/D51). Remarkably, the cleavage site sequences are conserved in HtrA Hp from worldwide isolates, but not in other Gram-negative pathogens, suggesting a highly specific assignment in H. pylori. We analyzed the role of the amino-terminal cleavage sites on activity, secretion and function of HtrA Hp . Three-dimensional modeling suggested a trimeric structure and a role of amino-terminal processing in oligomerization and regulation of proteolytic activity of HtrA Hp . Furthermore, point and deletion mutants of these processing sites were generated in the recently reported Campylobacter jejuni ΔhtrA/htrAHp genetic complementation system and the minimal sequence requirements for processing were determined. Polarized Caco-2 epithelial cells were infected with these strains and analyzed by immunofluorescence microscopy. The results indicated that HtrA Hp processing strongly affected the ability of the protease to disrupt the E-cadherin-based cell-to-cell junctions. Casein zymography confirmed that the amino-terminal region is required for maintaining the proteolytic activity of HtrA Hp . Furthermore, we demonstrated that this cleavage influences the secretion of HtrA Hp in the extracellular space as an important prerequisite for its virulence activity. Taken together, our data demonstrate that amino-terminal cleavage of HtrA Hp is conserved in this pathogen and affects oligomerization and thus, secretion and regulatory activities, suggesting an important role in the pathogenesis of H. pylori.
Collapse
Affiliation(s)
- Nicole Albrecht
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nicole Tegtmeyer
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Joanna Skórko-Glonek
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
13
|
Zarzecka U, Modrak-Wojcik A, Bayassi M, Szewczyk M, Gieldon A, Lesner A, Koper T, Bzowska A, Sanguinetti M, Backert S, Lipinska B, Skorko-Glonek J. Biochemical properties of the HtrA homolog from bacterium Stenotrophomonas maltophilia. Int J Biol Macromol 2017; 109:992-1005. [PMID: 29155201 DOI: 10.1016/j.ijbiomac.2017.11.086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/12/2017] [Accepted: 11/13/2017] [Indexed: 11/29/2022]
Abstract
The HtrA proteins due to their proteolytic, and in many cases chaperone activity, efficiently counteract consequences of stressful conditions. In the environmental bacterium and nosocomial pathogen Stenotrophomonas maltophilia HtrA (HtrASm) is induced as a part of adaptive response to host temperature (37°C). We examined the biochemical properties of HtrASm and compared them with those of model HtrAEc from Escherichia coli. We found that HtrASm is a protease and chaperone that operates over a wide range of pH and is highly active at temperatures between 35 and 37°C. The temperature-sensitive activity corresponded well with the lower thermal stability of the protein and weaker stability of the oligomer. Interestingly, the enzyme shows slightly different substrate cleavage specificity when compared to other bacterial HtrAs. A computational model of the three-dimensional structure of HtrASm indicates differences in the S1 substrate specificity pocket and suggests weaker inter-trimer interactions when compared to HtrAEc. The observed features of HtrASm suggest that this protein may play a protective role under stressful conditions acting both as a protease and a chaperone. The optimal temperatures for the protein activity may reflect the evolutionary adaptation of S. maltophilia to life in soil or aqueous environments, where the temperatures are usually much below 37°C.
Collapse
Affiliation(s)
- Urszula Zarzecka
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Gdansk 80-308, Poland
| | - Anna Modrak-Wojcik
- Department of Biophysics, Institute of Experimental Physics, University of Warsaw, Warsaw 02-089, Poland
| | - Martyna Bayassi
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Gdansk 80-308, Poland
| | - Maciej Szewczyk
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Gdansk 80-308, Poland
| | - Artur Gieldon
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk 80-952, Poland
| | - Adam Lesner
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Gdansk 80-952, Poland
| | - Tomasz Koper
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Gdansk 80-308, Poland
| | - Agnieszka Bzowska
- Department of Biophysics, Institute of Experimental Physics, University of Warsaw, Warsaw 02-089, Poland
| | - Maurizio Sanguinetti
- Institute of Microbiology, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Barbara Lipinska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Gdansk 80-308, Poland
| | - Joanna Skorko-Glonek
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Gdansk 80-308, Poland.
| |
Collapse
|
14
|
Fitriani D, Rohman MS, Prijambada ID. Proteolytic activity of recombinant DegP from Chromohalobacter salexigens BKL5. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2017.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
15
|
Zhu F, Yang X, Wu Y, Wang Y, Tang XF, Tang B. Release of an HtrA-Like Protease from the Cell Surface of Thermophilic Brevibacillus sp. WF146 via Substrate-Induced Autoprocessing of the N-terminal Membrane Anchor. Front Microbiol 2017; 8:481. [PMID: 28377763 PMCID: PMC5359297 DOI: 10.3389/fmicb.2017.00481] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 03/08/2017] [Indexed: 01/07/2023] Open
Abstract
High-temperature requirement A (HtrA)-like proteases participate in protein quality control in prokaryotes and eukaryotes by degrading damaged proteins; however, little is known about HtrAs produced by thermophiles. HtrAw is an HtrA-like protease of thermophilic Brevibacillus sp. WF146. The intact form of HtrAw (iHtrAw) consisting of a transmembrane segment-containing N-terminal domain, a trypsin-like protease domain, and a C-terminal PDZ domain was produced in Escherichia coli. Purified iHtrAw itself is unable to cleave the N-terminal domain, but requires protein substrates to autoprocess the N-terminal domain intermolecularly, yielding a short form (sHtrAw). Mutation at the substrate-binding site in the PDZ domain affects the conversion of iHtrAw to sHtrAw. Deletion analysis revealed that the N-terminal domain is not necessary for enzyme folding, activity, and thermostability. Compared with other known HtrAs, HtrAw contains an additional Ca2+-binding Dx[DN]xDG motif important for enzyme stability and/or activity. When produced in an htrA/htrB double deletion mutant of Bacillus subtilis, iHtrAw localized predominantly to the cell pellet, and the amount of sHtrAw in the culture supernatant increased at elevated temperatures. Moreover, HtrAw increased the heat resistance of the B. subtilis mutant. In strain WF146, HtrAw exists in both a cell-associated intact form and a cell-free short form; an increase in growth temperature enhanced HtrAw production and the amount of cell-free short form. Release of the short form of HtrAw from the membrane may have the advantage of allowing the enzyme to freely access and degrade damaged proteins surrounding the bacterium living at high temperatures.
