1
|
Spanoghe J, Van Acker A, Carrette E, Vonck K, Boon P, Raedt R. Effects of intracerebroventricular administration of dimethyl sulfoxide on hippocampal electrophysiology in mice. IBRO Neurosci Rep 2025; 18:378-383. [PMID: 40104555 PMCID: PMC11914801 DOI: 10.1016/j.ibneur.2025.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/27/2025] [Indexed: 03/20/2025] Open
Abstract
Dimethyl sulfoxide (DMSO) is a commonly used solvent in life sciences due to its excellent ability to dissolve compounds with poor water-solubility. Depending on the applied dose, the variety of DMSO's physiological and biological effects may compromise its suitability as a vehicle molecule. Even low concentrations of DMSO are known to affect neuronal excitability in vitro. As in vivo effects have not been studied extensively, this exploratory study investigated the effects of intracerebroventricular (ICV) administration of different DMSO concentrations on hippocampal electrophysiology in mice. Acute recordings of hippocampal evoked potentials (EPs) and electroencephalography (EEG) were performed before and after ICV injection of a 5 µl DMSO solution, with concentrations ranging from 2.5 % to 100 % DMSO. Solutions containing up to 50 % DMSO had no acute effects on hippocampal electrophysiology. Administration of 75 % and 100 % DMSO was found to alter evoked responses, indicating increased excitability. Our results indicate that DMSO can be used as a vehicle in volumes of 5 µl containing concentrations of up to 50 % without affecting acute hippocampal electrophysiological studies in mice. Higher concentrations should be avoided as these affect neuronal excitability.
Collapse
Affiliation(s)
- Jeroen Spanoghe
- 4Brain, Department of Head and Skin, Ghent University, Corneel Heymanslaan 10, Ghent 9000, Belgium
| | - Arne Van Acker
- 4Brain, Department of Head and Skin, Ghent University, Corneel Heymanslaan 10, Ghent 9000, Belgium
| | - Evelien Carrette
- 4Brain, Department of Head and Skin, Ghent University, Corneel Heymanslaan 10, Ghent 9000, Belgium
| | - Kristl Vonck
- 4Brain, Department of Head and Skin, Ghent University, Corneel Heymanslaan 10, Ghent 9000, Belgium
| | - Paul Boon
- 4Brain, Department of Head and Skin, Ghent University, Corneel Heymanslaan 10, Ghent 9000, Belgium
| | - Robrecht Raedt
- 4Brain, Department of Head and Skin, Ghent University, Corneel Heymanslaan 10, Ghent 9000, Belgium
| |
Collapse
|
2
|
Ahmadi A, Nozhat Z, Shadboorestan A, Cheki M. Radioprotective agents against the ionizing radiation-induced hematopoietic stem and progenitor cell injury; Foundation review. Crit Rev Oncol Hematol 2025; 211:104713. [PMID: 40187710 DOI: 10.1016/j.critrevonc.2025.104713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/24/2025] [Accepted: 03/29/2025] [Indexed: 04/07/2025] Open
Abstract
Humans encounter ionizing radiation (IR) through various ways, such as medical applications, agricultural industry, and potential exposure from radioactive materials or acts of radiological terrorism. Hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) are crucial for maintaining the balance of blood cell lineages. The hematopoietic system, recognized as the most sensitive human tissue, is severely affected by IR, which can result in bone marrow (BM) failure, increased susceptibility to infections, hemorrhagic events, or anemia in affected individuals. Therefore, it is essential to develop radioprotective compounds to protect HSCs/HPCs. This review highlights several radioprotective agents that protect the hematopoietic system from IR-related damage to HSCs and HPCs and provides an overview of the mechanisms involved in damage and protection.
Collapse
Affiliation(s)
- Amirhossein Ahmadi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Zahra Nozhat
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Hangzhou 310018, China
| | - Amir Shadboorestan
- Depertment of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Cheki
- Department of Medical Imaging and Radiation Sciences, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
3
|
Stancioiu FA, Bogdan R, Ivanescu B, Dumitrescu R. Autologous cord blood vs individualized supplements in autistic spectrum disorder: CORDUS study results. World J Clin Pediatr 2025; 14:96643. [DOI: 10.5409/wjcp.v14.i1.96643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/03/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Cellular therapies have started an important new therapeutic direction in autistic spectrum disorder (ASD), and the ample diversity of ASD pathophysiology and the different types of cell therapies prompt an equally ample effort to employ clinical studies for studying the ASD causes and cell therapies. Stem cells have yielded so far mixed results in clinical trials, and at patient level the results varied from impressive to no improvement. In this context we have administered autologous cord blood (ACB) and a non-placebo, material intervention represented by an individualized combination of supplements (ICS) to ASD children.
AIM To compare the efficacy of ACB vs ICS and find markers correlated with the child's progress in order to better predict ACB efficacy.
METHODS CORDUS clinical study is a crossover study in which both oral ICS and intravenous ACB were sequentially administered to 56 children; ACB was infused as an inpatient procedure. Treatment efficacy was evaluated pre-treatment and post-treatment at 6 months by an independent psychotherapist with Autism Treatment Evaluation Checklist, Quantitative Checklist for Autism in Toddlers and a 16-item comparative table score, after interviewing the children’s parents and therapists. Before and after each intervention participants had a set of blood tests including inflammatory, metabolic and oxidative markers, and the neuronal specific enolase.
RESULTS No serious adverse reactions were noted during and after cord blood or supplement administration. ACB improved evaluation scores in 78% of children with age 3–7-years (n = 28), but was much less effective in kids older than 8 years or with body weight of more than 35 kg (n = 28; only 11% of children improved scores). ICS yielded better results than ACB in 5 cases out of 28, while in 23 kids ACB brought more improvement than ICS (P < 0.05); high initial levels of inflammation and ferritin were associated with no improvement. Ample individual differences were noted in children's progress, and statistically significant improvements were seen after ACB on areas such as verbalization and social interaction, but not on irritability or aggressive behavior.
CONCLUSION ACB has superior efficacy to ICS in ASD; high inflammation, ferritin, age and body weight predict less improvement; more clinical studies are needed for studying ACB efficacy in ASD.
Collapse
Affiliation(s)
- Felician A Stancioiu
- Department of Clinical Research, Bio-Forum Foundation, Bucharest 040245, Bucuresti, Romania
| | - Raluca Bogdan
- Department of Pediatrics, Medicover Hospital Bucharest, Bucharest 013982, Bucuresti, Romania
| | | | - Radu Dumitrescu
- Department of Anesthesiology and Intensive Therapy, Medicover Hospital, Bucharest 013982, Bucuresti, Romania
| |
Collapse
|
4
|
Xiao T, Yu X, Tao J, Tan J, Zhao Z, Zhang C, Duan X. Mechanism of P-Hydroxy Benzyl Alcohol Against Cerebral Ischemia Based on Metabonomics Analysis. Int J Mol Sci 2025; 26:317. [PMID: 39796170 PMCID: PMC11719616 DOI: 10.3390/ijms26010317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025] Open
Abstract
Stroke is the leading cause of death and disability worldwide, with ischemic stroke accounting for the majority of these. HBA is the active ingredient in Gastrodia elata and has potential therapeutic effects on central nervous system diseases. In this study, the cell model of cerebral ischemia was replicated by the culture method of oxygen-glucose deprivation/reoxygenation, and the rat model of vascular dementia was established by the two-vessel occlusion method. Metabolomics technology was employed to analyze the metabolic changes in ischemic neurons induced by HBA, and potential therapeutic targets were verified. The protective effects of HBA on ischemic neurons and their mitochondria were examined through multiple indicators, and the related mechanisms were verified. HBA can improve post-ischemic cognitive impairment in rats, and its mechanism is related to the regulation of the choline-activated phospholipase D2/Sirtuin 1/peroxisome proliferator-activated receptor-γ coactivator 1α pathway to improve mitochondrial function and reduce autophagic activity to maintain mitochondrial homeostasis. It is concluded that HBA has a protective effect on neuronal damage and cognitive impairment caused by cerebral ischemia by regulating key metabolites and signaling pathways, and that it provides a new molecular target for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaohua Duan
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China; (T.X.); (X.Y.); (J.T.); (J.T.); (Z.Z.); (C.Z.)
| |
Collapse
|
5
|
Vaitiekiene A, Kulboke M, Bieseviciene M, Kaunaite A, Markeviciute A, Bartnykaite A, Kireilis B, Rinkuniene D, Jankauskas A, Gaidamavicius I, Gerbutavicius R, Vaitiekus D, Sakalyte G, Vaskelyte JJ. Evaluation of Subclinical Cancer Therapy-Related Cardiac Dysfunction in Patients Undergoing Hematopoietic Stem Cell Transplantation: An Echocardiography Study. Cancers (Basel) 2024; 16:3808. [PMID: 39594762 PMCID: PMC11592334 DOI: 10.3390/cancers16223808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Hematopoietic stem cell transplantation (HSCT) is a potentially curative procedure that is used in various hematological malignancies. However, among an increasing number of HSCT, the amount of cancer therapy-related cardiac dysfunction (CTRCD) is increasing as well. This study aimed to determine the prevalence of subclinical CTRCD in HSCT patients 12 months after HSCT and to assess the impact of clinical factors on the development of CTRCD. Material and Methods: We included 55 patients who underwent autologous or allogeneic HSCT. The patients were assessed using an echocardiography method before and 12 months after a HSCT procedure. Results: Our study revealed that during the 12-month follow-up period, asymptomatic CTRCD was observed in 15 patients (27.3%), 6 experienced moderate CTRCD, and 9 experienced mild CTRCD. Patients with previous use of anthracyclines tended to have CTRCD more often: nine patients (60%) in the CTRCD group and nine patients (22.5%) in non-CTRCD group. Patients who received the BEAM regimen for conditioning also experienced CTRCD more often: five patients (33.3%) in CTRCD group vs. two patients (5%) in the non-CTRCD group. Conclusions: Our study showed that asymptomatic CTRCD was found in 27.3% of the patients 12 months after HSCT. The BEAM chemotherapy conditioning protocol following prior anthracycline use were identified as factors contributing to the development of CTRCD.
Collapse
Affiliation(s)
- Audrone Vaitiekiene
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Migle Kulboke
- Department of Oncology and Hematology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Oncology Institute, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Monika Bieseviciene
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Austeja Kaunaite
- Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Auste Markeviciute
- Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Agne Bartnykaite
- Oncology Research Laboratory, Oncology Institute, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Benas Kireilis
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Diana Rinkuniene
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Antanas Jankauskas
- Department of Radiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Institute of Cardiology, Lithuanian University of Health Sciences, 47181 Kaunas, Lithuania
| | - Ignas Gaidamavicius
- Department of Oncology and Hematology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Oncology Institute, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Rolandas Gerbutavicius
- Department of Oncology and Hematology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Oncology Institute, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Domas Vaitiekus
- Department of Oncology and Hematology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Oncology Institute, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Gintare Sakalyte
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Institute of Cardiology, Lithuanian University of Health Sciences, 47181 Kaunas, Lithuania
| | - Jolanta Justina Vaskelyte
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Institute of Cardiology, Lithuanian University of Health Sciences, 47181 Kaunas, Lithuania
| |
Collapse
|
6
|
Minibayeva FV, Rassabina AE, Zakirjanova GF, Fedorov NS, Khabibrakhmanova VR, Galeeva EI, Kuznetsova EA, Malomouzh AI, Petrov AM. Protective properties of melanin from lichen Lobaria pulmonaria (L.) HOFFM. In models of oxidative stress in skeletal muscle. Fitoterapia 2024; 177:106127. [PMID: 39019238 DOI: 10.1016/j.fitote.2024.106127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/16/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Melanin is a dark pigment from the group of phenolic or indole polymers with inherent biocompatibility and antioxidant capacity. In extremophilic lichen Lobaria pulmonaria, melanin is responsible for protective properties against hostile environments. Herein, the ability of melanin extracted from L. pulmonaria to counteract oxidative stress and related damages was studied in the mouse diaphragm, the main respiratory muscle. Initial in vitro experiments demonstrated ultraviolet (UV)-absorbing, antioxidant and metal chelating activities of melanin. This melanin can form nanoparticles and stabile colloidal system at concentration of 5 μg/ml. Pretreatment of the muscle with melanin (5 μg/ml) markedly reduced UV-induced increase in intracellular and extracellular reactive oxygen species (ROS) as well as antimycin A-mediated enhancement in mitochondrial ROS production accompanied by lipid peroxidation and membrane asymmetry loss. In addition, melanin attenuated suppression of neuromuscular transmission and alterations of contractile responses provoked by hydrogen peroxide. Thus, this study shed the light on the perspectives of the application of a lichen melanin as a protective component for treatment of skeletal muscle disorders, which are accompanied with an increased ROS production.
