1
|
Wahi K, Freidman N, Wang Q, Devadason M, Quek LE, Pang A, Lloyd L, Larance M, Zanini F, Harvey K, O'Toole S, Guan YF, Holst J. Macropinocytosis mediates resistance to loss of glutamine transport in triple-negative breast cancer. EMBO J 2024; 43:5857-5882. [PMID: 39420093 PMCID: PMC11611898 DOI: 10.1038/s44318-024-00271-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Triple-negative breast cancer (TNBC) metabolism and cell growth uniquely rely on glutamine uptake by the transporter ASCT2. Despite previous data reporting cell growth inhibition after ASCT2 knockdown, we here show that ASCT2 CRISPR knockout is tolerated by TNBC cell lines. Despite the loss of a glutamine transporter and low rate of glutamine uptake, intracellular glutamine steady-state levels were increased in ASCT2 knockout compared to control cells. Proteomics analysis revealed upregulation of macropinocytosis, reduction in glutamine efflux and increased glutamine synthesis in ASCT2 knockout cells. Deletion of ASCT2 in the TNBC cell line HCC1806 induced a strong increase in macropinocytosis across five ASCT2 knockout clones, compared to a modest increase in ASCT2 knockdown. In contrast, ASCT2 knockout impaired cell proliferation in the non-macropinocytic HCC1569 breast cancer cells. These data identify macropinocytosis as a critical secondary glutamine acquisition pathway in TNBC and a novel resistance mechanism to strategies targeting glutamine uptake alone. Despite this adaptation, TNBC cells continue to rely on glutamine metabolism for their growth, providing a rationale for targeting of more downstream glutamine metabolism components.
Collapse
Affiliation(s)
- Kanu Wahi
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, Australia.
| | - Natasha Freidman
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Qian Wang
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Michelle Devadason
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Lake-Ee Quek
- School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia
| | - Angel Pang
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Larissa Lloyd
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Mark Larance
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Fabio Zanini
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Kate Harvey
- Cancer Ecosystems Program, Garvan Institute of Medical Research, UNSW Sydney, Kensington, NSW, Australia
| | - Sandra O'Toole
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Yi Fang Guan
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Jeff Holst
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, Australia.
| |
Collapse
|
2
|
Ye F, Xia T, Zhao M, Zhao W, Min P, Wang Y, Wang Q, Zhang Y, Du J. PlexinA1 promotes gastric cancer migration through preventing MICAL1 protein ubiquitin/proteasome-mediated degradation in a Rac1-dependent manner. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167124. [PMID: 38508474 DOI: 10.1016/j.bbadis.2024.167124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/22/2024]
Abstract
Metastasis promotes the development of tumors and is a significant cause of gastric cancer death. For metastasis to proceed, tumor cells must become mobile by modulating their cytoskeleton. MICAL1 (Molecule Interacting with CasL1) is known as an actin cytoskeleton regulator, but the mechanisms by which it drives gastric cancer cell migration are still unclear. Analysis of gastric cancer tissues revealed that MICAL1 expression is dramatically upregulated in stomach adenocarcinoma (STAD) samples as compared to noncancerous stomach tissues. Patients with high MICAL1 expression had shorter overall survival (OS), post-progression survival (PPS) and first-progression survival (FPS) compared with patients with low MICAL1 expression. RNAi-mediated silencing of MICAL1 inhibited the expression of Vimentin, a protein involved in epithelial-mesenchymal transition. This effect correlates with a significant reduction in gastric cancer cell migration. MICAL1 overexpression reversed these preventive effects. Immunoprecipitation experiments and immunofluorescence assays revealed that PlexinA1 forms a complex with MICAL1. Importantly, specific inhibition of PlexinA1 blocked the Rac1 activation and ROS production, which, in turn, impaired MICAL1 protein stability by accelerating MICAL1 ubiquitin/proteasome-dependent degradation. Overexpression of PlexinA1 enhanced Rac1 activation, ROS production, MICAL1 and Vimentin expressions, and favored cell migration. In conclusion, this study identified MICAL1 as an important facilitator of gastric cancer cell migration, at least in part, by affecting Vimentin expression and PlexinA1 promotes gastric cancer cell migration by binding to and suppressing MICAL1 degradation in a Rac1/ROS-dependent manner.
Collapse
Affiliation(s)
- Fengwen Ye
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Tianxiang Xia
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - MingYu Zhao
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Weizhen Zhao
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Pengxiang Min
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yueyuan Wang
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Qianwen Wang
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yujie Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jun Du
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
3
|
Luo Q, Raulston EG, Prado MA, Wu X, Gritsman K, Yan K, Booth CAG, Xu R, van Galen P, Doench JG, Shimony S, Long HW, Neuberg DS, Paulo JA, Lane AA. Targetable leukemia dependency on noncanonical PI3Kγ signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571909. [PMID: 38328043 PMCID: PMC10849582 DOI: 10.1101/2023.12.15.571909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Phosphoinositide 3-kinase gamma (PI3Kγ) is implicated as a target to repolarize tumor-associated macrophages and promote anti-tumor immune responses in solid cancers. However, cancer cell-intrinsic roles of PI3Kγ are unclear. Here, by integrating unbiased genome-wide CRISPR interference screening with functional analyses across acute leukemias, we define a selective dependency on the PI3Kγ complex in a high-risk subset that includes myeloid, lymphoid, and dendritic lineages. This dependency is characterized by innate inflammatory signaling and activation of phosphoinositide 3-kinase regulatory subunit 5 ( PIK3R5 ), which encodes a regulatory subunit of PI3Kγ and stabilizes the active enzymatic complex. Mechanistically, we identify p21 (RAC1) activated kinase 1 (PAK1) as a noncanonical substrate of PI3Kγ that mediates this cell-intrinsic dependency independently of Akt kinase. PI3Kγ inhibition dephosphorylates PAK1, activates a transcriptional network of NFκB-related tumor suppressor genes, and impairs mitochondrial oxidative phosphorylation. We find that treatment with the selective PI3Kγ inhibitor eganelisib is effective in leukemias with activated PIK3R5 , either at baseline or by exogenous inflammatory stimulation. Notably, the combination of eganelisib and cytarabine prolongs survival over either agent alone, even in patient-derived leukemia xenografts with low baseline PIK3R5 expression, as residual leukemia cells after cytarabine treatment have elevated G protein-coupled purinergic receptor activity and PAK1 phosphorylation. Taken together, our study reveals a targetable dependency on PI3Kγ/PAK1 signaling that is amenable to near-term evaluation in patients with acute leukemia.
Collapse
|
4
|
Tsai CC, Yang YCSH, Chen YF, Huang LY, Yang YN, Lee SY, Wang WL, Lee HL, Whang-Peng J, Lin HY, Wang K. Integrins and Actions of Androgen in Breast Cancer. Cells 2023; 12:2126. [PMID: 37681860 PMCID: PMC10486718 DOI: 10.3390/cells12172126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/09/2023] Open
Abstract
Androgen has been shown to regulate male physiological activities and cancer proliferation. It is used to antagonize estrogen-induced proliferative effects in breast cancer cells. However, evidence indicates that androgen can stimulate cancer cell growth in estrogen receptor (ER)-positive and ER-negative breast cancer cells via different types of receptors and different mechanisms. Androgen-induced cancer growth and metastasis link with different types of integrins. Integrin αvβ3 is predominantly expressed and activated in cancer cells and rapidly dividing endothelial cells. Programmed death-ligand 1 (PD-L1) also plays a vital role in cancer growth. The part of integrins in action with androgen in cancer cells is not fully mechanically understood. To clarify the interactions between androgen and integrin αvβ3, we carried out molecular modeling to explain the potential interactions of androgen with integrin αvβ3. The androgen-regulated mechanisms on PD-L1 and its effects were also addressed.
Collapse
Affiliation(s)
- Chung-Che Tsai
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (C.-C.T.); (Y.-F.C.)
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Chen S. H. Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei 11031, Taiwan;
| | - Yi-Fong Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (C.-C.T.); (Y.-F.C.)
| | - Lin-Yi Huang
- Department of Pediatrics, E-DA Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (L.-Y.H.); (Y.-N.Y.)
| | - Yung-Ning Yang
- Department of Pediatrics, E-DA Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (L.-Y.H.); (Y.-N.Y.)
- School of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Sheng-Yang Lee
- Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei 11031, Taiwan;
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Wen-Long Wang
- Department of Life Science, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Hsin-Lun Lee
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 110, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | | | - Hung-Yun Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (C.-C.T.); (Y.-F.C.)
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan;
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA
| | - Kuan Wang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
5
|
Maharati A, Moghbeli M. Role of microRNAs in regulation of doxorubicin and paclitaxel responses in lung tumor cells. Cell Div 2023; 18:11. [PMID: 37480054 PMCID: PMC10362644 DOI: 10.1186/s13008-023-00093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/19/2023] [Indexed: 07/23/2023] Open
Abstract
Lung cancer as the leading cause of cancer related mortality is always one of the main global health challenges. Despite the recent progresses in therapeutic methods, the mortality rate is still significantly high among lung cancer patients. A wide range of therapeutic methods including chemotherapy, radiotherapy, and surgery are used to treat lung cancer. Doxorubicin (DOX) and Paclitaxel (TXL) are widely used as the first-line chemotherapeutic drugs in lung cancer. However, there is a significant high percentage of DOX/TXL resistance in lung cancer patients, which leads to tumor recurrence and metastasis. Considering, the side effects of these drugs in normal tissues, it is required to clarify the molecular mechanisms of DOX/TXL resistance to introduce the efficient prognostic and therapeutic markers in lung cancer. MicroRNAs (miRNAs) have key roles in regulation of different pathophysiological processes including cell division, apoptosis, migration, and drug resistance. MiRNA deregulations are widely associated with chemo resistance in various cancers. Therefore, considering the importance of miRNAs in chemotherapy response, in the present review, we discussed the role of miRNAs in regulation of DOX/TXL response in lung cancer patients. It has been reported that miRNAs mainly induced DOX/TXL sensitivity in lung tumor cells by the regulation of signaling pathways, autophagy, transcription factors, and apoptosis. This review can be an effective step in introducing miRNAs as the non-invasive prognostic markers to predict DOX/TXL response in lung cancer patients.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Liang J, Liu Q, Xia L, Lin J, Oyang L, Tan S, Peng Q, Jiang X, Xu X, Wu N, Tang Y, Su M, Luo X, Yang Y, Liao Q, Zhou Y. Rac1 promotes the reprogramming of glucose metabolism and the growth of colon cancer cells through upregulating SOX9. Cancer Sci 2023; 114:822-836. [PMID: 36369902 PMCID: PMC9986058 DOI: 10.1111/cas.15652] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Metabolic reprogramming is the survival rule of tumor cells, and tumor cells can meet their high metabolic requirements by changing the energy metabolism mode. Metabolic reprogramming of tumor cells is an important biochemical basis of tumor malignant phenotypes. Ras-related C3 botulinum toxin substrate 1 (Rac1) is abnormally expressed in a variety of tumors and plays an important role in the proliferation, invasion, and migration of tumor cells. However, the role of Rac1 in tumor metabolic reprogramming is still unclear. Herein, we revealed that Rac1 was highly expressed in colon cancer tissues and cell lines. Rac1 promotes the proliferation, migration, and invasion of colon cancer cells by upregulating SOX9, which as a transcription factor can directly bind to the promoters of HK2 and G6PD genes and regulate their transcriptional activity. Rac1 upregulates the expression of SOX9 through the PI3K/AKT signaling pathway. Moreover, Rac1 can promote glycolysis and the activation of the pentose phosphate pathway in colon cancer cells by mediating the axis of SOX9/HK2/G6PD. These findings reveal novel regulatory axes involving Rac1/SOX9/HK2/G6PD in the development and progression of colon cancer, providing novel promising therapeutic targets.
