1
|
Santini S, Schenkelaars Q, Jourda C, Duchesne M, Belahbib H, Rocher C, Selva M, Riesgo A, Vervoort M, Leys SP, Kodjabachian L, Le Bivic A, Borchiellini C, Claverie JM, Renard E. The compact genome of the sponge Oopsacas minuta (Hexactinellida) is lacking key metazoan core genes. BMC Biol 2023; 21:139. [PMID: 37337252 DOI: 10.1186/s12915-023-01619-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/09/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Explaining the emergence of the hallmarks of bilaterians is a central focus of evolutionary developmental biology-evodevo-and evolutionary genomics. For this purpose, we must both expand and also refine our knowledge of non-bilaterian genomes, especially by studying early branching animals, in particular those in the metazoan phylum Porifera. RESULTS We present a comprehensive analysis of the first whole genome of a glass sponge, Oopsacas minuta, a member of the Hexactinellida. Studying this class of sponge is evolutionary relevant because it differs from the three other Porifera classes in terms of development, tissue organization, ecology, and physiology. Although O. minuta does not exhibit drastic body simplifications, its genome is among the smallest of animal genomes sequenced so far, and surprisingly lacks several metazoan core genes (including Wnt and several key transcription factors). Our study also provides the complete genome of a symbiotic Archaea dominating the associated microbial community: a new Thaumarchaeota species. CONCLUSIONS The genome of the glass sponge O. minuta differs from all other available sponge genomes by its compactness and smaller number of encoded proteins. The unexpected loss of numerous genes previously considered ancestral and pivotal for metazoan morphogenetic processes most likely reflects the peculiar syncytial tissue organization in this group. Our work further documents the importance of convergence during animal evolution, with multiple convergent evolution of septate-like junctions, electrical-signaling and multiciliated cells in metazoans.
Collapse
Affiliation(s)
- Sébastien Santini
- Aix Marseille Univ, CNRS, IGS, UMR 7256, IMM, IM2B, IOM, Marseille, France
| | - Quentin Schenkelaars
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Cyril Jourda
- Aix Marseille Univ, CNRS, IGS, UMR 7256, IMM, IM2B, IOM, Marseille, France
- CIRAD, UMR PVBMT, La Réunion, France
| | - Marc Duchesne
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Hassiba Belahbib
- Aix Marseille Univ, CNRS, IGS, UMR 7256, IMM, IM2B, IOM, Marseille, France
| | - Caroline Rocher
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
| | - Marjorie Selva
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
| | - Ana Riesgo
- Department of Biodiversity and Evolutionary Biology, Madrid, Spain
- Department of Life Sciences, Natural History Museum of London, London, SW7 5BD, UK
| | - Michel Vervoort
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Laurent Kodjabachian
- Aix Marseille Univ, CNRS, IBDM, UMR 7288, Turing Center for Living Systems, Marseille, France
| | - André Le Bivic
- Aix Marseille Univ, CNRS, IBDM, UMR 7288, Marseille, France
| | | | | | - Emmanuelle Renard
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France.
- Aix Marseille Univ, CNRS, IBDM, UMR 7288, Marseille, France.
| |
Collapse
|
2
|
Yamamoto J, Plaza P, Brettel K. Repair of (6-4) Lesions in DNA by (6-4) Photolyase: 20 Years of Quest for the Photoreaction Mechanism. Photochem Photobiol 2017; 93:51-66. [PMID: 27992654 DOI: 10.1111/php.12696] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/09/2016] [Indexed: 01/05/2023]
Abstract
Exposure of DNA to ultraviolet (UV) light from the Sun or from other sources causes the formation of harmful and carcinogenic crosslinks between adjacent pyrimidine nucleobases, namely cyclobutane pyrimidine dimers and pyrimidine(6-4)pyrimidone photoproducts. Nature has developed unique flavoenzymes, called DNA photolyases, that utilize blue light, that is photons of lower energy than those of the damaging light, to repair these lesions. In this review, we focus on the chemically challenging repair of the (6-4) photoproducts by (6-4) photolyase and describe the major events along the quest for the reaction mechanisms, over the 20 years since the discovery of (6-4) photolyase.