Collapse
Affiliation(s)
- Farida V Minibayeva
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia.
| | - Anna E Rassabina
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia
| | - Guzalia F Zakirjanova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia
| | - Nikita S Fedorov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia
| | - Venera R Khabibrakhmanova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia
| | - Ekaterina I Galeeva
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia
| | - Eva A Kuznetsova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia
| | - Artem I Malomouzh
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia; Kazan National Research Technical University, 10, K. Marx St., Kazan 420111, Russia
| | - Alexey M Petrov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia; Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; Kazan State Mediсal University, 49 Butlerova Street, Kazan 420012, Russia.
| |
Collapse
|
7
|
Han Z, Rao JS, Ramesh S, Hergesell J, Namsrai BE, Etheridge ML, Finger EB, Bischof JC. Model-Guided Design and Optimization of CPA Perfusion Protocols for Whole Organ Cryopreservation. Ann Biomed Eng 2023; 51:2216-2228. [PMID: 37351756 PMCID: PMC10518287 DOI: 10.1007/s10439-023-03255-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023]
Abstract
Vitrification could enable long-term organ preservation, but only after loading high-concentration, potentially toxic cryoprotective agents (CPAs) by perfusion. In this paper, we combine a two-compartment Krogh cylinder model with a toxicity cost function to theoretically optimize the loading of CPA (VMP) in rat kidneys as a model system. First, based on kidney perfusion experiments, we systematically derived the parameters for a CPA transport loading model, including the following: Vb = 86.0% (ra = 3.86 μm), Lp = 1.5 × 10-14 m3/(N·s), ω = 7.0 × 10-13 mol/(N·s), σ = 0.10. Next, we measured the toxicity cost function model parameters as α = 3.12 and β = 9.39 × 10-6. Combining these models, we developed an improved kidney-loading protocol predicted to achieve vitrification while minimizing toxicity. The optimized protocol resulted in shorter exposure (25 min or 18.5% less) than the gold standard kidney-loading protocol for VMP, which had been developed based on decades of empirical practice. After testing both protocols on rat kidneys, we found comparable physical and biological outcomes. While we did not dramatically reduce toxicity, we did reduce the time. As our approach is now validated, it can be used on other organs lacking defined toxicity data to reduce CPA exposure time and provide a rapid path toward developing CPA perfusion protocols for other organs and CPAs.
Collapse
Affiliation(s)
- Zonghu Han
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Joseph Sushil Rao
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
- Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, USA
| | - Srivasupradha Ramesh
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Jan Hergesell
- Institute for Multiphase Processes (IMP), Leibniz University, Hannover, Germany
| | | | - Michael L Etheridge
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Erik B Finger
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - John C Bischof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA.
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, USA.
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
8
|
Calik MW, Carley DW. DMSO potentiates the suppressive effect of dronabinol on sleep apnea and REM sleep in rats. J Cannabis Res 2023; 5:30. [PMID: 37507813 PMCID: PMC10375672 DOI: 10.1186/s42238-023-00199-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
INTRODUCTION Dimethyl sulfoxide (DMSO) is an amphipathic molecule with innate biological activity that also is used to dissolve both polar and nonpolar compounds in preclinical and clinical studies. Recent investigations of dronabinol, a cannabinoid, dissolved in DMSO demonstrated decreased sleep apnea frequency and time spent in REM sleep in rats. Here, we tested the effects of dronabinol dissolved in 25% DMSO diluted in phosphate-buffered saline (PBS) to rule out potentiating effects of DMSO. METHODS Sprague-Dawley rats were anesthetized and implanted with bilateral stainless steel screws into the skull for electroencephalogram recording and bilateral wire electrodes into the nuchal muscles for electromyogram recording. Each animal was recorded by polysomnography. The study was a fully nested, repeated measures crossover design, such that each rat was recorded following each of 8 intraperitoneal injections separated by three days: vehicle (25% DMSO/PBS); vehicle and CB1 antagonist (AM 251); vehicle and CB2 antagonist (AM 630); vehicle and CB1/CB2 antagonist; dronabinol (CB1/CB2 agonist); dronabinol and CB1 antagonist; dronabinol and CB2 antagonist; and dronabinol and CB1/CB2 antagonists. Sleep was manually scored into NREM and REM stages, and sleep apneas were quantified. RESULTS Dronabinol dissolved in 25% DMSO did not suppress sleep apneas or modify sleep efficiency compared to vehicle controls, in contrast to previously published results. However, dronabinol did suppress REM sleep, which is in line with previously published results. CONCLUSIONS Dronabinol in 25% DMSO partially potentiated dronabinol's effects, suggesting a concomitant biological effect of DMSO on breathing during sleep.
Collapse
Affiliation(s)
- Michael W Calik
- Center for Sleep and Health Research, University of Illinois Chicago, Chicago, IL, USA.
- Department of Biobehavioral Nursing Science, University of Illinois Chicago, Chicago, IL, USA.
- Department of Biobehavioral Nursing Science, College of Nursing, University of Illinois Chicago, 845 South Damen Avenue (M/C 802), Room 740, IL, 60612, Chicago, USA.
| | - David W Carley
- Center for Sleep and Health Research, University of Illinois Chicago, Chicago, IL, USA
- Department of Biobehavioral Nursing Science, University of Illinois Chicago, Chicago, IL, USA
- Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
9
|
Ghareeb D, El-Zeftawy M, Balbaa M. The Hepatotoxicity of Nigella sativa Oil Linked to the Route of Administration. THE NATURAL PRODUCTS JOURNAL 2023; 13. [DOI: 10.2174/2210315512666220519092602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/26/2022] [Accepted: 03/16/2022] [Indexed: 08/27/2024]
Abstract
Background:
Even Nigella sativa oil (NSO) has several pharmacological effects; the route
of administration is critical to obtain the desired activity in which intraperitoneal injection (IP) of oil
recruits macrophages and induces inflammation.
Objective:
The current study aimed to determine the best administration route of NSO in rats either
oral or IP.
Methods:
The components of NSO, routine blood analyses, hepatic oxidative stress and proinflammatory
parameters, and liver histopathological study were evaluated.
Results:
NSO contained 32.14% E,E,Z- 1, 3 , 12- nonadecatriene- 5, 14 diol, 25% thymoquinone (TQ)
and 3.74% dimethyl sulfoxide (DMSO). In addition, the rats who received IP injection of NSO
showed an increase in hepatic enzymes, lipid profiles, oxidative stress, and inflammatory markers.
This was associated with hepatic up-regulation of the A disintegrin and metalloproteinase 17 (ADAM-
17) genes, which are corroborated by a reduction in hepatic tissue inhibitor of metalloproteinase 3
(TIMP-3) concentration. These indications were seen in rats given a small amount of DMSO (NSO
vehicle), indicating that NSO-oral delivery was safer than IP.
Conclusion:
NSO-IP administration promotes the hepatic oxidative stress-inflammation axis; thus,
NSO is a generally safe chemical, especially when administered orally to experimental animals.
Collapse
Affiliation(s)
- Doaa Ghareeb
- Department
of Biochemistry, Biological Screening and Preclinical Trial Lab, Faculty of Science, Alexandria University, Alexandria,
Egypt
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Marwa El-Zeftawy
- Department of Biochemistry, Faculty of Veterinary Medicine, New Valley University, New Valley, Egypt
- Department
of Biochemistry, Biological Screening and Preclinical Trial Lab, Faculty of Science, Alexandria University, Alexandria,
Egypt
| | - Mahmoud Balbaa
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
10
|
Jeon N, Jeong IH, Cho E, Choi I, Lee J, Han EH, Lee HJ, Lee PC, Lee E. Microcurvature Controllable Metal-Organic Framework Nanoagents Capable of Ice-Lattice Matching for Cellular Cryopreservation. JACS AU 2023; 3:154-164. [PMID: 36711099 PMCID: PMC9875254 DOI: 10.1021/jacsau.2c00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/18/2023]
Abstract
Ice-binding proteins (IBPs) produced by psychrophilic organisms to adapt for the survival of psychrophiles in subzero conditions have received illustrious interest as a cryopreservation agent required for cells and tissues to completely recover after freezing/thawing. Depressing water-freezing point and avoiding ice-crystal growth affect their activities which are closely related to the presence of ice crystal well-matched binding moiety. The interaction of IBPs with ice and water is critical in enhancing their freeze avoidance against cell or tissue damage. Metal-organic frameworks (MOFs) with a controllable lattice at the molecular level and a size at the nanometer scale can offer periodically ordered ice-binding sites by modifying organic linkers and controlling microcurvature at the ice surface. Herein, zirconium (Zr)-based MOF-801 nanoparticles (NPs) with good biocompatibility were used as a cryoprotectant that is well dispersed and colloidal-stable in an aqueous solution. The MOF NP size was precisely controlled, and 10, 35, 100, and 250 nm NPs were prepared. The specific IBPs-mimicking pendants (valine and threonine) were simply introduced into the MOF NP-surface through the acrylate-based functionalization to endow with hydrophilic and hydrophobic dualities. When small-sized MOF-801 NPs were attached to ice, they confined ice growth in high curvature between the adsorption sites because of the decreased radius of the convex area of the growth region, leading to highly enhanced ice recrystallization inhibition (IRI). Surface-functionalized MOF NPs could increase the number of anchored clathrate water molecules with hydrophilic/hydrophobic balance of the ice-binding moiety, effectively inhibiting ice growth. The MOF-801 NPs were biocompatible with various cell lines regardless of concentration or NP surface-functionalization, whereas the smaller-sized surface-functionalized NPs showed a good cell recovery rate after freezing/thawing by induction of IRI. This study provides a strategy for the fabrication of low-cost, high-volume antifreeze nanoagents that can extend useful applications to organ transplantation, cord blood storage, and vaccines/drugs.
Collapse
Affiliation(s)
- Nayeong Jeon
- School
of Materials Science and Engineering, Gwangju
Institute of Science and Technology (GIST), Gwangju61005, Republic of Korea
| | - In-ho Jeong
- Department
of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul05505, Republic
of Korea
| | - Eunyeong Cho
- Composites
Research Division, Korea Institute of Materials
Science (KIMS), Changwon51508, Republic of Korea
| | - Ilhyung Choi
- School
of Materials Science and Engineering, Gwangju
Institute of Science and Technology (GIST), Gwangju61005, Republic of Korea
| | - Jiyeon Lee
- School
of Materials Science and Engineering, Gwangju
Institute of Science and Technology (GIST), Gwangju61005, Republic of Korea
| | - Eun Hee Han
- Research
Center for Bioconvergence Analysis, Korea
Basic Science Institute (KBSI), Cheongju28119, Republic of Korea
| | - Hee Jung Lee
- Composites
Research Division, Korea Institute of Materials
Science (KIMS), Changwon51508, Republic of Korea
| | - Peter C.W. Lee
- Department
of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul05505, Republic
of Korea
| | - Eunji Lee
- School
of Materials Science and Engineering, Gwangju
Institute of Science and Technology (GIST), Gwangju61005, Republic of Korea
| |
Collapse
|
11
|
Bulama I, Nasiru S, Bello A, Abbas AY, Nasiru JI, Saidu Y, Chiroma MS, Mohd Moklas MA, Mat Taib CN, Waziri A, Suleman BL. Antioxidant-based neuroprotective effect of dimethylsulfoxide against induced traumatic brain injury in a rats model. Front Pharmacol 2022; 13:998179. [PMID: 36353489 PMCID: PMC9638698 DOI: 10.3389/fphar.2022.998179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/17/2022] [Indexed: 08/03/2023] Open
Abstract
Traumatic brain injury (TBI) has been the result of neurological deficit and oxidative stress. This study evaluated the antioxidative neuroprotective property and learning and memory-enhancing effects of dimethyl sulfoxide (DMSO) in a rat model after the induction of TBI. 21 albino rats with 7 rats per group were used in this study. Group I was induced with TBI and treated with DMSO at 67.5 mg/kg orally once daily which started 30 min after the induction of TBI and lasted 21 days. Group II was induced with TBI but not treated while Group III was neither induced with TBI nor treated. Assessment of behavioral function (Learning and memory, anxiety and motor function), the level of an antioxidant enzymes and their gene expression (superoxide dismutase, catalase, glutathione peroxidase), the biomarkers of oxidative stress (malondialdehyde) and S100B levels as well as brain tissues histological studies were conducted. Administration of DMSO to rats with induced TBI has improved learning and memory, locomotor function and decreased anxiety in Group I compared to Group II. Moreover, the level of S100B was significantly (p < 0.05) lower in Group I compared to Group II. Treatment with DMSO also decreased lipid peroxidation significantly (p < 0.05) compared to Group II. There exists a significant (p < 0.05) increase in CAT, SOD, and GPX activities in Group I compared to Group II. Therefore, DMSO has demonstrated a potential antioxidative neuroprotective effect through its ability to increase the level of antioxidant enzymes which they quench and inhibit the formation of ROS, thereby improving cognitive functions.
