1
|
Shi W, Li J, Zhou H, Gao GF. Pathogen genomic surveillance elucidates the origins, transmission and evolution of emerging viral agents in China. SCIENCE CHINA. LIFE SCIENCES 2017; 60:1317-1330. [PMID: 29270793 PMCID: PMC7088571 DOI: 10.1007/s11427-017-9211-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/01/2017] [Indexed: 02/06/2023]
Abstract
In the past twenty years, numerous novel zoonotic viral agents with pandemic potential have emerged in China, such as the severe acute respiratory syndrome (SARS) coronavirus and, more recently, the avian-origin influenza A/H7N9 virus, which have caused outbreaks among humans with high morbidity and mortality. In addition, several emerging and re-emerging viral pathogens have also been imported into China from travelers, e.g. the Middle East respiratory syndrome (MERS) coronavirus and Zika virus (ZIKV). Herein, we review these emerging viral pathogens in China and focus on how surveillance by pathogen genomics has been employed to discover and annotate novel pathogenic agents, identify natural reservoirs, monitor the transmission events and delineate their evolution and adaption to the human host. We also highlight the application of genomic sequencing in the recent Ebola epidemics in Western Africa. In summary, genomic sequencing has become a standard research tool in the field of emerging infectious diseases which has been proven invaluable in containing these viral infections and reducing burden of disease in humans and animals. Genomic surveillance of pathogenic agents will serve as a key epidemiological and research tool in the modern era of precision infectious diseases and in the future studies of virosphere.
Collapse
Affiliation(s)
- Weifeng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong (Taishan Medical College), Taishan Medical College, Taian, 271000, China.
| | - Juan Li
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong (Taishan Medical College), Taishan Medical College, Taian, 271000, China
| | - Hong Zhou
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong (Taishan Medical College), Taishan Medical College, Taian, 271000, China
| | - George F Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
2
|
Ural O, Mocan MC, Dolgun A, Erdener U. The utility of margin-reflex distance in determining the type of surgical intervention for congenital blepharoptosis. Indian J Ophthalmol 2016; 64:752-755. [PMID: 27905338 PMCID: PMC5168917 DOI: 10.4103/0301-4738.195016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Aims: To evaluate the utility of margin-reflex distance (MRD) as an alternative to levator function (LF) in choosing the appropriate surgical procedure for congenital blepharoptosis. Settings and Design: This was a retrospective, observational study. Subjects and Methods: Records of patients with simple (dystrophic) congenital ptosis who were operated and followed for ≥6 months postoperatively and whose outcomes were deemed as successful were evaluated in the study. Success was defined as a MRD at the last postoperative visit of ≥3 mm. In all cases, levator resection was performed when LF was >4 mm and frontalis suspension when LF was ≤4 mm. Statistical Analysis Used: For statistical evaluations, LF was accepted as the gold standard parameter for deciding on the surgical intervention, and the optimum cutoff point for initial MRD was determined as the point at which sensitivity and specificity was highest at the receiving operating curve for the selection of surgical procedure. Results: Of one hundred and three eyes of ninety patients (44 female/46 male), levator resection was used in 44.7% and frontalis suspension in 55.3%. When the optimum cutoff point for MRD was determined as 0.5 mm, the sensitivity was 71%, specificity was 86%, and the area under the curve that represented the discriminative power of this parameter was found to be 0.826. Conclusion: The MRD at the cutoff point of 0.5 mm may be used as an alternative to LF to determine the type of surgical intervention in patients with congenital blepharoptosis whose LF cannot be reliably obtained in clinical evaluations.