Collapse
Affiliation(s)
- Fengtao Zhu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University Wuhan, China
| | - Xing Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University Wuhan, China
| | - Yan Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University Wuhan, China
| | - Yasi Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University Wuhan, China
| | - Xiao-Feng Tang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan UniversityWuhan, China; Hubei Provincial Cooperative Innovation Center of Industrial FermentationWuhan, China
| | - Bing Tang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan UniversityWuhan, China; Hubei Provincial Cooperative Innovation Center of Industrial FermentationWuhan, China
| |
Collapse
|
16
|
Abfalter CM, Schubert M, Götz C, Schmidt TP, Posselt G, Wessler S. HtrA-mediated E-cadherin cleavage is limited to DegP and DegQ homologs expressed by gram-negative pathogens. Cell Commun Signal 2016; 14:30. [PMID: 27931258 PMCID: PMC5146865 DOI: 10.1186/s12964-016-0153-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 12/01/2016] [Indexed: 02/08/2023] Open
Abstract
Background The serine proteases HtrA/DegP secreted by the human gastrointestinal pathogens Helicobacter pylori (H. pylori) and Campylobacter jejuni (C. jejuni) cleave the mammalian cell adhesion protein E-cadherin to open intercellular adhesions. A wide range of bacteria also expresses the HtrA/DegP homologs DegQ and/or DegS, which significantly differ in structure and function. Methods E-cadherin shedding was investigated in infection experiments with the Gram-negative pathogens H. pylori, enteropathogenic Escherichia coli (EPEC), Salmonella enterica subsp. Enterica (S. Typhimurium), Yersinia enterocolitica (Y. enterocolitica), and Proteus mirabilis (P. mirabilis), which express different combinations of HtrAs. Annotated wild-type htrA/degP, degQ and degS genes were cloned and proteolytically inactive mutants were generated by a serine—to—alanine exchange in the active center. All HtrA variants were overexpressed and purified to compare their proteolytic activities in casein zymography and in vitro E-cadherin cleavage experiments. Results Infection of epithelial cells resulted in a strong E-cadherin ectodomain shedding as reflected by the loss of full length E-cadherin in whole cell lysates and formation of the soluble 90 kDa extracellular domain of E-cadherin (NTF) in the supernatants of infected cells. Importantly, comparing the caseinolytic and E-cadherin cleavage activities of HtrA/DegP, DegQ and DegS proteins revealed that DegP and DegQ homologs from H. pylori, S. Typhimurium, Y. enterocolitica, EPEC and P. mirabilis, but not activated DegS, cleaved E-cadherin as a substrate in vitro. Conclusions These data indicate that E-cadherin cleavage is confined to HtrA/DegP and DegQ proteins representing an important prevalent step in bacterial pathogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12964-016-0153-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carmen M Abfalter
- Division of Microbiology, Department of Molecular Biology, Paris-Lodron University of Salzburg, Billroth Str. 11, A-5020, Salzburg, Austria
| | - Maria Schubert
- Division of Microbiology, Department of Molecular Biology, Paris-Lodron University of Salzburg, Billroth Str. 11, A-5020, Salzburg, Austria
| | - Camilla Götz
- Division of Microbiology, Department of Molecular Biology, Paris-Lodron University of Salzburg, Billroth Str. 11, A-5020, Salzburg, Austria
| | - Thomas P Schmidt
- Division of Microbiology, Department of Molecular Biology, Paris-Lodron University of Salzburg, Billroth Str. 11, A-5020, Salzburg, Austria
| | - Gernot Posselt
- Division of Microbiology, Department of Molecular Biology, Paris-Lodron University of Salzburg, Billroth Str. 11, A-5020, Salzburg, Austria
| | - Silja Wessler
- Division of Microbiology, Department of Molecular Biology, Paris-Lodron University of Salzburg, Billroth Str. 11, A-5020, Salzburg, Austria.
| |
Collapse
|
17
|
Figaj D, Gieldon A, Bartczak M, Koper T, Zarzecka U, Lesner A, Lipinska B, Skorko-Glonek J. The LD loop as an important structural element required for transmission of the allosteric signal in the HtrA (DegP) protease from Escherichia coli. FEBS J 2016; 283:3471-87. [PMID: 27469236 DOI: 10.1111/febs.13822] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/30/2016] [Accepted: 07/26/2016] [Indexed: 11/30/2022]
Abstract
High-temperature requirement A (HtrA; DegP) from Escherichia coli, an important element of the extracytoplasmic protein quality-control system, is a member of the evolutionarily conserved family of serine proteases. The characteristic feature of this protein is its allosteric mode of activation. The regulatory loops, L3, L2, L1 and LD, play a crucial role in the transmission of the allosteric signal. Yet, the role of LD has not been fully elucidated. Therefore, we undertook a study to explain the role of the individual LD residues in inducing and maintaining the proteolytic activity of HtrA. We investigated the influence of amino acid substitutions located within the LD loop on the kinetics of a model substrate cleavage as well as on the dynamics of the oligomeric structure of HtrA. We found that the mutations that were expected to disturb the loop's structure and/or interactions with the remaining regulatory loops severely diminished the proteolytic activity of HtrA. The opposite effect, that is, increased activity, was observed for G174S substitution, which was predicted to strengthen the interactions mediated by LD. HtrAG174S protein had an equilibrium shifted toward the active enzyme and formed preferentially high-order oligomeric forms.
Collapse
Affiliation(s)
- Donata Figaj
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Poland
| | - Artur Gieldon
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdansk, Poland
| | - Marlena Bartczak
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Poland
| | - Tomasz Koper
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Poland
| | - Urszula Zarzecka
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Poland
| | - Adam Lesner
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland
| | - Barbara Lipinska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Poland
| | - Joanna Skorko-Glonek
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Poland.
| |
Collapse
|
18
|
Glaza P, Osipiuk J, Wenta T, Zurawa-Janicka D, Jarzab M, Lesner A, Banecki B, Skorko-Glonek J, Joachimiak A, Lipinska B. Structural and Functional Analysis of Human HtrA3 Protease and Its Subdomains. PLoS One 2015; 10:e0131142. [PMID: 26110759 PMCID: PMC4481513 DOI: 10.1371/journal.pone.0131142] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/27/2015] [Indexed: 11/18/2022] Open
Abstract
Human HtrA3 protease, which induces mitochondria-mediated apoptosis, can be a tumor suppressor and a potential therapeutic target in the treatment of cancer. However, there is little information about its structure and biochemical properties. HtrA3 is composed of an N-terminal domain not required for proteolytic activity, a central serine protease domain and a C-terminal PDZ domain. HtrA3S, its short natural isoform, lacks the PDZ domain which is substituted by a stretch of 7 C-terminal amino acid residues, unique for this isoform. This paper presents the crystal structure of the HtrA3 protease domain together with the PDZ domain (ΔN-HtrA3), showing that the protein forms a trimer whose protease domains are similar to those of human HtrA1 and HtrA2. The ΔN-HtrA3 PDZ domains are placed in a position intermediate between that in the flat saucer-like HtrA1 SAXS structure and the compact pyramidal HtrA2 X-ray structure. The PDZ domain interacts closely with the LB loop of the protease domain in a way not found in other human HtrAs. ΔN-HtrA3 with the PDZ removed (ΔN-HtrA3-ΔPDZ) and an N-terminally truncated HtrA3S (ΔN-HtrA3S) were fully active at a wide range of temperatures and their substrate affinity was not impaired. This indicates that the PDZ domain is dispensable for HtrA3 activity. As determined by size exclusion chromatography, ΔN-HtrA3 formed stable trimers while both ΔN-HtrA3-ΔPDZ and ΔN-HtrA3S were monomeric. This suggests that the presence of the PDZ domain, unlike in HtrA1 and HtrA2, influences HtrA3 trimer formation. The unique C-terminal sequence of ΔN-HtrA3S appeared to have little effect on activity and oligomerization. Additionally, we examined the cleavage specificity of ΔN-HtrA3. Results reported in this paper provide new insights into the structure and function of ΔN-HtrA3, which seems to have a unique combination of features among human HtrA proteases.