Collapse
Affiliation(s)
- Ibrahim Bulama
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Nigeria
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Suleiman Nasiru
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, Usman Danfodiyo University, Sokoto, Nigeria
| | - Abubakar Bello
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Abdullahi Yahaya Abbas
- Department of Biochemistry, Faculty of Chemical and Life Sciences, Usman Danfodiyo University, Sokoto, Nigeria
| | - Jinjiri Ismail Nasiru
- Department of Surgery, Faculty of Clinical Sciences, Usman Danfodiyo University Teaching Hospital, Sokoto, Nigeria
| | - Yusuf Saidu
- Department of Biochemistry, Faculty of Chemical and Life Sciences, Usman Danfodiyo University, Sokoto, Nigeria
| | - Musa Samaila Chiroma
- Department of Human Anatomy, Faculty of Basic Clinical Sciences, University of Maiduguri, Maiduguri, Nigeria
| | - Mohamad Aris Mohd Moklas
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Che Norma Mat Taib
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Ali Waziri
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Nigeria
| | - Bilbis Lawal Suleman
- Department of Biochemistry, Faculty of Chemical and Life Sciences, Usman Danfodiyo University, Sokoto, Nigeria
| |
Collapse
|
12
|
Dimethyl Sulfoxide Attenuates Radiation-Induced Testicular Injury through Facilitating DNA Double-Strand Break Repair. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9137812. [PMID: 35770047 PMCID: PMC9236762 DOI: 10.1155/2022/9137812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/07/2022] [Indexed: 12/04/2022]
Abstract
The testis is susceptible to ionizing radiation, and male infertility and sexual dysfunction are prevalent problems after whole-body or local radiation exposure. Currently, there is no approved agent for the prevention or treatment of radiation-induced testicular injury. Herein, we investigated the radioprotective effect of dimethyl sulfoxide (DMSO), an organosulfur compound that acts as a free radical scavenger, on testicular injury. Treatment of mice with a single dose of DMSO prior to 5 Gy irradiation restored sex hormones and attenuated the reduction in testis weight. Histological analyses revealed that DMSO alleviated the distorted architecture of seminiferous tubules and promoted seminiferous epithelium regeneration following irradiation. Moreover, DMSO provided quantitative and qualitative protection for sperm and preserved spermatogenesis and fertility in male mice. Mechanistically, DMSO treatment enhanced GFRα-1+ spermatogonial stem cell and c-Kit+ spermatogonial survival and regeneration after radiation. DMSO also alleviated radiation-induced oxidative stress and suppressed radiation-induced germ cell apoptosis in vivo and in vitro. Additionally, DMSO efficiently reduced DNA damage accumulation and induced the expression of phosph-BRCA1, BRCA1, and RAD51 proteins, indicating that DMSO facilitates DNA damage repair with a bias toward homologous recombination. In summary, our findings demonstrate the radioprotective efficacy of DMSO on the male reproductive system, which warrants further studies for future application in the preservation of male fertility during conventional radiotherapy and nuclear accidents.
Collapse
|
13
|
Sarkar A, Kim KT, Tsymbalyuk O, Keledjian K, Wilhelmy BE, Sherani NA, Jia X, Gerzanich V, Simard JM. A Direct Comparison of Physical Versus Dihydrocapsaicin-Induced Hypothermia in a Rat Model of Traumatic Spinal Cord Injury. Ther Hypothermia Temp Manag 2022; 12:90-102. [PMID: 35675523 PMCID: PMC9231662 DOI: 10.1089/ther.2021.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating neurological condition with no effective treatment. Hypothermia induced by physical means (cold fluid) is established as an effective therapy in animal models of SCI, but its clinical translation to humans is hampered by several constraints. Hypothermia induced pharmacologically may be noninferior or superior to physically induced hypothermia for rapid, convenient systemic temperature reduction, but it has not been investigated previously in animal models of SCI. We used a rat model of SCI to compare outcomes in three groups: (1) normothermic controls; (2) hypothermia induced by conventional physical means; (3) hypothermia induced by intravenous (IV) dihydrocapsaicin (DHC). Male rats underwent unilateral lower cervical SCI and were treated after a 4-hour delay with physical cooling or IV DHC (∼0.60 mg/kg total) cooling (both 33.0 ± 1.0°C) lasting 4 hours; controls were kept normothermic. Telemetry was used to monitor temperature and heart rate during and after treatments. In two separate experiments, one ending at 48 hours, the other at 6 weeks, “blinded” investigators evaluated rats in the three groups for neurological function followed by histopathological evaluation of spinal cord tissues. DHC reliably induced systemic cooling to 32–33°C. At both the time points examined, the two modes of hypothermia yielded similar improvements in neurological function and lesion size compared with normothermic controls. Our results indicate that DHC-induced hypothermia may be comparable with physical hypothermia in efficacy, but more clinically feasible to administer than physical hypothermia.
Collapse
Affiliation(s)
- Amrita Sarkar
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kevin T Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Orest Tsymbalyuk
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kaspar Keledjian
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Bradley E Wilhelmy
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nageen A Sherani
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - J Marc Simard
- Department of Neurosurgery, Pathology and Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Rivas M, Serantes D, Peña F, González J, Ferreira A, Torterolo P, Benedetto L. Role of Hypocretin in the Medial Preoptic Area in the Regulation of Sleep, Maternal Behavior and Body Temperature of Lactating Rats. Neuroscience 2021; 475:148-162. [PMID: 34500018 DOI: 10.1016/j.neuroscience.2021.08.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 12/11/2022]
Abstract
Hypocretins (HCRT), also known as orexins, includes two neuroexcitatory peptides, HCRT-1 and HCRT-2 (orexin A y B, respectively), synthesized by neurons located in the postero-lateral hypothalamus, whose projections and receptors are widely distributed throughout the brain, including the medial preoptic area (mPOA). HCRT have been associated with a wide range of physiological functions including sleep-wake cycle, maternal behavior and body temperature, all regulated by the mPOA. Previously, we showed that HCRT in the mPOA facilitates certain active maternal behaviors, while the blockade of HCRT-R1 increases the time spent in nursing. As mother rats mainly sleep while they nurse, we hypothesize that HCRT in the mPOA of lactating rats reduce sleep and nursing, while intra-mPOA administration of a dual orexin receptor antagonist (DORA) would cause the opposite effect. Therefore, the aim of this study was to determine the role of HCRT within the mPOA, in the regulation and integration of the sleep-wake cycle, maternal behavior and body temperature of lactating rats. For that purpose, we assessed the sleep-wake states, maternal behavior and body temperature of lactating rats following microinjections of HCRT-1 (100 and 200 µM) and DORA (5 mM) into the mPOA. As expected, our data show that HCRT-1 in mPOA promote wakefulness and a slightly increase in body temperature, whereas DORA increases both NREM and REM sleep together with an increment of nursing and milk ejection. Taken together, our results strongly suggest that the endogenous reduction of HCRT within the mPOA contribute to the promotion of sleep, milk ejection and nursing behavior in lactating rats.
Collapse
Affiliation(s)
- Mayda Rivas
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Diego Serantes
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Florencia Peña
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Joaquín González
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Annabel Ferreira
- Sección de Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Pablo Torterolo
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Luciana Benedetto
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
15
|
Gomes KC, Lima FWB, da Silva Aguiar HQ, de Araújo SS, de Cordova CAS, de Cordova FM. Thiamine deficiency and recovery: impact of recurrent episodes and beneficial effect of treatment with Trolox and dimethyl sulfoxide. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:2289-2307. [PMID: 34468817 DOI: 10.1007/s00210-021-02148-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
At present, thiamine deficiency (TD) is managed with administration of high doses of thiamine. Even so, severe and permanent neurological disorders can occur in recurrent episodes of TD. In this study, we used a murine model to assess the efficacy of TD recovery treatments using thiamine with or without additional administration of the antioxidant Trolox or the anti-inflammatory dimethyl sulfoxide (DMSO) after a single or recurrent episode of TD. TD was induced for 9 days with deficient chow and pyrithiamine, and the recovery period was 7 days with standard amounts of chow and thiamine, Trolox, and/or DMSO. After these periods, we evaluated behavior, histopathology, and ERK1/2 modulation in the brain. Deficient animals showed reductions in locomotor activity, motor coordination, and spatial memory. Morphologically, after a single episode of TD and recovery, deficient mice showed neuronal vacuolization in the dorsal thalamus and, after two episodes, a reduction in neuronal cell number. These effects were attenuated or reversed by the recovery treatments, mainly in the treatments with thiamine associated with Trolox or DMSO. Deficient animals showed a strong increase in ERK1/2 phosphorylation in the thalamus, hippocampus, and cerebral cortex after one deficiency episode and recovery. Interestingly, after recurrent TD and recovery, ERK1/2 phosphorylation remained high only in the deficient mice treated with thiamine and/or Trolox or thiamine with DMSO. Our data suggest that a protocol for TD treatment with thiamine in conjunction with Trolox or DMSO enhances the recovery of animals and possibly minimizes the late neurological sequelae.
Collapse
Affiliation(s)
- Ketren Carvalho Gomes
- Programa de Pós-Graduação em Sanidade Animal e Saúde Pública nos Trópicos , Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | | | - Helen Quézia da Silva Aguiar
- Curso de Medicina Veterinária, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | - Suiane Silva de Araújo
- Curso de Medicina Veterinária, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | | | - Fabiano Mendes de Cordova
- Programa de Pós-Graduação em Sanidade Animal e Saúde Pública nos Trópicos , Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil.
| |
Collapse
|
16
|
Karadenizli S, Şahin D, Ateş N. Age dependent effects of Retigabine on absence seizure in WAG/Rij rats; an experimental study. Clin Exp Pharmacol Physiol 2021; 48:1251-1260. [PMID: 34133772 DOI: 10.1111/1440-1681.13537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 10/24/2019] [Accepted: 06/07/2021] [Indexed: 12/01/2022]
Abstract
Retigabine (RTG, Ezogabine, DC23129) is the first neuronal potassium channel opener in the treatment of epilepsy and exerts its effects through the activation of neuronal KCNQ2/3 potassium channels; in higher doses, it acts also on sodium and voltage-gated calcium channels. The aim of this study was to investigate possible age-dependent therapeutic effects of RTG on spike-and-wave discharges (SWD) in an animal model of absence epilepsy using WAG/Rij rats. In this study, 6- and 12-month-old WAG/Rij rats were used. For both age categories, three sub-groups that consisted of one control group (n=7) by the administration of 20% DMSO (control) and two study groups by the administration of 5 mg/kg (n=7) and 15 mg/kg RTG (n=7) were designed. EEG electrodes were placed onto the skull of anaesthetized animals; and baseline EEG was recorded for one hour after a recovery period from surgery. Then, the pre-determined two distinct doses of RTG and 20% DMSO were administered as a solvent via intraperitoneal injections, and EEG was recorded for 3 hours. After injection, both doses of RTG increased the total SWD number and duration of SWD in the first and second hours in 12-month-old rats. These parameters were elevated compared to 6-month-old rats. Age-dependent effects of RTG were observed in SWD activity. Pro-epileptic effects in middle-aged WAG/Rij rats were demonstrated in both RTG doses. Differences in the distribution of KCNQ2/3 channels and switch of GABAergic system from inhibitory to excitatory with age might contribute to increased SWD activity in middle-aged rats.
Collapse
Affiliation(s)
- Sabriye Karadenizli
- Department of Physiology, Medical Faculty of Kocaeli University, Kocaeli, Turkey
| | - Deniz Şahin
- Department of Physiology, Medical Faculty of Kocaeli University, Kocaeli, Turkey
| | - Nurbay Ateş
- Department of Physiology, Medical Faculty of Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
17
|
Hoang C, Nguyen AK, Nguyen TQ, Fang W, Han B, Hoang BX, Tran HD. Application of Dimethyl Sulfoxide as a Therapeutic Agent and Drug Vehicle for Eye Diseases. J Ocul Pharmacol Ther 2021; 37:441-451. [PMID: 34314611 DOI: 10.1089/jop.2021.0043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Dimethyl sulfoxide (DMSO) is an amphipathic molecule widely used as a solvent for water-insoluble substances, cryopreserving, and cell-biological therapies. It has known properties as an inducer of cellular differentiation, a free radical scavenger, and a radioprotectant. In addition, DMSO is used for its various therapeutic and pharmaceutical properties, such as anti-inflammatory, local and systemic analgesic, antibacterial, antifungal, antiviral, and membrane penetration enhancement agents. DMSO treatment can be given orally, intravenously, or topically for a wide range of indications. The administration of DMSO exhibits favorable outcomes in human eye diseases with low to none observed ocular or systemic ocular toxicity. Nevertheless, DMSO is an essential and nonpatentable potential therapeutic agent that remains underexplored and ignored by pharmaceutical developers and ophthalmologists. This current review takes data from experimental and clinical studies that have been published to substantiate the potential therapeutic efficacy of DMSO and stimulate the research of its application in clinical ophthalmology. Given that DMSO is inexpensive, safe, and easily formulated into therapeutic medicinal products and conventional ophthalmological drugs, this compound should be further explored and studied in the treatment of a variety of acute and chronic ocular disorders.