Collapse
Affiliation(s)
- Junpei Yamamoto
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Pascal Plaza
- Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Département de Chimie, PASTEUR, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, Paris, France
| | - Klaus Brettel
- Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
3
|
Müller WEG, Schröder HC, Markl JS, Grebenjuk VA, Korzhev M, Steffen R, Wang X. Cryptochrome in sponges: a key molecule linking photoreception with phototransduction. J Histochem Cytochem 2013; 61:814-32. [PMID: 23920109 DOI: 10.1369/0022155413502652] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sponges (phylum: Porifera) react to external light or mechanical signals with contractile or metabolic reactions and are devoid of any nervous or muscular system. Furthermore, elements of a photoreception/phototransduction system exist in those animals. Recently, a cryptochrome-based photoreceptor system has been discovered in the demosponge. The assumption that in sponges the siliceous skeleton acts as a substitution for the lack of a nervous system and allows light signals to be transmitted through its glass fiber network is supported by the findings that the first spicules are efficient light waveguides and the second sponges have the enzymatic machinery for the generation of light. Now, we have identified/cloned in Suberites domuncula two additional potential molecules of the sponge cryptochrome photoreception system, the guanine nucleotide-binding protein β subunit, related to β-transducin, and the nitric oxide synthase (NOS)-interacting protein. Cryptochrome and NOSIP are light-inducible genes. The studies show that the NOS inhibitor L-NMMA impairs both morphogenesis and motility of the cells. Finally, we report that the function of primmorphs to produce reactive nitrogen species can be abolished by a NOS inhibitor. We propose that the sponge cryptochrome-based photoreception system, through which photon signals are converted into radicals, is coupled to the NOS apparatus.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany (WEGM,HCS,JSM,VAG,MK,RS,XW)
| | | | | | | | | | | | | |
Collapse
|
4
|
Rivera AS, Ozturk N, Fahey B, Plachetzki DC, Degnan BM, Sancar A, Oakley TH. Blue-light-receptive cryptochrome is expressed in a sponge eye lacking neurons and opsin. ACTA ACUST UNITED AC 2012; 215:1278-86. [PMID: 22442365 DOI: 10.1242/jeb.067140] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Many larval sponges possess pigment ring eyes that apparently mediate phototactic swimming. Yet sponges are not known to possess nervous systems or opsin genes, so the unknown molecular components of sponge phototaxis must differ fundamentally from those in other animals, inspiring questions about how this sensory system functions. Here we present molecular and biochemical data on cryptochrome, a candidate gene for functional involvement in sponge pigment ring eyes. We report that Amphimedon queenslandica, a demosponge, possesses two cryptochrome/photolyase genes, Aq-Cry1 and Aq-Cry2. The mRNA of one gene (Aq-Cry2) is expressed in situ at the pigment ring eye. Additionally, we report that Aq-Cry2 lacks photolyase activity and contains a flavin-based co-factor that is responsive to wavelengths of light that also mediate larval photic behavior. These results suggest that Aq-Cry2 may act in the aneural, opsin-less phototaxic behavior of a sponge.