Collapse
Affiliation(s)
- Przemyslaw Glaza
- Department of Biochemistry, Faculty of Biology, University of Gdansk, 80–308 Gdansk, Poland
| | - Jerzy Osipiuk
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, Illinois, IL 60439, United States of America
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois, IL 60439, United States of America
| | - Tomasz Wenta
- Department of Biochemistry, Faculty of Biology, University of Gdansk, 80–308 Gdansk, Poland
| | - Dorota Zurawa-Janicka
- Department of Biochemistry, Faculty of Biology, University of Gdansk, 80–308 Gdansk, Poland
| | - Miroslaw Jarzab
- Department of Biochemistry, Faculty of Biology, University of Gdansk, 80–308 Gdansk, Poland
| | - Adam Lesner
- Department of Biochemistry, Faculty of Chemistry, University of Gdansk, 80–308 Gdansk, Poland
| | - Bogdan Banecki
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, 80–822 Gdansk, Poland
| | - Joanna Skorko-Glonek
- Department of Biochemistry, Faculty of Biology, University of Gdansk, 80–308 Gdansk, Poland
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, Illinois, IL 60439, United States of America
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois, IL 60439, United States of America
| | - Barbara Lipinska
- Department of Biochemistry, Faculty of Biology, University of Gdansk, 80–308 Gdansk, Poland
- * E-mail:
| |
Collapse
|
19
|
Rai N, Ramaswamy A. Temperature dependent dynamics of DegP-trimer: A molecular dynamics study. Comput Struct Biotechnol J 2015; 13:329-38. [PMID: 25987966 PMCID: PMC4434178 DOI: 10.1016/j.csbj.2015.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/15/2015] [Accepted: 04/18/2015] [Indexed: 11/18/2022] Open
Abstract
DegP is a heat shock protein from high temperature requirement protease A family, which reacts to the environmental stress conditions in an ATP independent way. The objective of the present analysis emerged from the temperature dependent functional diversity of DegP between chaperonic and protease activities at temperatures below and above 28 °C, respectively. DegP is a multimeric protein and the minimal functional unit, DegP-trimer, is of great importance in understanding the DegP pathway. The structural aspects of DegP-trimer with respect to temperature variation have been studied using molecular dynamics simulations (for 100 ns) and principal component analysis to highlight the temperature dependent dynamics facilitating its functional diversity. The DegP-trimer revealed a pronounced dynamics at both 280 and 320 K, when compared to the dynamics observed at 300 K. The LA loop is identified as the highly flexible region during dynamics and at extreme temperatures, the residues 46–80 of LA loop express a flip towards right (at 280) and left ( at 320 K) with respect to the fixed β-sheet connecting the LA loop of protease for which Phe46 acts as one of the key residues. Such dynamics of LA loop facilitates inter-monomeric interaction with the PDZ1 domain of the neighbouring monomer and explains its active participation when DegP exists as trimer. Hence, the LA loop mediated dynamics of DegP-trimer is expected to provide further insight into the temperature dependent dynamics of DegP towards the understanding of its assembly and functional diversity in the presence of substrate.
Collapse
Affiliation(s)
- Nivedita Rai
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Amutha Ramaswamy
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
20
|
Koper T, Polit A, Sobiecka-Szkatula A, Wegrzyn K, Scire A, Figaj D, Kadzinski L, Zarzecka U, Zurawa-Janicka D, Banecki B, Lesner A, Tanfani F, Lipinska B, Skorko-Glonek J. Analysis of the link between the redox state and enzymatic activity of the HtrA (DegP) protein from Escherichia coli. PLoS One 2015; 10:e0117413. [PMID: 25710793 PMCID: PMC4339722 DOI: 10.1371/journal.pone.0117413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 12/22/2014] [Indexed: 11/19/2022] Open
Abstract
Bacterial HtrAs are proteases engaged in extracytoplasmic activities during stressful conditions and pathogenesis. A model prokaryotic HtrA (HtrA/DegP from Escherichia coli) requires activation to cleave its substrates efficiently. In the inactive state of the enzyme, one of the regulatory loops, termed LA, forms inhibitory contacts in the area of the active center. Reduction of the disulfide bond located in the middle of LA stimulates HtrA activity in vivo suggesting that this S-S bond may play a regulatory role, although the mechanism of this stimulation is not known. Here, we show that HtrA lacking an S-S bridge cleaved a model peptide substrate more efficiently and exhibited a higher affinity for a protein substrate. An LA loop lacking the disulfide was more exposed to the solvent; hence, at least some of the interactions involving this loop must have been disturbed. The protein without S-S bonds demonstrated lower thermal stability and was more easily converted to a dodecameric active oligomeric form. Thus, the lack of the disulfide within LA affected the stability and the overall structure of the HtrA molecule. In this study, we have also demonstrated that in vitro human thioredoxin 1 is able to reduce HtrA; thus, reduction of HtrA can be performed enzymatically.