Collapse
Affiliation(s)
- Cuong Hoang
- Department of Training and Social Relationship, National Ophthalmological Hospital, Hanoi, Vietnam
| | - Anh Kim Nguyen
- Inventive Medical Foundation, South El Monte, California, USA
| | | | - William Fang
- Western University of Health Sciences, Pomona, California, USA
| | - Bo Han
- Department of Surgery, Keck School of Medicine University of Southern California, Los Angeles, California, USA
| | - Ba X Hoang
- Department of Surgery, Keck School of Medicine University of Southern California, Los Angeles, California, USA
| | - Hau D Tran
- Department of Oncology, National Children Hospital, Hanoi, Vietnam
| |
Collapse
|
18
|
The Protein Kinase Inhibitor Midostaurin Improves Functional Neurological Recovery and Attenuates Inflammatory Changes Following Traumatic Cervical Spinal Cord Injury. Biomolecules 2021; 11:biom11070972. [PMID: 34356596 PMCID: PMC8301989 DOI: 10.3390/biom11070972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/12/2022] Open
Abstract
Traumatic spinal cord injury (SCI) impairs neuronal function and introduces a complex cascade of secondary pathologies that limit recovery. Despite decades of preclinical and clinical research, there is a shortage of efficacious treatment options to modulate the secondary response to injury. Protein kinases are crucial signaling molecules that mediate the secondary SCI-induced cellular response and present promising therapeutic targets. The objective of this study was to examine the safety and efficacy of midostaurin—a clinically-approved multi-target protein kinase inhibitor—on cervical SCI pathogenesis. High-throughput analyses demonstrated that intraperitoneal midostaurin injection (25 mg/kg) in C6/7 injured Wistar rats altered the local inflammasome and downregulated adhesive and migratory genes at 24 h post-injury. Treated animals also exhibited enhanced recovery and restored coordination between forelimbs and hindlimbs after injury, indicating the synergistic impact of midostaurin and its dimethyl sulfoxide vehicle to improve functional recovery. Furthermore, histological analyses suggested improved tissue preservation and functionality in the treated animals during the chronic phase of injury. This study serves as a proof-of-concept experiment and demonstrates that systemic midostaurin administration is an effective strategy for mitigating cervical secondary SCI damage.
Collapse
|
19
|
Desai A, Damani R. Hyperosmolar therapy: A century of treating cerebral edema. Clin Neurol Neurosurg 2021; 206:106704. [PMID: 34045110 DOI: 10.1016/j.clineuro.2021.106704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Hyperosmolar therapy is a cornerstone for the management of elevated intracranial pressure in patients with devastating neurological injuries. Its discovery and use in various pathologies has become a valuable therapy in modern neurological critical care across the globe. Although hyperosmolar therapy is used routinely, the history of its origin is still elusive to many physicians. Understanding the basis of discovery and use of different hyperosmolar agents lends insight into the complex management of elevated intracranial pressure. There are very few practices in medicine which has stood the test of time. The discovery of hyperosmolar therapy has not only provided us a wealth of data for the management of intracranial hypertension but has also allowed us to develop new treatment strategies by improving our understanding of the molecular mechanisms of cerebral inflammation, blood-brain permeability, and cerebral edema in all modes of neuronal injury.
Collapse
Affiliation(s)
- Aaron Desai
- Department of Neurology, Section of Vascular and Neurological Critical Care, Baylor College of Medicine, Houston, TX, USA
| | - Rahul Damani
- Department of Neurology, Section of Vascular and Neurological Critical Care, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
20
|
Meslin C, Bozzolan F, Braman V, Chardonnet S, Pionneau C, François MC, Severac D, Gadenne C, Anton S, Maibèche M, Jacquin-Joly E, Siaussat D. Sublethal Exposure Effects of the Neonicotinoid Clothianidin Strongly Modify the Brain Transcriptome and Proteome in the Male Moth Agrotis ipsilon. INSECTS 2021; 12:insects12020152. [PMID: 33670203 PMCID: PMC7916958 DOI: 10.3390/insects12020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 11/18/2022]
Abstract
Simple Summary Insect pest management relies mainly on neurotoxic insecticides, including neonicotinoids such as clothianidin. Low doses of insecticides can stimulate various life traits in target pest insects, whereas negative effects are expected. We recently showed that treatments with different low doses of clothianidin could modify behavioral and neuronal sex pheromone responses in the male moth, Agrotis ipsilon. In this study, we showed that clothianidin disrupted 1229 genes and 49 proteins at the molecular level, including numerous enzymes of detoxification and neuronal actors, which could explain the acclimatization in pest insects to the insecticide-contaminated environment. Abstract Insect pest management relies mainly on neurotoxic insecticides, including neonicotinoids such as clothianidin. The residual accumulation of low concentrations of these insecticides can have positive effects on target pest insects by enhancing various life traits. Because pest insects often rely on sex pheromones for reproduction and olfactory synaptic transmission is cholinergic, neonicotinoid residues could indeed modify chemical communication. We recently showed that treatments with low doses of clothianidin could induce hormetic effects on behavioral and neuronal sex pheromone responses in the male moth, Agrotis ipsilon. In this study, we used high-throughput RNAseq and proteomic analyses from brains of A. ipsilon males that were intoxicated with a low dose of clothianidin to investigate the molecular mechanisms leading to the observed hormetic effect. Our results showed that clothianidin induced significant changes in transcript levels and protein quantity in the brain of treated moths: 1229 genes and 49 proteins were differentially expressed upon clothianidin exposure. In particular, our analyses highlighted a regulation in numerous enzymes as a possible detoxification response to the insecticide and also numerous changes in neuronal processes, which could act as a form of acclimatization to the insecticide-contaminated environment, both leading to enhanced neuronal and behavioral responses to sex pheromone.
Collapse
Affiliation(s)
- Camille Meslin
- Département Ecologie Sensorielle, Institut d’Ecologie et des Sciences de l’Environnement de Paris (iEES-Paris), Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, 75005 Paris, France; (C.M.); (F.B.); (V.B.); (M.-C.F.); (M.M.); (E.J.-J.)
- Département Ecologie Sensorielle, Institut d’Ecologie et des Sciences de l’Environnement de Paris (iEES-Paris), Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, 78026 Versailles, France
| | - Françoise Bozzolan
- Département Ecologie Sensorielle, Institut d’Ecologie et des Sciences de l’Environnement de Paris (iEES-Paris), Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, 75005 Paris, France; (C.M.); (F.B.); (V.B.); (M.-C.F.); (M.M.); (E.J.-J.)
- Département Ecologie Sensorielle, Institut d’Ecologie et des Sciences de l’Environnement de Paris (iEES-Paris), Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, 78026 Versailles, France
| | - Virginie Braman
- Département Ecologie Sensorielle, Institut d’Ecologie et des Sciences de l’Environnement de Paris (iEES-Paris), Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, 75005 Paris, France; (C.M.); (F.B.); (V.B.); (M.-C.F.); (M.M.); (E.J.-J.)
- Département Ecologie Sensorielle, Institut d’Ecologie et des Sciences de l’Environnement de Paris (iEES-Paris), Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, 78026 Versailles, France
| | - Solenne Chardonnet
- Plateforme Post-Génomique de la Pitié-Salpêtrière (P3S), UMS 37 PASS, INSERM, Sorbonne Université, 75013 Paris, France; (S.C.); (C.P.)
| | - Cédric Pionneau
- Plateforme Post-Génomique de la Pitié-Salpêtrière (P3S), UMS 37 PASS, INSERM, Sorbonne Université, 75013 Paris, France; (S.C.); (C.P.)
| | - Marie-Christine François
- Département Ecologie Sensorielle, Institut d’Ecologie et des Sciences de l’Environnement de Paris (iEES-Paris), Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, 75005 Paris, France; (C.M.); (F.B.); (V.B.); (M.-C.F.); (M.M.); (E.J.-J.)
- Département Ecologie Sensorielle, Institut d’Ecologie et des Sciences de l’Environnement de Paris (iEES-Paris), Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, 78026 Versailles, France
| | - Dany Severac
- MGX, BioCampus Montpellier, CNRS, INSERM, Université de Montpellier, 34000 Montpellier, France;
| | - Christophe Gadenne
- Institut de Génétique Environnement et Protection des Plantes IGEPP, INRAE, Institut Agro, Université de Rennes, 49045 Angers, France; (C.G.); (S.A.)
| | - Sylvia Anton
- Institut de Génétique Environnement et Protection des Plantes IGEPP, INRAE, Institut Agro, Université de Rennes, 49045 Angers, France; (C.G.); (S.A.)
| | - Martine Maibèche
- Département Ecologie Sensorielle, Institut d’Ecologie et des Sciences de l’Environnement de Paris (iEES-Paris), Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, 75005 Paris, France; (C.M.); (F.B.); (V.B.); (M.-C.F.); (M.M.); (E.J.-J.)
- Département Ecologie Sensorielle, Institut d’Ecologie et des Sciences de l’Environnement de Paris (iEES-Paris), Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, 78026 Versailles, France
| | - Emmanuelle Jacquin-Joly
- Département Ecologie Sensorielle, Institut d’Ecologie et des Sciences de l’Environnement de Paris (iEES-Paris), Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, 75005 Paris, France; (C.M.); (F.B.); (V.B.); (M.-C.F.); (M.M.); (E.J.-J.)
- Département Ecologie Sensorielle, Institut d’Ecologie et des Sciences de l’Environnement de Paris (iEES-Paris), Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, 78026 Versailles, France
| | - David Siaussat
- Département Ecologie Sensorielle, Institut d’Ecologie et des Sciences de l’Environnement de Paris (iEES-Paris), Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, 75005 Paris, France; (C.M.); (F.B.); (V.B.); (M.-C.F.); (M.M.); (E.J.-J.)
- Département Ecologie Sensorielle, Institut d’Ecologie et des Sciences de l’Environnement de Paris (iEES-Paris), Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, 78026 Versailles, France
- Correspondence:
| |
Collapse
|
21
|
The ω-3 endocannabinoid docosahexaenoyl ethanolamide reduces seizure susceptibility in mice by activating cannabinoid type 1 receptors. Brain Res Bull 2021; 170:74-80. [PMID: 33581310 DOI: 10.1016/j.brainresbull.2021.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/02/2021] [Accepted: 02/06/2021] [Indexed: 11/21/2022]
Abstract
Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are the most recognized omega-3 unsaturated fatty acids showing neuroprotective activity in animal and clinical studies. Docosahexaenoyl ethanolamide (DHEA) and eicosapentaenoyl ethanolamide (EPEA) are non-oxygenated endogenous metabolites of DHA and EPA, which might be in charge of the anti-seizure activity of the parent molecules. We examined the effect of these metabolites on the threshold of clonic seizures induced by pentylenetetrazole (PTZ). DHEA and EPEA possess similar chemical structure to the endogenous cannabinoids. Therefore, involvement of cannabinoid (CB) receptors in the anti-seizure effect of these metabolites was also investigated. DHA, DHEA, EPEA, AM251 (CB1 receptor antagonist), and AM630 (CB2 receptor antagonist) were administered to mice by intracerebroventricular (i.c.v.) route. Threshold of clonic seizures was determined 10 and/or 15 min thereafter by intravenous infusion of PTZ. The effect of DHA and DHEA on seizure threshold was then determined in mice, which were pretreated with AM251 and/or AM630. DHA (300μM), and DHEA (100 and 300 μM) significantly increased seizure threshold, 15 (p < 0.05) and 10 min (p < 0.01) after administration, respectively. DHEA was more potent than its parent lipid, DHA in decreasing seizure susceptibility. EPEA (300 and 1000 μM) did not change seizure threshold. AM251 fully prevented the increasing effect of DHA and DHEA on seizure threshold (p < 0.05). AM630 did not inhibit the effect of DHA and DHEA on seizure threshold. This is the first report indicating that DHEA but not EPEA, possesses anti-seizure action via activating CB1 receptors. DHEA is more potent than its parent ω-3 fatty acid DHA in diminishing seizure susceptibility.
