1
|
Almilaibary A. Phyto-therapeutics as anti-cancer agents in breast cancer: Pathway targeting and mechanistic elucidation. Saudi J Biol Sci 2024; 31:103935. [PMID: 38327657 PMCID: PMC10847379 DOI: 10.1016/j.sjbs.2024.103935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 02/09/2024] Open
Abstract
Cancer of the breast is the mainly prevalent class of cancer in females diagnosed over the globe. It also happens to be the 2nd most prevalent reason of cancer-related deaths among females worldwide. Some of the most common type's therapies for carcinoma of the breast involve radiation therapy, chemotherapy, and resection. Many studies are being conducted to develop new therapeutic strategies for better diagnosis of breast cancer. An enormous number of anticancer medications have been developed as a result of growing understanding of the molecular pathways behind the advancement of cancer. Over the past few decades, the general survival rate has not greatly increased due to the usage of chemically manufactured medications. Therefore, in order to increase the effectiveness of current cancer treatments, new tactics and cutting-edge chemoprevention drugs are required. Phytochemicals, which are naturally occurring molecules derived from plants, are important sources for both cancer therapy and innovative medication development. These phytochemicals frequently work by controlling molecular pathways linked to the development and spread of cancer. Increasing antioxidant status, inactivating carcinogens, preventing proliferation, causing cell cycle arrest and apoptosis, and immune system control are some of the specific ways. This primary objective of this review is to provide an overview of the active ingredients found in natural goods, including information on their pharmacologic action, molecular targets, and current state of knowledge. We have given a thorough description of a number of natural substances that specifically target the pathways linked to breast carcinoma in this study. We've conducted a great deal of study on a few natural compounds that may help us identify novel targets for the detection of breast carcinoma.
Collapse
Affiliation(s)
- Abdullah Almilaibary
- Department of Family and Community Medicine, Faculty of Medicine, Albaha University, Albaha, Saudi Arabia
| |
Collapse
|
2
|
Zhang Q, Yuan Y, Cao S, Kang N, Qiu F. Withanolides: Promising candidates for cancer therapy. Phytother Res 2024; 38:1104-1158. [PMID: 38176694 DOI: 10.1002/ptr.8090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
Natural products have played a significant role throughout history in the prevention and treatment of numerous diseases, particularly cancers. As a natural product primarily derived from various medicinal plants in the Withania genus, withanolides have been shown in several studies to exhibit potential activities in cancer treatment. Consequently, understanding the molecular mechanism of withanolides could herald the discovery of new anticancer agents. Withanolides have been studied widely, especially in the last 20 years, and attracted the attention of numerous researchers. Currently, over 1200 withanolides have been classified, with approximately a quarter of them having been reported in the literature to be able to modulate the survival and death of cancer cells through multiple avenues. To what extent, though, has the anticancer effects of these compounds been studied? How far are they from being developed into clinical drugs? What are their potential, characteristic features, and challenges? In this review, we elaborate on the current knowledge of natural compounds belonging to this class and provide an overview of their natural sources, anticancer activity, mechanism of action, molecular targets, and implications for anticancer drug research. In addition, direct targets and clinical research to guide the design and implementation of future preclinical and clinical studies to accelerate the application of withanolides have been highlighted.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - YongKang Yuan
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Shijie Cao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Ning Kang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Feng Qiu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|
3
|
Zhang Z, Yang Y, Xu Y, Liu Y, Li H, Chen L. Molecular targets and mechanisms of anti-cancer effects of withanolides. Chem Biol Interact 2023; 384:110698. [PMID: 37690745 DOI: 10.1016/j.cbi.2023.110698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/18/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Withanolides are a class of natural products with a steroidal lactone structure that exhibit a broad spectrum of anti-cancer effects. To date, several studies have shown that their possible mechanisms in cancer development and progression are associated with the regulation of cell proliferation, apoptosis, metastasis, and angiogenesis. Withanolides can also attenuate inflammatory responses, as well as modulate the genomic instability and energy metabolism of cancer cells. In addition, they may improve the safety and efficacy of cancer treatments as adjuvants to traditional cancer therapeutics. Herein, we summarize the molecular targets and mechanisms of withanolides in different cancers, as well as their current clinical studies on them.