Collapse
Affiliation(s)
- Jiaxin Liang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qiang Liu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xuemeng Xu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Min Su
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yiqing Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Hunan Key Laboratory of Translational Radiation Oncology, Changsha, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Hunan Key Laboratory of Translational Radiation Oncology, Changsha, China
| |
Collapse
|
7
|
Min WL, Wang BF, Liang BB, Zhang L, Pan JY, Huang Y, Zhao Y, Lin S, Zhao YH, Zhang SQ, Ma QY. A ROS/Akt/NF-κB Signaling Cascade Mediates Epidermal Growth Factor-Induced Epithelial-Mesenchymal Transition and Invasion in Human Breast Cancer Cells. World J Oncol 2022; 13:289-298. [PMID: 36406192 PMCID: PMC9635793 DOI: 10.14740/wjon1518] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/23/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND As one of the most widely used anti-diabetic drugs for type II diabetes, metformin has been shown to exhibit anti-cancer activity in recent years. Epidermal growth factor (EGF) and its receptor, EGFR, play important roles in cancer metastasis in various tumors, including breast cancer. Epithelial-mesenchymal transition (EMT) is a critical process for cancer invasion and metastasis. In this study, we use EGF as a metastatic inducer to investigate the effect of metformin on cancer cell migration, invasion and EMT. METHODS Human breast cancer MCF-7 cells were exposed to EGF with or without metformin or N-acetyl cysteine (NAC). The effects of metformin on breast cancer cell proliferation were analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The production of reactive oxygen species (ROS) was tested using 2,7-dichlorodihydrofluorecein diacetate (DCFH-DA). The migratory and invasive abilities of tumor cells were analyzed using wound healing assay and transwell invasion assay, respectively. The expressions of E-cadherin, N-cadherin and Snail were tested using real-time quantitative polymerase chain reaction (qRT-PCR) and western blotting at mRNA and protein levels. The activation of protein kinase B (Akt) and nuclear factor kappa B (NF-κB) were measured by western blotting. RESULTS Our results showed that metformin inhibited breast cancer cell proliferation in a dose-dependent manner with or without EGF. EGF-induced alterations in cell morphology that are characteristic of EMT were reversed by metformin. Metformin also inhibited the EGF-modulated expression of E-cadherin, N-cadherin and Snail and further suppressed cell invasion and migration. In addition, metformin suppressed EGF-induced phosphorylation of Akt and NF-κB. ROS is involved in EGF-induced cancer invasion and activation of phosphatidylinositol 3-kinase (PI3K)/Akt/NF-κB pathway. CONCLUSION Taken together, these data indicate that metformin suppresses EGF-induced breast cancer cell migration, invasion and EMT through the inhibition of the PI3K/Akt/NF-κB pathway. These results provide a novel mechanism to explain the role of metformin as a potent anti-metastatic agent in breast cancer cells.
Collapse
Affiliation(s)
- Wei Li Min
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China,These authors contributed equally to this work.,Corresponding Author: Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China.
| | - Bao Feng Wang
- Department of Radiation Therapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710004, China,These authors contributed equally to this work
| | - Bao Bao Liang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Lun Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Ji Yuan Pan
- Department of Radiation Therapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710004, China
| | - Yi Huang
- Department of Ultrasound, Xi’an Chest Hospital, Xi’an 710061, China
| | - Yang Zhao
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Shuai Lin
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Yi Han Zhao
- Special Stomatology Department, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
| | - Shu Qun Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Qing Yong Ma
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
8
|
Kondapuram SK, Coumar MS. Pan-cancer gene expression analysis: Identification of deregulated autophagy genes and drugs to target them. Gene X 2022; 844:146821. [PMID: 35985410 DOI: 10.1016/j.gene.2022.146821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/07/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022] Open
Abstract
Identifying suitable deregulated targets in autophagy pathway is essential for developing autophagy modulating cancer therapies. With this aim, we systematically analyzed the expression levels of genes that contribute to the execution of autophagy in 21 cancers. Deregulated genes for 21 cancers were analyzed using the level 3 mRNA data from TCGAbiolinks. A total of 574 autophagy genes were mapped to the deregulated genes across 21 cancers. PPI network, cluster analysis, gene enrichment, gene ontology, KEGG pathway, patient survival, protein expression and cMap analysis were performed. Among the autophagy genes, 260 were upregulated, and 43 were downregulated across pan-cancer. The upregulated autophagy genes - CDKN2A and BIRC5 - were the most frequent signatures in cancers and could be universal cancer biomarkers. Significant involvement of autophagy process was found in 8 cancers (CHOL, HNSC, GBM, KICH, KIRC, KIRP, LIHC and SARC). Fifteen autophagy hub genes (ATP6V0C, BIRC5, HDAC1, IL4, ITGB1, ITGB4, MAPK3, mTOR, cMYC, PTK2, SRC, TCIRG1, TP63, TP73 and ULK1) were found to be linked with patients survival and also expressed in cancer patients tissue samples, making them as potential drug targets for these cancers. The deregulated autophagy genes were further used to identify drugs Losartan, BMS-345541, Embelin, Abexinostat, Panobinostat, Vorinostat, PD-184352, PP-1, XMD-1150, Triplotide, Doxorubicin and Ouabain, which could target one or more autophagy hub genes. Overall, our findings shed light on the most frequent cancer-associated autophagy genes, potential autophagy targets and molecules for cancer treatment. These findings can accelerate autophagy modulation in cancer therapy.
Collapse
Affiliation(s)
- Sree Karani Kondapuram
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry- 605014, India
| | - Mohane Selvaraj Coumar
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry- 605014, India.
| |
Collapse
|
9
|
Fang J, Yang J, Chen H, Sun W, Xiang L, Feng J. Long non-coding RNA LBX2-AS1 predicts poor survival of colon cancer patients and promotes its progression via regulating miR-627-5p/RAC1/PI3K/AKT pathway. Hum Cell 2022; 35:1521-1534. [PMID: 35816228 DOI: 10.1007/s13577-022-00745-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/29/2022] [Indexed: 12/20/2022]
Abstract
Colon cancer is one of the most prevalent malignant tumors across the world. Increasing studies have demonstrated that long non-coding RNAs (lncRNAs) take part in colon cancer development. Our study intends to explore the expression characteristics of LBX2-AS1, a novel lncRNA, in colon cancer and its underlying mechanisms. The results illustrated that LBX2-AS1 level was substantially increased in colon cancer tissues and was obviously correlated with the tumor volume and early distant metastasis of patients. Besides, overexpression of LBX2-AS1 remarkably boosted growth, proliferation, and metastasis and restrained apoptosis in colon cancer cells, whereas LBX2-AS1 knockdown produced the opposite effect. On the other hand, miR-627-5p, down-regulated in colon cancer tissues, was negatively associated with LBX2-AS1 expression. Functional experiments showed that miR-627-5p suppressed colon cancer growth. Mechanistically, LBX2-AS1, as an endogenous competitive RNA, targeted miR-627-5p and restrained its expression, while miR-627-5p targeted and negatively regulated the RAC1/PI3K/AKT axis. Collectively, this study has revealed that LBX2-AS1 is a poor prognostic factor of colon cancer and can regulate colon cancer progression by regulating the miR-627-5p/RAC1/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Jing Fang
- Department of Oncology, Wuhan Fourth Hospital, PuAi Hospital of Tongji Medical College, Huazhong University of Science and Technology, No.76 Jiefang Road, Qiaokou District, Wuhan, 430034, Hubei, People's Republic of China
| | - Junyuan Yang
- Department of Oncology, Wuhan Fourth Hospital, PuAi Hospital of Tongji Medical College, Huazhong University of Science and Technology, No.76 Jiefang Road, Qiaokou District, Wuhan, 430034, Hubei, People's Republic of China
| | - Hui Chen
- Department of Oncology, Wuhan Fourth Hospital, PuAi Hospital of Tongji Medical College, Huazhong University of Science and Technology, No.76 Jiefang Road, Qiaokou District, Wuhan, 430034, Hubei, People's Republic of China
| | - Wen Sun
- Department of Oncology, Wuhan Fourth Hospital, PuAi Hospital of Tongji Medical College, Huazhong University of Science and Technology, No.76 Jiefang Road, Qiaokou District, Wuhan, 430034, Hubei, People's Republic of China
| | - Lingyun Xiang
- Department of Oncology, Wuhan Fourth Hospital, PuAi Hospital of Tongji Medical College, Huazhong University of Science and Technology, No.76 Jiefang Road, Qiaokou District, Wuhan, 430034, Hubei, People's Republic of China
| | - Jueping Feng
- Department of Oncology, Wuhan Fourth Hospital, PuAi Hospital of Tongji Medical College, Huazhong University of Science and Technology, No.76 Jiefang Road, Qiaokou District, Wuhan, 430034, Hubei, People's Republic of China.
| |
Collapse
|
10
|
Badea MA, Balas M, Prodana M, Cojocaru FG, Ionita D, Dinischiotu A. Carboxyl-Functionalized Carbon Nanotubes Loaded with Cisplatin Promote the Inhibition of PI3K/Akt Pathway and Suppress the Migration of Breast Cancer Cells. Pharmaceutics 2022; 14:469. [PMID: 35214200 PMCID: PMC8878903 DOI: 10.3390/pharmaceutics14020469] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/30/2022] Open
Abstract
PI3K/Akt signaling is one of the most frequently dysregulated pathways in cancer, including triple-negative breast cancer. With considerable roles in tumor growth and proliferation, this pathway is studied as one of the main targets in controlling the therapies' efficiency. Nowadays, the development of nanoparticle-drug conjugates attracts a great deal of attention due to the advantages they provide in cancer treatment. Hence, the main purpose of this study was to design a nanoconjugate based on single-walled carbon nanotubes functionalized with carboxyl groups (SWCNT-COOH) and cisplatin (CDDP) and to explore the potential of inhibiting the PI3K/Akt signaling pathway. MDA-MB-231 cells were exposed to various doses (0.01-2 µg/mL SWCNT-COOH and 0.00632-1.26 µg/mL CDDP) of SWCNT-COOH-CDDP and free components for 24 and 48 h. In vitro biological tests revealed that SWCNT-COOH-CDDP had a high cytotoxic effect, as shown by a time-dependent decrease in cell viability and the presence of a significant number of dead cells in MDA-MB-231 cultures at higher doses. Moreover, the nanoconjugates induced the downregulation of PI3K/Akt signaling, as revealed by the decreased expression of PI3K and p-Akt in parallel with PTEN activation, the promotion of Akt protein degradation, and inhibition of tumor cell migration.