Collapse
Affiliation(s)
- Ajna S Rivera
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
The largest Bio-Silica Structure on Earth: The Giant Basal Spicule from the Deep-Sea Glass Sponge Monorhaphis chuni. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:540987. [PMID: 21941585 PMCID: PMC3166767 DOI: 10.1155/2011/540987] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 05/16/2011] [Indexed: 11/17/2022]
Abstract
The depth of the ocean is plentifully populated with a highly diverse fauna and flora, from where the Challenger expedition (1873-1876) treasured up a rich collection of vitreous sponges [Hexactinellida]. They have been described by Schulze and represent the phylogenetically oldest class of siliceous sponges [phylum Porifera]; they are eye-catching because of their distinct body plan, which relies on a filigree skeleton. It is constructed by an array of morphologically determined elements, the spicules. Later, during the German Deep Sea Expedition "Valdivia" (1898-1899), Schulze could describe the largest siliceous hexactinellid sponge on Earth, the up to 3 m high Monorhaphis chuni, which develops the equally largest bio-silica structures, the giant basal spicules (3 m × 10 mm). With such spicules as a model, basic knowledge on the morphology, formation, and development of the skeletal elements could be elaborated. Spicules are formed by a proteinaceous scaffold which mediates the formation of siliceous lamellae in which the proteins are encased. Up to eight hundred 5 to 10 μm thick lamellae can be concentrically arranged around an axial canal. The silica matrix is composed of almost pure silicon and oxygen, providing it with unusual optophysical properties that are superior to those of man-made waveguides. Experiments indicated that the spicules function in vivo as a nonocular photoreception system. In addition, the spicules have exceptional mechanical properties, combining mechanical stability with strength and stiffness. Like demosponges the hexactinellids synthesize their silica enzymatically, via the enzyme silicatein. All these basic insights will surely contribute also to a further applied utilization and exploration of bio-silica in material/medical science.
Collapse
|
6
|
Role of Lys281 in the Dunaliella salina (6-4) photolyase reaction. Curr Microbiol 2010; 62:146-51. [PMID: 20533040 DOI: 10.1007/s00284-010-9687-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Accepted: 05/20/2010] [Indexed: 10/19/2022]
Abstract
His(354) and His(358), two highly conserved histidines in Xenopus laevis (6-4) photolyase [equivalent to His(401) and His(405), in Dunaliella salina (6-4) photolyase], are critical for photoreactivation. They act as a base and an acid, respectively. However, the remaining high repair activity when the pH value is higher than the pKa of histidine suggests the involvement of other basic amino acids in photoreactivation. According to the results of in vivo enzyme assay and three-dimension structural model of Dunaliella salina (6-4) photolyase we hypothesized that Lys(281) might be involved in the photoreactivation over the pH range from 10.0 to 11.0. To test this, we generated two mutant forms of the (6-4) photolyase, K281G and K281R mutant, by overlap extension polymerase chain reaction, and performed the enzyme assay with these mutants. From these results we conclude that the Lys(281), which is highly conserved in (6-4) photolyases, participates in the photoreactivation and acts as an acid to donate a proton to His(401) when the environmental pH is higher than the pKa value of histidine.
Collapse
|
7
|
Müller WEG, Wang X, Schröder HC, Korzhev M, Grebenjuk VA, Markl JS, Jochum KP, Pisignano D, Wiens M. A cryptochrome‐based photosensory system in the siliceous sponge Suberites domuncula (Demospongiae). FEBS J 2010; 277:1182-1201. [DOI: 10.1111/j.1742-4658.2009.07552.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Based on the light‐reactive behavior of siliceous sponges, their intriguing quartz glass‐based spicular system and the existence of a light‐generating luciferase [Müller WEG et al. (2009) Cell Mol Life Sci 66, 537–552], a protein potentially involved in light reception has been identified, cloned and recombinantly expressed from the demosponge Suberites domuncula. Its sequence displays two domains characteristic of cryptochrome, the N‐terminal photolyase‐related region and the C‐terminal FAD‐binding domain. The expression level of S. domuncula cryptochrome depends on animal’s exposure to light and is highest in tissue regions rich in siliceous spicules; in the dark, no cryptochrome transcripts/translational products are seen. From the experimental data, it is proposed that sponges might employ a luciferase‐like protein, the spicular system and a cryptochrome as the light source, optical waveguide and photosensor, respectively.