Collapse
Affiliation(s)
- Zhiruo Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yueying Yang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Xu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Liu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
4
|
Xing Z, Su A, Mi L, Zhang Y, He T, Qiu Y, Wei T, Li Z, Zhu J, Wu W. Withaferin A: A Dietary Supplement with Promising Potential as an Anti-Tumor Therapeutic for Cancer Treatment - Pharmacology and Mechanisms. Drug Des Devel Ther 2023; 17:2909-2929. [PMID: 37753228 PMCID: PMC10519218 DOI: 10.2147/dddt.s422512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023] Open
Abstract
Cancer, as the leading cause of death worldwide, poses a serious threat to human health, making the development of effective tumor treatments a significant challenge. Natural products continue to serve as crucial resources for drug discovery. Among them, Withaferin A (WA), the most active phytocompound extracted from the renowned dietary supplement Withania somnifera (L.) Dunal, exhibits remarkable anti-tumor efficacy. In this manuscript, we aim to comprehensively summarize the pharmacological characteristics of WA as a potential anti-tumor drug candidate, with the objective of contributing to its further development and the discovery of prospective drugs. Through an extensive review of literature from PubMed, Science Direct, and Web of Science, we have gathered substantial evidence showcasing WA's significant anti-tumor effects against a wide range of cancers in both in vitro and in vivo studies. Mechanistically, WA exerts its anti-tumor influence by inducing cell cycle arrest, apoptosis, autophagy, and ferroptosis. Additionally, it inhibits cell proliferation, cancer stem cells, tumor metastasis, and also suppresses epithelial-mesenchymal transition (EMT) and angiogenesis. Several studies have identified direct target proteins of WA, such as vimentin, Hsp90, annexin II and mFAM72A, while BCR-ABL, Mortalin (mtHsp70), Nrf2, and c-MYB are potential targets of WA. Notwithstanding its remarkable anti-tumor efficacy, there are some limitations associated with WA, including potential toxicity and poor oral bioavailability, which need to be addressed when considering it as an anti-tumor candidate agent. Nevertheless, I given its promising anti-tumor attributes, WA remains an encouraging candidate for future drug development. Unveiling the exact target and comprehensive mechanism of WA's action represents a crucial research direction to pursue in the future.
Collapse
Affiliation(s)
- Zhichao Xing
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Anping Su
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Li Mi
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Yujie Zhang
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Ting He
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Yuxuan Qiu
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Tao Wei
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Zhihui Li
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Jingqiang Zhu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
5
|
Biswas D, Chakraborty A, Mukherjee S, Ghosh B. Hairy root culture: a potent method for improved secondary metabolite production of Solanaceous plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1197555. [PMID: 37731987 PMCID: PMC10507345 DOI: 10.3389/fpls.2023.1197555] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/13/2023] [Indexed: 09/22/2023]
Abstract
Secondary metabolites synthesized by the Solanaceous plants are of major therapeutic and pharmaceutical importance, many of which are commonly obtained from the roots of these plants. 'Hairy roots', mirroring the same phytochemical pattern of the corresponding root of the parent plant with higher growth rate and productivity, are therefore extensively studied as an effective alternative for the in vitro production of these metabolites. Hairy roots are the transformed roots, generated from the infection site of the wounded plants with Agrobacterium rhizogenes. With their fast growth, being free from pathogen and herbicide contamination, genetic stability, and autotrophic nature for plant hormones, hairy roots are considered as useful bioproduction systems for specialized metabolites. Lately, several elicitation methods have been employed to enhance the accumulation of these compounds in the hairy root cultures for both small and large-scale production. Nevertheless, in the latter case, the cultivation of hairy roots in bioreactors should still be optimized. Hairy roots can also be utilized for metabolic engineering of the regulatory genes in the metabolic pathways leading to enhanced production of metabolites. The present study summarizes the updated and modern biotechnological aspects for enhanced production of secondary metabolites in the hairy root cultures of the plants of Solanaceae and their respective importance.