Collapse
Affiliation(s)
- Madalina Andreea Badea
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, R-050095 Bucharest, Romania; (M.A.B.); (A.D.)
| | - Mihaela Balas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, R-050095 Bucharest, Romania; (M.A.B.); (A.D.)
| | - Mariana Prodana
- Department of General Chemistry, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 313 Splaiul Independentei, R-060042 Bucharest, Romania; (M.P.); (D.I.)
| | - Florentina Gina Cojocaru
- Department of Anatomy, Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, R-050095 Bucharest, Romania;
| | - Daniela Ionita
- Department of General Chemistry, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 313 Splaiul Independentei, R-060042 Bucharest, Romania; (M.P.); (D.I.)
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, R-050095 Bucharest, Romania; (M.A.B.); (A.D.)
| |
Collapse
|
11
|
Liu WW, Hu J, Wang R, Han Q, Liu Y, Wang S. Cytoplasmic P120ctn Promotes Gefitinib Resistance in Lung Cancer Cells by Activating PAK1 and ERK Pathway. Appl Immunohistochem Mol Morphol 2021; 29:750-758. [PMID: 34412070 DOI: 10.1097/pai.0000000000000965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
Our previous studies indicated that cytoplasmic p120ctn mediated epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKI) resistance in lung cancer. In the present study, we aim to further explore the underlying molecular mechanisms. Immunohistochemistry detected PAK1, Cdc42, and Rac1 expression in lung cancer with cytoplasmic p120ctn. Immunoblotting, protein activity analysis, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide evaluated p120ctn location, PAK1, Cdc42/Rac1, and extracellular signal-regulated kinase (ERK) activity in response to TKI treatment in HCC827 and PC9 cell lines, as well as the cell sensitivity to Gefitinib. Most non-small cell lung cancer patients with cytoplasmic p120ctn showed enhanced PAK1 and Cdc42/Rac1. When Gefitinib resistance was induced, cytoplasmic p120ctn is accompanied with increasing PAK1 and Cdc42/Rac1. Cytoplasmic p120ctn activated ERK via PAK1, while PAK1 downregulation attenuated ERK activation by cytoplasmic p120ctn. After Cdc42/Rac1 inhibition, cytoplasmic p120ctn could not activate PAK1. Cytoplasmic p120ctn activates PAK1 via Cdc42/Rac1 activation, constitutively activates ERK in the EGFR downstream signaling, and promotes EGFR-TKI resistance in lung cancer cells. The current study will aid to screen the subpopulation patients who would benefit from therapy with first-generation EGFR-TKIs.
Collapse
Affiliation(s)
- Wei-Wei Liu
- Anesthesiology Department, the First Hospital of China Medical University
| | - Jing Hu
- Sujia Tuo Town Community Health Service Center, Beijing
| | | | | | | | - Si Wang
- Medical Microbiology and Human Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang
| |
Collapse
|
12
|
Role of the V1G1 subunit of V-ATPase in breast cancer cell migration. Sci Rep 2021; 11:4615. [PMID: 33633298 PMCID: PMC7907067 DOI: 10.1038/s41598-021-84222-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/18/2021] [Indexed: 12/26/2022] Open
Abstract
V-ATPase is a large multi-subunit complex that regulates acidity of intracellular compartments and of extracellular environment. V-ATPase consists of several subunits that drive specific regulatory mechanisms. The V1G1 subunit, a component of the peripheral stalk of the pump, controls localization and activation of the pump on late endosomes and lysosomes by interacting with RILP and RAB7. Deregulation of some subunits of the pump has been related to tumor invasion and metastasis formation in breast cancer. We observed a decrease of V1G1 and RAB7 in highly invasive breast cancer cells, suggesting a key role of these proteins in controlling cancer progression. Moreover, in MDA-MB-231 cells, modulation of V1G1 affected cell migration and matrix metalloproteinase activation in vitro, processes important for tumor formation and dissemination. In these cells, characterized by high expression of EGFR, we demonstrated that V1G1 modulates EGFR stability and the EGFR downstream signaling pathways that control several factors required for cell motility, among which RAC1 and cofilin. In addition, we showed a key role of V1G1 in the biogenesis of endosomes and lysosomes. Altogether, our data describe a new molecular mechanism, controlled by V1G1, required for cell motility and that promotes breast cancer tumorigenesis.
Collapse
|
13
|
Hsiao BY, Chen CH, Chi HY, Yen PR, Yu YZ, Lin CH, Pang TL, Lin WC, Li ML, Yeh YC, Chou TY, Chen MY. Human Costars Family Protein ABRACL Modulates Actin Dynamics and Cell Migration and Associates with Tumorigenic Growth. Int J Mol Sci 2021; 22:ijms22042037. [PMID: 33670794 PMCID: PMC7922284 DOI: 10.3390/ijms22042037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 02/16/2021] [Indexed: 12/16/2022] Open
Abstract
Regulation of cellular actin dynamics is pivotal in driving cell motility. During cancer development, cells migrate to invade and spread; therefore, dysregulation of actin regulators is often associated with cancer progression. Here we report the role of ABRACL, a human homolog of the Dictyostelium actin regulator Costars, in migration and tumorigenic growth of cancer cells. We found a correlation between ABRACL expression and the migratory ability of cancer cells. Cell staining revealed the colocalization of ABRACL and F-actin signals at the leading edge of migrating cells. Analysis of the relative F-/G-actin contents in cells lacking or overexpressing ABRACL suggested that ABRACL promotes cellular actin distribution to the polymerized fraction. Physical interaction between ABRACL and cofilin was supported by immunofluorescence staining and proximity ligation. Additionally, ABRACL hindered cofilin-simulated pyrene F-actin fluorescence decay in vitro, indicating a functional interplay. Lastly, analysis on a colorectal cancer cohort demonstrated that high ABRACL expression was associated with distant metastasis, and further exploration showed that depletion of ABRACL expression in colon cancer cells resulted in reduced cell proliferation and tumorigenic growth. Together, results suggest that ABRACL modulates actin dynamics through its interaction with cofilin and thereby regulates cancer cell migration and participates in cancer pathogenesis.
Collapse
Affiliation(s)
- Bo-Yuan Hsiao
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan; (B.-Y.H.); (C.-H.C.); (H.-Y.C.); (P.-R.Y.); (Y.-Z.Y.); (T.-L.P.); (W.-C.L.); (M.-L.L.); (T.-Y.C.)
| | - Chia-Hsin Chen
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan; (B.-Y.H.); (C.-H.C.); (H.-Y.C.); (P.-R.Y.); (Y.-Z.Y.); (T.-L.P.); (W.-C.L.); (M.-L.L.); (T.-Y.C.)
| | - Ho-Yi Chi
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan; (B.-Y.H.); (C.-H.C.); (H.-Y.C.); (P.-R.Y.); (Y.-Z.Y.); (T.-L.P.); (W.-C.L.); (M.-L.L.); (T.-Y.C.)
| | - Pei-Ru Yen
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan; (B.-Y.H.); (C.-H.C.); (H.-Y.C.); (P.-R.Y.); (Y.-Z.Y.); (T.-L.P.); (W.-C.L.); (M.-L.L.); (T.-Y.C.)
| | - Ying-Zhen Yu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan; (B.-Y.H.); (C.-H.C.); (H.-Y.C.); (P.-R.Y.); (Y.-Z.Y.); (T.-L.P.); (W.-C.L.); (M.-L.L.); (T.-Y.C.)
| | - Chia-Hsin Lin
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan;
| | - Te-Ling Pang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan; (B.-Y.H.); (C.-H.C.); (H.-Y.C.); (P.-R.Y.); (Y.-Z.Y.); (T.-L.P.); (W.-C.L.); (M.-L.L.); (T.-Y.C.)
| | - Wei-Chi Lin
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan; (B.-Y.H.); (C.-H.C.); (H.-Y.C.); (P.-R.Y.); (Y.-Z.Y.); (T.-L.P.); (W.-C.L.); (M.-L.L.); (T.-Y.C.)
| | - Min-Lun Li
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan; (B.-Y.H.); (C.-H.C.); (H.-Y.C.); (P.-R.Y.); (Y.-Z.Y.); (T.-L.P.); (W.-C.L.); (M.-L.L.); (T.-Y.C.)
| | - Yi-Chen Yeh
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Teh-Ying Chou
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan; (B.-Y.H.); (C.-H.C.); (H.-Y.C.); (P.-R.Y.); (Y.-Z.Y.); (T.-L.P.); (W.-C.L.); (M.-L.L.); (T.-Y.C.)
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan
- Cancer Progression Research Center, National Yang-Ming University, Taipei 11221, Taiwan
| | - Mei-Yu Chen
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan; (B.-Y.H.); (C.-H.C.); (H.-Y.C.); (P.-R.Y.); (Y.-Z.Y.); (T.-L.P.); (W.-C.L.); (M.-L.L.); (T.-Y.C.)