Collapse
|
22
|
Lerner A, Kornweitz H, Zilbermann I, Yardeni G, Saphier M, Bar Ziv R, Meyerstein D. Radicals in 'biologically relevant' concentrations behave differently: Uncovering new radical reactions following the reaction of hydroxyl radicals with DMSO. Free Radic Biol Med 2021; 162:555-560. [PMID: 33217506 DOI: 10.1016/j.freeradbiomed.2020.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022]
Abstract
Methyl radicals play key roles in various chemical and biological processes. Mechanistic studies of methyl radicals with their precursor, Dimethyl Sulfoxide (DMSO), were extensively studied. Though the involved mechanisms seemed to be clarified, essentially none of the studies have been performed at conditions relevant to both biological and catalytic systems, i.e. low steady state radical concentrations. A chain-like reaction, as an inverse function of the radicals concentrations ([•CH3]ss), increases the methyl radical yields. The nature of the additional products obtained differs from those commonly observed. Furthermore it is shown that methyl radicals abstract a methyl group from DMSO to yield ethane. Herein we report a novel mechanism relevant mainly at low steady state radical concentrations, which may change the understanding of certain reaction routes present in both biological systems and catalytic chemical systems. Thus the results point out that mechanistic studies have to be carried out at dose rates forming radicals at analogous concentrations to those present in the process of interest.
Collapse
Affiliation(s)
- Ana Lerner
- Chemistry Department, Ben-Gurion University, Beer-Sheva, Israel; Chemistry Department, Israel Atomic Energy Commission, Tel Aviv, Israel
| | - Haya Kornweitz
- Department of Chemical Sciences, The Center for Radical Reactions and the Schlesinger Family Center for Compact Accelerators, Radiation Sources and Applications, Ariel University, Ariel, Israel
| | - Israel Zilbermann
- Chemistry Department, Ben-Gurion University, Beer-Sheva, Israel; Chemistry Department, Nuclear Research Centre Negev, Beer-Sheva, Israel
| | - Guy Yardeni
- Chemistry Department, Nuclear Research Centre Negev, Beer-Sheva, Israel
| | - Magal Saphier
- Chemistry Department, Nuclear Research Centre Negev, Beer-Sheva, Israel
| | - Ronen Bar Ziv
- Chemistry Department, Nuclear Research Centre Negev, Beer-Sheva, Israel
| | - Dan Meyerstein
- Chemistry Department, Ben-Gurion University, Beer-Sheva, Israel; Department of Chemical Sciences, The Center for Radical Reactions and the Schlesinger Family Center for Compact Accelerators, Radiation Sources and Applications, Ariel University, Ariel, Israel.
| |
Collapse
|
23
|
Dludla PV, Nkambule BB, Mazibuko-Mbeje SE, Nyambuya TM, Silvestri S, Orlando P, Mxinwa V, Louw J, Tiano L. The impact of dimethyl sulfoxide on oxidative stress and cytotoxicity in various experimental models. Toxicology 2021. [DOI: 10.1016/b978-0-12-819092-0.00025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Nuber S, Nam AY, Rajsombath MM, Cirka H, Hronowski X, Wang J, Hodgetts K, Kalinichenko LS, Müller CP, Lambrecht V, Winkler J, Weihofen A, Imberdis T, Dettmer U, Fanning S, Selkoe DJ. A Stearoyl-Coenzyme A Desaturase Inhibitor Prevents Multiple Parkinson Disease Phenotypes in α-Synuclein Mice. Ann Neurol 2020; 89:74-90. [PMID: 32996158 PMCID: PMC7756464 DOI: 10.1002/ana.25920] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022]
Abstract
Objective Parkinson disease (PD) has useful symptomatic treatments that do not slow the neurodegenerative process, and no significant disease‐modifying treatments are approved. A key therapeutic target in PD is α‐synuclein (αS), which is both genetically implicated and accumulates in Lewy bodies rich in vesicles and other lipid membranes. Reestablishing αS homeostasis is a central goal in PD. Based on previous lipidomic analyses, we conducted a mouse trial of a stearoyl–coenzyme A desaturase (SCD) inhibitor (“5b”) that prevented αS‐positive vesicular inclusions and cytotoxicity in cultured human neurons. Methods Oral dosing and brain activity of 5b were established in nontransgenic mice. 5b in drinking water was given to mice expressing wild‐type human αS (WT) or an amplified familial PD αS mutation (E35K + E46K + E61K ["3K"]) beginning near the onset of nigral and cortical neurodegeneration and the robust PD‐like motor syndrome in 3K. Motor phenotypes, brain cytopathology, and SCD‐related lipid changes were quantified in 5b‐ versus placebo‐treated mice. Outcomes were compared to effects of crossing 3K to SCD1−/− mice. Results 5b treatment reduced αS hyperphosphorylation in E46K‐expressing human neurons, in 3K neural cultures, and in both WT and 3K αS mice. 5b prevented subtle gait deficits in WT αS mice and the PD‐like resting tremor and progressive motor decline of 3K αS mice. 5b also increased αS tetramers and reduced proteinase K‐resistant lipid‐rich aggregates. Similar benefits accrued from genetically deleting 1 SCD allele, providing target validation. Interpretation Prolonged reduction of brain SCD activity prevented PD‐like neuropathology in multiple PD models. Thus, an orally available SCD inhibitor potently ameliorates PD phenotypes, positioning this approach to treat human α‐synucleinopathies. ANN NEUROL 2021;89:74–90
Collapse
Affiliation(s)
- Silke Nuber
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alice Y Nam
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Molly M Rajsombath
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Haley Cirka
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Junmin Wang
- Chemical Biology & Proteomics, Biogen, Cambridge, MA, USA
| | - Kevin Hodgetts
- Laboratory for Drug Discovery in Neurodegeneration, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Liubov S Kalinichenko
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Vera Lambrecht
- Division of Molecular Neurology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Jürgen Winkler
- Division of Molecular Neurology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Weihofen
- Neurodegenerative Diseases Research Unit, Biogen, Cambridge, MA, USA
| | - Thibaut Imberdis
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Saranna Fanning
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
3D-Printed Bubble-Free Perfusion Cartridge System for Live-Cell Imaging. SENSORS 2020; 20:s20205779. [PMID: 33053875 PMCID: PMC7650622 DOI: 10.3390/s20205779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 01/09/2023]
Abstract
The advent of 3D-printing technologies has had a significant effect on the development of medical and biological devices. Perfusion chambers are widely used for live-cell imaging in cell biology research; however, air-bubble invasion is a pervasive problem in perfusion systems. Although 3D printing allows the rapid fabrication of millifluidic and microfluidic devices with high resolution, little has been reported on 3D-printed fluidic devices with bubble trapping systems. Herein, we present a 3D-printed millifluidic cartridge system with bent and flat tapered flow channels for preventing air-bubble invasion, irrespective of bubble volume and without the need for additional bubble-removing devices. This system realizes bubble-free perfusion with a user-friendly interface and no-time-penalty manufacturing processes. We demonstrated the bubble removal capability of the cartridge by continually introducing air bubbles with different volumes during the calcium imaging of Sf21 cells expressing insect odorant receptors. Calcium imaging was conducted using a low-magnification objective lens to show the versatility of the cartridge for wide-area observation. We verified that the cartridge could be used as a chemical reaction chamber by conducting protein staining experiments. Our cartridge system is advantageous for a wide range of cell-based bioassays and bioanalytical studies, and can be easily integrated into portable biosensors.
Collapse
|
26
|
Peng R, Zhang W, Zuo Z, Shan Y, Liu X, Tang Y, Yu Z, Wang L, Cong Y. Dimethyl sulfoxide, a potent oral radioprotective agent, confers radioprotection of hematopoietic stem and progenitor cells independent of apoptosis. Free Radic Biol Med 2020; 153:1-11. [PMID: 32222468 DOI: 10.1016/j.freeradbiomed.2020.03.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/28/2020] [Accepted: 03/23/2020] [Indexed: 12/17/2022]
Abstract
In mass casualty events involving radiation exposure, there is a substantial unmet need for identifying and developing an orally bioavailable agent that can be used to protect the hematopoietic stem cell pool and regenerate hematopoiesis after radiation injury. Dimethyl sulfoxide (DMSO), a free-radical scavenger, has shown therapeutic benefits in many preclinical and clinical studies. This study investigates the radioprotective effects of DMSO on oral administration. Single dose of oral DMSO administrated before irradiation conferred 100% survival of C57BL6/J mice receiving otherwise lethal as well as super-lethal radiation dose, with wide radioprotective time frame (from 15min to 4h). Oral DMSO not only protected radiation-induced acute hematopoietic stem and progenitor cell (HSPC) injury, but also ameliorated long-term BM suppression following irradiation in mice. Mechanistically, DMSO directly protected HSPC survival after irradiation in vitro and in vivo, whereas no radioprotective effect was seen in MLL-AF9-induced leukemia cells. Unexpectedly, DMSO treatment did not inhibit radiation-induced HSPC apoptosis, and the HSPC survival from Trp53-and PUMA-deficient mice after irradiation was also protected by DMSO. In conclusion, our findings demonstrate the radioprotective efficacy of oral DMSO. Given its oral efficacy and little toxicity, DMSO is an attractive candidate for human use in a wide variety of settings, including nuclear accidents and medical radiation.
Collapse
Affiliation(s)
- Renjun Peng
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing, PR China
| | - Wenting Zhang
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing, PR China
| | - Zongchao Zuo
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing, PR China
| | - Yajun Shan
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing, PR China
| | - Xiaolan Liu
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing, PR China
| | - Yingying Tang
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing, PR China
| | - Zuyin Yu
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing, PR China
| | - Limei Wang
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing, PR China.
| | - Yuwen Cong
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing, PR China.
| |
Collapse
|
27
|
NADPH oxidase 2 as a potential therapeutic target for protection against cognitive deficits following systemic inflammation in mice. Brain Behav Immun 2020; 84:242-252. [PMID: 31841660 DOI: 10.1016/j.bbi.2019.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Research indicates that sepsis increases the risk of developing cognitive impairment. After systemic inflammation, a corresponding activation of microglia is rapidly induced in the brain, and multiple neurotoxic factors, including inflammatory mediators (e.g., cytokines) and reactive oxygen species (e.g., superoxide), are also released that contribute to neuronal injury. NADPH oxidase (NOX) enzymes play a vital role in microglial activation through the generation of superoxide anions. We hypothesized that NOX isoforms, particularly NOX2, could exhibit remarkable abilities in developing cognitive deficits induced by systemic inflammation. METHODS Mice with deficits of NOX2 organizer p47phox (p47phox-/-) and wild-type (WT) mice treated with the NOX inhibitor diphenyleneiodonium (DPI) were used in this study. Intraperitoneal lipopolysaccharide (LPS) injection was used to induce systemic inflammation. Spatial learning and memory were compared among treatment groups using the radial arm maze task. Brain tissues were collected for evaluating the transcript levels of proinflammatory cytokines, whereas immunofluorescence staining and immunoblotting were conducted to determine the percentage of activated glia (microglia and astroglia) and damaged neurons and the expression of synaptic proteins and BDNF. RESULTS Cognitive impairment induced by systemic inflammation was significantly attenuated in the p47phox-/- mice compared to that in the WT mice. The p47phox-/- mice exhibited reduced microglial and astroglial activation and neuronal damage and attenuated the induction of multiple proinflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-1β, IL-6, and CCL2. Similar to that observed in the p47phox-/- mice, the administration of DPI significantly attenuated the cognitive impairment, reduced the glial activation and brain cytokine concentrations, and restored the expression of postsynaptic proteins (PSD-95) and BDNF in neurons and astrocytes, compared to those in the vehicle-treated controls within 10 days after LPS injection. CONCLUSIONS This study clearly demonstrates that NOX2 contributes to glial activation with subsequent reduction in the expression of BDNF, synaptic dysfunction, and cognitive deficits after systemic inflammation in an LPS-injected mouse model. Our results provide evidence that NOX2 might be a promising pharmacological target that could be used to protect against synaptic dysregulation and cognitive impairment following systemic inflammation.