Collapse
Affiliation(s)
- Ozlem Ural
- Department of Ophthalmology, Iskenderun State Hospital, Hatay, Turkey
| | - Mehmet Cem Mocan
- Department of Ophthalmology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Anıl Dolgun
- Department of Biostatistics, Hacettepe University School of Medicine, Ankara, Turkey
| | - Ugur Erdener
- Department of Ophthalmology, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
3
|
Molecular and Biochemical Characterization of the SARS-CoV Accessory Proteins ORF8a, ORF8b and ORF8ab. MOLECULAR BIOLOGY OF THE SARS-CORONAVIRUS 2010. [PMCID: PMC7176222 DOI: 10.1007/978-3-642-03683-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
A novel coronavirus was identified as the aetiological agent for the global outbreak of severe acute respiratory syndrome (SARS) at the beginning of the twenty-first century. The SARS coronavirus genome encodes for proteins that are common to all members of the coronavirus, i.e. replicase polyproteins (pp1a and pp1b) and structural proteins (spike, membrane, nucleocapsid and envelope), as well as eight accessory proteins. The accessory proteins have been designated as open reading frames (ORF) 3a, 3b, 6, 7a, 7b, 8a, 8b and 9b, and they do not show significant homology to viral proteins of other known coronaviruses. Epidemiological studies have revealed that the part of the viral genome that encodes for ORF8a and ORF8b showed major variations and the animal isolates contain an additional 29-nucleotide sequence which is absent in most of the human isolates. As a result, ORF8a and ORF8b in the human isolates become one ORF, termed ORF8ab. In this chapter, we will discuss the genetic variation in the ORF8 region, expression of ORF8a, ORF8b and ORF8ab during infection, cellular localization and posttranslational modification of ORF8a, ORF8b and ORF8ab, participation of ORF8a, ORF8b and ORF8ab in viral–viral interactions, their effects on other viral proteins and impact on viral replication and/or pathogenesis.
Collapse
|
4
|
Li T, Hou Y, Cao W, Yan CX, Chen T, Li SB. Naloxone-precipitated withdrawal enhances ERK phosphorylation in prefrontal association cortex and accumbens nucleus of morphine-dependent mice. Neurosci Lett 2009; 468:348-52. [PMID: 19922770 DOI: 10.1016/j.neulet.2009.11.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 11/07/2009] [Accepted: 11/09/2009] [Indexed: 01/23/2023]
Abstract
Mitogen-activated protein kinases (MAPK) can be activated by opioids such as morphine via opioid receptor, and their activations have been observed in synaptic plasticity, learning, memory and addiction. Long-term exposure to morphine may induce physical dependence, manifested as somatic withdrawal symptoms such as diarrhea, body weight loss, jumping and headshaking, when drug is deprived. Though morphine dependence and withdrawal have been extensively studied, their molecular mechanisms have not been fully elucidated. In the present study, the physical dependence on morphine was developed in mice by an intermittent, escalating procedure of morphine injections, and was measured by the body weight loss and the behavioral signs (jumping and headshaking). We found that the mice with chronic morphine administration experienced dramatic body weight loss, compared with the saline-treated controls. Naloxone-precipitated withdrawal led to more body weight loss, compared with spontaneous withdrawal. Naloxone-precipitated withdrawal mice showed significantly aggravated morphine-withdrawal symptoms (including jumping and heading shaking), compared with spontaneous withdrawal mice. MAPK pathway activities in the frontal association cortex (FrA), accumbens nucleus (Acb) and caudate putamen (CPu) were examined to probe into molecular mechanism for morphine dependence and withdrawal. Compared with saline-treated mice, morphine-dependent mice and spontaneous withdrawal mice, naloxone-precipitated withdrawal mice showed a significantly increased ERK phosphorylation in FrA and Acb, but not in CPu. However, the activities of other protein kinases in the MAPK pathway, including p38 and JNK, showed no changes in FrA, Acb and CPu of the mice during the chronic morphine dependence and withdrawal phases. These results suggest that the ERK phosphorylation in FrA and Acb may be associated with naloxone-precipitated withdrawal syndrome.
Collapse
Affiliation(s)
- Tao Li
- Forensic Department, Xi'an Jiaotong University School of Medicine, 76# West Yanta Road, Xi'an 710061, PR China.
| | | | | | | | | | | |
Collapse
|
5
|
Zhao GP. SARS molecular epidemiology: a Chinese fairy tale of controlling an emerging zoonotic disease in the genomics era. Philos Trans R Soc Lond B Biol Sci 2007; 362:1063-81. [PMID: 17327210 PMCID: PMC2435571 DOI: 10.1098/rstb.2007.2034] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome (SARS) was the first natural disaster that challenged the Chinese people at the beginning of the twenty-first century. It was caused by a novel animal coronavirus, never recognized or characterized before. This SARS coronavirus (SARS-CoV) exploited opportunities provided by 'wet markets' in southern China to adapt to the palm civet and human. Under the positive selection pressure of human host, certain mutated lineages of the virus became readily transmissible between humans and thus caused the epidemic of 2002-2003. This review will provide first-hand information, particularly from Guangdong, China, about the initial epidemiology, the identification of the aetiological agent of the disease, the molecular evolution study of the virus, the finding of SARS-like CoV in horseshoe bats and the mechanistic analysis for the cross-host tropism transition. The substantial scientific contributions made by the Chinese scientists towards understanding the virus and the disease will be emphasized. Along with the description of the scientific discoveries and analyses, the significant impact of these researches upon the public health measurement or regulations will be highlighted. It is aimed to appreciate the concerted and coordinated global response that controlled SARS within a short period of time as well as the research strategy and methodology developed along with this process, which can be applied in response to other public health challenges, particularly the future emerging/re-merging infectious diseases.