Collapse
Affiliation(s)
- Diptesh Biswas
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| | - Avijit Chakraborty
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| | - Swapna Mukherjee
- Department of Microbiology, Dinabandhu Andrews College, Kolkata, India
| | - Biswajit Ghosh
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| |
Collapse
|
6
|
Singh VK, Arora D, Ansari MI, Sharma PK. Phytochemicals based chemopreventive and chemotherapeutic strategies and modern technologies to overcome limitations for better clinical applications. Phytother Res 2019; 33:3064-3089. [DOI: 10.1002/ptr.6508] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/26/2019] [Accepted: 08/23/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Vipendra Kumar Singh
- Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology GroupCSIR‐Indian Institute of Toxicology Research Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad‐ 201002 India
| | - Deepika Arora
- Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology GroupCSIR‐Indian Institute of Toxicology Research Lucknow India
- Material and Measurement LaboratoryNational Institute of Standards and Technology Gaithersburg 20899 Maryland USA
| | - Mohammad Imran Ansari
- Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology GroupCSIR‐Indian Institute of Toxicology Research Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad‐ 201002 India
| | - Pradeep Kumar Sharma
- Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology GroupCSIR‐Indian Institute of Toxicology Research Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad‐ 201002 India
| |
Collapse
|
7
|
Kinoshita C, Aoyama K, Nakaki T. Neuroprotection afforded by circadian regulation of intracellular glutathione levels: A key role for miRNAs. Free Radic Biol Med 2018; 119:17-33. [PMID: 29198727 DOI: 10.1016/j.freeradbiomed.2017.11.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 01/17/2023]
Abstract
Circadian rhythms are approximately 24-h oscillations of physiological and behavioral processes that allow us to adapt to daily environmental cycles. Like many other biological functions, cellular redox status and antioxidative defense systems display circadian rhythmicity. In the central nervous system (CNS), glutathione (GSH) is a critical antioxidant because the CNS is extremely vulnerable to oxidative stress; oxidative stress, in turn, causes several fatal diseases, including neurodegenerative diseases. It has long been known that GSH level shows circadian rhythm, although the mechanism underlying GSH rhythm production has not been well-studied. Several lines of recent evidence indicate that the expression of antioxidant genes involved in GSH homeostasis as well as circadian clock genes are regulated by post-transcriptional regulator microRNA (miRNA), indicating that miRNA plays a key role in generating GSH rhythm. Interestingly, several reports have shown that alterations of miRNA expression as well as circadian rhythm have been known to link with various diseases related to oxidative stress. A growing body of evidence implicates a strong correlation between antioxidative defense, circadian rhythm and miRNA function, therefore, their dysfunctions could cause numerous diseases. It is hoped that continued elucidation of the antioxidative defense systems controlled by novel miRNA regulation under circadian control will advance the development of therapeutics for the diseases caused by oxidative stress.
Collapse
Affiliation(s)
- Chisato Kinoshita
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Toshio Nakaki
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| |
Collapse
|
8
|
Smolensky MH, Reinberg AE, Sackett-Lundeen L. Perspectives on the relevance of the circadian time structure to workplace threshold limit values and employee biological monitoring. Chronobiol Int 2017; 34:1439-1464. [PMID: 29215915 DOI: 10.1080/07420528.2017.1384740] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The circadian time structure (CTS) and its disruption by rotating and nightshift schedules relative to work performance, accident risk, and health/wellbeing have long been areas of occupational medicine research. Yet, there has been little exploration of the relevance of the CTS to setting short-term, time-weighted, and ceiling threshold limit values (TLVs); conducting employee biological monitoring (BM); and establishing normative reference biological exposure indices (BEIs). Numerous publications during the past six decades document the CTS substantially affects the disposition - absorption, distribution, metabolism, and elimination - and effects of medications. Additionally, laboratory animal and human studies verify the tolerance to chemical, biological (contagious), and physical agents can differ extensively according to the circadian time of exposure. Because of slow and usually incomplete CTS adjustment by rotating and permanent nightshift workers, occupational chemical and other contaminant encounters occur during a different circadian stage than for dayshift workers. Thus, the intended protection of some TLVs when working the nightshift compared to dayshift might be insufficient, especially in high-risk settings. The CTS is germane to employee BM in that large-amplitude predictable-in-time 24h variation can occur in the concentration of urine, blood, and saliva of monitored chemical contaminants and their metabolites plus biomarkers indicative of adverse xenobiotic exposure. The concept of biological time-qualified (for rhythms) reference values, currently of interest to clinical laboratory pathology practice, is seemingly applicable to industrial medicine as circadian time and workshift-specific BEIs to improve surveillance of night workers, in particular. Furthermore, BM as serial assessments performed frequently both during and off work, exemplified by employee self-measurement of lung function using a small portable peak expiratory flow meter, can easily identify intolerance before induction of pathology.