Collapse
|
8
|
Wang X, Schröder HC, Müller WEG. Giant siliceous spicules from the deep-sea glass sponge Monorhaphis chuni. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 273:69-115. [PMID: 19215903 DOI: 10.1016/s1937-6448(08)01803-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Only 13 years after realizing, during a repair of a telegraph cable pulled out from the deep sea, that the depth of the ocean is plentifully populated with a highly diverse fauna and flora, the Challenger expedition (1873-1876) treasured up a rich collection of vitreous sponges (Hexactinellida). They had been described by Schulze and represent the phylogenetically oldest class of siliceous sponges (phylum Porifera); they are eye-catching because of their distinct body plan, which relies on a filigree skeleton. It is constructed by an array of morphologically determined elements, the spicules. Soon after, during the German Deep Sea Expedition "Valdivia" (1898-1899), Schulze could describe the largest siliceous hexactinellid sponge on Earth, the up to 3-m high Monorhaphis chuni, which develops the equally largest bio-silica structure, the giant basal spicules (3 mx10 mm). Using these spicules as a model, basic knowledge on the morphology, formation, and development of the skeletal elements could be achieved. They are formed by a proteinaceous scaffold (composed of a 27-kDa protein), which mediates the formation of the siliceous lamellae, into which the proteins are encased. The high number of 800 of 5-10 microm thick lamellae is concentrically arranged around the axial canal. The silica matrix is composed of almost pure silicon oxide, providing it with unusually optophysical properties, which are superior to those of man-made waveguides. Experiments might suggest that the spicules function in vivo as a nonocular photoreception system. In addition, the spicules have exceptional mechanical properties, combining mechanical stability with strength and stiffness. Like demosponges, also the hexactinellids synthesize their silica enzymatically, via the enzyme silicatein (27-kDa protein). It is suggested that these basic insights will surely contribute to a further applied utilization and exploration of silica in bio-material/biomedical science.
Collapse
Affiliation(s)
- Xiaohong Wang
- National Research Center for Geoanalysis, 26 Baiwanzhuang Dajie, Beijing, China
| | | | | |
Collapse
|
9
|
Müller WEG, Wang X, Schröder HC. Paleoclimate and Evolution: Emergence of Sponges During the Neoproterozoic. BIOSILICA IN EVOLUTION, MORPHOGENESIS, AND NANOBIOTECHNOLOGY 2009; 47:55-77. [DOI: 10.1007/978-3-540-88552-8_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
Yan Lv X, Rong Qiao D, Xiong Y, Xu H, You FF, Cao Y, He X, Cao Y. Photoreactivation of (6-4) photolyase in Dunaliella salina. FEMS Microbiol Lett 2008; 283:42-6. [PMID: 18399992 DOI: 10.1111/j.1574-6968.2008.01144.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Dunaliella salina is a unicellular green alga and possesses two types of photolyase: Class II cyclobutane pyrimidine dimers (CPD) photolyase and (6-4) photolyase. The gene of D. salina (6-4) photolyase is the first one found in unicellular organisms. CPD photolyases have been extensively studied but (6-4) photolyases are less understood. Because of the data observed in this study, D. salina (6-4) photolyase is insensitive to high salinity; whether it can tolerate a higher level of salinity than other (6-4) photolyases needs to be studied further. However, evidence is provided that (6-4) photolyases might be highly conserved among different species, not only in the sequence identity but also in the photorepair mechanism.
Collapse
Affiliation(s)
- Xue Yan Lv
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Phylogenetic position of sponges in early metazoan evolution and bionic applications of siliceous sponge spicules. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s11434-007-0402-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Schröder HC, Di Bella G, Janipour N, Bonaventura R, Russo R, Müller WEG, Matranga V. DNA damage and developmental defects after exposure to UV and heavy metals in sea urchin cells and embryos compared to other invertebrates. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2007; 39:111-37. [PMID: 17152696 DOI: 10.1007/3-540-27683-1_6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The depletion of the stratospheric ozone layer and the resulting increase in hazardous ultraviolet-B (UV-B) radiation reaching the Earth are of major concern not only for terrestrial but also for aquatic organisms. UV-B is able to penetrate clear water to ecologically significant depths. This chapter deals with the effects of UV radiation on DNA integrity in marine benthic organisms, in particular sea urchins in comparison to other marine invertebrates (sponges and corals). These animals cannot escape the damaging effects of UV-B radiation and may be additionally exposed to pollution from natural or anthropogenic sources. Besides eggs and larvae that lack a protective epidermal layer and are particularly prone to the damaging effects of UV radiation, coelomocytes from the sea urchin Paracentrotus lividus were used as a "cellular sensor" to analyse the effects on DNA caused by UV-B, heavy metals (cadmium), and their combined actions. From our data we conclude that sea urchin coelomocytes as well as cells from other marine invertebrates are useful bioindicators of UV-B and heavy metal stress, responding to these stressors with different extents of DNA damage.