Collapse
Affiliation(s)
- Guo-ping Zhao
- Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Building 1, 250 Bi-Bo Road, Zhangjiang HiTech Park, Pudong, Shanghai 201203, People's Republic of China.
| |
Collapse
|
6
|
Keng CT, Choi YW, Welkers MRA, Chan DZL, Shen S, Gee Lim S, Hong W, Tan YJ. The human severe acute respiratory syndrome coronavirus (SARS-CoV) 8b protein is distinct from its counterpart in animal SARS-CoV and down-regulates the expression of the envelope protein in infected cells. Virology 2006; 354:132-42. [PMID: 16876844 PMCID: PMC7111915 DOI: 10.1016/j.virol.2006.06.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 06/15/2006] [Accepted: 06/17/2006] [Indexed: 12/14/2022]
Abstract
The severe acute respiratory syndrome coronavirus (SARS-CoV), isolated from humans infected during the peak of epidemic, encodes two accessory proteins termed as 8a and 8b. Interestingly, the SARS-CoV isolated from animals contains an extra 29-nucleotide in this region such that these proteins are fused to become a single protein, 8ab. Here, we compared the cellular properties of the 8a, 8b and 8ab proteins by examining their cellular localizations and their abilities to interact with other SARS-CoV proteins. These results may suggest that the conformations of 8a and 8b are different from 8ab although nearly all the amino acids in 8a and 8b are found in 8ab. In addition, the expression of the structural protein, envelope (E), was down-regulated by 8b but not 8a or 8ab. Consequently, E was not detectable in SARS-CoV-infected cells that were expressing high levels of 8b. These findings suggest that 8b may modulate viral replication and/or pathogenesis.
Collapse
Affiliation(s)
- Choong-Tat Keng
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore, 138673
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Kan B, Wang M, Jing H, Xu H, Jiang X, Yan M, Liang W, Zheng H, Wan K, Liu Q, Cui B, Xu Y, Zhang E, Wang H, Ye J, Li G, Li M, Cui Z, Qi X, Chen K, Du L, Gao K, Zhao YT, Zou XZ, Feng YJ, Gao YF, Hai R, Yu D, Guan Y, Xu J. Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms. J Virol 2005; 79:11892-900. [PMID: 16140765 PMCID: PMC1212604 DOI: 10.1128/jvi.79.18.11892-11900.2005] [Citation(s) in RCA: 252] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Massive numbers of palm civets were culled to remove sources for the reemergence of severe acute respiratory syndrome (SARS) in Guangdong Province, China, in January 2004, following SARS coronavirus detection in market animals. The virus was identified in all 91 palm civets and 15 raccoon dogs of animal market origin sampled prior to culling, but not in 1,107 palm civets later sampled at 25 farms, spread over 12 provinces, which were claimed to be the source of traded animals. Twenty-seven novel signature variation residues (SNVs) were identified on the spike gene and were analyzed for their phylogenetic relationships, based on 17 sequences obtained from animals in our study and from other published studies. Analysis indicated that the virus in palm civets at the live-animal market had evolved to infect humans. The evolutionary starting point was a prototype group consisting of three viral sequences of animal origin. Initially, seven SNV sites caused six amino acid changes, at positions 147, 228, 240, 479, 821, and 1080 of the spike protein, to generate low-pathogenicity viruses. One of these was linked to the first SARS patient in the 2003-2004 period. A further 14 SNVs caused 11 amino acid residue changes, at positions 360, 462, 472, 480, 487, 609, 613, 665, 743, 765, and 1163. The resulting high-pathogenicity groups were responsible for infections during the so-called early-phase epidemic of 2003. Finally, the remaining six SNVs caused four amino acid changes, at positions 227, 244, 344, and 778, which resulted in the group of viruses responsible for the global epidemic.