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan;
- Cancer Progression Research Center, National Yang-Ming University, Taipei 11221, Taiwan
- Correspondence: ; Tel.: +886-(02)-2826-7269
| |
Collapse
|
14
|
Zhou Y, Xie Y, Li T, Zhang P, Chen T, Fan Z, Tan X. P21‑activated kinase 1 mediates angiotensin II‑induced differentiation of human atrial fibroblasts via the JNK/c‑Jun pathway. Mol Med Rep 2021; 23:207. [PMID: 33495806 PMCID: PMC7830933 DOI: 10.3892/mmr.2021.11846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022] Open
Abstract
Cardiac fibrosis is a common pathophysiological condition involved in numerous types of cardiovascular disease. The renin‑angiotensin system, particularly angiotensin II (AngII), serves an important role in cardiac fibrosis and remodeling. Furthermore, p21‑activated kinase 1 (PAK1) is a highly conserved serine/threonine protein kinase, which is abundantly expressed in all regions of the heart. However, the role of PAK1 in AngII‑mediated activation of cardiac fibroblasts remains unknown. Therefore, the present study aimed to investigate the role of PAK1 in cardiac fibroblasts and its underlying mechanisms. Human cardiac fibroblasts (HCFs) were cultured and treated with PAK1 inhibitor IPA‑3 or transduced with PAK1 short hairpin (sh)RNA by lentiviral particles to silence PAK1 expression levels. Subsequently, the cell proliferation and migration abilities of the HCFs were determined. Western blot analysis was used to detect the phosphorylation status of Janus kinase (JNK) and c‑Jun. A Cell Counting Kit‑8 assay showed that PAK1 inhibition following treatment of HCFs with 5 µM IPA‑3 or PAK1‑shRNA, significantly attenuated AngII‑induced proliferation of fibroblasts. In addition, wound healing and Transwell migration assays demonstrated that inhibition of PAK1 significantly inhibited AngII‑induced cell migration. Finally, decreased PAK1 expression levels downregulated AngII‑mediated upregulation of α‑smooth muscle actin (α‑SMA), collagen I, phosphorylated (p)‑JNK and p‑c‑Jun, a downstream molecule of JNK signaling. These findings indicate that PAK1 contributes to AngII‑induced proliferation, migration and transdifferentiation of HCFs via the JNK/c‑Jun pathway.
Collapse
Affiliation(s)
- Yafei Zhou
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Ying Xie
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, P.R. China
| | - Peng Zhang
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Tangting Chen
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Zhongcai Fan
- Department of Cardiovascular Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
15
|
Zeng RJ, Zheng CW, Chen WX, Xu LY, Li EM. Rho GTPases in cancer radiotherapy and metastasis. Cancer Metastasis Rev 2020; 39:1245-1262. [PMID: 32772212 DOI: 10.1007/s10555-020-09923-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/28/2020] [Indexed: 02/05/2023]
Abstract
Despite treatment advances, radioresistance and metastasis markedly impair the benefits of radiotherapy to patients with malignancies. Functioning as molecular switches, Rho guanosine triphosphatases (GTPases) have well-recognized roles in regulating various downstream signaling pathways in a wide range of cancers. In recent years, accumulating evidence indicates the involvement of Rho GTPases in cancer radiotherapeutic efficacy and metastasis, as well as radiation-induced metastasis. The functions of Rho GTPases in radiotherapeutic efficacy are divergent and context-dependent; thereby, a comprehensive integration of their roles and correlated mechanisms is urgently needed. This review integrates current evidence supporting the roles of Rho GTPases in mediating radiotherapeutic efficacy and the underlying mechanisms. In addition, their correlations with metastasis and radiation-induced metastasis are discussed. Under the prudent application of Rho GTPase inhibitors based on critical evaluations of biological contexts, targeting Rho GTPases can be a promising strategy in overcoming radioresistance and simultaneously reducing the metastatic potential of tumor cells.
Collapse
Affiliation(s)
- Rui-Jie Zeng
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China
| | - Chun-Wen Zheng
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China
| | - Wan-Xian Chen
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China
| | - Li-Yan Xu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China.
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, China.
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China.
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
16
|
Y-27632 Induces Neurite Outgrowth by Activating the NOX1-Mediated AKT and PAK1 Phosphorylation Cascades in PC12 Cells. Int J Mol Sci 2020; 21:ijms21207679. [PMID: 33081375 PMCID: PMC7589331 DOI: 10.3390/ijms21207679] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 11/17/2022] Open
Abstract
Y-27632 is known as a selective Rho-associated coiled coil-forming kinase (ROCK) inhibitor. Y-27632 has been shown to induce neurite outgrowth in several neuronal cells. However, the precise molecular mechanisms linking neurite outgrowth to Y-27632 are not completely understood. In this study, we examined the ability of Y-27632 to induce neurite outgrowth in PC12 cells and evaluated the signaling cascade. The effect of Y-27632 on the neurite outgrowth was inhibited by reactive oxygen species (ROS) scavengers such as N-acetyl cysteine (NAC) and trolox. Furthermore, Y-27632-induced neurite outgrowth was not triggered by NADPH oxidase 1 (NOX1) knockdown or diphenyleneiodonium (DPI), a NOX inhibitor. Suppression of the Rho-family GTPase Rac1, which is under the negative control of ROCK, with expression of the dominant negative Rac1 mutant (Rac1N17) prevented Y-27632-induced neurite outgrowth. Moreover, the Rac1 inhibitor NSC23766 prevented Y-27632-induced AKT and p21-activated kinase 1 (PAK1) activation. AKT inhibition with MK2206 suppressed Y-27632-induced PAK1 phosphorylation and neurite outgrowth. In conclusion, our results suggest that Rac1/NOX1-dependent ROS generation and subsequent activation of the AKT/PAK1 cascade contribute to Y-27632-induced neurite outgrowth in PC12 cells.
Collapse
|
17
|
Lv M, Cui C, Chen P, Li Z. Identification of osteoporosis markers through bioinformatic functional analysis of serum proteome. Medicine (Baltimore) 2020; 99:e22172. [PMID: 32991410 PMCID: PMC7523818 DOI: 10.1097/md.0000000000022172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Osteoporosis is a severe chronic skeletal disorder that increases the risks of disability and mortality; however, the mechanism of this disease and the protein markers for prognosis of osteoporosis have not been well characterized. This study aims to characterize the imbalanced serum proteostasis, the disturbed pathways, and potential serum markers in osteoporosis by using a set of bioinformatic analyses. In the present study, the large-scale proteomics datasets (PXD006464) were adopted from the Proteome Xchange database and processed with MaxQuant. The differentially expressed serum proteins were identified. The biological process and molecular function were analyzed. The protein-protein interactions and subnetwork modules were constructed. The signaling pathways were enriched. We identified 209 upregulated and 230 downregulated serum proteins. The bioinformatic analyses revealed a highly overlapped functional protein classification and the gene ontology terms between the upregulated and downregulated protein groups. Protein-protein interactions and pathway analyses showed a high enrichment in protein synthesis, inflammation, and immune response in the upregulated proteins, and cell adhesion and cytoskeleton regulation in the downregulated proteins. Our findings greatly expand the current view of the roles of serum proteins in osteoporosis and shed light on the understanding of its underlying mechanisms and the discovery of serum proteins as potential markers for the prognosis of osteoporosis.
Collapse
Affiliation(s)
- Mengying Lv
- Institute of Translational Medicine, Medical College, Yangzhou University
- Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA Research, Yangzhou, Jiangsu, PR China
| | - Chuanlong Cui
- School of Graduate Studies, Rutgers, The State University of New Jersey, Newark, NJ
| | - Peng Chen
- No. 5 Region, The First Affiliated Hospital of Guangzhou University of Chinese Medicine
| | - Ziqi Li
- Department of Joint Diseases, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine
- Traumatology and Orthopedics Institute of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
18
|
Kanumuri R, Saravanan R, Pavithra V, Sundaram S, Rayala SK, Venkatraman G. Current trends and opportunities in targeting p21 activated kinase-1(PAK1) for therapeutic management of breast cancers. Gene 2020; 760:144991. [PMID: 32717309 DOI: 10.1016/j.gene.2020.144991] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 12/24/2022]
Abstract
Breast cancer is the most frequently diagnosed cancer in women worldwide. Identifying reliable biomarkers and druggable molecular targets pose to be a significant quest in breast cancer research. p21-activated kinase 1 (PAK1) is a serine/threonine kinase that direct cell motility, cytoskeletal remodelling, and has been shown to function as a downstream regulator for various cancer signalling cascades that promote cell proliferation, apoptosis deregulation and hasten mitotic abnormalities, resulting in tumor formation and progression. The heterogeneity and acquired drug resistance are important factors that challenge the treatment of breast cancer. p21-activated kinase 1 signalling is crucial for activation of the Ras/RAF/MEK/ERK, PI3K/Akt/mTOR and Wnt signalling cascades which regulate cell survival, cell cycle progression, differentiation, and proliferation. A study involving proteogenomics analysis on breast cancer tissues showed the PAK1 as outlier kinase. In addition to this, few outlier molecules were identified specific to subtypes of breast cancer. A few substrates of PAK1 in breast cancer are already known. In this paper, we have discussed a similar approach called Kinase Interacting Substrate Screening (KISS) for the identification of novel oncogenic substrates of p21-activated kinase specific to subtypes of breast cancer. Such high throughput approaches are expected to accelerate the process of identifying novel drug targets and biomarkers.
Collapse
Affiliation(s)
- Rahul Kanumuri
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education & Research (Deemed to be University), Porur, Chennai, Tamilnadu, India; Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamilnadu, India
| | - Roshni Saravanan
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education & Research (Deemed to be University), Porur, Chennai, Tamilnadu, India
| | - V Pavithra
- Department of Pathology, Sri Ramachandra Medical College & Research Institute, Sri Ramachandra Institute of Higher Education & Research (Deemed to be University), Porur, Chennai, Tamilnadu, India
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Medical College & Research Institute, Sri Ramachandra Institute of Higher Education & Research (Deemed to be University), Porur, Chennai, Tamilnadu, India
| | - Suresh K Rayala
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamilnadu, India.
| | - Ganesh Venkatraman
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education & Research (Deemed to be University), Porur, Chennai, Tamilnadu, India.
| |
Collapse
|
19
|
Girón-Pérez DA, Vadillo E, Schnoor M, Santos-Argumedo L. Myo1e modulates the recruitment of activated B cells to inguinal lymph nodes. J Cell Sci 2020; 133:jcs.235275. [PMID: 31964710 DOI: 10.1242/jcs.235275] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 01/06/2020] [Indexed: 12/31/2022] Open
Abstract
The inclusion of lymphocytes in high endothelial venules and their migration to the lymph nodes are critical steps in the immune response. Cell migration is regulated by the actin cytoskeleton and myosins. Myo1e is a long-tailed class I myosin and is highly expressed in B cells, which have not been studied in the context of cell migration. By using intravital microscopy in an in vivo model and performing in vitro experiments, we studied the relevance of Myo1e for the adhesion and inclusion of activated B cells in high endothelial venules. We observed reduced expression of integrins and F-actin in the membrane protrusions of B lymphocytes, which might be explained by deficiencies in vesicular trafficking. Interestingly, the lack of Myo1e reduced the phosphorylation of focal adhesion kinase (FAK; also known as PTK2), AKT (also known as AKT1) and RAC-1, disturbing the FAK-PI3K-RAC-1 signaling pathway. Taken together, our results indicate a critical role of Myo1e in the mechanism of B-cell adhesion and migration.