Collapse
|
28
|
Medeiros RDCN, Moraes JO, Rodrigues SDC, Pereira LM, Aguiar HQDS, de Cordova CAS, Yim Júnior A, de Cordova FM. Thiamine Deficiency Modulates p38 MAPK and Heme Oxygenase-1 in Mouse Brain: Association with Early Tissue and Behavioral Changes. Neurochem Res 2020; 45:940-955. [PMID: 31989470 DOI: 10.1007/s11064-020-02975-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/11/2020] [Accepted: 01/22/2020] [Indexed: 12/18/2022]
Abstract
Thiamine deficiency (TD) produces severe neurodegenerative lesions. Studies have suggested that primary neurodegenerative events are associated with both oxidative stress and inflammation. Very little is known about the downstream effects on intracellular signaling pathways involved in neuronal death. The primary aim of this work was to evaluate the modulation of p38MAPK and the expression of heme oxygenase 1 (HO-1) in the central nervous system (CNS). Behavioral, metabolic, and morphological parameters were assessed. Mice were separated into six groups: control (Cont), TD with pyrithiamine (Ptd), TD with pyrithiamine and Trolox (Ptd + Tr), TD with pyrithiamine and dimethyl sulfoxide (Ptd + Dmso), Trolox (Tr) and DMSO (Dmso) control groups and treated for 9 days. Control groups received standard feed (AIN-93M), while TD groups received thiamine deficient feed (AIN-93DT). All the groups were subjected to behavioral tests, and CNS samples were collected for cell viability, histopathology and western blot analyses. The Ptd group showed a reduction in weight gain and feed intake, as well as a reduction in locomotor, grooming, and motor coordination activities. Also, Ptd group showed a robust increase in p38MAPK phosphorylation and mild HO-1 expression in the cerebral cortex and thalamus. The Ptd group showed a decreased cell viability, hemorrhage, spongiosis, and astrocytic swelling in the thalamus. Groups treated with Trolox and DMSO displayed diminished p38MAPK phosphorylation in both the structures, as well as attenuated thalamic lesions and behavioral activities. These data suggest that p38MAPK and HO-1 are involved in the TD-induced neurodegeneration in vivo, possibly modulated by oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Rita de Cássia Noronha Medeiros
- Programa de Pós-Graduação em Sanidade Animal e Saúde Pública nos Trópicos, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | - Juliana Oliveira Moraes
- Programa de Pós-Graduação em Sanidade Animal e Saúde Pública nos Trópicos, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | | | - Leidiano Martins Pereira
- Curso de Medicina Veterinária, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | - Helen Quézia da Silva Aguiar
- Curso de Medicina Veterinária, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | | | - Alberto Yim Júnior
- Curso de Medicina Veterinária, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | - Fabiano Mendes de Cordova
- Programa de Pós-Graduação em Sanidade Animal e Saúde Pública nos Trópicos, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil.
| |
Collapse
|
29
|
Huang SH, Wu CH, Chen SJ, Sytwu HK, Lin GJ. Immunomodulatory effects and potential clinical applications of dimethyl sulfoxide. Immunobiology 2020; 225:151906. [PMID: 31987604 DOI: 10.1016/j.imbio.2020.151906] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 12/14/2022]
Abstract
Dimethyl sulfoxide (DMSO) was discovered during the 19th century by the German chemical industry. DMSO comprises a highly polar group and two non-polar domains, which render it soluble in both aqueous solutions and organic solutions. Furthermore, DMSO can penetrate the cell membrane of both the mammalian cells and the non-mammalian cells and prevent freeze-thaw injuries to the cells. Thus, it is frequently used for the cryopreservation of cells and tissues for laboratory and clinical applications. In contrast to this traditional application, DMSO has recently been shown to possess immunomodulatory effects, such as immune enhancement, and anti-inflammatory effects in the innate immunity. In addition, DMSO also affects the adaptive immunity by regulating the expression of transcription factors in immune cells. This review briefly summarizes and highlights the roles and immunomodulatory effects of DMSO on the immune system and reveals the future clinical therapeutic potential of DMSO treatment in cancer, in autoimmune diseases and in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Shing-Hwa Huang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan; Department of General Surgery, En Chu Kong Hospital, New Taipei, Taiwan
| | - Chih-Hsiung Wu
- Department of General Surgery, En Chu Kong Hospital, New Taipei, Taiwan
| | - Shyi-Jou Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Huey-Kang Sytwu
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Gu-Jiun Lin
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
30
|
Elhampour L, Azarbayjani MA, Nasehi M, Peeri M. Concurrent Effects of Exercise and Curcumin on Spatial Learning and Memory in Sensitized Male Mice Following Morphine Administration. Galen Med J 2019; 8:e1072. [PMID: 34466459 PMCID: PMC8343884 DOI: 10.31661/gmj.v8i0.1072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 11/25/2022] Open
Abstract
Background: Exercise and Curcumin have positive effects on spatial memory and cognition independently. The present study aims to investigate whether the combination of ineffectual dosage of these factors can affect cognition and as a solvent if DMSO is involved in Curcumin effects. Materials and Methods: Male NMRI mice (1-month-old) swam (1 week) for 60 minutes (5days/week) and injected with morphine (2.5 mg/ml/kg, intraperitoneal) for five days. Spatial learning and memory were assessed by Moris Water Maze test on the 10th day after stopping morphine injection. Results: The findings revealed that exercise, dimethyl sulfoxide (DMSO), and Curcumin increased memory formation induced by 2.5 mg/ml/kg morphine. DMSO+exercise decreased memory formation induced by morphine, but curcumin +exercise could return the effect of DMSO on the cognition. Conclusion:
As a solvent, DMSO had independent effects on memory, which lead to memory impairment in combination with exercise. Therefore, considering its unpredictable effects on cognitive performance, it should be replaced with another solvent or might be used carefully in behavioral experiments.
Collapse
Affiliation(s)
- Laleh Elhampour
- Department of Exercise Physiology, Tehran Central Branch, Islamic Azad University, Tehran, Iran
| | | | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
- Correspondence to: Mohammad Nasehi, Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran Telephone Number: +9821-66402569 Email Address:
| | - Maghsoud Peeri
- Department of Exercise Physiology, Tehran Central Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
31
|
Deutch CE. Inhibition of urease activity in the urinary tract pathogens Staphylococcus saprophyticus and Proteus mirabilis by dimethylsulfoxide (DMSO). J Appl Microbiol 2019; 128:1514-1523. [PMID: 31860153 DOI: 10.1111/jam.14560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/15/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]
Abstract
AIMS Urease is a virulence factor for the urinary tract pathogens Staphylococcus saprophyticus and Proteus mirabilis. Dimethylsulfoxide (DMSO) is structurally similar to urea, used as a solvent for urease inhibitors, and an effective treatment for interstitial cystitis/bladder pain syndrome (IC/BPS). The aims of this study were to test DMSO as a urease inhibitor and determine its physiological effects on S. saprophyticus and P. mirabilis. METHODS AND RESULTS Urease activity in extracts and whole cells was measured by the formation of ammonium ions. Urease was highly sensitive to noncompetitive inhibition by DMSO (Ki about 6 mmol l-1 ). DMSO inhibited urease activity in whole cells, limited bacterial growth in media containing urea, and slowed the increase in pH which occurred in artificial urine medium. CONCLUSIONS DMSO should be used with caution as a solvent when testing plant extracts or other potential urease inhibitors. Because it can inhibit bacterial growth and delay an increase in pH, it may be an effective treatment for urinary tract infections. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first detailed study of the inhibition of urease by DMSO. Dimethylsulfoxide may be used to treat urinary tract infections that are resistant to antibiotics or herbal remedies.
Collapse
|
32
|
Boruczkowski D, Zdolińska-Malinowska I. A Retrospective Analysis of Safety and Efficacy of Wharton's Jelly Stem Cell Administration in Children with Spina Bifida. Stem Cell Rev Rep 2019; 15:717-729. [PMID: 31222411 DOI: 10.1007/s12015-019-09902-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aim of this paper was to describe the outcome of therapeutic administration of mesenchymal stem cells (MSC) obtained from Wharton's jelly (WJ-MSCs) in paediatric patients with spina bifida (SB) during a medical therapeutic experiment. We retrospectively analysed the records of twenty-eight patients aged 1-18 years (median age 4 years) recruited in daily clinical practice. Each patient received 0.9-5.0 × 106 WJ-MSCs/kg (median 2.6 × 106 WJ-MSCs/kg) administered in 1-5 injections as an experimental treatment for SB (allogenic administration). All the patients were examined by the same neurologist (study investigator, SI) on the day of each infusion. Based on the neurological examination, the SI used a six-point Likert scale to assess the quality of life and self-service of each patient. Twenty-six follow-up observations after MSC administration were analysed retrospectively. In addition, the assessments of the parents and other healthcare professionals were obtained for 5 patients and compared with the SI's assessment. Twenty-one of 26 patients (81%) experienced some improvement in their health status. Twenty-one (81%) patients experienced increased quality of life (median 2.0) and 10 patients (38%) achieved a slight increase in their self-service level (median 1). Improvement was achieved in 12 out of 17 areas. Five were significant in low-power sign test: muscle tension, muscle strength, gross motor development, micturition/defecation control, and cognitive functions. Adverse events were mild and temporary. Age, body mass, single dose or poor response after the first administration were not significant predictors of later response to treatment in contrast to the total cell dose per one kg in the whole treatment course. WJ-MSC administration is a safe and effective procedure that improves motor functions, micturition/defecation control, and cognitive functions, and improves the quality of life in children with SB.
Collapse
Affiliation(s)
- Dariusz Boruczkowski
- Medical Department, Polski Bank Komórek Macierzystych S.A. (FamiCord Group), Jana Pawła II 29, 00-867, Warsaw, Poland.
| | - Izabela Zdolińska-Malinowska
- Medical Department, Polski Bank Komórek Macierzystych S.A. (FamiCord Group), Jana Pawła II 29, 00-867, Warsaw, Poland
| |
Collapse
|
33
|
Equol’s efficacy is greater than astaxanthin for antioxidants, extracellular matrix integrity & breakdown, growth factors and inflammatory biomarkers via human skin gene expression analysis. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.03.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
34
|
El-Gazar AA, Soubh AA, Mohamed EA, Awad AS, El-Abhar HS. Morin post-treatment confers neuroprotection in a novel rat model of mild repetitive traumatic brain injury by targeting dementia markers, APOE, autophagy and Wnt/β-catenin signaling pathway. Brain Res 2019; 1717:104-116. [DOI: 10.1016/j.brainres.2019.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/19/2019] [Accepted: 04/03/2019] [Indexed: 02/07/2023]
|
35
|
Lin GJ, Wu CH, Yu CC, Lin JR, Liu XD, Chen YW, Chang HM, Hong ZJ, Cheng CP, Sytwu HK, Huang SH. Adoptive transfer of DMSO-induced regulatory T cells exhibits a similar preventive effect compared to an in vivo DMSO treatment for chemical-induced experimental encapsulating peritoneal sclerosis in mice. Toxicol Appl Pharmacol 2019; 378:114641. [PMID: 31254568 DOI: 10.1016/j.taap.2019.114641] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 11/29/2022]
Abstract
Encapsulating peritoneal sclerosis (EPS) is a severe complication of peritoneal dialysis (PD). This disease leads to intestinal obstruction with or without peritonitis. The imbalance between the populations of Th17 and regulatory T (Treg) cells (higher Th17 cells and lower Treg cells) is part of the pathogenesis of EPS formation. We demonstrated that dimethyl sulfoxide (DMSO) effectively inhibited autoimmune diabetes recurrence in the islet transplantation of NOD mice via the induction of the differentiation of Treg cells. In this study, we investigated the therapeutic potential of DMSO in the inhibition of EPS formation by a mouse model. Under DMSO treatment, the thickening of the parietal and visceral peritoneum was significantly reduced. The populations of CD4, CD8, and IFN-γ-producing CD4 and CD8 T cells were decreased. The populations of IL-4-producing CD4 T lymphocytes, IL-10-producing CD4 T lymphocytes, CD4 CD69 T lymphocytes and Treg lymphocytes were increased. The expression levels of the cytokines IFN-γ, IL-17a, TNF-α and IL-23, in ascites, were significantly decreased following the DMSO treatment. Furthermore, the differentiation of Treg cells was induced by DMSO from naïve CD4 T cells in vitro, and these cells were adoptively transferred into the EPS mice and significantly prevented EPS formation, exhibiting a comparable effect to the in vivo DMSO treatment. We also demonstrated that the differentiation of Treg cells by DMSO occurred via the activation of STAT5 by its epigenetic effect, without altering the PI3K-AKT-mTOR or Raf-ERK pathways. Our results demonstrated, for the first time, that in vivo DMSO treatment suppresses EPS formation in a mouse model. Furthermore, the adoptive transfer of Treg cells that were differentiated from naïve CD4 T cells by an in vitro DMSO treatment exhibited a similar effect to the in vivo DMSO treatment for the prevention of EPS formation.