Collapse
Affiliation(s)
- H C Schröder
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Johannes Gutenberg-Universität, Duesbergweg 6, 55099 Mainz, Germany.
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
As the most ancient extant metazoans, glass sponges (Hexactinellida) have attracted recent attention in the areas of molecular evolution and the evolution of conduction systems but they are also interesting because of their unique histology: the greater part of their soft tissue consists of a single, multinucleate syncytium that ramifies throughout the sponge. This trabecular syncytium serves both for transport and as a pathway for propagation of action potentials that trigger flagellar arrests in the flagellated chambers. The present chapter is the first comprehensive modern account of this group and covers work going back to the earliest work dealing with taxonomy, gross morphology and histology as well as dealing with more recent studies. The structure of cellular and syncytial tissues and the formation of specialised intercellular junctions are described. Experimental work on reaggregation of dissociated tissues is also covered, a process during which histocompatibility, fusion and syncytialisation have been investigated, and where the role of the cytoskeleton in tissue architecture and transport processes has been studied in depth. The siliceous skeleton is given special attention, with an account of discrete spicules and fused silica networks, their diversity and distribution, their importance as taxonomic features and the process of silication. Studies on particle capture, transport of internalised food objects and disposal of indigestible wastes are reviewed, along with production and control of the feeding current. The electrophysiology of the conduction system coordinating flagellar arrests is described. The review covers salient features of hexactinellid ecology, including an account of habitats, distribution, abundance, growth, seasonal regression, predation, mortality, regeneration, recruitment and symbiotic associations with other organisms. Work on the recently discovered hexactinellid reefs of Canada's western continental shelf, analogues of long-extinct Jurassic sponge reefs, is given special attention. Reproductive biology is another area that has benefited from recent investigations. Seasonality, gametogenesis, embryogenesis, differentiation and larval biology are now understood in broad outline, at least for some species. The process whereby the cellular early larva becomes syncytial is described. A final section deals with the classification of recent and fossil glass sponges, phylogenetic relationships within the Hexactinellida and the phylogenetic position of the group within the Porifera. Palaeontological aspects are covered in so far as they are relevant to these topics.
Collapse
Affiliation(s)
- S P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | | | |
Collapse
|
14
|
Müller WEG, Ushijima H, Batel R, Krasko A, Borejko A, Müller IM, Schröder HC. Novel mechanism for the radiation-induced bystander effect: nitric oxide and ethylene determine the response in sponge cells. Mutat Res 2006; 597:62-72. [PMID: 16427660 DOI: 10.1016/j.mrfmmm.2005.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Revised: 06/17/2005] [Accepted: 09/14/2005] [Indexed: 05/06/2023]
Abstract
Until now the bystander effect had only been described in vertebrates. In the present study the existence of this effect has been demonstrated for the phylogenetically oldest metazoan phylum, the Porifera. We used the demosponge Suberites domuncula for the experiments in the two-chamber-system. The lower dish contained irradiated "donor" cells (single cells) and the upper dish the primmorphs ("recipient" primmorphs). The "donor" cells were treated with UV-B light (40 mJ/cm2) and 100 microM hydrogen peroxide (H2O2), factors that exist also in the natural marine aquatic environment of sponges; these factors caused a high level of DNA strand breaks followed by a reduced viability of the cells. If these cells were added to the "recipient" primmorphs these 3D-cell cultures started to undergo apoptosis. This effect could be abolished by the NO-specific scavenger PTIO and ethylene. The conclusion that NO is synthesized by the UV-B/H2O2-treated cells was supported analytically. The cDNA encoding the enzyme dimethylarginine dimethylaminohydrolase (DDAH) was isolated from the "donor" cells. High levels of DDAH transcripts were measured in UV-B/H2O2-treated "donor" cells while after ethylene treatment the steady-state level of expression drops drastically. We conclude that in the absence of ethylene the concentration of the physiological inhibitor for the NO synthase ADMA is low, due to the high level of DDAH. In consequence, high amounts of NO are released from "donor" cells which cause apoptosis in "recipient" primmorphs. In contrast, ethylene reduces the DDAH expression with the consequence of higher levels of ADMA which prevent the formation of larger amounts of NO. This study describes the radiation-induced bystander effect also for the most basal metazoans and demonstrates that this effect is controlled by the two gases NO and ethylene.