Collapse
Affiliation(s)
- Daniel A Girón-Pérez
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CP 07360, Mexico City, Mexico
| | - Eduardo Vadillo
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CP 07360, Mexico City, Mexico
| | - Michael Schnoor
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CP 07360, Mexico City, Mexico
| | - Leopoldo Santos-Argumedo
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CP 07360, Mexico City, Mexico
| |
Collapse
|
20
|
Huck K, Sens C, Wuerfel C, Zoeller C, A. Nakchbandi I. The Rho GTPase RAC1 in Osteoblasts Controls Their Function. Int J Mol Sci 2020; 21:ijms21020385. [PMID: 31936261 PMCID: PMC7014472 DOI: 10.3390/ijms21020385] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/23/2019] [Accepted: 12/31/2019] [Indexed: 12/25/2022] Open
Abstract
The regulation of the differentiation of the bone-forming cells, the osteoblasts, is complex. Many signaling pathways converge on the master regulator of osteoblast differentiation Runx2. The role of molecules that integrate several signaling pathways such as the Rho GTPases need to be better understood. We, therefore, asked at which stage Rac1, one of the Rho GTPase, is needed for osteoblast differentiation and whether it is involved in two pathways, the anabolic response to parathyroid hormone and the stimulatory effect of fibronectin isoforms on integrins. Genetic deletion of Rac1 in preosteoblasts using the osterix promoter diminished osteoblast differentiation in vitro. This effect was however similar to the presence of the promoter by itself. We, therefore, applied a Rac1 inhibitor and confirmed a decrease in differentiation. In vivo, Rac1 deletion using the osterix promoter decreased bone mineral density as well as histomorphometric measures of osteoblast function. In contrast, deleting Rac1 in differentiating osteoblasts using the collagen α1(I) promoter had no effects. We then evaluated whether intermittent parathyroid hormone (PTH) was able to affect bone mineral density in the absence of Rac1 in preosteoblasts. The increase in bone mineral density was similar in control animals and in mice in which Rac1 was deleted using the osterix promoter. Furthermore, stimulation of integrin by integrin isoforms was able to enhance osteoblast differentiation, despite the deletion of Rac1. In summary, Rac1 in preosteoblasts is required for normal osteoblast function and bone density, but it is neither needed for PTH-mediated anabolic effects nor for integrin-mediated enhancement of differentiation.
Collapse
Affiliation(s)
- Katrin Huck
- Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany; (K.H.); (C.S.); (C.W.); (C.Z.)
- Max-Planck Institute for Medical Research, 69120 Heidelberg, and for Biochemistry, 82152 Martinsried, Germany
| | - Carla Sens
- Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany; (K.H.); (C.S.); (C.W.); (C.Z.)
- Max-Planck Institute for Medical Research, 69120 Heidelberg, and for Biochemistry, 82152 Martinsried, Germany
| | - Carina Wuerfel
- Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany; (K.H.); (C.S.); (C.W.); (C.Z.)
- Max-Planck Institute for Medical Research, 69120 Heidelberg, and for Biochemistry, 82152 Martinsried, Germany
| | - Caren Zoeller
- Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany; (K.H.); (C.S.); (C.W.); (C.Z.)
- Max-Planck Institute for Medical Research, 69120 Heidelberg, and for Biochemistry, 82152 Martinsried, Germany
| | - Inaam A. Nakchbandi
- Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany; (K.H.); (C.S.); (C.W.); (C.Z.)
- Max-Planck Institute for Medical Research, 69120 Heidelberg, and for Biochemistry, 82152 Martinsried, Germany
- Correspondence: ; Tel.: +49-6221-56-8744; Fax: +49-6221-56-5611
| |
Collapse
|
21
|
Saeed-Zidane M, Tesfaye D, Mohammed Shaker Y, Tholen E, Neuhoff C, Rings F, Held E, Hoelker M, Schellander K, Salilew-Wondim D. Hyaluronic acid and epidermal growth factor improved the bovine embryo quality by regulating the DNA methylation and expression patterns of the focal adhesion pathway. PLoS One 2019; 14:e0223753. [PMID: 31661494 PMCID: PMC6818761 DOI: 10.1371/journal.pone.0223753] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 09/27/2019] [Indexed: 11/19/2022] Open
Abstract
Focal adhesion pathway is one of the key molecular pathways affected by suboptimal culture conditions during embryonic development. The epidermal growth factor (EGF) and hyaluronic acid (HA) are believed to be involved in the focal adhesion pathway function by regulating the adherence of the molecules to the extracellular matrix. However, regulatory and molecular mechanisms through which the EGF and HA could influence the embryo development is not clear. Therefore, this study aimed to investigate the effect of continued or stage specific supplementation of EGF and/or HA on the developmental competence and quality of bovine preimplantation embryos and the subsequent consequences on the expression and DNA methylation patterns of genes involved in the focal adhesion pathway. The results revealed that, the supplementation of EGF or HA from zygote to the blastocysts stage reduced the level of reactive oxygen species and increased hatching rate after thawing. On the other hand, HA decreased the apoptotic nuclei and increased blastocyst compared to EGF supplemented group. Gene expression and DNA methylation analysis in the resulting blastocysts indicated that, combined supplementation of EGF and HA increased the expression of genes involved in focal adhesion pathway while supplementation of EGF, HA or a combination of EGF and HA during the entire preimplantation period changed the DNA methylation patterns of genes involved in focal adhesion pathway. On the other hand, blastocysts developed in culture media supplemented with EGF + HA until the 16-cell stage exhibited higher expression level of genes involved in focal adhesion pathway compared to those supplemented after the 16-cell stage. Conversely, the DNA methylation level of candidate genes was increased in the blastocysts obtained from embryos cultured in media supplemented with EGF + HA after 16-cell stage. In conclusion, supplementation of bovine embryos with EGF and/or HA during the entire preimplantation period or in a stage specific manner altered the DNA methylation and expression patterns of candidate genes involved in the focal adhesion pathway which was in turn associated with the observed embryonic developmental competence and quality.
Collapse
Affiliation(s)
- Mohammed Saeed-Zidane
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
- Animal and Poultry Physiology Department, Animal and Poultry Production Division, Desert Research Center, Mataria, Cairo, Egypt
| | - Dawit Tesfaye
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
- Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Königswinter, Germany
- Center of Integrated Dairy Research, University of Bonn, Bonn, Germany
| | - Yousri Mohammed Shaker
- Animal and Poultry Physiology Department, Animal and Poultry Production Division, Desert Research Center, Mataria, Cairo, Egypt
| | - Ernst Tholen
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
| | - Christiane Neuhoff
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
| | - Franca Rings
- Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Königswinter, Germany
| | - Eva Held
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
- Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Königswinter, Germany
| | - Michael Hoelker
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
- Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Königswinter, Germany
- Center of Integrated Dairy Research, University of Bonn, Bonn, Germany
| | - Karl Schellander
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
- Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Königswinter, Germany
- Center of Integrated Dairy Research, University of Bonn, Bonn, Germany
| | - Dessie Salilew-Wondim
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
22
|
Zhao S, Min P, Liu L, Zhang L, Zhang Y, Wang Y, Zhao X, Ma Y, Xie H, Zhu C, Jiang H, Du J, Gu L. NEDD9 Facilitates Hypoxia-Induced Gastric Cancer Cell Migration via MICAL1 Related Rac1 Activation. Front Pharmacol 2019; 10:291. [PMID: 31019460 PMCID: PMC6458266 DOI: 10.3389/fphar.2019.00291] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/11/2019] [Indexed: 12/28/2022] Open
Abstract
Aims and Hypothesis: NEDD9 is highly expressed in gastric cancer and has a significant involvement in its pathogenesis. However, the mechanism behind hypoxia-promoted cancer cell migration and its regulation because of NEDD9 is still unknown. The aim of this study is to investigate the involvement of NEDD9 in gastric cancer cell migration under hypoxia and explore the underlying potential molecular mechanisms.
Collapse
Affiliation(s)
- Shuo Zhao
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Pengxiang Min
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Lei Liu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Lin Zhang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Yujie Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yueyuan Wang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Xuyang Zhao
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Yadong Ma
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Hui Xie
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China.,Department of Implantology, Changzhou Stomatological Hospital, Changzhou, China
| | - Chenchen Zhu
- School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Haonan Jiang
- School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Jun Du
- Department of Physiology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Luo Gu
- Department of Physiology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
P21 activated kinase signaling in cancer. Semin Cancer Biol 2019; 54:40-49. [DOI: 10.1016/j.semcancer.2018.01.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/04/2018] [Accepted: 01/08/2018] [Indexed: 12/29/2022]
|
24
|
Chong SJF, Lai JXH, Eu JQ, Bellot GL, Pervaiz S. Reactive Oxygen Species and Oncoprotein Signaling-A Dangerous Liaison. Antioxid Redox Signal 2018; 29:1553-1588. [PMID: 29186971 DOI: 10.1089/ars.2017.7441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SIGNIFICANCE There is evidence to implicate reactive oxygen species (ROS) in tumorigenesis and its progression. This has been associated with the interplay between ROS and oncoproteins, resulting in enhanced cellular proliferation and survival. Recent Advances: To date, studies have investigated specific contributions of the crosstalk between ROS and signaling networks in cancer initiation and progression. These investigations have challenged the established dogma of ROS as agents of cell death by demonstrating a secondary function that fuels cell proliferation and survival. Studies have thus identified (onco)proteins (Bcl-2, STAT3/5, RAS, Rac1, and Myc) in manipulating ROS level as well as exploiting an altered redox environment to create a milieu conducive for cancer formation and progression. CRITICAL ISSUES Despite these advances, drug resistance and its association with an altered redox metabolism continue to pose a challenge at the mechanistic and clinical levels. Therefore, identifying specific signatures, altered protein expressions, and modifications as well as protein-protein interplay/function could not only enhance our understanding of the redox networks during cancer initiation and progression but will also provide novel targets for designing specific therapeutic strategies. FUTURE DIRECTIONS Not only a heightened realization is required to unravel various gene/protein networks associated with cancer formation and progression, particularly from the redox standpoint, but there is also a need for developing more sensitive tools for assessing cancer redox metabolism in clinical settings. This review attempts to summarize our current knowledge of the crosstalk between oncoproteins and ROS in promoting cancer cell survival and proliferation and treatment strategies employed against these oncoproteins. Antioxid. Redox Signal.