Collapse
Affiliation(s)
- Gu-Jiun Lin
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chih-Hsiung Wu
- Department of General Surgery, En Chu Kong Hospital, New Taipei, Taiwan, Republic of China
| | - Chiao-Chi Yu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, Republic of China; Department of General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Jeng-Rong Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Xiao-Dong Liu
- Department of General Surgery, En Chu Kong Hospital, New Taipei, Taiwan, Republic of China
| | - Yuan-Wu Chen
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan, Republic of China; Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Hao-Ming Chang
- Department of General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Zhi-Jie Hong
- Department of General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chia-Pi Cheng
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan, Republic of China; Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Shing-Hwa Huang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, Republic of China; Department of General Surgery, En Chu Kong Hospital, New Taipei, Taiwan, Republic of China; Department of General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China.
| |
Collapse
|
36
|
Calcineurin is involved in retrieval of passive avoidance memory and synaptic plasticity impairment induced by Nandrolone administration in adolescent male rats. Neurobiol Learn Mem 2019; 163:107032. [PMID: 31173920 DOI: 10.1016/j.nlm.2019.107032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/20/2019] [Accepted: 06/03/2019] [Indexed: 11/20/2022]
Abstract
In spite of evidence about negative effects of Nandrolone Decanoate (ND) on cognitive and memory performance, the underlying mechanisms are complex and have remained unclear. This research examines the role of Calcineurin in synaptic plasticity and memory storage impairment in ND administrated adolescent male rats. For behavioral study by passive avoidance learning and memory (PAL), adolescent male rats were treated with ND or ND plus selective Calcineurin antagonist (Tacrolimus), before retention test. ND significantly decreased the retrieval of PAL, whereas Tacrolimus plus ND had no significant effect on PAL. For electrophysiological study hippocampal slices were perfused by ND or ND plus Tacrolimus. The magnitude of fEPSP-LTP of ND perfused slices was less than the control and a reduction of fEPSP-PS (E-S) coupling was observed, while pre-administration of Tacrolimus abolished the ND impairment effect on fEPSP-LTP and E-S coupling. This study showed that ND may induce impairing effects on hippocampal area CA1 activity and plasticity and PAL memory storage through changes in the function of the Calcineurin.
Collapse
|
37
|
Pelletier JS, Devine J, Capriotti K, Barone SB, Capriotti JA. Topical application of povidone-iodine/dimethylsulfoxide ophthalmic gel preparation in Dutch-Belted rabbits. Cutan Ocul Toxicol 2019; 38:221-226. [DOI: 10.1080/15569527.2019.1579225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Welzel L, Twele F, Schidlitzki A, Töllner K, Klein P, Löscher W. Network pharmacology for antiepileptogenesis: Tolerability and neuroprotective effects of novel multitargeted combination treatments in nonepileptic vs. post-status epilepticus mice. Epilepsy Res 2019; 151:48-66. [PMID: 30831337 DOI: 10.1016/j.eplepsyres.2019.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/06/2019] [Accepted: 02/23/2019] [Indexed: 01/08/2023]
Abstract
Network-based approaches in drug discovery comprise both development of novel drugs interacting with multiple targets and repositioning of drugs with known targets to form novel drug combinations that interact with cellular or molecular networks whose function is disturbed in a disease. Epilepsy is a complex network phenomenon that, as yet, cannot be prevented or cured. We recently proposed multitargeted, network-based approaches to prevent epileptogenesis by combinations of clinically available drugs chosen to impact diverse epileptogenic processes. In order to test this strategy preclinically, we developed a multiphase sequential study design for evaluating such drug combinations in rodents, derived from human clinical drug development phases. Because pharmacokinetics of such drugs are known, only the tolerability of novel drug combinations needs to be evaluated in Phase I in öhealthy" controls. In Phase IIa, tolerability is assessed following an epileptogenic brain insult, followed by antiepileptogenic efficacy testing in Phase IIb. Here, we report Phase I and Phase IIa evaluation of 7 new drug combinations in mice, using 10 drugs (levetiracetam, topiramate, gabapentin, deferoxamine, fingolimod, ceftriaxone, α-tocopherol, melatonin, celecoxib, atorvastatin) with diverse mechanisms thought to be important in epileptogenesis. Six of the 7 drug combinations were well tolerated in mice during prolonged treatment at the selected doses in both controls and during the latent phase following status epilepticus induced by intrahippocampal kainate. However, none of the combinations prevented hippocampal damage in response to kainate, most likely because treatment started only 16-18 h after kainate. This suggests that antiepileptogenic or disease-modifying treatment may need to start earlier after the brain insult. The present data provide a rich collection of tolerable, network-based combinatorial therapies as a basis for antiepileptogenic or disease-modifying efficacy testing.
Collapse
Affiliation(s)
- Lisa Welzel
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Friederike Twele
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Alina Schidlitzki
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Kathrin Töllner
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD 20817, USA
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany.
| |
Collapse
|
39
|
Wolf A, Thakral S, Mulier KE, Suryanarayanan R, Beilman GJ. Evaluation of novel formulations of d-β-hydroxybutyrate and melatonin in a rat model of hemorrhagic shock. Int J Pharm 2018; 548:104-112. [DOI: 10.1016/j.ijpharm.2018.06.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/03/2018] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
|
40
|
Neuroprotective Action of the CB1/2 Receptor Agonist, WIN 55,212-2, against DMSO but Not Phenobarbital-Induced Neurotoxicity in Immature Rats. Neurotox Res 2018; 35:173-182. [PMID: 30141144 DOI: 10.1007/s12640-018-9944-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/30/2018] [Accepted: 08/02/2018] [Indexed: 01/14/2023]
Abstract
The developing brain is uniquely susceptible to drug-induced increases in programmed cell death or apoptosis. Many compounds, including anticonvulsant drugs, anesthetic agents, and ethanol, when administered in a narrow postnatal window in rodents, result in increased pruning of neurons. Here, we report that dimethyl sulfoxide (DMSO) triggers widespread neurodegeneration in the immature (postnatal day, P7) rat brain, an effect consistent with a prior report in neonatal mice. We found that the synthetic cannabinoid receptor agonist WIN 55,212-2 (WIN) exerts a neuroprotective effect against DMSO-induced cell death. We extended these findings to determine if WIN is neuroprotective against another drug class known to increase developmental cell death, namely antiseizure drugs. The antiseizure drug phenobarbital (PB) remains the primary treatment for neonatal seizures, despite significantly increasing cell death in the developing rodent brain. WIN exerts antiseizure effects in immature rodent seizure models, but increases the toxicity associated with neonatal ethanol exposure. We thus sought to determine if WIN would protect against or exacerbate PB-induced cell death. Unlike either the prior report with ethanol or our present findings with DMSO, WIN was largely without effect on PB-induced cell death. WIN alone did not increase cell death over levels observed in vehicle-treated rats. These data suggest that WIN has a favorable safety profile in the developing brain and could potentially serve as an adjunct therapy with phenobarbital (albeit one that does not attenuate PB-induced toxicity).
Collapse
|
41
|
Yang C, Tang H, Wang L, Peng R, Bai F, Shan Y, Yu Z, Zhou P, Cong Y. Dimethyl Sulfoxide Prevents Radiation-Induced Oral Mucositis Through Facilitating DNA Double-Strand Break Repair in Epithelial Stem Cells. Int J Radiat Oncol Biol Phys 2018; 102:1577-1589. [PMID: 30092334 DOI: 10.1016/j.ijrobp.2018.07.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 11/25/2022]
Abstract
PURPOSE Oral mucositis is one of the most prevalent side effects in patients undergoing radiation therapy for head and neck cancers. Current therapeutic agents such as palifermin recombinant human keratinocyte growth factor and amifostine do not efficiently or fully prevent mucositis. Dimethyl sulfoxide (DMSO), a free-radical scavenger, has shown therapeutic benefits in many preclinical and clinical studies. This study aimed to investigate the efficacy of DMSO in a clinically relevant mouse model of acute, radiation-induced oral mucositis. METHODS AND MATERIALS Oral mucositis was induced by a high single and fractioned irradiation of the head and neck area in C57BL/6J mice, and the effects of DMSO (by intraperitoneal injection) were assessed by macroscopic and histopathological examination. Epithelial stem and progenitor cells were analyzed by immunohistochemical staining of p63 and Ki-67, and DNA double-strand breaks (DSBs) were visualized by immunofluorescence detection of γ-H2AX. Tumor xenograft was obtained using CAL-27 cells. RESULTS Pretreatment with DMSO protected the oral mucosa from severe acute radiation injury, reduced the extent of radiation-induced weight loss, and had no significant effects on tumor weight in irradiated or nonirradiated xenograft mice. Furthermore, the efficacy of DMSO was superior to that of recombinant human keratinocyte growth factor and amifostine. DMSO treatment prevented the loss of proliferative lingual epithelial stem and progenitor cells upon irradiation. More interestingly, the average levels of γ-H2AX foci were significantly decreased in p63-positive epithelial stem cells at 6 hours, but not at 2 hours, after irradiation, indicating that DMSO facilitated DNA DSB repair rather than suppressing the indirect action of irradiation. CONCLUSIONS DMSO prevents the loss of proliferative lingual epithelial stem and progenitor cells upon irradiation by facilitating DNA DSB repair, thereby protecting against radiation-induced mucositis without tumor protection. Given its high efficacy and low toxicity, DMSO could be a potential treatment option to prevent radiation-induced oral mucositis.
Collapse
Affiliation(s)
- Chao Yang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu, PR China; Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing Key Laboratory for Radiobiology, Beijing, PR China
| | - Hongwei Tang
- Department of Gastroenterology, Hospital of Tsinghua Changgung, Beijing, PR China
| | - Limei Wang
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing Key Laboratory for Radiobiology, Beijing, PR China
| | - Renjun Peng
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing Key Laboratory for Radiobiology, Beijing, PR China
| | - Fan Bai
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing Key Laboratory for Radiobiology, Beijing, PR China
| | - Yajun Shan
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing Key Laboratory for Radiobiology, Beijing, PR China
| | - Zuyin Yu
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing Key Laboratory for Radiobiology, Beijing, PR China
| | - Pingkun Zhou
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu, PR China; Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing, PR China.
| | - Yuwen Cong
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing Key Laboratory for Radiobiology, Beijing, PR China.
| |
Collapse
|
42
|
Kumari P, Singh N, Saha L. Potentiation of pentylenetetrazole-induced neuronal damage by dimethyl sulfoxide in chemical kindling model in rats. Indian J Pharmacol 2018; 50:84-87. [PMID: 30100656 PMCID: PMC6044133 DOI: 10.4103/ijp.ijp_559_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 05/07/2018] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES Dimethyl sulfoxide (DMSO) is commonly used as a vehicle for many hydrophobic drugs. This study aimed at evaluating the effect of low dose of DMSO (0.1%) on Pentylenetetrazole(PTZ) induced neuronal damage in rats. MATERIALS AND METHODS Young male Wistar rats (n = 32) were divided into four groups as follows: saline control group, DMSO control group, PTZ group (35 mg/kg), and combination group (DMSO + PTZ). Animals were observed for seizure score, latency to develop kindling, percentage of animals kindled, and histopathological score of hippocampus. RESULTS There was a significant increase in the seizure scores and histopathological scores in the combination group as compared to PTZ-treated group. The latency to develop kindling was, however, decreased in the combination group (4th week) as compared to PTZ (6th week) group. CONCLUSIONS The present study has concluded that 0.1% DMSO in PTZ-induced rat model of epileptogenesis needs further optimization and should be used cautiously.
Collapse
Affiliation(s)
- Puja Kumari
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Neha Singh
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Lekha Saha
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
43
|
Smith NA, Kress BT, Lu Y, Chandler-Militello D, Benraiss A, Nedergaard M. Fluorescent Ca 2+ indicators directly inhibit the Na,K-ATPase and disrupt cellular functions. Sci Signal 2018; 11:11/515/eaal2039. [PMID: 29382785 DOI: 10.1126/scisignal.aal2039] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Fluorescent Ca2+ indicators have been essential for the analysis of Ca2+ signaling events in various cell types. We showed that chemical Ca2+ indicators, but not a genetically encoded Ca2+ indicator, potently suppressed the activity of Na+- and K+-dependent adenosine triphosphatase (Na,K-ATPase), independently of their Ca2+ chelating activity. Loading of commonly used Ca2+ indicators, including Fluo-4 acetoxymethyl (AM), Rhod-2 AM, and Fura-2 AM, and of the Ca2+ chelator BAPTA AM into cultured mouse or human neurons, astrocytes, cardiomyocytes, or kidney proximal tubule epithelial cells suppressed Na,K-ATPase activity by 30 to 80%. Ca2+ indicators also suppressed the agonist-induced activation of the Na,K-ATPase, altered metabolic status, and caused a dose-dependent loss of cell viability. Loading of Ca2+ indicators into mice, which is carried out for two-photon imaging, markedly altered brain extracellular concentrations of K+ and ATP. These results suggest that a critical review of data obtained with chemical Ca2+ indicators may be necessary.