Collapse
Affiliation(s)
- Biao Kan
- State Key Laboratory for Infectious Disease Prevention and Control (China CDC), Chinese Center for Disease Control and Prevention, P.O. Box 5, Changping, Beijing 102206, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Chen W, Yan M, Yang L, Ding B, He B, Wang Y, Liu X, Liu C, Zhu H, You B, Huang S, Zhang J, Mu F, Xiang Z, Feng X, Wen J, Fang J, Yu J, Yang H, Wang J. SARS-associated coronavirus transmitted from human to pig. Emerg Infect Dis 2005; 11:446-8. [PMID: 15757562 PMCID: PMC3298239 DOI: 10.3201/eid1103.040824] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
coronavirus (SARS-CoV) was isolated from a pig during a survey for possible routes of viral transmission after a SARS epidemic. Sequence and epidemiology analyses suggested that the pig was infected by a SARS-CoV of human origin.
Collapse
Affiliation(s)
- Weijun Chen
- Chinese Academy of Sciences, Beijing, China
- Beijing BGI-GBI Biotech Co., Ltd, Beijing, China
- W. Chen, M. Yan, and L. Yang contributed equally to this article
| | - Minghua Yan
- Tianjin Institute of Animal Husbandry and Veterinary Science, Tianjin, China
- W. Chen, M. Yan, and L. Yang contributed equally to this article
| | - Ling Yang
- Chinese Academy of Sciences, Beijing, China
- W. Chen, M. Yan, and L. Yang contributed equally to this article
| | - Boliang Ding
- Tianjin Institute of Animal Husbandry and Veterinary Science, Tianjin, China
| | - Bo He
- Beijing BGI-GBI Biotech Co., Ltd, Beijing, China
| | - Yingzhen Wang
- Tianjin Institute of Animal Husbandry and Veterinary Science, Tianjin, China
| | - Xiuli Liu
- Tianjin Institute of Animal Husbandry and Veterinary Science, Tianjin, China
| | | | - Hui Zhu
- Tianjin Institute of Animal Husbandry and Veterinary Science, Tianjin, China
| | - Bo You
- Beijing BGI-GBI Biotech Co., Ltd, Beijing, China
| | | | | | - Feng Mu
- Chinese Academy of Sciences, Beijing, China
- Beijing BGI-GBI Biotech Co., Ltd, Beijing, China
| | - Zhao Xiang
- Chinese Academy of Sciences, Beijing, China
- BGI Hangzhou Bio-Environment Technology Co., Ltd, Hangzhou, China
| | | | - Jie Wen
- Chinese Academy of Sciences, Beijing, China
- Beijing BGI-GBI Biotech Co., Ltd, Beijing, China
| | - Jianqiu Fang
- Chinese Academy of Sciences, Beijing, China
- Beijing BGI-GBI Biotech Co., Ltd, Beijing, China
| | - Jun Yu
- Chinese Academy of Sciences, Beijing, China
| | | | - Jian Wang
- Chinese Academy of Sciences, Beijing, China
- Beijing BGI-GBI Biotech Co., Ltd, Beijing, China
| |
Collapse
|
9
|
Hu J, Wang J, Xu J, Li W, Han Y, Li Y, Ji J, Ye J, Xu Z, Zhang Z, Wei W, Li S, Wang J, Wang J, Yu J, Yang H. Evolution and variation of the SARS-CoV genome. GENOMICS PROTEOMICS & BIOINFORMATICS 2005; 1:216-25. [PMID: 15629034 PMCID: PMC5172238 DOI: 10.1016/s1672-0229(03)01027-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Knowledge of the evolution of pathogens is of great medical and biological significance to the prevention, diagnosis, and therapy of infectious diseases. In order to understand the origin and evolution of the SARS-CoV (severe acute respiratory syndrome-associated coronavirus), we collected complete genome sequences of all viruses available in GenBank, and made comparative analyses with the SARS-CoV. Genomic signature analysis demonstrates that the coronaviruses all take the TGTT as their richest tetranucleotide except the SARS-CoV. A detailed analysis of the forty-two complete SARS-CoV genome sequences revealed the existence of two distinct genotypes, and showed that these isolates could be classified into four groups. Our manual analysis of the BLASTN results demonstrates that the HE (hemagglutinin-esterase) gene exists in the SARS-CoV, and many mutations made it unfamiliar to us.