Collapse
Affiliation(s)
- Stephen Jun Fei Chong
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Jolin Xiao Hui Lai
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Jie Qing Eu
- 2 Cancer Science Institute , Singapore, Singapore
| | - Gregory Lucien Bellot
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,3 Department of Hand and Reconstructive Microsurgery, National University Health System , Singapore, Singapore
| | - Shazib Pervaiz
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,4 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore, Singapore .,5 National University Cancer Institute, National University Health System , Singapore, Singapore .,6 School of Biomedical Sciences, Curtin University , Perth, Australia
| |
Collapse
|
25
|
Bright MD, Clarke PA, Workman P, Davies FE. Oncogenic RAC1 and NRAS drive resistance to endoplasmic reticulum stress through MEK/ERK signalling. Cell Signal 2018; 44:127-137. [PMID: 29329780 PMCID: PMC6562199 DOI: 10.1016/j.cellsig.2018.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/18/2017] [Accepted: 01/07/2018] [Indexed: 12/16/2022]
Abstract
Cancer cells are able to survive under conditions that cause endoplasmic reticulum stress (ER-stress), and can adapt to this stress by upregulating cell-survival signalling pathways and down-regulating apoptotic pathways. The cellular response to ER-stress is controlled by the unfolded protein response (UPR). Small Rho family GTPases are linked to many cell responses including cell growth and apoptosis. In this study, we investigate the function of small GTPases in cell survival under ER-stress. Using siRNA screening we identify that RAC1 promotes cell survival under ER-stress in cells with an oncogenic N92I RAC1 mutation. We uncover a novel connection between the UPR and N92I RAC1, whereby RAC1 attenuates phosphorylation of EIF2S1 under ER-stress and drives over-expression of ATF4 in basal conditions. Interestingly, the UPR connection does not drive resistance to ER-stress, as knockdown of ATF4 did not affect this. We further investigate cancer-associated kinase signalling pathways and show that RAC1 knockdown reduces the activity of AKT and ERK, and using a panel of clinically important kinase inhibitors, we uncover a role for MEK/ERK, but not AKT, in cell viability under ER-stress. A known major activator of ERK phosphorylation in cancer is oncogenic NRAS and we show that knockdown of NRAS in cells, which bear a Q61 NRAS mutation, sensitises to ER-stress. These findings highlight a novel mechanism for resistance to ER-stress through oncogenic activation of MEK/ERK signalling by small GTPases.
Collapse
Affiliation(s)
- Michael D Bright
- The Institute of Cancer Research, 15 Cotswold Road, Sutton SM2 5NG, UK.
| | - Paul A Clarke
- The Institute of Cancer Research, 15 Cotswold Road, Sutton SM2 5NG, UK
| | - Paul Workman
- The Institute of Cancer Research, 15 Cotswold Road, Sutton SM2 5NG, UK
| | - Faith E Davies
- The Institute of Cancer Research, 15 Cotswold Road, Sutton SM2 5NG, UK
| |
Collapse
|
26
|
Tebar F, Enrich C, Rentero C, Grewal T. GTPases Rac1 and Ras Signaling from Endosomes. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2018; 57:65-105. [PMID: 30097772 DOI: 10.1007/978-3-319-96704-2_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The endocytic compartment is not only the functional continuity of the plasma membrane but consists of a diverse collection of intracellular heterogeneous complex structures that transport, amplify, sustain, and/or sort signaling molecules. Over the years, it has become evident that early, late, and recycling endosomes represent an interconnected vesicular-tubular network able to form signaling platforms that dynamically and efficiently translate extracellular signals into biological outcome. Cell activation, differentiation, migration, death, and survival are some of the endpoints of endosomal signaling. Hence, to understand the role of the endosomal system in signal transduction in space and time, it is therefore necessary to dissect and identify the plethora of decoders that are operational in the different steps along the endocytic pathway. In this chapter, we focus on the regulation of spatiotemporal signaling in cells, considering endosomes as central platforms, in which several small GTPases proteins of the Ras superfamily, in particular Ras and Rac1, actively participate to control cellular processes like proliferation and cell mobility.
Collapse
Affiliation(s)
- Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain.
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
27
|
Thillai K, Lam H, Sarker D, Wells CM. Deciphering the link between PI3K and PAK: An opportunity to target key pathways in pancreatic cancer? Oncotarget 2017; 8:14173-14191. [PMID: 27845911 PMCID: PMC5355171 DOI: 10.18632/oncotarget.13309] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/27/2016] [Indexed: 02/07/2023] Open
Abstract
The development of personalised therapies has ushered in a new and exciting era of cancer treatment for a variety of solid malignancies. Yet pancreatic ductal adenocarcinoma (PDAC) has failed to benefit from this paradigm shift, remaining notoriously refractory to targeted therapies. Chemotherapy is the cornerstone of management but can offer only modest survival benefits of a few months with 5-year survival rates rarely exceeding 3%. Despite these disappointing statistics, significant strides have been made towards understanding the complex biology of pancreatic cancer, with deep genomic sequencing identifying novel genetic aberrations and key signalling pathways. The PI3K-PDK1-AKT pathway has received great attention due to its prominence in carcinogenesis. However, efforts to target several components of this network have resulted in only a handful of drugs demonstrating any survival benefit in solid tumors; despite promising pre-clinical results. p-21 activated kinase 4 (PAK4) is a gene that is recurrently amplified or overexpressed in PDAC and both PAK4 and related family member PAK1, have been linked to aberrant RAS activity, a common feature in pancreatic cancer. As regulators of PI3K, PAKs have been highlighted as a potential prognostic marker and therapeutic target. In this review, we discuss the biology of pancreatic cancer and the close interaction between PAKs and the PI3K pathway. We also suggest proposals for future research that may see the development of effective targeted therapies that could finally improve outcomes for this disease.
Collapse
Affiliation(s)
- Kiruthikah Thillai
- Division of Cancer Studies, King's College London, London, United Kingdom.,Department of Medical Oncology, Guy's and St Thomas' NHS Trust, London, United Kingdom
| | - Hoyin Lam
- Division of Cancer Studies, King's College London, London, United Kingdom
| | - Debashis Sarker
- Division of Cancer Studies, King's College London, London, United Kingdom.,Department of Medical Oncology, Guy's and St Thomas' NHS Trust, London, United Kingdom
| | - Claire M Wells
- Division of Cancer Studies, King's College London, London, United Kingdom
| |
Collapse
|
28
|
Setyawati MI, Leong DT. Mesoporous Silica Nanoparticles as an Antitumoral-Angiogenesis Strategy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:6690-6703. [PMID: 28150492 DOI: 10.1021/acsami.6b12524] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Tumors depend heavily on angiogenesis for nutrient derivation and their subsequent metastasis. Targeting tumor induced angiogenesis per se can address both tumor growth and progression simultaneously. Here, we show that we could elegantly restrict the endothelial cells angiogenic behavior through digital size control of mesoporous silica nanoparticle (MSN). This antiangiogenesis effect was derived from the particle size dependent uptake and production of intracellular reactive oxygen species (ROS) that directly interfered with p53 tumor suppressor pathway. The resulting signaling cascade wrestled back the tumoral control of endothelial cells' migration, invasion, and proliferation. Overall, a mere control over the size of a highly oxidative reactive surfaced nanoparticle could provide an alternative strategy to curb the tumor induced angiogenesis process in a conventional drug-free manner.
Collapse
Affiliation(s)
- Magdiel I Setyawati
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering Drive 4, Singapore 117585, Singapore
| | - David T Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
29
|
Galadari S, Rahman A, Pallichankandy S, Thayyullathil F. Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic Biol Med 2017; 104:144-164. [PMID: 28088622 DOI: 10.1016/j.freeradbiomed.2017.01.004] [Citation(s) in RCA: 657] [Impact Index Per Article: 82.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/16/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS), a group of highly reactive ions and molecules, are increasingly being appreciated as powerful signaling molecules involved in the regulation of a variety of biological processes. Indeed, their role is continuously being delineated in a variety of pathophysiological conditions. For instance, cancer cells are shown to have increased ROS levels in comparison to their normal counterparts. This is partly due to an enhanced metabolism and mitochondrial dysfunction in cancer cells. The escalated ROS generation in cancer cells contributes to the biochemical and molecular changes necessary for the tumor initiation, promotion and progression, as well as, tumor resistance to chemotherapy. Therefore, increased ROS in cancer cells may provide a unique opportunity to eliminate cancer cells via elevating ROS to highly toxic levels intracellularly, thereby, activating various ROS-induced cell death pathways, or inhibiting cancer cell resistance to chemotherapy. Such results can be achieved by using agents that either increase ROS generation, or inhibit antioxidant defense, or even a combination of both. In fact, a large variety of anticancer drugs, and some of those currently under clinical trials, effectively kill cancer cells and overcome drug resistance via enhancing ROS generation and/or impeding the antioxidant defense mechanism. This review focuses on our current understanding of the tumor promoting (tumorigenesis, angiogenesis, invasion and metastasis, and chemoresistance) and the tumor suppressive (apoptosis, autophagy, and necroptosis) functions of ROS, and highlights the potential mechanism(s) involved. It also sheds light on a very novel and an actively growing field of ROS-dependent cell death mechanism referred to as ferroptosis.
Collapse
Affiliation(s)
- Sehamuddin Galadari
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE; Al Jalila Foundation Research Centre, P.O. Box 300100, Dubai, UAE.
| | - Anees Rahman
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE.
| | - Siraj Pallichankandy
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE.
| | - Faisal Thayyullathil
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE.
| |
Collapse
|
30
|
Gan J, Ke X, Jiang J, Dong H, Yao Z, Lin Y, Lin W, Wu X, Yan S, Zhuang Y, Chu WK, Cai R, Zhang X, Cheung HS, Block NL, Pang CP, Schally AV, Zhang H. Growth hormone-releasing hormone receptor antagonists inhibit human gastric cancer through downregulation of PAK1-STAT3/NF-κB signaling. Proc Natl Acad Sci U S A 2016; 113:14745-14750. [PMID: 27930339 PMCID: PMC5187693 DOI: 10.1073/pnas.1618582114] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer (GC) ranks as the fourth most frequent in incidence and second in mortality among all cancers worldwide. The development of effective treatment approaches is an urgent requirement. Growth hormone-releasing hormone (GHRH) and GHRH receptor (GHRH-R) have been found to be present in a variety of tumoral tissues and cell lines. Therefore the inhibition of GHRH-R was proposed as a promising approach for the treatment of these cancers. However, little is known about GHRH-R and the relevant therapy in human GC. By survival analyses of multiple cohorts of GC patients, we identified that increased GHRH-R in tumor specimens correlates with poor survival and is an independent predictor of patient prognosis. We next showed that MIA-602, a highly potent GHRH-R antagonist, effectively inhibited GC growth in cultured cells. Further, this inhibitory effect was verified in multiple models of human GC cell lines xenografted into nude mice. Mechanistically, GHRH-R antagonists target GHRH-R and down-regulate the p21-activated kinase 1 (PAK1)-mediated signal transducer and activator of transcription 3 (STAT3)/nuclear factor-κB (NF-κB) inflammatory pathway. Overall, our studies establish GHRH-R as a potential molecular target in human GC and suggest treatment with GHRH-R antagonist as a promising therapeutic intervention for this cancer.