Collapse
Affiliation(s)
- Tomasz Koper
- Department of Biochemistry, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Agnieszka Polit
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Katarzyna Wegrzyn
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Andrea Scire
- Department of Life and Environmental Sciences, Universita Politecnica delle Marche, Ancona, Italy
| | - Donata Figaj
- Department of Biochemistry, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Leszek Kadzinski
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Urszula Zarzecka
- Department of Biochemistry, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Dorota Zurawa-Janicka
- Department of Biochemistry, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Bogdan Banecki
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Adam Lesner
- Department of Biochemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Fabio Tanfani
- Department of Life and Environmental Sciences, Universita Politecnica delle Marche, Ancona, Italy
| | - Barbara Lipinska
- Department of Biochemistry, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Joanna Skorko-Glonek
- Department of Biochemistry, Faculty of Biology, University of Gdansk, Gdansk, Poland
- * E-mail:
| |
Collapse
|
21
|
Figaj D, Gieldon A, Polit A, Sobiecka-Szkatula A, Koper T, Denkiewicz M, Banecki B, Lesner A, Ciarkowski J, Lipinska B, Skorko-Glonek J. The LA loop as an important regulatory element of the HtrA (DegP) protease from Escherichia coli: structural and functional studies. J Biol Chem 2014; 289:15880-93. [PMID: 24737328 DOI: 10.1074/jbc.m113.532895] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Bacterial HtrAs are serine proteases engaged in extracytoplasmic protein quality control and are required for the virulence of several pathogenic species. The proteolytic activity of HtrA (DegP) from Escherichia coli, a model prokaryotic HtrA, is stimulated by stressful conditions; the regulation of this process is mediated by the LA, LD, L1, L2, and L3 loops. The precise mechanism of action of the LA loop is not known due to a lack of data concerning its three-dimensional structure as well as its mode of interaction with other regulatory elements. To address these issues we generated a theoretical model of the three-dimensional structure of the LA loop as per the resting state of HtrA and subsequently verified its correctness experimentally. We identified intra- and intersubunit contacts that formed with the LA loops; these played an important role in maintaining HtrA in its inactive conformation. The most significant proved to be the hydrophobic interactions connecting the LA loops of the hexamer and polar contacts between the LA' (the LA loop on an opposite subunit) and L1 loops on opposite subunits. Disturbance of these interactions caused the stimulation of HtrA proteolytic activity. We also demonstrated that LA loops contribute to the preservation of the integrity of the HtrA oligomer and to the stability of the monomer. The model presented in this work explains the regulatory role of the LA loop well; it should also be applicable to numerous Enterobacteriaceae pathogenic species as the amino acid sequences of the members of this bacterial family are highly conserved.
Collapse
Affiliation(s)
- Donata Figaj
- From the Department of Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Artur Gieldon
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-952 Gdansk
| | - Agnieszka Polit
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Anna Sobiecka-Szkatula
- From the Department of Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Tomasz Koper
- From the Department of Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Milena Denkiewicz
- From the Department of Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Bogdan Banecki
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822 Gdansk, Poland, and
| | - Adam Lesner
- Department of Biochemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-952 Gdansk, Poland
| | - Jerzy Ciarkowski
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-952 Gdansk
| | - Barbara Lipinska
- From the Department of Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Joanna Skorko-Glonek
- From the Department of Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland,
| |
Collapse
|
22
|
Coleman JL, Crowley JT, Toledo AM, Benach JL. The HtrA protease of Borrelia burgdorferi degrades outer membrane protein BmpD and chemotaxis phosphatase CheX. Mol Microbiol 2013; 88:619-33. [PMID: 23565798 PMCID: PMC3641820 DOI: 10.1111/mmi.12213] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2013] [Indexed: 12/25/2022]
Abstract
Borrelia burgdorferi, the spirochaetal agent of Lyme disease, codes for a single HtrA protein, HtrABb (BB0104) that is homologous to DegP of Escherichia coli (41% amino acid identity). HtrABb shows physical and biochemical similarities to DegP in that it has the trimer as its fundamental unit and can degrade casein via its catalytic serine. Recombinant HtrABb exhibits proteolytic activity in vitro, while a mutant (HtrABbS198A) does not. However, HtrABb and DegP have some important differences as well. Native HtrABb occurs in both membrane-bound and soluble forms. Despite its homology to DegP, HtrABb could not complement an E. coli DegP deletion mutant. Late stage Lyme disease patients, as well as infected mice and rabbits developed a robust antibody response to HtrABb, indicating that it is a B-cell antigen. In co-immunoprecipitation studies, a number of potential binding partners for HtrABb were identified, as well as two specific proteolytic substrates, basic membrane protein D (BmpD/BB0385) and chemotaxis signal transduction phosphatase CheX (BB0671). HtrABb may function in regulating outer membrane lipoproteins and in modulating the chemotactic response of B. burgdorferi.
Collapse
Affiliation(s)
- James L Coleman
- New York State Department of Health, Stony Brook University, Stony Brook, NY 11794-5120, USA.
| | | | | | | |
Collapse
|
23
|
Small JL, O'Donoghue AJ, Boritsch EC, Tsodikov OV, Knudsen GM, Vandal O, Craik CS, Ehrt S. Substrate specificity of MarP, a periplasmic protease required for resistance to acid and oxidative stress in Mycobacterium tuberculosis. J Biol Chem 2013; 288:12489-99. [PMID: 23504313 DOI: 10.1074/jbc.m113.456541] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The transmembrane serine protease MarP is important for pH homeostasis in Mycobacterium tuberculosis (Mtb). Previous structural studies revealed that MarP contains a chymotrypsin fold and a disulfide bond that stabilizes the protease active site in the substrate-bound conformation. Here, we determined that MarP is located in the Mtb periplasm and showed that this localization is essential for function. Using the recombinant protease domain of MarP, we identified its substrate specificity using two independent assays: positional-scanning synthetic combinatorial library profiling and multiplex substrate profiling by mass spectrometry. These methods revealed that MarP prefers bulky residues at P4, tryptophan or leucine at P2, arginine or hydrophobic residues at P1, and alanine or asparagine at P1'. Guided by these data, we designed fluorogenic peptide substrates and characterized the kinetic properties of MarP. Finally, we tested the impact of mutating MarP cysteine residues on the peptidolytic activity of recombinant MarP and its ability to complement phenotypes of Mtb ΔMarP. Taken together, our studies provide insight into the enzymatic properties of MarP, its substrate preference, and the importance of its transmembrane helices and disulfide bond.
Collapse
Affiliation(s)
- Jennifer L Small
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Cassone M, Gagne AL, Spruce LA, Seeholzer SH, Sebert ME. The HtrA protease from Streptococcus pneumoniae digests both denatured proteins and the competence-stimulating peptide. J Biol Chem 2012; 287:38449-59. [PMID: 23012372 DOI: 10.1074/jbc.m112.391482] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The HtrA protease of Streptococcus pneumoniae functions both in a general stress response role and as an error sensor that specifically represses genetic competence when the overall level of biosynthetic errors in cellular proteins is low. However, the mechanism through which HtrA inhibits development of competence has been unknown. We found that HtrA digested the pneumococcal competence-stimulating peptide (CSP) and constituted the primary extracytoplasmic CSP-degrading activity in cultures of S. pneumoniae. Mass spectrometry demonstrated that cleavage predominantly followed residue Phe-8 of the CSP-1 isoform of the peptide within its central hydrophobic patch, and in competition assays, both CSP-1 and CSP-2 interacted with HtrA with similar efficiencies. More generally, analysis of β-casein digestion and of digestion within HtrA itself revealed a preference for substrates with non-polar residues at the P1 site. Consistent with a specificity for exposed hydrophobic residues, competition from native BSA only weakly inhibited digestion of CSP, but denaturation converted BSA into a strong competitive inhibitor of such proteolysis. Together these findings support a model in which digestion of CSP by HtrA is reduced in the presence of other unfolded proteins that serve as alternative targets for degradation. Such competition may provide a mechanism by which HtrA functions in a quality control capacity to monitor the frequency of biosynthetic errors that result in protein misfolding.