Collapse
Affiliation(s)
- Jianfei Hu
- College of Life Sciences, Peking University, Beijing 100871, China
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Jing Wang
- College of Life Sciences, Peking University, Beijing 100871, China
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Jing Xu
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Wei Li
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Yujun Han
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Yan Li
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Jia Ji
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Jia Ye
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
- James D. Watson Institute of Genome Sciences, Zhijiang Campus, Zhejiang University and Hangzhou Genomics Institute, Hangzhou 310008, China
| | - Zhao Xu
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Zizhang Zhang
- College of Materials Science and Chemical Engineering, Yuquan Campus, Zhejiang University, Hangzhou 310027, China
| | - Wei Wei
- James D. Watson Institute of Genome Sciences, Zhijiang Campus, Zhejiang University and Hangzhou Genomics Institute, Hangzhou 310008, China
| | - Songgang Li
- College of Life Sciences, Peking University, Beijing 100871, China
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Jun Wang
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Jian Wang
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
- James D. Watson Institute of Genome Sciences, Zhijiang Campus, Zhejiang University and Hangzhou Genomics Institute, Hangzhou 310008, China
| | - Jun Yu
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
- James D. Watson Institute of Genome Sciences, Zhijiang Campus, Zhejiang University and Hangzhou Genomics Institute, Hangzhou 310008, China
- Corresponding authors.
| | - Huanming Yang
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
- James D. Watson Institute of Genome Sciences, Zhijiang Campus, Zhejiang University and Hangzhou Genomics Institute, Hangzhou 310008, China
- Corresponding authors.
| |
Collapse
|
10
|
Bi S, Qin E, Xu Z, Li W, Wang J, Hu Y, Liu Y, Duan S, Hu J, Han Y, Xu J, Li Y, Yi Y, Zhou Y, Lin W, Wen J, Xu H, Li R, Zhang Z, Sun H, Zhu J, Yu M, Fan B, Wu Q, Lin W, Tang L, Yang B, Li G, Peng W, Li W, Jiang T, Deng Y, Liu B, Shi J, Deng Y, Wei W, Liu H, Tong Z, Zhang F, Zhang Y, Wang C, Li Y, Ye J, Gan Y, Ji J, Li X, Tian X, Lu F, Tan G, Yang R, Liu B, Liu S, Li S, Wang J, Wang J, Cao W, Yu J, Dong X, Yang H. Complete genome sequences of the SARS-CoV: the BJ Group (Isolates BJ01-BJ04). GENOMICS, PROTEOMICS & BIOINFORMATICS 2003; 1:180-92. [PMID: 15629030 PMCID: PMC5172409 DOI: 10.1016/s1672-0229(03)01023-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Beijing has been one of the epicenters attacked most severely by the SARS-CoV (severe acute respiratory syndrome-associated coronavirus) since the first patient was diagnosed in one of the city's hospitals. We now report complete genome sequences of the BJ Group, including four isolates (Isolates BJ01, BJ02, BJ03, and BJ04) of the SARS-CoV. It is remarkable that all members of the BJ Group share a common haplotype, consisting of seven loci that differentiate the group from other isolates published to date. Among 42 substitutions uniquely identified from the BJ group, 32 are non-synonymous changes at the amino acid level. Rooted phylogenetic trees, proposed on the basis of haplotypes and other sequence variations of SARS-CoV isolates from Canada, USA, Singapore, and China, gave rise to different paradigms but positioned the BJ Group, together with the newly discovered GD01 (GD-Ins29) in the same clade, followed by the H-U Group (from Hong Kong to USA) and the H-T Group (from Hong Kong to Toronto), leaving the SP Group (Singapore) more distant. This result appears to suggest a possible transmission path from Guangdong to Beijing/Hong Kong, then to other countries and regions.