Collapse
Affiliation(s)
- Jinfeng Gan
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Xiurong Ke
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Jiali Jiang
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Hongmei Dong
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Zhimeng Yao
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Yusheng Lin
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Wan Lin
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Xiao Wu
- Tumor Tissue Bank, Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, China
| | - Shumei Yan
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yixuan Zhuang
- Tumor Tissue Bank, Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, China
| | - Wai Kit Chu
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Renzhi Cai
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL 33125
- South Florida Veterans Affairs Foundation for Research and Education, Miami, FL 33125
- Division of Hematology and Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136
- Division of Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Xianyang Zhang
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL 33125
- South Florida Veterans Affairs Foundation for Research and Education, Miami, FL 33125
- Division of Hematology and Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136
- Division of Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Herman S Cheung
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL 33125
- South Florida Veterans Affairs Foundation for Research and Education, Miami, FL 33125
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146
| | - Norman L Block
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Chi Pui Pang
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Joint Shantou International Eye Center, Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
| | - Andrew V Schally
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL 33125;
- South Florida Veterans Affairs Foundation for Research and Education, Miami, FL 33125
- Division of Hematology and Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136
- Division of Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Hao Zhang
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China;
- Tumor Tissue Bank, Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Biotherapy, Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
31
|
Deng W, Wang Y, Gu L, Duan B, Cui J, Zhang Y, Chen Y, Sun S, Dong J, Du J. MICAL1 controls cell invasive phenotype via regulating oxidative stress in breast cancer cells. BMC Cancer 2016; 16:489. [PMID: 27430308 PMCID: PMC4950114 DOI: 10.1186/s12885-016-2553-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/13/2016] [Indexed: 11/18/2022] Open
Abstract
Background Molecules Interacting with CasL (MICAL1), a multidomain flavoprotein monoxygenase, is strongly involved in the mechanisms that promote cancer cell proliferation and survival. Activation of MICAL1 causes an up-regulation of reactive oxygen species (ROS) in HeLa cells. ROS can function as a signaling molecule that modulates protein phosphorylation, leading to malignant phenotypes of cancer cells such as invasion and metastasis. Herein, we tested whether MICAL1 could control cell migration and invasion through regulating ROS in breast cancer cell lines. Methods The effects of depletion/overexperssion of MICAL1 on cell invasion rate were measured by matrigel-based transwell assays. The contents of ROS in breast cancer cells were evaluated by CM2-DCFHDA staining and enhanced lucigenin chemiluminescence method. RAB35 activity was assessed by pulldown assay. The relationship of RAB35 and MICAL1 was evaluated by immunofluorescence, coimmunoprecipitation, immunoblotting and co-transfection techniques. Immunoblotting assays were also used to analyze Akt phosphorylation level. Results In this study, we found that depletion of MICAL1 reduced cell migration and invasion as well as ROS generation. Phosphorylation of Akt was also attenuated by MICAL1 depletion. Likewise, the over-expression of MICAL1 augmented the generation of ROS, increased Akt phosphorylation, and favored invasive phenotype of breast cancer cells. Moreover, we investigated the effect of EGF signaling on MICAL1 function. We demonstrated that EGF increased RAB35 activation and activated form of RAB35 could bind to MICAL1. Silencing of RAB35 repressed ROS generation, prevented Akt phosphorylation and inhibited cell invasion in response to EGF. Conclusions Taken together, our results provide evidence that MICAL1 plays an essential role in the activation of ROS/Akt signaling and cell invasive phenotype and identify a novel link between RAB35 and MICAL1 in regulating breast cancer cell invasion. These findings may provide a basis for designing future therapeutic strategy for blocking breast cancer metastasis.
Collapse
Affiliation(s)
- Wenjie Deng
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yueyuan Wang
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Luo Gu
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Biao Duan
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Jie Cui
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Yujie Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Yan Chen
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Shixiu Sun
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Jing Dong
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Jun Du
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
32
|
Wang C, Pan Z, Hou H, Li D, Mo Y, Mo C, Li J. The Enhancement of Radiation Sensitivity in Nasopharyngeal Carcinoma Cells via Activation of the Rac1/NADPH Signaling Pathway. Radiat Res 2016; 185:638-46. [PMID: 27243897 DOI: 10.1667/rr14331.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We reported in an earlier study that using mass spectrometry and bioinformatic analysis demonstrated Rac1 protein might be mostly mitochondrial target in the radiosensitization process of nasopharyngeal carcinoma CNE-1 cells. The goal of our current study was to reveal the relationship between Rac1/NADPH pathway and radiosensitization in CNE-1 cells using Rac1 activator, phorbol 12-myristate 13-acetate (PMA) and Rac1 inhibitor NSC23766. The Rac1-GTP expression was determined using a pulldown assay, the Rac1 location using a immunofluorescence with a laser scanning confocal microscope, the NADPH oxidase activity with NBT assay and the reactive oxygen species with DCFH-DA probe. The apoptosis rate was analyzed by flow cytometry, and the expressions of p67(phox) and NFκB-p105/p50 were analyzed by Western blot. After treatment with PMA and 2 Gy radiation (compared to the control), Rac1-GTP was activated and translocated to the cell membrane. NADPH oxidase activity, reactive oxygen species of intracellular concentration and the apoptosis rate increased significantly. The expression of p67(phox) and NFκB-p50 protein also increased. However, in the cells treated with NSC23766 alone or NSC23766 combined with 2 Gy irradiation, the results were just the opposite. Overall, these results indicate that the Rac1 protein may be the key target involved in the radiosensitization of nasopharyngeal carcinoma cells. The activated Rac1/NADPH pathway combined with radiation can increase the radiosensitivity of nasopharyngeal carcinoma cells, and the Rac1/NADPH pathway may be the signaling pathway involved in the radiosensitization process.
Collapse
Affiliation(s)
- Chunmiao Wang
- a College of Pharmacy, Guangxi Medical University, Nanning 530021, China; and
| | - Zhiyu Pan
- a College of Pharmacy, Guangxi Medical University, Nanning 530021, China; and
| | - Huaxin Hou
- a College of Pharmacy, Guangxi Medical University, Nanning 530021, China; and
| | - Danrong Li
- b Department of Basic Research, Guangxi Institute for Cancer Research, Nanning, 530021, China
| | - Yuanyuan Mo
- a College of Pharmacy, Guangxi Medical University, Nanning 530021, China; and
| | - Chunyan Mo
- a College of Pharmacy, Guangxi Medical University, Nanning 530021, China; and
| | - Jing Li
- a College of Pharmacy, Guangxi Medical University, Nanning 530021, China; and
| |
Collapse
|
33
|
Zhang C, Barrios MP, Alani RM, Cabodi M, Wong JY. A microfluidic Transwell to study chemotaxis. Exp Cell Res 2016; 342:159-65. [PMID: 26988422 DOI: 10.1016/j.yexcr.2016.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/07/2016] [Accepted: 03/09/2016] [Indexed: 01/02/2023]
Abstract
Chemotaxis is typically studied in vitro using commercially available products such as the Transwell® in which cells migrate through a porous membrane in response to one or more clearly defined chemotactic stimuli. Despite its widespread use, the Transwell assay suffers from being largely an endpoint assay, with built-in errors due to inconsistent pore size and human sampling. In this study, we report a microfluidic chemotactic chip that provides real-time monitoring, consistent paths for cell migration, and easy on-chip staining for quantifying migration. To compare its performance with that of a traditional Transwell chamber, we investigate the chemotactic response of MDA-MB-231 1833 metastatic breast cancer cells to epidermal growth factor (EGF). The results show that while both platforms were able to detect a chemotactic response, we observed a dose-dependent response of breast cancer cells towards EGF with low non-specific migration using the microfluidic platform, whereas we observed a dose-independent response of breast cancer cells towards EGF with high levels of non-specific migration using the commercially available Transwell.The microfluidic platform also allowed EGF-dependent chemotactic responses to be observed 24h, a substantially longer window than seen with the Transwell. Thus the performance of our microfluidic platform revealed phenomena that were not detected in the Transwell under the conditions tested.
Collapse
Affiliation(s)
- Chentian Zhang
- Department of Biomedical Engineering, Boston University, MA 02215, USA
| | - Maria P Barrios
- Department of Biomedical Engineering, Boston University, MA 02215, USA
| | - Rhoda M Alani
- Department of Dermatology, Boston University School of Medicine, MA 02118, USA
| | - Mario Cabodi
- Department of Biomedical Engineering, Boston University, MA 02215, USA; Center for Nanoscience and Nanobiotechnology, Boston University, Boston, MA 02215, USA
| | - Joyce Y Wong
- Department of Biomedical Engineering, Boston University, MA 02215, USA; Center for Nanoscience and Nanobiotechnology, Boston University, Boston, MA 02215, USA; Division of Materials Science & Engineering, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
34
|
Shi H, Cheng Y, Ye J, Cai P, Zhang J, Li R, Yang Y, Wang Z, Zhang H, Lin C, Lu X, Jiang L, Hu A, Zhu X, Zeng Q, Fu X, Li X, Xiao J. bFGF Promotes the Migration of Human Dermal Fibroblasts under Diabetic Conditions through Reactive Oxygen Species Production via the PI3K/Akt-Rac1- JNK Pathways. Int J Biol Sci 2015; 11:845-59. [PMID: 26078726 PMCID: PMC4466465 DOI: 10.7150/ijbs.11921] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/13/2015] [Indexed: 12/26/2022] Open
Abstract
Fibroblasts play a pivotal role in the process of cutaneous wound repair, whereas their migratory ability under diabetic conditions is markedly reduced. In this study, we investigated the effect of basic fibroblast growth factor (bFGF) on human dermal fibroblast migration in a high-glucose environment. bFGF significantly increased dermal fibroblast migration by increasing the percentage of fibroblasts with a high polarity index and reorganizing F-actin. A significant increase in intracellular reactive oxygen species (ROS) was observed in dermal fibroblasts under diabetic conditions following bFGF treatment. The blockage of bFGF-induced ROS production by either the ROS scavenger N-acetyl-L-cysteine (NAC) or the NADPH oxidase inhibitor diphenylene iodonium chloride (DPI) almost completely neutralized the increased migration rate of dermal fibroblasts promoted by bFGF. Akt, Rac1 and JNK were rapidly activated by bFGF in dermal fibroblasts, and bFGF-induced ROS production and promoted dermal fibroblast migration were significantly attenuated when suppressed respectively. In addition, bFGF-induced increase in ROS production was indispensable for the activation of focal adhesion kinase (FAK) and paxillin. Therefore, our data suggested that bFGF promotes the migration of human dermal fibroblasts under diabetic conditions through increased ROS production via the PI3K/Akt-Rac1-JNK pathways.