Collapse
Affiliation(s)
- Nathan A Smith
- Center for Translational Neuromedicine, Departments of Neurosurgery and Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA.,Center for Neuroscience Research, Children's Research Institute, Children's National Health System, Washington, DC 20010, USA
| | - Benjamin T Kress
- Center for Translational Neuromedicine, Departments of Neurosurgery and Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yuan Lu
- Center for Translational Neuromedicine, Departments of Neurosurgery and Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Devin Chandler-Militello
- Center for Translational Neuromedicine, Departments of Neurosurgery and Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Abdellatif Benraiss
- Center for Translational Neuromedicine, Departments of Neurosurgery and Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Departments of Neurosurgery and Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
44
|
|
45
|
Misuri L, Cappiello M, Balestri F, Moschini R, Barracco V, Mura U, Del-Corso A. The use of dimethylsulfoxide as a solvent in enzyme inhibition studies: the case of aldose reductase. J Enzyme Inhib Med Chem 2017; 32:1152-1158. [PMID: 28856935 PMCID: PMC6009938 DOI: 10.1080/14756366.2017.1363744] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/21/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022] Open
Abstract
Aldose reductase (AR) is an enzyme devoted to cell detoxification and at the same time is strongly involved in the aetiology of secondary diabetic complications and the amplification of inflammatory phenomena. AR is subjected to intense inhibition studies and dimethyl sulfoxide (DMSO) is often present in the assay mixture to keep the inhibitors in solution. DMSO was revealed to act as a weak but well detectable AR differential inhibitor, acting as a competitive inhibitor of the L-idose reduction, as a mixed type of non-competitive inhibitor of HNE reduction and being inactive towards 3-glutathionyl-4-hydroxynonanal transformation. A kinetic model of DMSO action with respect to differently acting inhibitors was analysed. Three AR inhibitors, namely the flavonoids neohesperidin dihydrochalcone, rutin and phloretin, were used to evaluate the effects of DMSO on the inhibition studies on the reduction of L-idose and HNE.
Collapse
Affiliation(s)
- Livia Misuri
- Department of Biology, Biochemistry Unit, University of Pisa, Pisa, Italy
- Tuscany Region PhD School in Biochemistry and Molecular Biology, Italy
| | - Mario Cappiello
- Department of Biology, Biochemistry Unit, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| | - Francesco Balestri
- Department of Biology, Biochemistry Unit, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| | - Roberta Moschini
- Department of Biology, Biochemistry Unit, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| | - Vito Barracco
- Department of Biology, Biochemistry Unit, University of Pisa, Pisa, Italy
- Tuscany Region PhD School in Biochemistry and Molecular Biology, Italy
| | - Umberto Mura
- Department of Biology, Biochemistry Unit, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| | - Antonella Del-Corso
- Department of Biology, Biochemistry Unit, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| |
Collapse
|
46
|
Attenuation of Multiple Organ Damage by Continuous Low-Dose Solvent-Free Infusions of Resveratrol after Severe Hemorrhagic Shock in Rats. Nutrients 2017; 9:nu9080889. [PMID: 28817064 PMCID: PMC5579682 DOI: 10.3390/nu9080889] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 01/05/2023] Open
Abstract
Therapeutic effects of continuous intravenous infusions of solvent-free low doses of resveratrol on organ injury and systemic consequences resulting from severe hemorrhagic shock in rats were studied. Hemorrhagic shock was induced by withdrawing arterial blood until a mean arterial blood pressure (MAP) of 25-30 mmHg was reached. Following a shock phase of 60 min, rats were resuscitated with the withdrawn blood plus lactated Ringer's. Resveratrol (20 or 60 μg/kg × h) was continuously infused intravenously starting with the resuscitation phase (30 min) and continued until the end of the experiment (total treatment time 180 min). Animals of the shock control group received 0.9% NaCl solution. After the observation phase (150 min), rats were sacrificed. Resveratrol significantly stabilized the MAP and peripheral oxygen saturation after hemorrhagic shock, decreased the macroscopic injury of the small intestine, significantly attenuated the shock-induced increase in tissue myeloperoxidase activity in the small intestine, liver, kidney and lung, and diminished tissue hemorrhages (particularly in the small intestine and liver) as well as the rate of hemolysis. Already very low doses of resveratrol, continuously infused during resuscitation after severe hemorrhagic shock, can significantly improve impaired systemic parameters and attenuate multiple organ damage in rats.
Collapse
|
47
|
Lephart ED, Andrus MB. Human skin gene expression: Natural (trans) resveratrol versus five resveratrol analogs for dermal applications. Exp Biol Med (Maywood) 2017; 242:1482-1489. [PMID: 28750552 DOI: 10.1177/1535370217723628] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Resveratrol (RV) is a polyphenolic compound naturally produced by plants. Polyphenolic compounds incorporated into medicinal products are beneficial but, RV is rapidly metabolized with an associated decline in biological activity. This study tested RV as the standard and compared five structurally modified RV analogs: butyrate, isobutyrate, palmitoate, acetate, and diacetate (to improve functionality) at 1% concentration(s) for 24 h in epiderm full thickness cultures by gene array/qPCR mRNA analysis. When silent mating type information regulation 2 homolog 1, extracellular elements (collagen1A1, 3A1, 4A1; elastin, tissue inhibitor of matrix metalloproteinase 1, fibrillin 1 laminin beta1 and matrix metalloproteinase 9), anti-aging and aging genes, inflammatory biomarkers (interleukin-1A [IL1A], IL1R2, IL-6 and IL-8), nerve growth factor, and the antioxidants (proliferating cell nuclear antigen, catalase, superoxide dismutase and metallothionein 1H/2H) were evaluated, ranking each from highest-to-lowest for gene expression: butyrate > isobutyrate > diacetate > acetate > palmitoate. This study showed that the butyrate and isobutyrate analogs are more biologically active compared to resveratrol and have potential use in topical applications to improve dermal and other health applications. Impact statement Resveratrol has been reported to have a wide variety of health benefits but its rapid metabolism especially after oral ingestion results in very low bioavailability. Notably, the first human skin gene expression study of resveratrol was not published until 2014. The purpose of this study was to determine if increased stability and biological activity could be obtained by modifying the chemical structure of natural (trans) resveratrol and quantifying human gene expression by qPCR of skin biomarkers that enhance dermal health. Five resveratrol analogs were synthesized that increased their lipophilic index to enhance tissue penetration and augment biological activities on the measured parameters that expand the current knowledge of structure/function relationships. The butyrate and isobutyrate modifications displayed gene expression values significantly above resveratrol and suggest that oral application of these and potentially other resveratrol analogs may yield similar results to improve stability and biological activity to benefit/address various disorders/diseases.
Collapse
Affiliation(s)
- Edwin D Lephart
- 1 Department of Physiology & Developmental Biology, Brigham Young University, Provo, UT 84602, USA.,2 The Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| | - Merritt B Andrus
- 3 Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
48
|
Lisi L, Pizzoferrato M, Miscioscia FT, Topai A, Navarra P. Interactions between integrase inhibitors and human arginase 1. J Neurochem 2017; 142:153-159. [PMID: 28397245 DOI: 10.1111/jnc.14039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/03/2017] [Indexed: 12/27/2022]
Abstract
The neuro-pathogenic mechanism(s) underlying HIV-associated neurocognitive disorders are mostly unknown. HIV-infected macrophages and microglial cells play a crucial role and the metabolic fate of l-arginine may be highly relevant to microglia activation. In this context, arginase (ARG), which uses l-arginine as substrate, can be on the same time a target and source of oxidative stress and inflammation. In this study, we investigated whether integrase strand transfer inhibitors share with the other antiretroviral drugs the ability to inhibit ARG activity. We used the previously validated cell model, namely the human microglia cell line, as well as the computational chemistry approach. Furthermore, here we characterized the activity of purified human ARG in a cell-free in vitro system, and investigated the effects of integrase strand transfer inhibitors in this newly validated model. Overall evidence shows that Dolutegravir, Raltegravir and Elvitegravir inhibit ARG activity.
Collapse
Affiliation(s)
- Lucia Lisi
- Institute of Pharmacology, Catholic University Medical School, Rome, Italy
| | | | | | - Alessandra Topai
- Colosseum Combinatorial Chemistry Centre for Technology, Rome, Italy
| | - Pierluigi Navarra
- Institute of Pharmacology, Catholic University Medical School, Rome, Italy
| |
Collapse
|
49
|
Differential Roles for L-Type Calcium Channel Subtypes in Alcohol Dependence. Neuropsychopharmacology 2017; 42:1058-1069. [PMID: 27905406 PMCID: PMC5506795 DOI: 10.1038/npp.2016.266] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 11/24/2016] [Accepted: 11/25/2016] [Indexed: 12/14/2022]
Abstract
It has previously been shown that the inhibition of L-type calcium channels (LTCCs) decreases alcohol consumption, although the contribution of the central LTCC subtypes Cav1.2 and Cav1.3 remains unknown. Here, we determined changes in Cav1.2 (Cacna1c) and Cav1.3 (Cacna1d) mRNA and protein expression in alcohol-dependent rats during protracted abstinence and naive controls using in situ hybridization and western blot analysis. Functional validation was obtained by electrophysiological recordings of calcium currents in dissociated hippocampal pyramidal neurons. We then measured alcohol self-administration and cue-induced reinstatement of alcohol seeking in dependent and nondependent rats after intracerebroventricular (i.c.v.) injection of the LTCC antagonist verapamil, as well as in mice with an inducible knockout (KO) of Cav1.2 in Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα)-expressing neurons. Our results show that Cacna1c mRNA concentration was increased in the amygdala and hippocampus of alcohol-dependent rats after 21 days of abstinence, with no changes in Cacna1d mRNA. This was associated with increased Cav1.2 protein concentration and L-type calcium current amplitudes. Further analysis of Cacna1c mRNA in the CA1, basolateral amygdala (BLA), and central amygdala (CeA) revealed a dynamic regulation over time during the development of alcohol dependence. The inhibition of central LTCCs via i.c.v. administration of verapamil prevented cue-induced reinstatement of alcohol seeking in alcohol-dependent rats. Further studies in conditional Cav1.2-KO mice showed a lack of dependence-induced increase of alcohol-seeking behavior. Together, our data indicate that central Cav1.2 channels, rather than Cav1.3, mediate alcohol-seeking behavior. This finding may be of interest for the development of new antirelapse medications.
Collapse
|
50
|
Akinci B, Sankella S, Gilpin C, Ozono K, Garg A, Agarwal AK. Progeroid syndrome patients with ZMPSTE24 deficiency could benefit when treated with rapamycin and dimethylsulfoxide. Cold Spring Harb Mol Case Stud 2016; 3:a001339. [PMID: 28050601 PMCID: PMC5171694 DOI: 10.1101/mcs.a001339] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Patients with progeroid syndromes such as mandibuloacral dysplasia, type B (MADB) and restrictive dermopathy (RD) harbor mutations in zinc metalloproteinase (ZMPSTE24), an enzyme essential for posttranslational proteolysis of prelamin A to form mature lamin A. Dermal fibroblasts from these patients show increased nuclear dysmorphology and reduced proliferation; however, the efficacy of various pharmacological agents in reversing these cellular phenotypes remains unknown. In this study, fibroblasts from MADB patients exhibited marked nuclear abnormalities and reduced proliferation that improved upon treatment with rapamycin and dimethylsulfoxide but not with other agents, including farnesyl transferase inhibitors. Surprisingly, fibroblasts from an RD patient with a homozygous null mutation in ZMPSTE24, resulting in exclusive accumulation of prelamin A with no lamin A on immunoblotting of cellular lysate, exhibited few nuclear abnormalities and near-normal cellular proliferation. An unbiased proteomic analysis of the cellular lysate from RD fibroblasts revealed a lack of processing of vimentin, a cytoskeletal protein. Interestingly, the assembly of the vimentin microfibrils in MADB fibroblasts improved with rapamycin and dimethylsulfoxide. We conclude that rapamycin and dimethylsulfoxide are beneficial for improving nuclear morphology and cell proliferation of MADB fibroblasts. Data from a single RD patient's fibroblasts also suggest that prelamin A accumulation by itself might not be detrimental and requires additional alterations at the cellular level to manifest the phenotype.
Collapse
Affiliation(s)
- Baris Akinci
- Division of Nutrition and Metabolic Diseases, Center for Human Nutrition, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Shireesha Sankella
- Division of Nutrition and Metabolic Diseases, Center for Human Nutrition, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Christopher Gilpin
- Molecular and Cellular Imaging, Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Abhimanyu Garg
- Division of Nutrition and Metabolic Diseases, Center for Human Nutrition, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Anil K Agarwal
- Division of Nutrition and Metabolic Diseases, Center for Human Nutrition, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|