Collapse
Affiliation(s)
- Shengli Bi
- Center of Disease Control and Prevention, Beijing 100050, China
| | - E’de Qin
- Institute of Microbiology and Epidemiology, Chinese Academy of Military Medical Sciences, Beijing 100071, China
| | - Zuyuan Xu
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
- James D. Watson Institute of Genome Sciences, Zhijiang Campus, Zhejiang University and Hangzhou Genomics Institute, Hangzhou 310008, China
| | - Wei Li
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Jing Wang
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Yongwu Hu
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
- Wenzhou Medical College, Wenzhou 325003, China
| | - Yong Liu
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Shumin Duan
- Center of Disease Control and Prevention, Beijing 100050, China
| | - Jianfei Hu
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Yujun Han
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Jing Xu
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Yan Li
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Yao Yi
- Center of Disease Control and Prevention, Beijing 100050, China
| | - Yongdong Zhou
- Center of Disease Control and Prevention, Beijing 100050, China
| | - Wei Lin
- Center of Disease Control and Prevention, Beijing 100050, China
| | - Jie Wen
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Hong Xu
- Center of Disease Control and Prevention, Beijing 100050, China
| | - Ruan Li
- Center of Disease Control and Prevention, Beijing 100050, China
| | - Zizhang Zhang
- College of Materials Science and Chemical Engineering, Yuquan Campus, Zhejiang University, Hangzhou 310027, China
| | - Haiyan Sun
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Jingui Zhu
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Man Yu
- Institute of Microbiology and Epidemiology, Chinese Academy of Military Medical Sciences, Beijing 100071, China
| | - Baochang Fan
- Institute of Microbiology and Epidemiology, Chinese Academy of Military Medical Sciences, Beijing 100071, China
| | - Qingfa Wu
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Wei Lin
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Lin Tang
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Bao’an Yang
- Institute of Microbiology and Epidemiology, Chinese Academy of Military Medical Sciences, Beijing 100071, China
| | - Guoqing Li
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Wenming Peng
- Institute of Microbiology and Epidemiology, Chinese Academy of Military Medical Sciences, Beijing 100071, China
| | - Wenjie Li
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Tao Jiang
- Institute of Microbiology and Epidemiology, Chinese Academy of Military Medical Sciences, Beijing 100071, China
| | - Yajun Deng
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Bohua Liu
- Institute of Microbiology and Epidemiology, Chinese Academy of Military Medical Sciences, Beijing 100071, China
| | - Jianping Shi
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Yongqiang Deng
- Institute of Microbiology and Epidemiology, Chinese Academy of Military Medical Sciences, Beijing 100071, China
| | - Wei Wei
- James D. Watson Institute of Genome Sciences, Zhijiang Campus, Zhejiang University and Hangzhou Genomics Institute, Hangzhou 310008, China
| | - Hong Liu
- Institute of Microbiology and Epidemiology, Chinese Academy of Military Medical Sciences, Beijing 100071, China
| | - Zongzhong Tong
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Feng Zhang
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Yu Zhang
- Institute of Microbiology and Epidemiology, Chinese Academy of Military Medical Sciences, Beijing 100071, China
| | - Cui’e Wang
- Institute of Microbiology and Epidemiology, Chinese Academy of Military Medical Sciences, Beijing 100071, China
| | - Yuquan Li
- Institute of Microbiology and Epidemiology, Chinese Academy of Military Medical Sciences, Beijing 100071, China
| | - Jia Ye
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
- James D. Watson Institute of Genome Sciences, Zhijiang Campus, Zhejiang University and Hangzhou Genomics Institute, Hangzhou 310008, China
| | - Yonghua Gan
- Institute of Microbiology and Epidemiology, Chinese Academy of Military Medical Sciences, Beijing 100071, China
| | - Jia Ji
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Xiaoyu Li
- Institute of Microbiology and Epidemiology, Chinese Academy of Military Medical Sciences, Beijing 100071, China
| | - Xiangjun Tian
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
- James D. Watson Institute of Genome Sciences, Zhijiang Campus, Zhejiang University and Hangzhou Genomics Institute, Hangzhou 310008, China
| | - Fushuang Lu
- Institute of Microbiology and Epidemiology, Chinese Academy of Military Medical Sciences, Beijing 100071, China
| | - Gang Tan
- Institute of Microbiology and Epidemiology, Chinese Academy of Military Medical Sciences, Beijing 100071, China
| | - Ruifu Yang
- Institute of Microbiology and Epidemiology, Chinese Academy of Military Medical Sciences, Beijing 100071, China
| | - Bin Liu
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Siqi Liu
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Songgang Li
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Jun Wang
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Jian Wang
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
- James D. Watson Institute of Genome Sciences, Zhijiang Campus, Zhejiang University and Hangzhou Genomics Institute, Hangzhou 310008, China
| | - Wuchun Cao
- Institute of Microbiology and Epidemiology, Chinese Academy of Military Medical Sciences, Beijing 100071, China
| | - Jun Yu
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
- James D. Watson Institute of Genome Sciences, Zhijiang Campus, Zhejiang University and Hangzhou Genomics Institute, Hangzhou 310008, China
| | - Xiaoping Dong
- Center of Disease Control and Prevention, Beijing 100050, China
| | - Huanming Yang
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
- James D. Watson Institute of Genome Sciences, Zhijiang Campus, Zhejiang University and Hangzhou Genomics Institute, Hangzhou 310008, China
| |
Collapse
|