Collapse
Affiliation(s)
- Michael H Smolensky
- a Department of Biomedical Engineering , Cockrell School of Engineering, The University of Texas at Austin , Austin , TX , USA
| | - Alain E Reinberg
- b Unité de Chronobiologie , Fondation A. de Rothschild , Paris , France
| | - Linda Sackett-Lundeen
- c American Association for Medical Chronobiology and Chronotherapeutics , Roseville , MN , USA
| |
Collapse
|
9
|
Lee IC, Choi BY. Withaferin-A--A Natural Anticancer Agent with Pleitropic Mechanisms of Action. Int J Mol Sci 2016; 17:290. [PMID: 26959007 PMCID: PMC4813154 DOI: 10.3390/ijms17030290] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 01/01/2023] Open
Abstract
Cancer, being the second leading cause of mortality, exists as a formidable health challenge. In spite of our enormous efforts, the emerging complexities in the molecular nature of disease progression limit the real success in finding an effective cancer cure. It is now conceivable that cancer is, in fact, a progressive illness, and the morbidity and mortality from cancer can be reduced by interfering with various oncogenic signaling pathways. A wide variety of structurally diverse classes of bioactive phytochemicals have been shown to exert anticancer effects in a large number of preclinical studies. Multiple lines of evidence suggest that withaferin-A can prevent the development of cancers of various histotypes. Accumulating data from different rodent models and cell culture experiments have revealed that withaferin-A suppresses experimentally induced carcinogenesis, largely by virtue of its potent anti-oxidative, anti-inflammatory, anti-proliferative and apoptosis-inducing properties. Moreover, withaferin-A sensitizes resistant cancer cells to existing chemotherapeutic agents. The purpose of this review is to highlight the mechanistic aspects underlying anticancer effects of withaferin-A.
Collapse
Affiliation(s)
- In-Chul Lee
- Department of Cosmetic science, Seowon University, Cheongju, Chungbuk 361-742, Korea.
| | - Bu Young Choi
- Department of Pharmaceutical Science & Engineering, Seowon University, Cheongju, Chungbuk 361-742, Korea.
| |
Collapse
|
10
|
Palliyaguru DL, Singh SV, Kensler TW. Withania somnifera: From prevention to treatment of cancer. Mol Nutr Food Res 2016; 60:1342-53. [PMID: 26718910 DOI: 10.1002/mnfr.201500756] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/03/2015] [Accepted: 12/04/2015] [Indexed: 12/21/2022]
Abstract
The identification of bioactive molecules that have potential to interrupt carcinogenesis continues to garner research interest. In particular, molecules that have dietary origin are most attractive because of their safety, cost-effectiveness and feasibility of oral administration. Nutraceuticals have played an important role in the overall well-being of humans for many years, with or without rigorous evidence backing their health claims. Traditional medicine systems around the world have utilized plants that have medicinal properties for millennia, providing an opportunity for modern day researchers to assess their efficacies against ailments such as cancer. Withania somnifera (WS) is a plant that has been used in Ayurveda (an ancient form of medicine in Asia) and in the recent past, has been demonstrated to have anti-tumorigenic properties in experimental models. While scientific research performed on WS has exploded in the past decade, much regarding the mode of action and molecular targets involved remains unknown. In this review, we discuss the traditional uses of the plant, the experimental evidence supporting its chemopreventive potential as well as roadblocks that need to be overcome in order for WS to be evaluated as a chemopreventive agent in humans.
Collapse
Affiliation(s)
- Dushani L Palliyaguru
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shivendra V Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thomas W Kensler
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Vyas AR, Singh SV. Molecular targets and mechanisms of cancer prevention and treatment by withaferin a, a naturally occurring steroidal lactone. AAPS JOURNAL 2013; 16:1-10. [PMID: 24046237 DOI: 10.1208/s12248-013-9531-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 08/21/2013] [Indexed: 02/07/2023]
Abstract
The plants used in Ayurvedic medicine, which has been practiced in India for thousands of years for the treatment of a variety of disorders, are rich in chemicals potentially useful for prevention and treatment of cancer. Withania somnifera (commonly known as Ashwagandha in Ayurvedic medicine) is one such medicinal plant whose anticancer value was realized over four decades ago after isolation of a crystalline steroidal compound (withaferin A) from the leaves of this shrub. The root and leaf extracts of W. somnifera are shown to confer protection against chemically-induced cancers in experimental rodents, and retard tumor xenograft growth in athymic mice. Anticancer effect of W. somnifera is generally attributable to steroidal lactones collectively referred to as withanolides. Withaferin A (WA) appears most active against cancer among structurally divergent withanolides isolated from the root or leaf of W. somnifera. Cancer-protective role for WA has now been established using chemically-induced and oncogene-driven rodent cancer models. This review summarizes the key in vivo preclinical studies demonstrating anticancer effects of WA. Molecular targets and mechanisms likely contributing to the anticancer effects of WA are also discussed. Finally, challenges in clinical development of WA for the prevention and treatment of cancer are highlighted.