Collapse
Affiliation(s)
- Marco Cassone
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
25
|
Hoy B, Brandstetter H, Wessler S. The stability and activity of recombinant Helicobacter pylori HtrA under stress conditions. J Basic Microbiol 2012; 53:402-9. [PMID: 22736569 DOI: 10.1002/jobm.201200074] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 02/21/2012] [Indexed: 01/26/2023]
Abstract
The bifunctional protein HtrA displays chaperone and protease activities, enabling bacteria to cope with environmental stress conditions such as heat shock or extreme pH by orchestrating protein folding or degradation. Recently, we added a novel aspect to HtrA functions by identifying HtrA of the human pathogen and class I carcinogen Helicobacter pylori (Hp) as a secreted virulence factor that cleaves the cell adhesion molecule and tumor suppressor E-cadherin. In this study, we analyzed the structural integrity and activity of oligomeric HtrA from Hp under stress conditions. Examining different parameters, HtrA oligomers were investigated by casein zymography and HtrA activity was further analyzed in in vitro cleavage assays using E-cadherin as a substrate. HtrA showed temperature-dependent disintegration of oligomers. Denaturing agents targeting hydrogen bonds within HtrA destabilized HtrA oligomers while reducing agents disrupting disulfide bonds had no effect. Optimal proteolytic activity was dependent on a neutral pH; however, addition of mono- and divalent salts or reducing agents did not interfere with proteolytic activity. These data indicate the HtrA is active under stress conditions which might support Hp colonizing in the gastric environment.
Collapse
Affiliation(s)
- Benjamin Hoy
- Division of Microbiology, Paris-Lodron University, Salzburg, Austria
| | | | | |
Collapse
|
26
|
Singh N, Kuppili RR, Bose K. The structural basis of mode of activation and functional diversity: a case study with HtrA family of serine proteases. Arch Biochem Biophys 2011; 516:85-96. [PMID: 22027029 DOI: 10.1016/j.abb.2011.10.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 10/03/2011] [Indexed: 12/15/2022]
Abstract
HtrA (High temperature requirement protease A) proteins that are primarily involved in protein quality control belong to a family of serine proteases conserved from bacteria to humans. HtrAs are oligomeric proteins that share a common trimeric pyramidal architecture where each monomer comprises a serine protease domain and one or two PDZ domains. Although the overall structural integrity is well maintained and they exhibit similar mechanism of activation, subtle conformational changes and structural plasticity especially in the flexible loop regions and domain interfaces lead to differences in their active site conformation and hence in their specificity and functions.
Collapse
Affiliation(s)
- Nitu Singh
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | | | | |
Collapse
|
27
|
Iwanczyk J, Leong V, Ortega J. Factors defining the functional oligomeric state of Escherichia coli DegP protease. PLoS One 2011; 6:e18944. [PMID: 21526129 PMCID: PMC3081313 DOI: 10.1371/journal.pone.0018944] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 03/24/2011] [Indexed: 12/04/2022] Open
Abstract
Escherichia coli DegP protein is a periplasmic protein that functions both as a protease and as a chaperone. In the absence of substrate, DegP oligomerizes as a hexameric cage but in its presence DegP reorganizes into 12 and 24-mer cages with large chambers that house the substrate for degradation or refolding. Here, we studied the factors that determine the oligomeric state adopted by DegP in the presence of substrate. Using size exclusion chromatography and electron microscopy, we found that the size of the substrate molecule is the main factor conditioning the oligomeric state adopted by the enzyme. Other factors such as temperature, a major regulatory factor of the activity of this enzyme, did not influence the oligomeric state adopted by DegP. In addition, we observed that substrate concentration exerted an effect only when large substrates (full-length proteins) were used. However, small substrate molecules (peptides) always triggered the same oligomeric state regardless of their concentration. These results clarify important aspects of the regulation of the oligomeric state of DegP.
Collapse
Affiliation(s)
- Jack Iwanczyk
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- M.G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, Canada
| | - Vivian Leong
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- M.G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, Canada
| | - Joaquin Ortega
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- M.G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
28
|
Biswas T, Small J, Vandal O, Odaira T, Deng H, Ehrt S, Tsodikov OV. Structural insight into serine protease Rv3671c that Protects M. tuberculosis from oxidative and acidic stress. Structure 2011; 18:1353-63. [PMID: 20947023 DOI: 10.1016/j.str.2010.06.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 06/07/2010] [Accepted: 06/29/2010] [Indexed: 12/18/2022]
Abstract
Rv3671c, a putative serine protease, is crucial for persistence of Mycobacterium tuberculosis in the hostile environment of the phagosome. We show that Rv3671c is required for M. tuberculosis resistance to oxidative stress in addition to its role in protection from acidification. Structural and biochemical analyses demonstrate that the periplasmic domain of Rv3671c is a functional serine protease of the chymotrypsin family and, remarkably, that its activity increases on oxidation. High-resolution crystal structures of this protease in an active strained state and in an inactive relaxed state reveal that a solvent-exposed disulfide bond controls the protease activity by constraining two distant regions of Rv3671c and stabilizing it in the catalytically active conformation. In vitro biochemical studies confirm that activation of the protease in an oxidative environment is dependent on this reversible disulfide bond. These results suggest that the disulfide bond modulates activity of Rv3671c depending on the oxidative environment in vivo.
Collapse
Affiliation(s)
- Tapan Biswas
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Different contributions of HtrA protease and chaperone activities to Campylobacter jejuni stress tolerance and physiology. Appl Environ Microbiol 2010; 77:57-66. [PMID: 21075890 DOI: 10.1128/aem.01603-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The microaerophilic bacterium Campylobacter jejuni is the most common cause of bacterial food-borne infections in the developed world. Tolerance to environmental stress relies on proteases and chaperones in the cell envelope, such as HtrA and SurA. HtrA displays both chaperone and protease activities, but little is known about how each of these activities contributes to stress tolerance in bacteria. In vitro experiments showed temperature-dependent protease and chaperone activities of C. jejuni HtrA. A C. jejuni mutant lacking only the protease activity of HtrA was used to show that the HtrA chaperone activity is sufficient for growth at high temperature or under oxidative stress, whereas the HtrA protease activity is essential only under conditions close to the growth limit for C. jejuni. However, the protease activity was required to prevent induction of the cytoplasmic heat shock response even under optimal growth conditions. Interestingly, the requirement of HtrA at high temperatures was found to depend on the oxygen level, and our data suggest that HtrA may protect oxidatively damaged proteins. Finally, protease activity stimulates HtrA production and oligomer formation, suggesting that a regulatory role depends on the protease activity of HtrA. Studying a microaerophilic organism encoding only two known periplasmic chaperones (HtrA and SurA) revealed an efficient HtrA chaperone activity and proposed multiple roles of the protease activity, increasing our understanding of HtrA in bacterial physiology.