Collapse
Affiliation(s)
- Hongxue Shi
- 1. School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035 China
| | - Yi Cheng
- 1. School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035 China
| | - Jingjing Ye
- 1. School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035 China
| | - Pingtao Cai
- 1. School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035 China
| | - Jinjing Zhang
- 1. School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035 China
| | - Rui Li
- 1. School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035 China
| | - Ying Yang
- 1. School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035 China
| | - Zhouguang Wang
- 1. School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035 China
| | - Hongyu Zhang
- 1. School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035 China
| | - Cai Lin
- 2. The First Affiliate Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xianghong Lu
- 3. Translation Medicine Research Center, Lishui People's Hospital, Wenzhou Medical University, Lishui, 323000, China
| | - Liping Jiang
- 1. School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035 China
| | - Aiping Hu
- 1. School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035 China
| | - Xinbo Zhu
- 1. School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035 China
| | - Qiqiang Zeng
- 2. The First Affiliate Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaobing Fu
- 4. Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, PR China
| | - Xiaokun Li
- 1. School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035 China
| | - Jian Xiao
- 1. School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035 China
| |
Collapse
|
35
|
Xu X, Xie G, Hu Y, Li X, Huang P, Zhang H. Neural differentiation of mesenchymal stem cells influences their chemotactic responses to stromal cell-derived factor-1α. Cell Mol Neurobiol 2014; 34:1047-58. [PMID: 25038638 PMCID: PMC11488909 DOI: 10.1007/s10571-014-0082-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 07/01/2014] [Indexed: 01/05/2023]
Abstract
Mesenchymal stem cells (MSCs) are proposed as a promising source for cell-based therapies in neural disease. Although increasing numbers of studies have been devoted to the delineation of factors involved in the migration of MSCs, the relationship between the chemotactic response and the differentiation status of these cells is still unclear. In the present study, we demonstrated that MSCs in varying neural differentiation states display various chemotactic responses to stromal cell-derived factor-1α (SDF-1α). The chemotactic responses of MSCs under different differentiation stages in response to SDF-1α were analyzed by Boyden chamber, and the results showed that cells of undifferentiation, 24-h preinduction, 5-h induction, and 18-h maintenance states displayed a stronger chemotactic response to SDF-1α, while 48-h maintenance did not. Further, we found that the phosphorylation levels of PI3K/Akt, ERK1/2, SAPK/JNK, and p38MAPK are closely related to the differentiation states of MSCs subjected to SDF-1α, and finally, inhibition of SAPK/JNK signaling significantly attenuates SDF-1α-stimulated transfilter migration of MSCs of undifferentiation, 24-h preinduction, 18-h maintenance, and 48-h maintenance, but not MSCs of 5-h induction. Meanwhile, interference with PI3K/Akt, p38MAPK, or ERK1/2 signaling prevents only cells at certain differentiation state from migrating in response to SDF-1α. Collectively, these results demonstrate that MSCs in varying neural differentiation states have different migratory capacities, thereby illuminating optimization of the therapeutic potential of MSCs to be used for neural regeneration after injury.
Collapse
Affiliation(s)
- Xiaojing Xu
- Jiangsu Key Laboratory of Stem Cell Research, Department of Cell Biology, Medical College of Soochow University, Ren Ai Road 199, Suzhou Industrial Park, Suzhou, 215123 China
| | - Guiqin Xie
- Jiangsu Key Laboratory of Stem Cell Research, Department of Cell Biology, Medical College of Soochow University, Ren Ai Road 199, Suzhou Industrial Park, Suzhou, 215123 China
| | - Ya’nan Hu
- Jiangsu Key Laboratory of Stem Cell Research, Department of Cell Biology, Medical College of Soochow University, Ren Ai Road 199, Suzhou Industrial Park, Suzhou, 215123 China
| | - Xianyang Li
- Jiangsu Key Laboratory of Stem Cell Research, Department of Cell Biology, Medical College of Soochow University, Ren Ai Road 199, Suzhou Industrial Park, Suzhou, 215123 China
| | - Ping Huang
- Jiangsu Key Laboratory of Stem Cell Research, Department of Cell Biology, Medical College of Soochow University, Ren Ai Road 199, Suzhou Industrial Park, Suzhou, 215123 China
| | - Huanxiang Zhang
- Jiangsu Key Laboratory of Stem Cell Research, Department of Cell Biology, Medical College of Soochow University, Ren Ai Road 199, Suzhou Industrial Park, Suzhou, 215123 China
| |
Collapse
|
36
|
Yang L, Zheng J, Xu R, Zhang Y, Gu L, Dong J, Zhu Y, Zhou R, Zheng L, Zhang X, Du J. Melatonin suppresses hypoxia-induced migration of HUVECs via inhibition of ERK/Rac1 activation. Int J Mol Sci 2014; 15:14102-21. [PMID: 25123138 PMCID: PMC4159841 DOI: 10.3390/ijms150814102] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 07/31/2014] [Accepted: 08/07/2014] [Indexed: 01/12/2023] Open
Abstract
Melatonin, a naturally-occurring hormone, possesses antioxidant properties and ameliorates vascular endothelial dysfunction. In this study, we evaluate the impact of melatonin on the migratory capability of human umbilical vein endothelial cells (HUVECs) to hypoxia and further investigate whether ERK/Rac1 signaling is involved in this process. Here, we found that melatonin inhibited hypoxia-stimulated hypoxia-inducible factor-1α (HIF-1α) expression and cell migration in a dose-dependent manner. Mechanistically, melatonin inhibited Rac1 activation and suppressed the co-localized Rac1 and F-actin on the membrane of HUVECs under hypoxic condition. In addition, the blockade of Rac1 activation with ectopic expression of an inactive mutant form of Rac1-T17N suppressed HIF-1α expression and cell migration in response to hypoxia, as well, but constitutive activation of Rac1 mutant Rac1-V12 restored HIF-1α expression, preventing the inhibition of melatonin on cell migration. Furthermore, the anti-Rac1 effect of melatonin in HUVECs appeared to be associated with its inhibition of ERK phosphorylation, but not that of the PI3k/Akt signaling pathway. Taken together, our work indicates that melatonin exerts an anti-migratory effect on hypoxic HUVECs by blocking ERK/Rac1 activation and subsequent HIF-1α upregulation.
Collapse
Affiliation(s)
- Ling Yang
- Department of Cardiology, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China.
| | - Jianchao Zheng
- Department of Physiology, Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Rui Xu
- Department of Physiology, Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Yujie Zhang
- Department of Physiology, Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Luo Gu
- Department of Physiology, Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Jing Dong
- Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Yichao Zhu
- Department of Physiology, Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Ruijue Zhou
- Department of Cardiology, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China.
| | - Lu Zheng
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China.
| | - Xiaoying Zhang
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China.
| | - Jun Du
- Department of Physiology, Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| |
Collapse
|
37
|
Attenuation of malignant phenotypes of breast cancer cells through eIF2α-mediated downregulation of Rac1 signaling. Int J Oncol 2014; 44:1980-8. [DOI: 10.3892/ijo.2014.2366] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 02/07/2014] [Indexed: 11/05/2022] Open
|
38
|
Abstract
p21-Activated protein kinases (PAKs) are centrally involved in a plethora of cellular processes and functions. Their function as effectors of small GTPases Rac1 and Cdc42 has been extensively studied during the past two decades, particularly in the realms of cell proliferation, apoptosis, and hence tumorigenesis, as well as cytoskeletal remodeling and related cellular events in health and disease. In recent years, a large number of studies have shed light onto the fundamental role of group I PAKs, most notably PAK1, in metabolic homeostasis. In skeletal muscle, PAK1 was shown to mediate the function of insulin on stimulating GLUT4 translocation and glucose uptake, while in pancreatic β-cells, PAK1 participates in insulin granule localization and vesicle release. Furthermore, we demonstrated that PAK1 mediates the cross talk between insulin and Wnt/β-catenin signaling pathways and hence regulates gut proglucagon gene expression and the production of the incretin hormone glucagon-like peptide-1 (GLP-1). The utilization of chemical inhibitors of PAK and the characterization of Pak1(-/-) mice enabled us to gain mechanistic insights as well as to assess the overall contribution of PAKs in metabolic homeostasis. This review summarizes our current understanding of PAKs, with an emphasis on the emerging roles of PAK1 in glucose homeostasis.
Collapse
|
39
|
Avilova E, Andreeva O, Shatskaya V, Krasilnikov M. The role of protein kinase PAK1 in the regulation of estrogen-independent growth of breast cancer. ACTA ACUST UNITED AC 2014; 60:322-31. [DOI: 10.18097/pbmc20146003322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The main goal of this work was to study the intracellular signaling pathways responsible for the development of hormone resistance and maintaining the autonomous growth of breast cancer cells. In particular, the role of PAK1 (p21-activated kinase 1), the key mitogenic signaling protein, in the development of cell resistance to estrogens was analyzed. In vitro studies were performed on cultured breast cancer cell lines: estrogen-dependent estrogen receptor (ER)-positive MCF-7 cells and estrogen-resistant ER-negative HBL-100 cells. We found that the resistant HBL-100 cells were characterized by a higher level of PAK1 and demonstrated PAK1 involvement in the maintaining of estrogen-independent cell growth. We have also shown PAK1 ability to up-regulate Snail1, one of the epithelial-mesenchymal transition proteins, and obtained experimental evidence for Snail1 importance in the regulation of cell proliferation. In general, the results obtained in this study demonstrate involvement of PAK1 and Snail1 in the formation of estrogen-independent phenotype of breast cancer cells showing the potential role of both proteins as markers of hormone resistance of breast tumors.
Collapse
|