Collapse
Affiliation(s)
- Avani R Vyas
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
12
|
Pharmacological and analytical aspects of withaferin A: A concise report of current scientific literature. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2013. [DOI: 10.1016/s2305-0500(13)60154-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
13
|
Pleiotrophic effects of natural products in ROS-induced carcinogenesis: The role of plant-derived natural products in oral cancer chemoprevention. Cancer Lett 2012; 327:16-25. [DOI: 10.1016/j.canlet.2012.02.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/18/2012] [Accepted: 02/20/2012] [Indexed: 12/14/2022]
|
14
|
Shin JA, Kim JS, Hong IS, Cho SD. Bak is a key molecule in apoptosis induced by methanol extracts of Codonopsis lanceolata and Tricholoma matsutake in HSC-2 human oral cancer cells. Oncol Lett 2012. [PMID: 23205139 DOI: 10.3892/ol.2012.898] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Since the 5-year survival rate of oral cancer remains low, more effective and non-toxic therapeutic and preventive strategies are required. Certain natural products possess anti-cancer properties. The present study investigated the effects of the methanol extracts of Codonopsis lanceolata (MECI) and Tricholoma matsutake (METM) and identified the molecular target in HSC-2 human oral cancer cells. The results revealed that MECI and METM inhibited growth and induced apoptosis, as demonstrated by poly (ADP-ribose) polymerase (PARP) cleavage and nuclear condensation and fragmentation. The compounds also increased Bak protein expression, while Bax, Bcl-XL and Mcl-1 were not affected. The results of the present study show that MECI and METM induce apoptosis to inhibit tumor growth of HSC-2 cells by modulating the Bak protein and suggest that Codonopsis lanceolata and Tricholoma matsutake are potential anticancer drug candidates for oral cancer.
Collapse
Affiliation(s)
- Ji-Ae Shin
- Department of Oral Pathology, School of Dentistry, Institute of Oral Bioscience, Chonbuk National University, Jeonju
| | | | | | | |
Collapse
|
15
|
Vanden Berghe W, Sabbe L, Kaileh M, Haegeman G, Heyninck K. Molecular insight in the multifunctional activities of Withaferin A. Biochem Pharmacol 2012; 84:1282-91. [PMID: 22981382 DOI: 10.1016/j.bcp.2012.08.027] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/29/2012] [Accepted: 08/30/2012] [Indexed: 12/11/2022]
Abstract
Herbal medicine which involves the use of plants for their medicinal value, dates as far back as the origin of mankind and demonstrates an array of applications including cardiovascular protection and anti-cancer activities, via antioxidant, anti-inflammatory and metabolic activities. Even today the popularity of medicinal herbs is still growing like in traditional medicines such as the Indian medicine, Ayurveda. One of the Ayurvedic medicinal plants is Withania somnifera Dunal, of which the important constituents are the withanolides. Among them, Withaferin A is one of the most bioactive compounds, exerting anti-inflammatory, pro-apoptotic but also anti-invasive and anti-angiogenic effects. In the context of modern pharmacology, a better insight in the underlying mechanism of the broad range of bioactivities exerted by Withaferin A is compulsory. Therefore, a lot of effort was made to explore the intracellular effects of Withaferin A and to characterize its target proteins. This review provides a decisive insight on the molecular basis of the health-promoting potential of Withaferin A.