Collapse
|
30
|
Affiliation(s)
- Joaquin Ortega
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| | | | | |
Collapse
|
31
|
Bowl-shaped oligomeric structures on membranes as DegP's new functional forms in protein quality control. Proc Natl Acad Sci U S A 2009; 106:4858-63. [PMID: 19255437 DOI: 10.1073/pnas.0811780106] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the periplasm of Escherichia coli, DegP (also known as HtrA), which has both chaperone-like and proteolytic activities, prevents the accumulation of toxic misfolded and unfolded polypeptides. In solution, upon binding to denatured proteins, DegP forms large cage-like structures. Here, we show that DegP forms a range of bowl-shaped structures, independent of substrate proteins, each with a 4-, 5-, or 6-fold symmetry and all with a DegP trimer as the structural unit, on lipid membranes. These membrane-bound DegP assemblies have the capacity to recruit and process substrates in the bowl chamber, and they exhibit higher proteolytic and lower chaperone-like activities than DegP in solution. Our findings imply that DegP might regulate its dual roles during protein quality control, depending on its assembly state in the narrow bacterial envelope.
Collapse
|
32
|
Jomaa A, Iwanczyk J, Tran J, Ortega J. Characterization of the autocleavage process of the Escherichia coli HtrA protein: implications for its physiological role. J Bacteriol 2009; 191:1924-32. [PMID: 19103920 PMCID: PMC2648369 DOI: 10.1128/jb.01187-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2008] [Accepted: 12/11/2008] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli HtrA protein is a periplasmic protease/chaperone that is upregulated under stress conditions. The protease and chaperone activities of HtrA eliminate or refold damaged and unfolded proteins in the bacterial periplasm that are generated upon stress conditions. In the absence of substrates, HtrA oligomerizes into a hexameric cage, but binding of misfolded proteins transforms the hexamers into bigger 12-mer and 24-mer cages that encapsulate the substrates for degradation or refolding. HtrA also undergoes partial degradation as a consequence of self-cleavage of the mature protein, producing short-HtrA protein (s-HtrA). The aim of this study was to examine the physiological role of this self-cleavage process. We found that the only requirement for self-cleavage of HtrA into s-HtrA in vitro was the hydrolysis of protein substrates. In fact, peptides resulting from the hydrolysis of the protein substrates were sufficient to induce autocleavage. However, the continuous presence of full-length substrate delayed the process. In addition, we observed that the hexameric cage structure is required for autocleavage and that s-HtrA accumulates only late in the degradation reaction. These results suggest that self-cleavage occurs when HtrA reassembles back into the resting hexameric structure and peptides resulting from substrate hydrolysis are allosterically stimulating the HtrA proteolytic activity. Our data support a model in which the physiological role of the self-cleavage process is to eliminate the excess of HtrA once the stress conditions cease.
Collapse
Affiliation(s)
- Ahmad Jomaa
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N3Z5, Canada
| | | | | | | |
Collapse
|
33
|
Skorko-Glonek J, Sobiecka-Szkatula A, Narkiewicz J, Lipinska B. The proteolytic activity of the HtrA (DegP) protein from Escherichia coli at low temperatures. MICROBIOLOGY-SGM 2009; 154:3649-3658. [PMID: 19047732 DOI: 10.1099/mic.0.2008/020487-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The HtrA (DegP) protein from Escherichia coli is a periplasmic protease whose function is to protect cells from the deleterious effects of various stress conditions. At temperatures below 28 degrees C the proteolytic activity of HtrA was regarded as negligible and it was believed that the protein mainly plays the role of a chaperone. In the present work we provide evidence that HtrA can in fact act as a protease at low temperatures. Under folding stress, caused by disturbances in the disulfide bond formation, the lack of proteolytic activity of HtrA lowered the survival rates of mutant strains deprived of a functional DsbA/DsbB oxidoreductase system. HtrA degraded efficiently the unfolded, reduced alkaline phosphatase at 20 degrees C, both in vivo and in vitro. The cleavage was most efficient in the case of HtrA deprived of its internal S-S bond; therefore we expect that the reduction of HtrA may play a regulatory role in proteolysis.
Collapse
Affiliation(s)
- Joanna Skorko-Glonek
- University of Gdansk, Department of Biochemistry, Kładki 24, 80-822 Gdansk, Poland
| | | | - Joanna Narkiewicz
- University of Gdansk, Department of Biochemistry, Kładki 24, 80-822 Gdansk, Poland
| | - Barbara Lipinska
- University of Gdansk, Department of Biochemistry, Kładki 24, 80-822 Gdansk, Poland
| |
Collapse
|
34
|
Kooistra J, Milojevic J, Melacini G, Ortega J. A new function of human HtrA2 as an amyloid-beta oligomerization inhibitor. J Alzheimers Dis 2009; 17:281-94. [PMID: 19502709 PMCID: PMC2980846 DOI: 10.3233/jad-2009-1037] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human HtrA2 is part of the HtrA family of ATP-independent serine proteases that are conserved in both prokaryotes and eukaryotes and localizes to the intermembrane space of the mitochondria. Several recent reports have suggested that HtrA2 is important for maintaining proper mitochondrial homeostasis and may play a role in Alzheimer's disease (AD), which is characterized by the presence of aggregates of the amyloid-beta peptide 1-42 (Abeta1-42). In this study, we analyzed the ability of HtrA2 to delay the aggregation of the model substrate citrate synthase (CS) and of the toxic Abeta1-42 peptide. We found that HtrA2 had a moderate ability to delay the aggregation of CS in vitro, and this activity was significantly enhanced when the PDZ domain was removed suggesting an inhibitory role for this domain on the activity. Additionally, using electron microscopy and nuclear magnetic resonance analyses, we observed that HtrA2 significantly delayed the aggregation of the Abeta1-42 peptide. Interestingly, the protease activity of HtrA2 and its PDZ domain were not essential for the delay of Abeta1-42 peptide aggregation. These results indicate that besides its protease activity, HtrA2 also performs a chaperone function and suggest a role for HtrA2 in the metabolism of intracellular Abeta and in AD.