Collapse
Affiliation(s)
- Werner E G Müller
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, D-55099 Mainz, Germany.
| | | | | | | | | | | | | |
Collapse
|
15
|
Muller WEG, Schroder HC, Wrede P, Kaluzhnaya OV, Belikov SI. Speciation of sponges in Baikal-Tuva region: an outline. J ZOOL SYST EVOL RES 2006. [DOI: 10.1111/j.1439-0469.2006.00355.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Weber S. Light-driven enzymatic catalysis of DNA repair: a review of recent biophysical studies on photolyase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1707:1-23. [PMID: 15721603 DOI: 10.1016/j.bbabio.2004.02.010] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2003] [Accepted: 02/02/2004] [Indexed: 11/19/2022]
Abstract
More than 50 years ago, initial experiments on enzymatic photorepair of ultraviolet (UV)-damaged DNA were reported [Proc. Natl. Acad. Sci. U. S. A. 35 (1949) 73]. Soon after this discovery, it was recognized that one enzyme, photolyase, is able to repair UV-induced DNA lesions by effectively reversing their formation using blue light. The enzymatic process named DNA photoreactivation depends on a non-covalently bound cofactor, flavin adenine dinucleotide (FAD). Flavins are ubiquitous redox-active catalysts in one- and two-electron transfer reactions of numerous biological processes. However, in the case of photolyase, not only the ground-state redox properties of the FAD cofactor are exploited but also, and perhaps more importantly, its excited-state properties. In the catalytically active, fully reduced redox form, the FAD absorbs in the blue and near-UV ranges of visible light. Although there is no direct experimental evidence, it appears generally accepted that starting from the excited singlet state, the chromophore initiates a reductive cleavage of the two major DNA photodamages, cyclobutane pyrimidine dimers and (6-4) photoproducts, by short-distance electron transfer to the DNA lesion. Back electron transfer from the repaired DNA segment is believed to eventually restore the initial redox states of the cofactor and the DNA nucleobases, resulting in an overall reaction with net-zero exchanged electrons. Thus, the entire process represents a true catalytic cycle. Many biochemical and biophysical studies have been carried out to unravel the fundamentals of this unique mode of action. The work has culminated in the elucidation of the three-dimensional structure of the enzyme in 1995 that revealed remarkable details, such as the FAD-cofactor arrangement in an unusual U-shaped configuration. With the crystal structure of the enzyme at hand, research on photolyases did not come to an end but, for good reason, intensified: the geometrical structure of the enzyme alone is not sufficient to fully understand the enzyme's action on UV-damaged DNA. Much effort has therefore been invested to learn more about, for example, the geometry of the enzyme-substrate complex, and the mechanism and pathways of intra-enzyme and enzyme <-->DNA electron transfer. Many of the key results from biochemical and molecular biology characterizations of the enzyme or the enzyme-substrate complex have been summarized in a number of reviews. Complementary to these articles, this review focuses on recent biophysical studies of photoreactivation comprising work performed from the early 1990s until the present.
Collapse
Affiliation(s)
- Stefan Weber
- Institute of Experimental Physics, Free University Berlin, Arnimallee 14, 14195 Berlin, Germany.
| |
Collapse
|