Collapse
Affiliation(s)
- Wim Vanden Berghe
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Department of Physiology, Ghent University, Gent, Belgium
| | | | | | | | | |
Collapse
|
16
|
Silvan S, Manoharan S, Baskaran N, Anusuya C, Karthikeyan S, Prabhakar MM. Chemopreventive potential of apigenin in 7,12-dimethylbenz(a)anthracene induced experimental oral carcinogenesis. Eur J Pharmacol 2011; 670:571-7. [PMID: 21970806 DOI: 10.1016/j.ejphar.2011.09.179] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 09/18/2011] [Accepted: 09/19/2011] [Indexed: 01/05/2023]
Abstract
Aim was to investigate the chemopreventive potential of apigenin by analyzing the tumor incidence as well as monitoring lipid peroxidation, antioxidants and phase I and phase II detoxification as biomarkers during DMBA induced hamster buccal pouch carcinogenesis. Oral tumors were developed in the buccal pouches of golden Syrian hamsters using topical application of 0.5% DMBA (DMBA) three times a week for 14weeks. Tumor incidence, tumor volume and burden were measured in hamsters treated with 7,12-dimethylbenz(a)anthracene and DMBA+apigenin (2.5mg/kg body weight) treated hamsters. Oral administration of apigenin not only completely prevented the formation of oral tumors, it also brought back the status of lipid peroxidation, antioxidants and phase I and phase II detoxification agents to near normal range during DMBA induced oral carcinogenesis. The present study thus concludes that apigenin might have inhibited oral carcinogenesis by improving the status of antioxidant defense mechanism and modulated the activities of phase I and phase II detoxification cascade toward increased excretion of active metabolite of DMBA, during DMBA induced hamster buccal pouch carcinogenesis.
Collapse
Affiliation(s)
- Simon Silvan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu 608002, India
| | | | | | | | | | | |
Collapse
|
17
|
Manoharan S, Balakrishnan S, Vinothkumar V, Silvan S. Anti-clastogenic potential of carnosic acid against 7,12-dimethylbenz(a)anthracene (DMBA)-induced clastogenesis. Pharmacol Rep 2011; 62:1170-7. [PMID: 21273674 DOI: 10.1016/s1734-1140(10)70379-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 04/20/2010] [Indexed: 10/25/2022]
Abstract
Carnosic acid, a primary phenolic compound found in the leaves of rosemary (Rosmarinus officinalis), has diverse pharmacological and biological activities. The aim of the present study was to investigate the anti-clastogenic effect of carnosic acid in DMBA-induced clastogenesis. The frequency of bone marrow micronucleated polychromatic erythrocytes (MnPCEs), chromosomal aberrations (cytogenetic end points), the status of Phase I and II detoxification enzymes, lipid peroxidation by-products and antioxidants (biochemical endpoints) were analyzed to assess the anti-clastogenic effect of carnosic acid in DMBA-induced clastogenesis. Oral pretreatment of carnosic acid for five days to DMBA-treated hamsters significantly protected DMBA-induced clastogenesis as well as biochemical abnormalities. Although the exact mechanism of anti-clastogenic effects of carnosic acid is unclear, the antioxidant potential and effect on modulation of Phase I and II detoxification enzymes could play a possible role.
Collapse
Affiliation(s)
- Shanmugam Manoharan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar-608 002, Tamil Nadu, India.
| | | | | | | |
Collapse
|
18
|
Suresh K, Manoharan S, Vijayaanand MA, Sugunadevi G. Chemopreventive and antioxidant efficacy of (6)-paradol in 7,12-dimethylbenz(a)anthracene induced hamster buccal pouch carcinogenesis. Pharmacol Rep 2010; 62:1178-85. [PMID: 21273675 DOI: 10.1016/s1734-1140(10)70380-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 04/07/2010] [Indexed: 01/08/2023]
Abstract
The present study evaluated the chemopreventive potential of (6)-paradol, a pungent phenolic constituent of ginger, on 7,12-dimethylbenz(a)anthracene (DMBA)-induced hamster buccal pouch carcinogenesis. The mechanistic pathway for the chemopreventive potential of (6)-paradol was evaluated by measuring the status of tumor incidence, volume and burden as well as by analyzing the status of phase II detoxification agents, lipid peroxidation and antioxidants. Oral squamous cell carcinoma was induced in hamster buccal pouches by painting them with 0.5% DMBA in liquid paraffin three times a week for 14 weeks. We observed 100% tumor formation with marked biochemical abnormalities in tumor-bearing animals compared to control animals. Oral administration of 30 mg/kg b.w. (6)-paradol to DMBA-treated hamsters on alternate days from DMBA painting for 14 weeks, significantly reduced the formation of tumors and improved the status of detoxification agents, lipid peroxidation and antioxidants. Therefore, the present study suggests that (6)-paradol has potent chemopreventive, anti-lipid peroxidative and antioxidant potentials as well as a modulating effect on phase II detoxification enzyme and reduced glutathione (GSH) in DMBA-induced hamster buccal pouch carcinogenesis.
Collapse
Affiliation(s)
- Kathiresan Suresh
- Department of Biochemistry & Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu, 608 002, India.
| | | | | | | |
Collapse
|