Collapse
Affiliation(s)
- Joel Kooistra
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario, L8N3Z5, Canada
| | - Julijana Milojevic
- Department of Chemistry, McMaster University, 1200 Main Street West, Hamilton, Ontario, L8N3Z5, Canada
| | - Giuseppe Melacini
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario, L8N3Z5, Canada
- Department of Chemistry, McMaster University, 1200 Main Street West, Hamilton, Ontario, L8N3Z5, Canada
| | - Joaquin Ortega
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario, L8N3Z5, Canada
| |
Collapse
|
35
|
Jiang J, Zhang X, Chen Y, Wu Y, Zhou ZH, Chang Z, Sui SF. Activation of DegP chaperone-protease via formation of large cage-like oligomers upon binding to substrate proteins. Proc Natl Acad Sci U S A 2008; 105:11939-44. [PMID: 18697939 PMCID: PMC2575304 DOI: 10.1073/pnas.0805464105] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Indexed: 11/18/2022] Open
Abstract
Cells use molecular chaperones and proteases to implement the essential quality control mechanism of proteins. The DegP (HtrA) protein, essential for the survival of Escherichia coli cells at elevated temperatures with homologues found in almost all organisms uniquely has both functions. Here we report a mechanism for DegP to activate both functions via formation of large cage-like 12- and 24-mers after binding to substrate proteins. Cryo-electron microscopic and biochemical studies revealed that both oligomers are consistently assembled by blocks of DegP trimers, via pairwise PDZ1-PDZ2 interactions between neighboring trimers. Such interactions simultaneously eliminate the inhibitory effects of the PDZ2 domain. Additionally, both DegP oligomers were also observed in extracts of E. coli cells, strongly implicating their physiological importance.
Collapse
Affiliation(s)
- Jiansen Jiang
- *Department of Biological Sciences and Biotechnology, State-Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China
| | - Xuefeng Zhang
- *Department of Biological Sciences and Biotechnology, State-Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China
- School of Life Sciences, National Laboratory of Protein Engineering and Plant Genetic Engineering, Center for Protein Science, Peking University, Beijing 100871, China
| | - Yong Chen
- *Department of Biological Sciences and Biotechnology, State-Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China
| | - Yi Wu
- Institute of Biophysics, Lanzhou University, Lanzhou 730000, China; and
| | - Z. Hong Zhou
- Department of Pathology and Laboratory Medicine, University of Texas Medical School, Houston, TX 77030; and
- Department of Microbiology, Immunology, and Molecular Genetics and California NanoSystems Institute, University of California, Los Angeles, CA 90095-1594
| | - Zengyi Chang
- School of Life Sciences, National Laboratory of Protein Engineering and Plant Genetic Engineering, Center for Protein Science, Peking University, Beijing 100871, China
| | - Sen-Fang Sui
- *Department of Biological Sciences and Biotechnology, State-Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
36
|
Onder O, Turkarslan S, Sun D, Daldal F. Overproduction or absence of the periplasmic protease DegP severely compromises bacterial growth in the absence of the dithiol: disulfide oxidoreductase DsbA. Mol Cell Proteomics 2008; 7:875-90. [PMID: 18174153 PMCID: PMC2401338 DOI: 10.1074/mcp.m700433-mcp200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 12/31/2007] [Indexed: 02/05/2023] Open
Abstract
Facultative phototrophic bacterium Rhodobacter capsulatus DsbA-null mutants are proficient in photosynthesis but are defective in respiration especially in enriched growth medium at 35 degrees C. They also exhibit severe pleiotropic phenotypes extending from motility defects to osmofragility and oxidative stresses. In this work, using a combined proteomics and molecular genetics approach, we demonstrated that the respiratory defect of R. capsulatus DsbA-null mutants originates from the overproduction of the periplasmic protease DegP, which renders them temperature-sensitive for growth. The DsbA-null mutants reverted frequently to overcome this growth defect by decreasing, but not completely eliminating, their DegP activity. In agreement with these findings, we showed that overproduction of DegP abolishes the newly restored respiratory growth ability of the revertants in all growth media. Structural localizations of the reversion mutations in DegP revealed the regions and amino acids that are important for its protease-chaperone activity. Remarkably although R. capsulatus DsbA-null or DegP-null mutants were viable, DegP-null DsbA-null double mutants were lethal at all growth temperatures. This is unlike Escherichia coli, and it indicates that in the absence of DsbA some DegP activity is required for survival of R. capsulatus. Absence of a DegQ protease homologue in some bacteria together with major structural variations among the DegP homologues, including a critical disulfide bond-bearing region, correlates well with the differences seen between various species like R. capsulatus and E. coli. Our findings illustrate the occurrence of two related but distinct periplasmic protease families in bacterial species.
Collapse
Affiliation(s)
- Ozlem Onder
- Department of Biology, Plant Science Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19014-6019, USA
| | | | | | | |
Collapse
|
37
|
Skorko-Glonek J, Laskowska E, Sobiecka-Szkatula A, Lipinska B. Characterization of the chaperone-like activity of HtrA (DegP) protein from Escherichia coli under the conditions of heat shock. Arch Biochem Biophys 2007; 464:80-9. [PMID: 17485069 DOI: 10.1016/j.abb.2007.04.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 04/04/2007] [Accepted: 04/05/2007] [Indexed: 10/23/2022]
Abstract
The protective action of chaperone-like activity of HtrA protease against protein aggregation was studied. High levels of proteolytically inactive HtrAS210A (active center serine replaced by alanine) suppressed the temperature-sensitive phenotype of the htrA mutants. The ability of HtrAS210A to alleviate the lethality of htrA bacteria at high temperatures correlated well with the observed decrease of cellular level of large protein aggregates in cells overproducing HtrAS210A. The in vitro experiments proved that HtrA was very efficient in inhibiting the unfolded substrate (lysozyme) aggregation over a wide range of temperatures (30-45 degrees C). HtrA was able to bind to the denatured polypeptides and as a consequence limited their ability to form large aggregates. Our results suggest that HtrA may protect the bacterial cells from deleterious effects of heat shock not only by degrading the damaged proteins but by combination of the proteolytic and chaperoning activities.
Collapse
Affiliation(s)
- Joanna Skorko-Glonek
- University of Gdansk, Department of Biochemistry, Kladki 24, 80-822 Gdansk, Poland.
| | | | | | | |
Collapse
|
38
|
Hizukuri Y, Yakushi T, Kawagishi I, Homma M. Role of the intramolecular disulfide bond in FlgI, the flagellar P-ring component of Escherichia coli. J Bacteriol 2006; 188:4190-7. [PMID: 16740925 PMCID: PMC1482947 DOI: 10.1128/jb.01896-05] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The P ring of the bacterial flagellar motor consists of multiple copies of FlgI, a periplasmic protein. The intramolecular disulfide bond in FlgI has previously been reported to be essential for P-ring assembly in Escherichia coli, because the P ring was not assembled in a dsbB strain that was defective for disulfide bond formation in periplasmic proteins. We, however, found that the two Cys residues of FlgI are not conserved in other bacterial species. We then assessed the role of this intramolecular disulfide bond in FlgI. A Cys-eliminated FlgI derivative formed a P ring that complemented the flagellation defect of our DeltaflgI strain when it was overproduced, suggesting that disulfide bond formation in FlgI is not absolutely required for P-ring assembly. The levels of the mature forms of the FlgI derivatives were significantly lower than that of wild-type FlgI, although the precursor protein levels were unchanged. Moreover, the FlgI derivatives were more susceptible to degradation than wild-type FlgI. Overproduction of FlgI suppressed the motility defect of DeltadsbB cells. Additionally, the low level of FlgI observed in the DeltadsbB strain increased in the presence of l-cystine, an oxidative agent. We propose that intramolecular disulfide bond formation facilitates the rapid folding of the FlgI monomer to protect against degradation in the periplasmic space, thereby allowing its efficient self-assembly into the P ring.
Collapse
Affiliation(s)
- Yohei Hizukuri
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Shinshu University, 8304 Minamiminowa, Nagano 399-4598, Japan
| | | | | | | |
Collapse
|
39
|
Bourzac KM, Satkamp LA, Guillemin K. The Helicobacter pylori cag pathogenicity island protein CagN is a bacterial membrane-associated protein that is processed at its C terminus. Infect Immun 2006; 74:2537-43. [PMID: 16622188 PMCID: PMC1459751 DOI: 10.1128/iai.74.5.2537-2543.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Helicobacter pylori infects nearly half the world's population and is associated with a spectrum of gastric maladies. Infections with cytotoxin-associated gene pathogenicity island (cag PAI)-containing strains are associated with an increased risk for gastric cancer. The cag PAI contains genes encoding a type IV secretion system (T4SS) and a delivered effector, CagA, that becomes tyrosine phosphorylated upon delivery into host cells and initiates changes in cell signaling. Although some cag PAI genes have been shown to be required for CagA delivery, a subset of which are homologues of T4SS genes from Agrobacterium tumefaciens, the majority have no known function or homologues. We have performed a detailed investigation of one such cag PAI protein, CagN, which is encoded by the gene HP0538. Our results show that CagN is not delivered into host cells and instead is associated with the bacterial membrane. We demonstrate that CagN is cleaved at its C terminus by a mechanism that is independent of other cag PAI proteins. Finally, we show that a delta cagN mutant is not impaired in its ability to deliver CagA to gastric epithelial cells and initiate cell elongation.
Collapse
Affiliation(s)
- Kevin M Bourzac
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | | | | |
Collapse
|
40
|
Wood LF, Ohman DE. Independent regulation of MucD, an HtrA-like protease in Pseudomonas aeruginosa, and the role of its proteolytic motif in alginate gene regulation. J Bacteriol 2006; 188:3134-7. [PMID: 16585775 PMCID: PMC1447020 DOI: 10.1128/jb.188.8.3134-3137.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of mucD, encoding a homologue of the HtrA(DegP) family of endoserine proteases, was investigated in Pseudomonas aeruginosa. Expressed from the algT-mucABCD operon, MucD was detected in mucoid (FRD1) and nonmucoid (PAO1) parental strains and also when polar insertions were placed upstream in algT or mucB. A transcriptional start site for a mucD promoter (PmucD) was mapped within mucC. Expression of single-copy mucD217, encoding MucD altered in the protease motif (S217A), was defective in temperature resistance and alginate gene regulation.
Collapse
Affiliation(s)
- Lynn F Wood
- Dept. of Microbiology and Immunology, Virginia Commonwealth University, Medical College of Virginia Campus, 1101 E. Marshall St., 5-047 Sanger Hall, P.O. Box 980678, Richmond, VA 23298-0678, USA
| | | |
Collapse
|
41
|
Abstract
In the year 2003 there was a 17% increase in the number of publications citing work performed using optical biosensor technology compared with the previous year. We collated the 962 total papers for 2003, identified the geographical regions where the work was performed, highlighted the instrument types on which it was carried out, and segregated the papers by biological system. In this overview, we spotlight 13 papers that should be on everyone's 'must read' list for 2003 and provide examples of how to identify and interpret high-quality biosensor data. Although we still find that the literature is replete with poorly performed experiments, over-interpreted results and a general lack of understanding of data analysis, we are optimistic that these shortcomings will be addressed as biosensor technology continues to mature.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
42
|
Hiniker A, Bardwell JCA. In Vivo Substrate Specificity of Periplasmic Disulfide Oxidoreductases. J Biol Chem 2004; 279:12967-73. [PMID: 14726535 DOI: 10.1074/jbc.m311391200] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, a family of periplasmic disulfide oxidoreductases catalyzes correct disulfide bond formation in periplasmic and secreted proteins. Despite the importance of native disulfide bonds in the folding and function of many proteins, a systematic investigation of the in vivo substrates of E. coli periplasmic disulfide oxidoreductases, including the well characterized oxidase DsbA, has not yet been performed. We combined a modified osmotic shock periplasmic extract and two-dimensional gel electrophoresis to identify substrates of the periplasmic oxidoreductases DsbA, DsbC, and DsbG. We found 10 cysteine-containing periplasmic proteins that are substrates of the disulfide oxidase DsbA, including PhoA and FlgI, previously established DsbA substrates. This technique did not detect any in vivo substrates of DsbG, but did identify two substrates of DsbC, RNase I and MepA. We confirmed that RNase I is a substrate of DsbC both in vivo and in vitro. This is the first time that DsbC has been shown to affect the in vivo function of a native E. coli protein, and the results strongly suggest that DsbC acts as a disulfide isomerase in vivo. We also demonstrate that DsbC, but not DsbG, is critical for the in vivo activity of RNase I, indicating that DsbC and DsbG do not function identically in vivo. The absence of substrates for DsbG suggests either that the in vivo substrate specificity of DsbG is more limited than that of DsbC or that DsbG is not active under the growth conditions tested. Our work represents one of the first times the in vivo substrate specificity of a folding catalyst system has been systematically investigated. Because our methodology is based on the simple assumption that the absence of a folding catalyst should cause its substrates to be present at decreased steady-state levels, this technique should be useful in analyzing the substrate specificity of any folding catalyst or chaperone for which mutations are available.
Collapse
Affiliation(s)
- Annie Hiniker
- Program in Cellular and Molecular Biology, University of Michigan, 830 N. University, Ann Arbor, MI 48109-1048, USA
| | | |
Collapse
|